UC-NRLF
 ||
 B 3 137118

UNIVEASITY OF CALIFORNIA,

DEPAMTMEMT OF CIVILENGINEERING EERKEDEY, CALIFORNIA

exterics thitane

 70 EnBMUTOAMUMANA

 raterorio burs tel.I कoiz betezt

ESTABLISHED 1845

W. \& L. E. GURLEY, TROY, N. Y.
manufacturers of

Civil Engineers' and Surveyors' Instruments

All Instruments Sent to the Purchaser Adjusted and Ready for Use. Send for Full Illustrated Price List and Circular.

A MANUAL

OF

Land Surveying
 comprising

 AN ELEMENTARY COURSE OF PRACTICE

 AN ELEMENTARY COURSE OF PRACTICE WITH INSTRUMENTS

 WITH INSTRUMENTS}

AND A TREATISE UPON THE

Survey of Public and Private Lands,

PREPARED

For use of Schools and Surveyors.

By F. HODGMAN, M. S., C. E., Practical Snrveyor and Engineer.

"Let thinqs that have to be done be learned by doing them."

> THE F. HODGMAN CO., cLimAX, MICHIGAN. 1907.

JAUKAM A

TA551

\square

PREFACE.

This addition to the already numerous treatises on land surveying was caused by the demand of the surveyors of Michigan for a treatise which would deal with the practical questions which meet the surveyor in his every day work in the field. Several admirable treatises were already in existence which dealt amply with the mathematical and instrumenta! part of surveying. But the perplexing questions which meet the surveyor are not questions of mathematical calculation or of the use of instruments. On the contrary they are, for the most part, questions of how to apply the principles of common law and statutory enactment to the location of boundary lines. These are the controlling considerations in all resurveys; a class which comprises probably nine-tenths of all the land surveys which are made. Scarcely an allusion to these principles was to be found in any of the works on surveying extant. In 1880 the Michigar Association of Surveyors and Civil Engineers appointed a committee on manual, to prepare a work which would give authoritative answers to the many questions of practice which came up before them. The committee spent their spare time for five years in an exhaustive research of the laws and the decisions of the highest courts in the land. The chairman attended the meetings of various surveyors' associations and collected their reports. From the great mass of material thus collected, the leading points in the laws of the United States and the decisions of the courts of last resort were selected, covering, as nearly as possible, all the points relative to surveys and boundary lines which arise in the land surveyor's practice. The legal decisions quoted are a part of the Common aw of the whole country and apply wherever the Common law prevails, whetper inganda England, or the United

States. It should be remembered, luwever, that different courts do not always expound the law alike, and sometimes a court reverses its own decisions. Whenever there appears to be a conflict of authorities, the Surveyor should follow the latest decisions in his own State if there be any. It seemed to the committee to be important that the student in land surveying should be taught these things; that they were as necessary for the beginner to know as for the older practitioner, and hence might properly be incorporated in the text book. Having this in view, it was decided to extend the scope of the manual by including such mathematical work as would make it equally adapted to the use of the student as a text book and the practical surveyor as a book of reference. In preparing this portion of the work, the leading idea has been that, so far as possible, the student should be taught by actual practice in the field, as well as in the class room; that he should learn to survey by surveying. The solution of a problem in surveying in actual practice is always worked out upon the ground, hence suggestions are made to the student how problems may be solved, instead of giving any formal solution. It is pre-supposed that every successful teacher will have methods of his own for conveying instruction, and will use these suggestions or make different ones as may seem best to him. Doubtless things have been omitted which some would regard as important to have introduced. Such omissions will be supplied by teachers at their pleasure and convenience. We acknowledge our indebtedness to the authors of many treatises which have been consulted in the preparation of this volume, especially to the works of Davies, Gillespie, Hawes and Dunn, also to Messrs. W. \& L. E. Gurley for many favors received, and to the officers and members of the Surveyors' Associations of Michigan, Ohio, Indiana, Illinois and Missouri for many valuable suggestions, sympathy and assistance.
F. HODGMAN.

Climax, Mich., 18.91

TABLE OF CONTENTS.

CHAPTER I.

DEFINITIONS.

INSTRUMENTS FOR MEASURING DISTANCES.
PAGE.
The Chain 2
The Steel Tape 3
Marking Pins. 4
Measuring 4
MEASURES OF LENGTH AND AREA, English 9
Old Spanish 11
Old French 13
Standard Measures 14
THE PICKET, To Run Line with 16
To Pass Obstacles 18
CHAPTER II.
INSTRUMENTS.
THE SURVEYOR'S COMPASS, Description of 19
Adjustments of 22
Electricity 24
To Run Lines with. 24
To Pass Obstacles 25
THE MAGNETIC NEEDIIE, Changes in direction of 26
Local Attraction 27
Difference in Instruments 27
Things to be Observea 27
Marking Lines 28
How to find a True Meridian 28
THE TRANSIT, Description and Adjustments 52
How to use 59
Assistants and their Duties 60
The Color Pole 61
Projecting the Line 62

CHAPTER III.

INSTRUMENTS, CONTINUED.

THE SOLAR COMPASS, Description and Adjustments 65
How to use 73
SOLAR ATTACHMENT TO TRANSIT.
Description and Adjustments 80
How to use 86
CHAPTER IV.
MEASUREMENT OF ANGLES.
TO MEASURE ANGLES, With Tape and Pins 88
With the Compass 91
With the Transit. 100
Verniers 102
TO CORRECT RANDOM LINES, of one course 93
Of several courses 96
CHAPTER V.
PASSING OBSTACLES AND MEASURING INACCESSIbLE DISTANCES.
PASSING OBSTACLES, By Parallel Lines 107
Bý 60° Angles 107
TO MEASURE INACCESSIBLE DISTANCES, By triangles 103
Stadia Measures 110
The Gradienter 115
CHAPTER VI.
PLATTING AND COMPUTING AREAS.
PLATTING, Instruments used 119
COMPUTING AREAS, Triangles 122
Quadrangles: Rectangles, Trapezoids and Trapeziums_ 124
Irregular Polygons 125
Offsets 126
Rectangular Coordinates 128
Application to Area 129
The Traverse Table 134
Meridian Distances 136
Supplying Omissions 143
Reducing Irregular Polygons. 148
Division and Partition of Land 153
Method by Approximations 163
Field Notes 164
Abridging Field Notes 168

CHAPTER VII.

CURYELINEAR SURVEYING.

Preliminary Propositions 170
To run Curves with Picket and Tape 171
Field Notes of Transit Lines 173
To run a Curve with the Transit, Different Methods 174
To locate a Curve from its Middle Point 179
To locate a Curve from some Intermediate Point 179
To locate a Curve from Point of Intersection_-...................... 180
Passing Obstructions in Line of Curve 181
Compound Curves 182
Useful Formula 154
CHAPTER VIII.
ORIGINAL SURVEYS.
Surveys, Classified 186
Original Surveys, Government and Private 186 186
PUBLIC DOMAIN, How and when Acquired. 188
Amount of 189
Origin of Systems of Surveys of 153
Laws relating to Survey of, where found 193
U. S. LA WS RELATING TO SURVEYS OF PUBLIC LANDS. Appointment of Surveyor General 193
Qualifications of 193
Term of Office- 194
When Records and Field Notes to be turned over to the State 194
Discontinuance of Office 194
When Authority to vest in Com. of Gen. Land Office 195
Free Access to Field Notes and Records 195
Surveyor General to Employ Deputies 155
To cause Survey of Base and Meridian Lines 196
To cause Survey of Private Land Claims 177-196
To inspect Surveys in Person or by Agent 197
Pay of Agent 197
Deputy Surveyor to Give Bond 197
Deputy Surveyor to make Oath to Field Notes 198
Penalty for Fraudulent Survey 198
PUBLIC LANDS, How Divided into Townships 198
Township Lines, how marked. 199
Townships, how subdivided into Sections 199
Sections, how numbered 171-199
Section Corners, how marked 199
Excess or Deficiency over six miles 199
Lines, how marked and measured. 200
what Surveyors to note in Field Books. 200
Disposition of Field Books and making of Plats 200
SECTIONS AND SUBDIVISIONS OF SECTIONS.
How Boundaries and Contents are found. 200
U. S. Survey Corners the true ones 201
Corners of $1 / 2$ and $1 / 4$ Sections not set by Government Survey 201
Boundary Lines of U. S. Survey the true ones. 201
Those not run, how found 201
True Contents of Sections returned 201
True Contents of $1 / 2$ and $1 / 4$ Sections which are not Returned 201
Fractional Sections, how divided 202
When ordinary Course may be departed from 202
Surveys in Nevada, Oregon, and California 203
When Rectangular System may be departed from 203
Instructions, a part of Contract 204
Survey of Mining Claims and Rights of Owners 204
Appointment of Mineral Surveyors 206
Plats and Field Notes of Mining Surveys 207
Contracts to be approved by Com. Gen. Land Office 207
Commissioner to fix Prices for Surveys, etc. 207
Extra Price in Oregon, Washington, and California 208
Penalty for Interference with Surveys 209
Surveyors appointed to select Timber Lands. 210
Duty of Dircetor of Geological Survey 210
FIELD WORK AND CHANGES THAT HAVE BEEN MADE.
Two Mile Blocks, Act of 1796 211
Subdivisions into half Sections, Act of 1800 211
Changes in manner of Subdividing, Double Corners, etc 211
How Area of Fractions is Calculated 213
INSTRUCTIONS OF 1902.
System of rectangular Surveying 218
Establishment of Meridians, Base Lines, and Parallels 219
Division into Townships and Sections. 220
Excess or deficiency in measurement 220
How Townships and Sections are numbered 220
Instruments to be used 221
Tests and Adjustments of. 221
Chains and Tally pins 222
Process of chaining 223
Leveling chain and Plumbing pino 223
Marking lines 224
Marking random lines 225
Insuperable objects in line 226
Witness Points where made 226
Establishing Corners 226
Marking Tools 227
Surveying Monuments 227
Descriptions of Corners 227
Abbreviations. 228
Stendard Township Corners, how marked 230
Witness Corners, how marked 233
Witness Corners in Roads 233
Witness points, how marked 234
Corners on rock 234
Location of Mounds 234
Mounds of Stone 234
Bearing Trees 235
Stones for Corners 237
When Lines to be discontinued at Corners 237
Marks to be Cut 237
Orientation of Corners 237
Size of Posts, Mounds, etc 237
Corner Materials. 237
Initial Points. 238
Base Line 238
Principal Meridians 240
Standard Parallels 240
Guide Meridians 241
Township Exteriors 241
Township exteriors where impassable objects occur. 242
Method of Subdividing. 243
Method of Subdividing, Exceptions 247
Meandering Streams. 249
Meandering Lakes 251
Objects to be noted 253
Prescribed Limits for Closings and Lengths of Lines 255
Field Notes Blank Books furnished 256
What Original Field Notes are 256
SURVEYING BASE LINES AND STANDARD PAR ALLELS BY OFESETS FROM STRAIGHT LINES.
Secant Method and Tables 257
Tangent Method and Tables. 264
CHAPTER IX.
SUBDIVISTON OF SECTIONS.
SUBDIVISION OF SECTIONS 267
Four Different Cases 269
Quarter Sections 270
Half-Quarter Sections 270
Fractional Sections 270
Section Six 271
Sections made Fractional by Waters 272
Irregular Subdivision of Sections made Fractional by Waters 273
Exceptional Cases 274
Sample Resurvey and Subdivision of a Section 274
Private Surveys 283
Highway Surveys 284
Surveys for Town Plats． 284
What Plats in Michigan must contain 285
What Record of Plats in Michigan must contain 285
Monuments 287
CHAPTER X．
RESURVEYS．
RESURVEYS．
Authority of Surveyor 259
What the Surveyor is called on to do－ 289.
DECISIONS OF SUPREME COURTS，Giving－
Rules for construing Descriptions of Land＿－．．．．．．．．．． 289
Adverse Possession 305
Rules of Construction when Land borders on Waters 305
How to Locate Corners and Boundary Lines． 317
General Rules 317
Alluvium 337
Rules Applicable to U．S．Survey 339
Mineral Surveys 350
How to Write Descriptions for Deeds． 351
T月巴ロ
RE－LOCATING LOST CORNERS．
General Rule 356
Lost Corners of U．S．Survey in Base Lines，etc． 357
Lost Closing Section Corners 357
Lost Interior Section Corners 358
Lost Township Corners 358
Lost Quarter－Section Corners 358
Lost Meander Corners 358
Exceptional Methods 359
HOW TO FIND LOST CORNERS，Evidences of Original Posts 361
05y Bearing Trees 361 362
Distant Corners 363
Persons 364

CHAPTER XII.

MISCELLANEOUS.

Miscellaneous Questions 365
RIGHTS, DUTIES, ETC., OF SURVEYORS 377
To fix Lines by Consent of Parties 377
Have no Authority of their own for that purpose 377
Or to determine where Corners and Lines are 377
Old Boundaries not to be disturbed 378
County Surveyor's Certificate not Admissible in evi- dence in Michigan 378
Surveyor Liable for Damages for Unskillful Work 378
Judicial Functions of Surveyors 379
CHAPTER XIII.
IEVELING AND DRAINAGE SURVEYING.
Definitions 395
Difference between True and Apparent Level 395
Instruments for Leveling 396
The Wye Level and its Adjustments 397
Leveling Rods, Target and Speaking 401
To find Difference in Level of Different Points 403
Drawing Profle 408
Drainage Surveying 409
TABLES.
Suggestions to Young Surveyors i-iv
Trigonometrical Formulæ IV-VI
Table of Logarithms 1-16
Natural Sines and Cosines 18-26
Natural Tangents 28-39
Logarithmic Sines and Tangents 40-84
Traverse Table 86-91
Departures 92
Natural Secants 93-94
Azimuth of Polaris at Elongation 94
Gradienter Tables 95
Mean Refractions 96
Acreage of Open Drains 97
Acreage of Tile Drains and Capacity of Tile 98
Azimuths of Tangent 99
Offsets from Tangent 100
Minutes in Decimals of a Degree 101
Inches in Decimals of a Foot 101
Radil and Deflections 101
Tangents and Externals of a 1° Curve 102-105
Curve Formulæ 113
Stadia Reductions for Reading 100 106-112

A MAANUAI.

OF

LAND SURVEYING.

CHAPTER I.

I. Definitions. Field Work, \&c.

1. Land Surveying is the art of measuring distances and running lines on the earth's surface to determine the boundaries or to ascertain the areas of tracts of land. The lines run are not mathematical lines, but are representations of them, traced upon the earth's surface by means of various instruments, and marked to the eye by chops and notches cut upon trees, or rocks, or by stakes or stones set in the ground, or any other means to render them visible.
2. Original Surveys are the surveys which are first made for the purpose of locating upon the ground the boundaries of tracts of land, and marking them by visible objects. This work is called the Field Work. A full description of what is done is kept by the surveyor and is called the field notes. The field notes furnish the data from which to make a map of the land and calculate the area. They also furnish the evidence from which to again find and identify the boundaries upon the ground.
3. Resurveys are those which are made for the purpose of finding the boundaries which were marked when the original survey was made.
4. The instruments most commonly used in land surveying are the Chain and T'ape for measuring distances, and the Picket, Compass, Solar Compass and Transit for running lines.

II. Instruments for Measuring Distances and Their Use.

1. The Chain. The word chain is used to represent a distance of 66 feet and also an instrument used for measuring distances. The chain in most general use for, land sucveying is that invented by Gunter, and known as the Gunter chain. It is 66 feet long and divided into 100 equal parts, called links. The chain is made of wire, in links somewhat less than eight inches long. These are joined by two small, round or oval rings at each joint. The length of one of these longer links, with the two rings or short links taken together, make the distance known as a link.

The best surveyor's chains are made of steel wire, having the links brazed to prevent stretching by opening of the joints. Chains have every tenth link marked with a brass tag. The tags at the end of the tenth link from each end have one point; those at the twentieth links have two points; those at the thirtieth links have three points; those at the fortieth links have four points; while that in the centre or fiftieth link is rounded and has no point. Heavy chains of iron wire, with open joints, are of little value. It is very difficult to measure correctly with them, over rough ground, owing to their weight. They stretch rapidly by wear and by the opening of the joints. Chains fifty links long are used to measure over rough ground.
2. Chains Stretch by use, chiefly from wear in the joints. The best steel brazed chains, when in constant use on gritty ground, will stretch six inches or more in a year from this cause alone. They may be corrected in several ways. They may be shortened a limited amount
by turning up the nuts or burrs which hold the handles in place. They may be shortened by taking out short links or rings. The better way is to distribute the correction evenly throughout the chain, by putting each link in a vise and striking lightly on the end with a hammer, shortening it in that way.

The links in the chain get bent by use. When many of them are bent, the chain becomes elastic and will elongate from one to two inches when pulled. Chains should be examined before using and the links straightened. They should be frequently compared with a standard, that their length may be known, and they should be kept near the true length.
3. Steel Tapes are made for the use of land surveyors. They are light, so that they may be readily leveled up in measuring over rough ground or on a slope. They do not strētch. There are no links to get kinked and thus cause a false measure. They are in every way more accurate and convenient than the chain. The best tapes for general use are made of the best quality of steel ribbon, polished and blued, from $1 / 8$ to $3 / 8$ of an inch wide, and No. 30 to 32 thick. The wider thinner tapes are nearly useless for field work.

Tapes are made of any length and graduated to suit the work for which they are designed. A tape 66 feet long, graduated to links, is best adapted to country use. Tapes 50 or 100 feet long, graduated to feet and hundredths, are better adapted for use in many cities. Tapes from 200 to 400 feet long or even longer are made for special uses. With them long lines may be rapidly measured with an accuracy fairly comparable with the best work of the coast survey.

Two precautions need to be observed with steel tapes. When in use they should be kept out at full length and never be doubled on themselves. If doubled they are easily kinked and broken. When done up, they should be wiped clean and wound on open reels to prevent rusting.
4. A light wire is a cheap and handy substitute for the chain or tape. It is necessary to find its length in some way and then for even lengths of the wire it is capable of as accurate work as the best tape.
5. Marking Pins are used with the chain and tape in measuring. They are usually made of heavy wire about 14 inches in length, with one end sharpened to stick in the ground and a ring turned on the other end for convenience in handling. Strips of cloth are tied in the rings so that they can be seen more readily. The marking pins used in the United States surveys have heavy points, for dropping plumb when chaining on slopes. It is convenient to use eleven pins in chaining. One of them is stuck at the starting point, the leader takes ten, and then there is always one to start from, when the tallies are kept in even tens.
6. Measuring or chaining. Two men are required for this, and a third man can be of great assistance when chaining on slopes and accurate work is to be done. The care and accuracy required will depend on the. interests at stake. The surveyor would mistake his calling who should attempt to measure land worth fifty cents an acre with the same care he would use in measuring land worth fifty dollars or more per inch. In making measurements the following things are to be observed, with greater or less care and accuracy of detail, according to the importance of the work in hand.

1st. Chains are not adapted to great accuracy in measurements. For the best work use a steel tape, of which the exact length at a given temperature, and the rate of expansion are known. Tapes are usually made to be of standard length at a temperature of about $60^{\circ}, \mathrm{F}$. The rate of expansion by heat varies with the kind and quality of steel in the tape. It approximates closely to .001007 for each change of a degree in temperature. Thus a tape which is 100 feet long at $60^{\circ} \mathrm{F}$. will be 100.014 feet long at $80^{\circ} \mathrm{F}$. For very exact measurements
take note of the changes in temperature and correct for expansion and contraction. A thermometer is needed for this.

2d. Measure in straight lines. In ordinary work, pickets or rods set up along the line, in sufficient numbers for the chainmen to range by, will enable them to secure as great a degree of accuracy as is required in this respect.

3d. Measure on level lines. To do this the tape may be brought to a level line and the successive measures transferred to and from the ground by plumb lines. Use a plumb having a fine, strong line and a long, well balanced, sharp pointed bob. Measure down the slope. The rear chainman should hold the tape steadily and firmly at the mark, bracing his hand against his leg near the ground for a support. The leader brings his end of the tape level and in line. If necessary the follower directs him in doing this. He then applies the line to the point or mark on the tape, with the plumb-bob very nearly touching the ground. When he has the proper tension on the tape, and the plumb hangs perfectly still and true, he depresses the line enough to make a slight mark on the ground with the point of the bob, and sticks his marking pin beside it.

Another method of getting the measure on level lines is to drive short stakes or hubs along the line at every change in the slope of the surface. Small headed tacks are driven in the tops of these hubs. The distance between the tackheads is then measured along the surface and each measurement recorded. A level is then taken showing the difference in hights of these points. The length of the level line is found by calculation. Between every two hubs we have a right triangle in which we have the hypothenuse given by the tape, and the altitude given by the level, to find the base. By this method the error may be reduced below 1 in $25,000$.

4th. The tape must be drawn to the proper tension. Tapes are usually tested under a tension of ten pounds when supported the entire length. They should be further tested to find the amount of additional strain required to overcome the sag, when the tape is not supported between the ends. This varies, in different tapes, from 6 to 12 pounds for a 100 foot tape. The total strain in the unsupported tape in measuring should be from 16 to 22 pounds. The exact amount is to be found for each tape by trial.
7. The following is the general method of procedure in chaining, modified as the circumstances require. We will speak of the chainmen as leader and follower. The leader takes his end of the chain or tape and ten marking pins, and steps briskly in the direction of the line to be measured. One pin is stuck at the starting point. Just before the leader has the chain drawn out at full length, the follower calls "halt," and places his end of the chain in the proper position at the start ing point. The leader shakes out any kinks there may be in the chain, straightens and levels it in the line brings it to the proper tension and sticks his pin, calling "stuck" when he has done so. When the follower hears this signal, and not before, he pulls the marking pin and both move quickly forward, repeating the opera tion until the leader has stuck his last pin or has reached the end of the line. When the leader has stuck his last pin he calls "tally." The follower drops his end of the chain and brings forward the ten pins which he has, and gives them to the leader, who counts them to be sure none have been lost and then proceeds as before. The follower need not return for his end of the chain. The leader will draw it forward to him. When the end of the line is reached the leader holds his end of the chain at that point while the follower drops his end and comes forward and ascertains the distance, if any, between the last pin that was set and the end of the line.

When chaining on slopes which are so steep that the whole length of the chain cannot be leveled at once, the leader first draws it forward the whole length and in the line. He then drops the chain and all his marking pins and returns to a point where he can level a part of the chain and measures the distance, sticking one of the follower's marking pins to mark the point, the follower then drops his end of the chain, comes forward and taking the chain at the same point holds it to the mark while the leader measures a second section, and so on in succession till the end of the chain is reached, where the leader sticks one of his own marking pins. It will not often be necessary to take any note of the lengths of the parts of the chain measured. Observe only to measure to and from the same points in the chain, and take care that the count is not lost by getting the marking pins improperly mixed together.

The follower should see that his end of the chain is correctly and firmly held in its position when measuring. He should, when necessary, direct the leader in keeping the true line. The leader should see that his chain is drawn straight, level, in line, and to a uniform tension. To assist him in keeping the line he should observe objects in the range, both front and rear. He should see that his marking pins are set at the exact point. They should either be set plumb or slanting at right angles with the line, so that the measure may be taken from the point. When a plumb line is used, the latter is the better way. Chainmen should step quickly between points, and in chaining keep up with a man walking at an ordinary gait of three miles an hour. The follower must not stop the leader by a jerk on the chain. The leader must pull steadily when measuring. No jerking on the chain should be permitted,

If there is a difference in the chainmen the best man should take the lead. The chaining should always be uniform. In many surveys uniformity of measure is more important than great exactness.

Tests made by the author have led him to the conclusion, that, in common country surveying with the chain, nothing is gained by leveling the chain where the ground slopes less than five in a hundred. He finds that in field practice, under the ordinary conditions, more is lost by the sag of the chain than is saved by leveling. In one careful field test, six links was lost in a mile by leveling the chain, that being the net difference in favor of surface measurements for that distance.
In that class of work, measurements made along the surface may be corrected on the ground, as follows:
When ground slopes 4 in 100 add 1 link per chain

8. The student should practice in the field with the chain and steel tape until he is entirely familiar with their use, and can do accurate and rapid work. He should measure between fixed points over sloping or uneven ground, and repeat the measures until he can secure uniform results. He may be surprised at first -to tind that he does not measure twice alike. It is well to drive a small wooden stake at every tally or tenth chain, so that in case a marking pin is lost it will not be necessary to go back farther than to the first stake to remeasure. Beware of errors in counting the links less than a full chain. Count from the right end of the chain or tape. When the chain is used do not mistake the tag, as 60 instead of 40 or vice versa, or count odd links the wrong way from the tag. Beware of such mistakes as 64 instead of 56 , or 48 instead of 52 . The tape is generally numbered the whole length from 0 to 100 . Nearly the same care is needed to avoid mistakes in reading as with the chain, especially to read the distance from the right end of the tape. Otherwise such mistakes as giving the distance 56 instead of 44 are very liable. to occur.

III. Measures of Length and Area.

1. The measures in most general use among surveyors are based on the Gunter chain. The surveyor is however frequently required to express his measurements in units of the old linear and square measure.

Table of Chain Measure.

7.92 inches or .66 foot $=1$ link. 66 feet $=100$ links $=1$ chain. 80 chains $=1$ mile.
In country surveying the smaller measures are taken in links and parts of a link and distances less than a quarter of a link are not counted In the more exact work in cities, the foot and its subdivisions are in common use, and on account of the greater ease in making computations upon the decimal system, the plan of subdividing the foot decimally is adopted by many surveyors, and is growing in favor
> 2. Old Linear Measure:

> 12 inches $=1$ foot.
> 3 feet = 1 yard.
> $161 / 2$ feet $=1 \mathrm{rod}$.
> 40 rods $=1$ rood or furlong.
> 320 rods = 1 mile.

Measures for Area.

3 Chain Measure:

$\left.\begin{array}{l}100,000 \text { square links, or } \\ 10 \text { square chains }\end{array}\right\}=1$ acre
640 acres $=1 \mathrm{sq}$ mile or section.
36 sections $=1$ township.

In the United States land system, the square mile is known as the Section. It is subdivided into aliquot parts, which are described according to their place in the section. The manner of naming these subdivisions of a section is indicated in Figure 1.

When, because of lakes, rivers, reservations, adjacence to township boundaries, or other causes, any of the parts of a section are increased or diminished from their normal amount, they are known and described as Fractional. That word is used to indicate that the tract to which it is applied is not one of the regular subdivisions of the section. When a fractional lot is small it is the custom of the United States land department to attach it to, and sell it with, an adjacent larger tract which gives the name to the description of the whole tract. The manner of describing fractional lots is indicated in Figure 2. It is also a custom to number the fractional lots

FIG. 2. on the plats and describe them by numbers, as for example, Lot No. 3 of Section 18. The latter method requires a reference to the plat to know the location of the lot, while the former method does not.

4. Old English Land Measure:

$$
\begin{aligned}
& 144 \text { square inches }=1 \text { square foot. } \\
& 2721 / 4 \text { square feet }=1 \text { square rod. } \\
& 40 \text { square rods }=1 \text { rood. } \\
& 160 \text { square rods }=1 \text { acre. }
\end{aligned}
$$

Square rods and feet are still in common use as subdivisions of the acre. The rood and furlong are very nearly if not quite obsolete in the United States.
5. Spanish Measures. - In Spanish colonies in America, the Spanish system of land measures was used
in describing and measuring the land grants, and has continued in use down to the present time in a large extent of country. The principal unit of measure is the "vara," which seems to be a somewhat variable one. In a report of the 14th of November, 1851, from the surveyorgeneral of California, it is stated that all the grants, etc., of lots or lands in California, made either by the Spanish government or that of Mexico, refer to the "vara" of Mexico as the measure of length; that by common consent, in California, that measure is considered as exactly equivalent to thirty-three American inches. That officer enclosed a copy of a document he had obtained as being an extract of a treaty made by the Mexican government, from which it would seem that another length is given to the "vara;" and by J. H. Alexander's (of Baltimore) Dictionary of Weights and Measures, the Mexican vara is stated to be equal to . 92741 of the American yard. The general land office, however, has sanctioned the recognition, in California, of the Mexican vara as being equivalent to 33 American inches.

Extract of a treaty made with the Mexican government, which accompanied a report dated November 14, 1851, from the U.S. surveyorgeneral of Califonnia, respecting the ratio of land measures hetween those employed under the Mexican government and those in use in the United States
[From the Mexican ordinance for land and sea.]
Article 20th of the agreement entered into between the minister plenipotentiary of the Mexican government and her agents in London, the 15th of September, 1837, with the holders of Mexican bonds.
20th. In compliance of what is ordered by the seventh article of the preceding law, and in order to carry into effect the stipulation in the preceding agreement in regard to the holders of bonds deferred, it is declared that the act of which mention is made in said agreement answers to 4840 English yards squared, equivalent to 5762.403 Mexican varas square; inasmuch that the "sitio de ganado moyer" contains 4338.464 acres, the Mexican vara having been found by exact measures equal to 837 French millimetres.

Reducing the ratio of 4840 square yards and 5762.403 square varas, the vara will be................................
32.99312 inches

Reducing the 4338.464 acres 32.99311

Names of the Measures.	Figures of Measures.			a.renbs u! se.ira se.iv	
Sitio de ganado moyer	Squa	5,000	5,000	25,000,000	41.023
Criadero de ganado	do.				
Sitio de ganado menor	do.	2,5331/3	2,500 $31 / 3$	11,111,111	18.232
Criadero de ganado menor \qquad		1,666 ${ }^{2}$	1,666\%/3	2,7\%7,77\%	4.558
Caballeria de tierra---	Right angled				
Media caballeria	parall'gram Square	1,104	$\begin{aligned} & 552 \\ & 552 \end{aligned}$	609,408 304,704	1/2
Cuarto caballeria o Suerte de tierra	Right angled				
	parall'gram	552	276	152,352	
duro de maiz....--		276	184	50,784	1-12
Sala para casa_---.---	Square ---.--	50	50	2,500	0.004
Fundo legal para pue-	do.	1,200	1,200	1,440,000	2.362

The Mexican vara is the unit of all the measures of length, the pattern and size of which are taken from the Castilian vara of the mark of Burgos, and is the legal vara used in the Mexican republic. Fifty Mexican varas make a measure which is called "cordel," which instrument is used in measuring lands.

The legal league contains 100 cordels, or 5,000 varas, which is found by multiplying by 100 the 50 varas contained in a cordel. The league is divided into two halves and four quarters, this being the only division made of it. Half a league contains 2,500 varas, and a quarter of a league 1,250 varas. Anciently, the Mexican league was divided into three miles, the mile into a thousand paces of Solomon, and one of these paces into five-thirds of a Mexican vara; consequently, the league had 3,000 paces of Solomon. This division is recognized in legal affairs but has been a very long time in disuse-the same as the pace of Solomon, which in those days was called vara, and was used for measuring lands. The "mark" was equivalent to two varas and seven-eighths-that is, eight marks con-
taining twenty-three varas-and was used for measuring lands.

In Texas the surveys are made on the vara system. A 20 -vara chain is used, the area calculated in varas, and when necessary reduced to acres. The field notes contain no system of measurement except varas. Nearly all the old leagues were laid off in rectangular form, and nearly all the subdivisions since have been by lines parallel with the original league lines.

The following table of comparisons gives the system of land measures in use in that state:

1 vara	$=331 / 3$ inches.
1900.8 varas	$=1$ mile.
$25,000,000$ sq. varas	$=1$ league $=4428.4$ acres.
$1,000,000 "$	$"$
$5645.376 "$	$=1$ labor $=177.136$
$1 "$	1

6. Old French Measures were used in laying off land in the French colonies, and still find a place in some parts of the country. The unit was the "arpent," of which there were different values, varying from threefourths of an acre to an acre and a half. The "arpent d'ordonnance" or legal arpent equalled 1.262 acres, and contained 100 square perches of 22 "pieds du roi" on a side.

The old French linear measures were the old Paris foot called "pied du roi" and its sub-multiples-

12 points $=1$ ligne.
12 ligne $=1$ ponce.
12 ponce $=1$ pied du roi $=12.889$ inches.
6 pieds du roi $=1$ toise,-interesting as being the unit employed in the survey of the great French meridian arc, on which the metre was founded.

Modern French measures are upon the Metric System.

7. Standard Measures.

The constitution of the United States says that congress shall have power to establish a system of weights and measures. It has, however, never done so. In 1832 the secretary of the treasury assumed the authority to adjust and regulate the weights and measures in use in the custom houses, and delegated the construction and adjustment of standards to Mr. Hassler, who was then superintendent of the coast survey.

The standard of length adopted was a yard, as measured between the 27 th and 63 rd inches of a scale made in London, by Troughton, and brought to this country in 1814. This scale is a copy of the old British Standard, known as the Bird Standard of 1760 .

At a temperature of $59.62^{\circ} \mathrm{F}$. it is equal in length to the Imperial Standard at $62^{\circ} \mathrm{F}$. Although Congress never adopted that yard as a standard, it authorized the transmission of copies thereof to the several states. In many of the states these copies have been legally adopted as the standards. Other states have no legal standards. The Michigan standard is a brass yard, of exact length at a temperature of $58.40^{\circ} \mathrm{F}$. It is both a line and an end measure. It is doubtful if these standards in the several states are kept in such a manner as to be reliable for purposes of comparison or if they are so kept, whether the officers in charge of them have the skill and the facilities required for making accurate comparisons. Standard rods are sold by dealers but they are more or less discrepant in length. Surveyors who desire to know the true length of their standard measures can send them

- to the Superintendent of the Coast and Geodetic Survey, at Washington, who will cause them to be compared and the government stamp placed on them, giving their exact length. The examination and test, for which a fee of fifty cents is charged, secures a sufficient degree of accuracy for ordinary purposes of the surveyor. Where an extra degree of accuracy is called for a higher fee is charged.

Although Congress has not adopted a general standard of measure, it has adopted a standard for the measurement of the public lands, which so far as the resurvey or subdivision of those lands is concerned is final. In section 2395 of the revised statutes of the United States, it is enacted that "all lines shall be measured with chains containing two perches of sixteen and one-half feet, each subdivided into twenty five equal links. In section 2396 it is enacted that "All the corners marked in the surveys returned by the Surveyor General shall be established as the proper corners" \&c.; and that "the boundary lines actually run and marked in the surveys returned by the Surveyor General, shall be established as the proper boundary lines of the sections and subdivisions for which they were intended, and the length of such lines as returned shall be held and considered as the true length thereof."

This enactment makes an actual standard of measure between every two adjacent corners of the government survey, which is the only legal standard for measures of that line. The surveyor, in resurveying or subdividing the public lands, has thus a standard laid down for him on every line previously run by the government deputy surveyor and has only to adjust his chain to that standard. This is practicaily done on the ground by apportioning any difference between the surveyor's measure of a given line and the length of the line as returned in the field notes pro rata between its different parts.

Example.-It is required to locate the half-quarter corner on the line described in the field notes as running, "West on corrected line between Sections 11 and 14 39.72 , set qr. sec. post," etc.

Suppose the surveyor on measuring this line finds the distance between the two corners, as actually marked on the ground, to be by his chain 39.84 chains. Then his chain is too short and its legal length for that line is to its nominal length as 39.72 is to 39.84 and the distance to the half-quarter corner is by the new measure 19.92 chains.

IV. Instruments for Running Lines and Their Use.

1. The instruments most commonly used in running lines are the picket, the compass and the transit. There are various modifications of the compass and transit. The methods of running lines with these instruments will be treated of in connection with the description of them.
2. The Picket or Rod is the simplest device for ranging lines. It is simply a straight rod an inch or two in diameter and having a sharp point to stick in the ground. The author prefers to have them sharpened to a long slim point at the top also, and that the pickets shall be of such a length as to be the height of the eye when firmly planted in the ground. Where timber is plenty they may be cut from small straight saplings, or split from body wood as they are wanted, and left standing where they are used, as a guide to the chainmen.
3. To range a line with pickets. Set the first picket at the starting point and a second a short distance away in the direction in which the line is to run. Then go ahead and set picket after picket at such distances apart that at least three of them can be distinctly seen at the same time. Set the pickets plumb and align them by sighting over the sharpened points at the top. A plumb line will be of assistance in ranging lines over uneven ground. Set short stakes in the line at uniform distances apart. Then if the line was intended to strike a particular point and missed, it may be corrected by measuring the perpendicular distance from the line to the point, and then moving each intermediate stake its proportional part of that distance according to the distance it is from the starting point.

Example 1.-Commencing at the southwest corner of Mr. B.'s farm, I ran north, setting stakes on the trial line every ten chains. At 40.00 chains, my line inter-
sected the north line of his farm 32 links east of his northwest corner. What correction must be made for each stake?
Solution.-The first stake being set at $1 / 4$ the distance between points must be corrected $1 / 4$ of $32=8$ links, and as the trial line came out to the east of the corner, the stakes on that line must be moved to the west. The 2 d stake being at $1 / 2$ the distance between points must be moved west $1 / 2$ of $32=16$ links. Similarly the 3 d stake must be moved west 24 links.
NOTE.-Sections of the United States survey are tracts of one mile square. Monuments are set at each corner called Section Corners. Others are placed midway between them on the section lines called quarter posts or quarter section corners. Some sections greater or less than these are called Fractional Sections.

Example 2-Commencing at a point 12 links west of the quarter post in the south side of Section 20, I ran north, setting stakes on the trial line every ten chains. At 80 chains my line intersected the north line of the section, 36 links west of the quarter post.' What correction must be made to place the intermediate stakes in the true line between the quarter posts, known as the quarter line?

Answer.-Commencing with the first ten chain stake they must be set east, 15, 18, 21, 24, 27, 30, and 33 links respectively.

Example 3.-Commencing at a point 24 links west of the southwest corner of section 16 , I ran a trial line north, setting stakes every ten chains. At 80.36 chains, the line intersected the north line of the section, 32 links east of the section corner. What is the correction to be made at each stake to place it in the true section line and at the equidistant points? Answer to be found by the student.
NOTE.-This solution requires corrections both for line and measure. It is a cardinal principle of land law that the original measurements and monuments which were made in the survey in accordance with which the land was sold are in law the true measures and mouumenrs. All subsequent measures for the purpose of locating boundaries must be made to conform with the original measures.

Trial or random lines, as they are usually called, are often run one side of the true line, purposely to avoid obstacles, like fences and hedge rows. The surveyor, by a judicious selection of ground for the random line can often save a great deal of labor and time of the party, by avoiding obstacles which would otherwise have to be removed or offset around. Randoms from which the true line is to be found should be run with as great care as any line.
The student should practice running and measuring trial lines between points until familiar with the processes. He should run various randoms to find the line between the same points and see how they agree when corrected for true line.
4. To range a true line between points that can not be seen from each other but can both be seen from some intermediate point, as a hill.

Set up flags at the two points. Two persons then take pickets and station themselves, a short distance apart, at the intermediate position from which the flags can be seen. They face each other and each in turn aligns the other between himself and the flag toward which he faces, until the true line is reached, when the pickets are set in the line.

5. To pass obstacles in the line.

From the last two pickets preceding the obstacles, set two other pickets on a line parallel with fthe true line and at a sufficient distance to pass the obstacle. Prolong the parallel line far enough to set two pickets beyond the obstacle and then regain the original line by measuring back from these two pickets.
6. The methods of running lines with the compass and transit will be given in connection with the descriptions of these instruments.

CHAPTER II.

Description of Instruments.

1. The Surveyor's Compass. The essential features of the surveyor's compass are a magnetic needle for finding a meridian line, a circle graduated to half degrees -known as the limb, for laying off angles from the meridian, and sights attached for use in prolonging lines on the ground.

When the limb and sights are on separate plates moveable upon each other around a common center through an arc of 15° or 20°, and a vernier is attached, the instrument is known as the Vernier Compass.

The use of the vernier is chiefly for setting the sights of the instrument so that they will be in the true north and south line when the magnetic needle points to zero on the limb. There is only a small portion of the earth's surface in which the needle points to the true north. A line passing through those places where the needle points truly north is called the agonic line or line of no variation. This line runs in a northerly course and is constantly changing its position. At all places outside the line of no variation, the needle points to the east or west of true north. This difference between the direction of the needle and the true meridian is spoken of as the variation, or, more correctly, the declination of the needle. The vernier is used to measure the angle between these two lines.

Fig. 3.-VERNIER COMPASS-6-INCH NeEdle.
Sometimes there is added a divided circle or limb with serniers by which angles can be taken throughout the entire circle independently of the needle. The instrument in this form is called the railroad compass. The addition of leveling screws and a revolving telescope in place of the plain sights makes a surveyor's transit of it.

The Plain Compass consists of a circular box of brass, usually about six inches in diameter, resting upon an arm of the same metal about fourteen inches in lengthAt the extremities of the arm are vertical attachments through which are fine slits, terminated at intervals by circular apertures, which serve as sights in directing the instrument upon any point. At the centre of the box is a small vertical pin upon which is balanced a slender magnetized bar of steel, called the Needle.

Turning with a free horizontal motion, the pointed ends of the needle traverse the graduated circumference of the circle. The plane of the sights passes through the center of the circle and cuts the circumference in two points marked $\mathrm{N} \cdot$ and S , otherwise distinguished as the north and the south points of the instrument. From these points the graduation of the circle runs 90° in each direction to the points marked E and W .

A circle of plate-glass forms the cover of the box. Two small spirit levels are placed at right angles to each other upon the arm, to aid in rendering the plane of the instrument horizontal.

The compass is mounted upon a three-legged support called a Tripod, or upon a single staff called a Jacob Staff, with which it is so connected as to admit of being turned in any desired direction. In using the compass, the surveyor should keep the south end toward his person, and read the bearings from the north end of the needle. He will observe that the letters E and W on the face of the compass are reversed from their natural position, to correspond with the line of the sights, in order that the direction may be correctly read.

II. Adjustments of the Compass.

The Sights of the compass should be truly at right angles with the plate, so that when set up and leveled ready for use the line of sight will be in a vertical plane.

The needle should cut opposite degrees in any part of the circle, and should have, its ends in line with the centre.

The levels should be parallel to the plane of the plate. To adjust the compass to these conditions begin with

The Levels.-First bring the bubbles into the centre, by the pressure of the hand on different parts of the plate, and then turn the compass half-way around; should the bubbles run to the edge of the tubes, it would indicate that those ends were the highest; lower them by tightening the screws immediately under, and loosening those under the lowest ends until, by estimation, the error is half remo :ed; level the plate again, and repeat the first operation until the bubbles will remain in the centre, during an entire revolution of the compass.

The Sights may next be tested by observing through the slits a fine hair or thread, made exactly vertical by a plumb. Should the hair appear on one side of the slit, the sight must be adjusted by filing off its under surface on that side which seems the highest.

The Needle is adjusted in the following manner: Having the eye nearly in the same plane with the graduated rim of the compass-circle, with a small splinter of wood or a slender iron wire, bring one end of the needle in line with any prominent division of the circle, as the zero, or ninety degree mark, and notice if the other end corresponds with the degree on the opposite side ; if it does, the needle is said to "cut" opposite degrees ; if not, bend the centre-pin by applying the small brass wrench, furnished with the compass, about one-eighth of an inch below the point of the pin, until the ends of the needle are brought into line with the opposite degrees.
Then, holding the needle in the same position, turn the compass half-way around, and note whether it now cuts opposite degrees; if not, correct half the error by bending the needle, and the remainder by bending the centre pin.
'l'he operation should be repeated until perfect reversion is secured in the first position.

This being obtained, it may be tried on another quarter of the circle; if any error is there manifested, the correction must be made in the centre-pin only, the needle being already straightened by the previous operation.

When again made to cut, it should be tried on the other quarters of the circle, and corrections made in the same manner until the error is entirely removed, and the needle will reverse in every point of the divided surface. If the needle has lost its polarity, and needs to be remagnetized, this is effected in the following manner :

The opcrator being provided with an ordinary permanent magnet, and holding it before him, should pass with a gentle pressure each end of the needle from centre to extremity over the magnetic pole, describing before each pass a circle of about six inches radius, to which the surlace of the pole is tangent, drawing the needle towards him and taking care that the north and south ends are applied to the opposite poles of the magnet.
Should the needle be returned in a path near the magnetic pole, the current induced by the contact of the needle and magnet, in the pass just described, would be reversed, and thus the magnetic virtue almost entirely seutralized at each operation.
When the needle has been passed about twenty-five times in succession, in the manner just described, it may be considered as fully charged.
A fine brass wire is wound in two or three coils on the south end of the needle, and may be moved back or forth in order to counterpoise the varying weight of the north end.

The Centre-Pin. - This should occasionally be examined, and if much dulled, taken out with the brass wrench, already spoken of, or with a pair of pliers, and sharpened on a hard oil-stone-the operator placing it in the end of a small stem of wood, or a pin-vise, and deli
cately twirling it with the fingers as he moves it back and forth at an angle of about 30 degrees to the surface of the stone.

When the point is thus made so fine and sharp as to be invisible to the eye, it should be smoothed by rubbing it on the surface of a soft clean piece of leather.

Electricity.-A little caution is necessary in handling the compass that the glass covering be not excited by the friction of cloth, silk, or the hand, so as to attract the needle to its under surface.

When, however, the glass becomes electric, the fluid may be removed by breathing upon it, or touching different parts of its surface with the moistened tinger.

III. To Run a Line with the Compass.

Set up the instrument at the point from which the line is to run ; level the plate; turn the sights in the direction in which the line is to run, which may be ascertained by the needle or otherwise, as is most convenient. An assistant, known as the rodman or flagman, goes ahead with a sharp pointed rod or flag pole to such a distance as is convenient, and, guided by the signals of the compassman, sets his rod in line. When the ground is uneven, the rodman should select his point at the summit of rising ground, when possible to do so, in order to save unnecessary setting of the compass. He should always select the point most favorable for setting up the instrument, both to get a clear spot for the instrument and to get the best point for taking the next sight.

When setting his rod he should face the compass, holding the rod plumb and directly in front of him. He should move steadily in the direction indicated by the signals and not stick the rod down until he receives the signal to do so. After sticking it he should look for further signals, lest a change in its position might be required. After the rod is set the compassman should examine his instrument to see that it is in position, cor-
recting it and resetting the rod when necessary. He then sets up a picket in line near his instrument, to be used for a back sight, and moves his compass forward in the line to the point marked by the rodman, sets it up in the line, with the sights ranging back to the backsight, and continues the line as far as desirable. The needle may or may not be used, according to circumstances. At the beginning of the line the direction will usually be obtained from the needle. If used afterwards on the same line, care should be taken to have it in proper condition and working freely. When being carried the needle should be raised off the pivot, otherwise the point of the pivot will become dulled and the needle will not traverse freely.

IV. To Pass Obstacles in the Line.

1. When the obstacle is a tree, and no great degree of accuracy is required, make a mark on the tree where the line strikes it and set the compass up on the opposite side of the tree, putting it in line by taking a backsight on the tree, and finding the direction of the line by the needle.
2. Make an offset far enough to pass the obstacle on a parallel line, the same as when running a picket line. When it is found that the line strikes a tree too large to be removed, set the rod in line near the tree, and then before moving the compass, set the picket for backsight at one side of it, a sufficient distance to pass the tree. Then move the compass ahead and set it up the same distance, and direction from the rod that the backsight picket was set from the compass. Get the direction of the line by ranging to the backsight. Prolong the parallel line beyond the obstacle and regain the true line in a similar manner. Other methods of passing obstacles in line will be given further on.

V. The Magnetic Needle.

1. The compass, because of its being so convenient for use has been for many years the principal instrument used
in Land Surveyiug. It is now very generally superseded by other instruments in surveys where accuracy is required. So far as the direction of lines is concerned, all compass surveying is based on the tendency of the magnetic needle to adjust itself to the magnetic meridian when free to do so, in other words to point north and south. It is however constantly changing its direction.
2. Secular Change. The line of no variation, as it is commonly called, otherwise known as the agonic line seems to have a periodical motion, back and forth, to the east and west, like the swinging of the pendulum. The length of the period is unknown but probably covers several centuries.

In the United States, so far back as known, its motion was to the eastward until the beginning of the present century, since which time it has been moving westward. In Michigan the secular change has been between 3^{\prime} and 4^{\prime} per year to the westward for the past sixty years. The agonic line was, in 1890, in the vicinity of Lansing.
3. Diurnal Change. The needle when undisturbed and free to move, swings back and forth each day through an are varying from 5^{\prime} to 20^{\prime} or more in amount. In the northern hemisphere the rorth end of the needle moves westward from about $8 \mathrm{~A} . \mathrm{M}$. until about 1:30 P. M., then returning and reachiny its former position at about 8 P. м. The amount of this motion is not uniform from day to day, being least on cloudy days ; nor from month to month, being least in winter. Nor is it the same in different localities. The effect of the diurnal variation is such that if a surveyor were to start a line in the morning and continue running it all day in the same direction, as shown by the needle, he would run a line like a letter S .
4. Irregular Changes. The needle is subject to sudden and violent changes in its direction, sometimes coincident with a thunderstorm or an Aurora Borealis,-often without any apparent cause. The writer has observed a
shange of half a degree in less than ten seconds of time, for which there was no apparent or discoverable cause. It was supposed to have been occasioned by a magnetic storm.
5. Local Attraction. Iron ore in the earth, or iron or steel in the vicinity of the needle will deflect it from its normal direction. High mountains or running streams are also said to deflect the needle more or less. Pocket knives and steel watch chains are prolitic sources of error as well as chains and axes.
6. Difference in Instruments. It is found by observation that different instruments do not indicate the same declination of the needle when observed at the same time and place. A difference of 15^{\prime} is not uncommon. Eight needles of three types made at Gurley's from the same sheet of steel and tested by an expert for a month on the same center pin, differed in direction, and the difference varied with the time of day.
7. , Things to be Observed in Running Compass Lines. For these reasons it is practically impossible to run a true Jine and repeat it, relying on the needle alone for direction. Hence in all original surveys, made with the compass, the field notes of the survey should give the date, and state whether the directions of the lines are given according to the magnetic meridian. If not, state what the angle is between the magnetic meridian and the meridian adopted for the survey, or in other words state the declination of the needle, estimated or allowed for in the survey. The meridian adopted will usually be as nearly coincident with the true meridian as known. Backsights should be used whenever the line is prolonged beyond a single sight, both to secure accuracy in the line, and as a check against local disturbances of the needle. They also save time, as a compass can be pointed to a backsight in much less time than it takes a good needle to settle.
8. Marking Lines. It is a cardinal principle of common law, as well as the statute law of the United States with reference to the public lands, that the original surveys as marked on the ground, in accordance with which the land was sold, are conclusive as to the corners and boundary lines. When the land is once sold, no change can be made in the marked boundaries without disturbing the vested rights of the owners. Resurveys are made to find the location on the ground of the original survey. The compass is a useful assistant in pointing out where to look for the more certain evidences, such as marked trees, stakes or corner stones, and, in the absence of anything better, may be used to determine the location of the line. A marked tree of the original survey is, however, better evidence of the location of the line than any line afterward run by a compass. It is possible that the line might be exactly retraced by the compass, but it could not be known to be so without the aid of other evidence. Hence the marks on the ground which define boundary lines cannot be made and kept too plain and permanent. The field notes and records which describe these marks should be full, clear and concise.

VI. True Meridians and how to Find them with the Compass.

In a country that has had the first surveys made and boundary iines marked, and subsequent surveys are based on these lines, it is very rarely of any consequence to the surveyor to know where the true meridian is. The original boundary lines are unchangeable, and it is no help to the surveyor to know where the true meridian is unless he also knows that the original surveys were in conformity with it, and that the causes of error heretofore mentioned can be eliminated. That is very rarely the case. His main concern is to know where the lines were and not where they ought to have been. The writer in nearly a quarter century of active practice as a surveyor has never had occasion, except as a matter of curiosity, to know where the true meridian was. In making the first surveys of a country with a compass, it is well to
know the position of the true meridian, in order that the lines may be run as nearly in conformity with it as the limitations of the instrument will permit, or that the divergence may be known. Subsequently, a knowledge of the changes in the declination of the needle is all that serves any practical purpose. This can be learned by observations on any line between two permanent points.
To find a true north and south line by means of the north star.

The north star appears to describe a small circle about the true north point or pole as a center. The radius of this circle is called the Polar Distance of the star. This polar distance is not a constant quantity, but becomes about $1 / 3$ of a minute of are less every year. On the first of January, 1890 it was about $1^{\circ} 16^{\prime} 41^{\prime \prime}$.

When in its revolution, the star is farthest from the meridian, it is said to be at its greatest eastern or western elongation.

The times of the elongations as given by a correct clock, for latitude from $38^{\circ} \mathrm{N}$ to $60^{\circ} \mathrm{N}$ and for the year 1890, are approximately as shown in the following tables:

EASTERN ELONGATIONS.

Day.	Apr.	May.	June.	July.	Aug.	Sept.
	H. M.					
1	637 A.M.	439 A.M.	237 A.M.	1239 A.M.	1037 P.M.	836 P.M.
7	614 "	416 "	214 "	$1216{ }^{\prime \prime}$	1014 "	812 "
13	550	352 "	${ }^{1} 50$ "	1152 P .M.	950 "	748 6
19	526 503	328 3 05	126 "	1129 "	927 "	725 "

WESTERN ELONGATIONS.

Day.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.
	H. M.	H. M.	H. M.	H. 3.	H. M.	H. M.
1	627 A.M.	425 A.M.	228 A.M.	1226 A.M.	1024 P.M.	830 P.M.
7	604 "	402 "	204 "	1202 "	1000 '6	$806{ }^{\circ}$
13	540 "	338 "	140 "	1139 P.M.	936 "	743 "
19	517 "	315 "	117	1115	913 "	719 "
25	453 "	251 "	1253	1051	8,49	655 "

To find the meridian of a place by means of an elongation of the north star requires the arrangement of the following preliminaries.

Set two posts firmly in the ground about three feet apart east and west, and saw them off to a level about three feet from the ground.

Lay upon the posts a plank 3 or 4 feet long and 6 or 8 inches wide, planed smooth on the upper surface, and nail or pin it securely to the supports, forming a sort of table.

To the north of the table at a distance of 10 or 12 feet set in the ground a stiff pole 12 or 15 feet high, having a cross bar nailed to its top, in an east and west direction, from which to suspend a plumb-line nearly reaching the ground, and having a bob weighing 1 or 2 pounds, which may be caused to hang in a pail of water, to insure steadiness.

Provide also a block or piece of plank 8 or 10 inches long, and smooth on the under side. Let one of the compass sights be fastened at right angles with the upper surface of the block and even with the side which is to be toward the south.

Everything being in readiness, the observer, a few minutes before the time of an elongation as given in the above Table, should be at his post and begin moving the block, even with the south edge of the table, keeping the plumb-line and star, as seen through the vertical slit, constantly in range with each other. A light will generally be needed near the plumb-line, to render it visible. As the star approaches its elongation, it will appear to move nearly vertical for several minutes, so as to be seen without moving the sight. When it is certain that the star has reached its elongation, confine the block carefully, by sticking a few tacks along its edges. Project the vertical slit to the ground $b_{\bar{y}}$ means of a plumbline and mark the point by setting a substantial stake with its top a little below the surface of the ground.

Being still careful not to move the block, let an assistant take one of the iron-pointed rods, or a stake, with a light, and go a hundred feet or more toward the star, and having found the point as directed by the observer, in range with the plumb-line as seen through the slit, let him mark it by driving a stake.

Having now two stakes in range of the elongation, the remainder of the operation may be deferred till morning.

To find the angle which the line as above determined makes with the meridian of the point of observation, requires a trigonometrical computation.

FIG. 4.

Let A be the point of observation, Z, the zenith of that point, $H O$, an arc of the northern horizon, N, the north point of that are, S, the north star at its eastern elongation, $P S$, the polar distance of the star, $A N$, the meridian of the point of observation, and $A E$, the line of the two stakes.

The angle sought is $N A E=$ angle $P Z S=\operatorname{arc} N E$.
Now, in the spherical triangle $P Z S, P Z$ is the co-latitude of the point A, which must be known. Solving this triangle, we have $\sin Z=\frac{\sin P S}{\sin Z P}$, or $\sin Z=-\frac{\sin \text { polar dist. }}{\cos \text { lat. }}$

From this, the angle Z becomes known, and, accordingly, it may be formed on the west side of the line $A E$, and thus the direction of the meridian $A N$ determined.

Ou $A N$, thus found, let a substantial stake be set a hundred yards or more from A, and we have a permanent meridian with which we may compare the magnetic meridian at any time, and thus determine the declination of the needle.

The declination of the needle is the angle which the magnetic meridian makes with the astronomical meridian.

For the purpose, simply, of finding the declination of the needle, it is sufficient to lay out on the ground the line of direction of the star at one of its elongations, and then, knowing the bearing of this line as shown by the needle, and the corresponding azimuth of the star, the declination of the needle is readily computed.
Thus, let $\pm a=$ azimuth, $\pm b=$ bearing, and $\pm d$ $=$ declination, accordingly as they are east or west.
Then $\pm d= \pm a-(\pm b)$.
Rule.-Subtract the bearing from the azimuth.
In appilying the Rule, due regard is to be had to the algebraic signs.

A near approximation to a true meridian may be had
 by observing the pole star while it is in the same vertical plane with the star Delta, in the constellation Cassiopeia. When both are behind the plumb-line together, they are very nearly in the true meridian. When Delta Cassiopeia passes the meridian above the pole, it is too high in the heavens to serve this purpose. It passes the meridian below the pole at midnight April 10th, and may be used for two months before and after that date. Six months later the star Zeta, the last but one in the tail of the Great Bear, takes its place. Fig. 5 shows the relative position of these stars and the pole.

FIG. 5.
VII. Other Methods for Finding a True

Meridian.

There are various other methods for finding a true meridian, several of which are here given. The Method for the determination of the azimuth of Polaris and true meridian at any hour, the star being visible, and the correct local mean time known is from the U. S. Surveying Instructions.

In this article it is proposed to present a method, with two new and compact tables adapted to common clock time, with such plain directions for use that any person of ordinary intelligence can understand and apply them.
As the surveyor should have a perfectly clear idea of what is meant by Astronomical Time (used to simplify computations), and the Hour Angle of .Polaris, these terms will now be explained.
The Civil Day, according to the customs of society, commences at midnight and comprises twenty-four hours from one midnight to the next following. The hours are counted from 12 to 12 from midnight to noon, after which they are again reckoned from 12 to 12 from noon to midnight. Thus the day is divided into two periods of 12 hours each; the first of which is marked a. m., the last p. m.

The Astronomical Day commences at noon on the civil day of the same date. It also comprises twenty-four hours; but they are reckoned from 0 to 24 , and from the noon of one day to that of the next following.
The civil day begins twelve hours before the astronomical day; therefore the first period of the civil day answers to the last part of the preceding astronomical day, and the last part of the civil day corresponds to the first part of the astronomical day. Thus, January 9, 2 o'clock p. m., civil time, is also January $9,2^{\text {b }}$, astronomical time; and January 9, 2 o'clock a.m., civil time, is January $8,14^{\mathrm{h}}$, astronomical time.

The rule, then, for the transformation of civil time into astronomical time is this: If the civil time is markod
9. m., takंe away the designation p. m., and the astronomical time is hau without further change; of the civil time is marked a m., take one from the day and add twelve to the hours, remove the initials a. m., and the result is the astronomical time wanted.

The substance of the above rule may be otherwise stated, as follows: When the surveyor takes an observation during p. m. hours, civil time, he can say: the astronomical time is the hours and minutes passed since the noon of this day, and when observing in the a. m . hours, he can say the astronomical time is the hours and minutes elapsed since the noon of yesterday, in either vase omitting the designation $a . m$. or p. m., and writing for the day of the month, that civil date on which the noon falls, from which the time is reckoned. Finally, the astronomical time may be calied the hours and minutes elapsed since the NOON LAST PASSED, the astronomical DATE being that of the civil day to which the noon belongs. Thus, April 23, 4:15 p. m., civil time, is April 23, $4^{\text {b }} 15^{\mathrm{m}}$, astronomical time, and April $23,4: 15 \mathrm{a} . \mathrm{m}$., civil time, is April $22,16^{\mathrm{h}} 15^{\mathrm{m}}$, astronomical time.

The surveyor should thoroughly master this transformation of the civil time into astronomical time, as it will be the first duty he will have to perform after observing Polaris out of the meridian.
The change can always be made mentally, no written work being required. Table I might be easily altered to give the times by the civil connt marked a. m. and p. m., but such an arrangement wonld greatly extend and-complicate the following :ules and examples, and correspondingly increase the chances for making mistakes.

Hour Angle of Polaris. - In Fig. 2, Plate I, the full vertical line represents a portion of the meridian passing through the zenith Z (the point directly overhead), and intersecting the northern horizon at the north point N , from which, for surveying purposes, the azimuths of Polaris are reckoned east or west. The meridian is pointed out by the plumb line when it is in the same plane with the eye of the observer and Polaris on the meridian, and a visual representation is also seen in the vertical wire of the transit, when it covers the star on the meridian.

36-:D : ADMAOUALIDE SLAND SURVEYING.
When Donan socrösses? tre ziferidian it is said to culminate; above the pole (at S), the passage is called the Upper Culmination, in contradistinction to the Lower Culmination (at S^{\prime}).

In the diagram, - which the surveyor may better understand by holding it up perpendicular to the line of sight when he looks toward the pole,-Polaris is supposed to be on the meridian, where it will be about noon on April 10th of each year. The star appears to revolve around the pole in the direction of the arrows, once in every $23^{\mathrm{h}} 56^{\mathrm{m}} 4^{\mathrm{s}} .09$ of mean solar time; it consequently comes to and crosses the meridian, or culminates, nearly four minutes earlier each successive day. The apparent motion of the star being uniform, one quarter of the circle will (omitting fractions) be described in $5^{\mathrm{h}} 59^{\mathrm{m}}$, one half in $11^{\mathrm{h}} 58^{\mathrm{m}}$, and three quarters in $17^{\mathrm{h}} 57^{\mathrm{m}}$. For the positions $s_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}$, etc., the angles $\mathrm{SPs}_{1}, \mathrm{SPs}_{2}, \mathrm{SPs}_{3}$, etc., are called Hour Angles of Polaris for the instant the star is at s_{1}, s_{2}, or s_{3}, etc., and they are measured by the ares $\mathrm{Ss}_{1}, \mathrm{Ss}_{2}, \mathrm{Ss}_{3}$, etc., expressed (in these instructions) in mean solar (common clock) time, and are always counted from the upper meridian (at S), to the west, around the circle from $0^{\mathrm{h}} 0^{\mathrm{m}}$ to $23^{\mathrm{h}} 56^{\mathrm{m}} .1$, and may have any value between the limits named. The hour angles, measured by the $\operatorname{arcs} \mathrm{Ss}_{1}, \mathrm{Ss}_{2}, \mathrm{Ss}_{3}, \mathrm{Ss}_{4}, \mathrm{Ss}_{5}$, and Ss_{6}, are approximately $1^{\mathrm{h}} 8^{\mathrm{m}}, 5^{\mathrm{h}} 55^{\mathrm{m}}, 9^{\mathrm{h}} 4^{\mathrm{m}}, 14^{\mathrm{h}} 52^{\mathrm{m}}, 18^{\mathrm{h}} 01^{\mathrm{m}}$, and $22^{\mathrm{h}} 48^{\mathrm{m}}$ respectively; their extent is also indicated, graphically, by broken fractional circles about the pole. The hour angle, $5^{\mathrm{h}} 55^{\mathrm{m}}$ and $18^{\mathrm{h}} 01^{\mathrm{m}}$ are those at west and east elongation, respectively, in latitude $40^{\circ} \mathrm{N}$.

Suppose the star observed (e. g.) at the point S_{3}; the time it was at S (the time of upper culmination), taken from the whole circle, $23^{\mathrm{h}} 56^{\mathrm{m}} .1$, will leave the arc Ss_{1}, s_{2}, s_{3}, or the hour angle at the instant of observation; similar relations will obtain when the star is observed in any other position; therefore, in general:-

Subtract the time of Upper Culmination from the correct local mean time of observation; the remainder will be the Hour Angle of Polaris.

The observation will be made as heretofore directed,
 star to reach elongation; the observation may be made at any instant when Polaris is visible, the exact time being carefully noted.

Table V.

This table gives, in "Part I," the local mean time of the upper culmination of Polaris, on the 1st and 15th of each month, for the years 1901 to 1910, inclusive. The times decrease, in each year, to April 10, when they become zero; then, commencing at $23^{\mathrm{h}} 56^{\mathrm{m}} .1$, the times again decrease until the following April, and so on, continuously. The quantity in the column marked "Diff. for 1 day" is the decrease per day during the interval of time against which it stands, and answers for all the years marked in the table. For any intermediate date, the "Diff. for 1 day" will be multiplied by the days elapsed since the preceding tabular date, and the product subtracted from the corresponding time, to obtain the required time of upper culmination for the date under consideration. The table answers directly for 108° west longitude. The results of using it for other longitudes will contain an amount of error hardly appreciable, as the correction for longitude cannot exceed one-tenth of a minute of time for each 9 degrees of longitude. A few examples will illustrate the use of the table.

1. Required the time of npper culmination of Polaris for a station in longitude 116° west, for March 3, 1904.
h. m.

The required time may also be obtained by using the table in the opposite direction; by taking the time for March 15, and adding the reductic.n, as follows:-

In this case the two results are identical. If the computation is made both ways, the results will check each other.
Part II has been inserted to save the surveyor the lit. tle trouble of making multiplications; thus, for the above example, look in Part II, under the proper tabular difference, $3^{\mathrm{m}} .94$, and opposite the 3 d or 17 th day of the month in left-hand column is the correction $7^{\mathrm{m}} .9$.

Computing from a preceding date, for days between April 11 and 15 of any year, the reduction in Part II will be greater than the tabulated time of culmination, in which case $23^{\text {b }} 56^{\mathrm{m}} .1$ will be added, to make the subtraction possible.
2. Required. for a station in long. 90° west, the time of U. C. of Polaris for April 14, 1900-

Working from the following date, for days between the 9 th and 15 th of April, the sum will exceed $23^{\mathrm{n}} 56^{\mathrm{m}} .1$, and when this occurs subtract $23^{\mathrm{h}} 56^{\mathrm{m}} .1$ from the sum, and the remainder will be the required time.
3. Required, for a station in long. 90° west, the time of U. C. of Polaris for April 10, 1903-

Astron. time, U. C. of Polaris, 1903, April 15 (Pa	h. m.
Rednction for 5 days (Part II), add	19.6
Sam.	2408.1
Subtract.	2856.1
Local mean time, U. C. of Polaris, 1903, April 10.	

r-BLE V.-Local mean (astronomical) time of the upper eulmination of Polaris, computed for longitude 108° (7h. 12m.) west of Greenvich.
[The time oa lise with say date in Pert I is the hoars asd minutes slapeod (commoes watch theo) ainoe the preceding noou.]

Dale.	1202.	1902.	1503.	1904.	1905.	1906.	1907.	1908.	Diff. for 1 day.
	4. m.	4. m.	h. m.	h. m.	2. 3	4. 3.	h. m.	4. m	
Jan. 1	639.5	${ }_{6}^{6} 41.0$	64.4	643.9	${ }_{5}^{6} 41.4$	64.8	64.3	${ }^{6} 45.7$	3.98
	844.2	545.7 4.38 .8	547.1	548.6	546.1	847.5	849.0	550.4	3.95
Feb. ${ }_{15}$	437.1 341.9	438.8 8.43 .4	440.0 34.6	441.5 346.3	189.0 843.8	440.4	441.9 3	483.3	3.95
Iar. 1	246.6	248.1	249.5	247.0	248.5	249.9	251.4	248.9	3.94
13	151.5	153.0	164.4	181.9	185.4	154.8	136.3	183.8	3.24
Apr. 1	044.6	046.1	047.5	045.0	046.5	047.1	049.4	046.8	3.94
	2345.6	2347.1	2348.5	2346.0	2347.5	2348.9	2380.1	2847.8	3.03
May	23428	2244.3	2245.7	2813.8	2244.7	2246.1	2247.6	2245.1	3.93
15	2147.8	2149.3	2150.7	2148.3	2149.7	2161.1	2162.6	2150.1	3.92
June 1	2041.2	20427	2044.1	2041.6	2043.1	2044.5	2046.0	2043.5	3. 92
	19 1948.8 18	1947.9	1949.3	1946.8	1948.3	1949.7	1951.8	1948.7	3. 91
15	1749.0	1750.1	1751.9	17494	1780.9	17827.3	18 17 58.6	1846.1	8.91 3.92
Aug. 1	1642.4	1643.9	1645.3	16428	1644.3	1645.7	1647.8	164.7	3.92
13	1547.6	1549.1	1560.5	1548.0	1549.5	1580.9	1582.4	1549.9	3. 92
Sopt. 1	1441.0	14425	1443.9	1441.4	1442.9	14 44.3	1445.8	14 43, 3	2.82
(1) 15	1316.1	1347.6	1349.0	1348.5	1348.0	1349.4	1350.9	1348.6	3. 93
Oct. 1	1243.3	1244.8	1345.3	1243.7	1245.2	1245.6	1348.1	1245.6	3.93
	1148.3	1149.8	1151.8	11 48,7	1160.2	1151.6	1183.1	1180.6	3.93
Nov. 15	10.41 .4	1042.9	1044.3	1041.8	1043.3	1044.7	1046.2	1043.7	8.93
- 15	946.4	947.9	949.3	946.8	948.3	949.7	951.2	9 48.7	3.94
Dx. ${ }_{15}^{1}$	843.8	844.8	846.8	543.7	845.2	846.6	848.1	8.45. 6	3.94
13	748.1	749.6	781.0	748.6	750.0	751.4	752.9	7.60 .4	8.95

Part I-Continued.					Part II.						
Date.	1209.	1310.	1911.	$\begin{aligned} & \text { Dif. } \\ & \text { for } \\ & 1 \text { day. } \end{aligned}$	Redaction of tabelar times to intermediate detes. Bubtruct the radvetion when compating trom a proeeding, or add it when working from a following date.						
		A. no.	A. sm.	m.							
Jos. ${ }^{15}$		644.7 184	550.8	3.95 3.95			n.				
Frb. $\frac{1}{1}$	4 40.8	4423	443.7	3.95	Day	2edact	a.	-	II. for	day."	
Mur. 1	± 50.3	281.8	283.3	3. 94							
15	185.2	165.7	188.1	8.94		3.91.	3.92	3. 98.	3.94.	96.	
Astr ${ }^{1}$	048.3	049.8	081.3	3.94							
15	2343.3	${ }^{29} 860.8$	2382.8	3. 93							
Mby ${ }_{15}^{15}$	2246.5	2248.0	2249.4	3. 93		4.		.	\%	4.	
Jane 1	2044.9	2046.4	2047.8	3.82 3.82	2 or 16 3 or 17	7.8	3.8	3.8	3.9 7.9	3.9 7.9	1
15	1980.1	1981.6	1983.0	3.91	4 or 16	11.7	11.8	11.8	11.8	11.8	
July ${ }^{1}$	1847.5	1849.0	1850.4	3. 91	5 or 19	15.6	16.7	15,7	15.8	15.8	
15	1782.7	1754.2	1785.6	3.82	6 or 20	19.5	19.6	19.6	19.7	19.7	
Aug. 15	1646.1	1847.6	1849.0	3.92	7 or 21	23.5	23.5	23.6	23.6	23.7	
15	1581.3	1582.8	1584.2	3.92	8 or 29	27.4	27.4	27.5	27.6	27.6	
Beget 1	1444.7	14.46 .2	1447.6	3.82	9 or 23	31.3	31.4	31.1	81.5	31.6	
15	1349.8	1351.3	1382.7	8.93	10 or 24	35.2	35.3	35.1	35.8	38.8	*
Oet 18	1247.0	1248.5	1249.9	3.93 38	11 or 25	39.1	39.2	39.3	39.4	39.5	10
Nor 15	1182.0	1183.6	1164.9	3.93	12 or 26	43.0	43.1	43.2	43.3	68.4	13
Nov. 15	1045.1.	1048.6	10.48 .0	3.93	13 or 27	46.9	47.0	47.2	47.8	47.4	> 18
Dec. 15	$\begin{array}{ll}9 & 50.1 \\ 8 & 47.0\end{array}$	951.6 848.6	963.0 849.9	3.94 8.94	14 or 28	80.8 54.7	61.0 84.9	61.1 65.0	81.2 65.9	\$51.3	18
15	781.8	783.3	764.7	3.85	30	58.6	88.8	88.9	59.1	00.2	15
					81	62.6	82.7	62.9	68.0	65.2	

The surveyor should be careful to employ Part II, Table V, correctly. When the table is used in regular order, the "Reduction" may be taken from Part II with the argument ("Argument," the quantity on which another quantity in a table depends.) "Day of the month" in left hand column, or, "Number of days elapsed" in right hand column, as may be preferred. In example 2, Part II, may be entered in with the argu. ment 13 days elapsed (from 1st to 14 th) in right hand column; then the reduction, $51^{\text {m }} .1$, results, as above written; but when working from a following date (example 3), the day of the month in left hand column cannot be used.

Mistakes are often made by using the wrong column in Part I; as a matter of course, the time should always be taken out for the current year.

Applications of Tables V and VII.

4. Required the Hour Angle and Azimuth of Polaris, for a station in latitude $46^{\circ} \mathrm{N}$., longitude 90° W., at $8^{\mathrm{h}} 24^{\mathrm{m}}$ p. m. November 7, 1910.
h. m.

Astronomical time of observation, 1910, Nov. 7...................... 824.0
Equivalent to time of Nov. 6...... 3224.0 h. m.

Astron. time. U. C. Polaris, Nov. 1 (Table V, Part I).. 1046.6
Reduction to Nov. 6= (Part II), subtract............. . b19.7

[^0]Astron. time, U. C. Polaris, Nov. 6 10 26.9, subt. - 1026.9
Hour Angle of Polaris, at observation 2157.1
Subtract from d23 56.1
Time Argument for Table VII 159.6
Azimuth of Polaris, at observation $0^{\circ} 51^{\prime} \mathrm{F}$
5. Required the Hour Angle and Azimuth of Polaris, for a station is latitude $41^{\circ} 12^{\prime}$ N., longitude 94° W., at $6^{\text {h }} 16^{m}$ a. m., Nov. 19, 1901.h. m .
Astronomical time of observation, 1901, Nov. 18 1816.0
h. m.
Astron. time, U. C. Polaris, Nov. 15 (Table V, Part I), 946.4
Reduction to Nov. 18 (Part II) subtract. 11.8
Astron. time, U. C. Polaris, Nov. 18 9 34.6, subt. 934.6
Hour Angle of Polaris, at observation, and Time Argument for Table VII 841.4
Azimuth of Polaris, at observation (Table VII), 74^{\prime} or $\mathrm{I}^{\circ} 14 \mathrm{~W}$.
Table VII.

This table gives, for various hour angles, expressed in mean solar time, and for even degrees of latitude from 30 to 50 degrees, the Azimuths of Polaris for 11 years, computed for average values of the north polar distance of the star-the arguments (reference numbers), being the hour angle (or $23^{\text {b }} 56^{\mathrm{m}} .1$, minus the hour angle, when the latter exceeds $11^{\mathrm{L}} 58^{\mathrm{m}}$), which is termed the Time Argument; and the latitude of the place of observation. The table is so extended that azimuths may be taken out by mere inspection, and all interpolation avoided, except such as can be performed mentally.

The vertical diameter SS', Plato I, Fig. 2, divides the apparent path of Polaris into two equal parts, and for the star at any point s_{6} on the east side, there is a corresponding point s_{1}, on the west side of the meridian, for which the azimuth $N W$ is equal to the azimuth Ne. The arc $S \varepsilon_{1} \cdot S^{\prime} s_{g}$, taken from the entire circle (or $23 \mathrm{~h} 5 \mathbf{5 月 m}^{\mathrm{m}} .1$), leaves the arc Ss_{8}, and its equal, Ss_{1}, expressed in time, may be nsed to find, from Table VII, the azimuth $N w$, which is equal to Ne .

The hour angles entered in Table VII include only thope of the west half
of the circle ending at S^{\prime}, and when an hour angle greater than $11^{\mathrm{b}} 58 \mathrm{~m}$ re sults from observation, it will be subtracted from $233^{\mathrm{h}} 56 \mathrm{~m} .1$, and the remainder will be used as the "time argument" for the table. The surveyor should not confound these two quantities. The hour angle itself always decides the direction of the azimuth and defines the place of the star with reference to the pole and meridian, as noted at top of Table VII. See examples following Table V.

The hours of the "time arguments" are placed in the columns headed "Hours," on left. of each page The minutes of the time arguments will be found in the columns marked " m.," under the years for which they are computed, and they are included between the same heavy zigzag lines which inclose the hours to which they belong.
The time arguments are given to the nearest half minute ; the occurrence of a period after the minutes of any one of them, indicates that its value is 0.5^{m} greater than printed, the table being so arranged to economize space.
The tables will be used as follows: Find the hours of the time argument in the left-hand column of either page ; then, between the heavy lines which inclose the hours, find the minutes in the column marked at the top with the current year. On the same horizontal line with the minutes, the azimuth will be found under the given latitude, which is marked at the top of the righthand half of each page. Thus, for 1904, time argument, $0^{\text {h }} 43^{\mathrm{m}}$, latitude 36 ; find $0^{\text {h }}$ on left-hand page and under 1904, find 43^{m} on ninth line from the top, and on same, line with the minutes, under latitude 36 , is the azimuth $0^{\circ} 17$. For 1908 , time argument. $9.33 \frac{1}{2} \mathrm{~m}$, lat. 48°, the azimuth is $1^{\circ} 1^{\frac{1}{2}}$, found on the 21 st line from top of righthand page.
If the exact time argument is not found in the table, the azimuth should be proportioned to the difference between the given and tabular values of said argument.
The table has been arranged to give the azimuths, by simple inspection. No written arithmetical work is required, all being performed mentally. It will always be
sufficient to take the nearest whole degree of latitude, and use it as above directed except for a few values near the top of either page, where the difference of azimuths, for 2° difference of latitude, amounts to 4 or 5 minutes of arc.

The attention of the surveyor is directed to the fact that he should always use one day of twenty-four hours as the unit when he subtracts the time of culmination from the time of observation. See example 4, page 40. In any case when the time or upper culmination, taken from T'able V, for the given date, would be numerically ureater than the astronomical time of observation, the former time will be taken out for a date one day earlier than the date of observation. The surveyor will decide when such condition exists by comparing the time given in the table with his astronomical time of observation. See example 4 and explanations following Table V, page 39 .

The watch time to be used when making observations on Polaris at all times except elongation should be as accurate as can be obtained. Looking at Table VII, near the top of the page, the surveyor will observe, that for a difference of four minutes in the time argument, there is a change of about two minutes in azimuth; consequently, to obtain the azimuth to tree nearest whole minute of arc, the local mean time, upon which all depends, should be known with in two minutes. When the surveyor uses a solar instrument, he can readily determine the time for himself during the afternoon before observing Polaris, or in the morning after observation, and, without moving the hands of his watch, apply the necessary correction to his observed watch time. When the surveyor uses standard railroad time, he will correct the same for the difference of longitude between his station and the standard meridian for which the time is given, at the rate of four minutes of time for each degree of the difference in arc. Thus, if the difference of longitude is 6° 45^{\prime}, the equivalent in time will be 27 minutes. The difference of longitude may be taken from a good map.

Table VII.-Azimuth of Polaris

[The hour angles are expressed in mean colar time. The occerronce of a period after

for the use of land surveyors.
clautes of time or of an hour anglo indicatee that to value io 00.5 greater than printed.]

gTas and Azimuti. W. of N. Whea hour angle is teen than II $^{\prime \prime} 68{ }^{\circ}$. E of N . When hoar angle is greater than $11^{\mathrm{D}} 88 \mathrm{e}$. (evimue the atar's boar angle), for the year-												PoLanes below rex Pote. To deternine the true meridian, the acimuth will be haid of to the ead when the hour angle is lem thea $11^{1} 58{ }^{\circ}$, and to the weat when grester than $11^{1 / 880}$.										
	$\dot{\text { ® }}$	$\begin{aligned} & \dot{0} \\ & \stackrel{\circ}{6} \end{aligned}$	$\begin{aligned} & 8 . \\ & \hline . \\ & \hline \end{aligned}$	犬்		8.	$\dot{8}$	$\begin{aligned} & 68 \\ & \hline \mathbf{O} \\ & \hline \end{aligned}$	$\dot{8}$	$\stackrel{0}{0}$	$\ddot{\square}$	Aximuthe for latitydo-										
												80	82	84	\mid	$\begin{array}{\|c\|} \hline 6 \\ 88 \\ \hline \end{array}$	$\stackrel{0}{40}$	42	$\stackrel{\circ}{44}$	46	48	20
h																						
	3	28	20.		m.	m.	mo.	m.				83	85	77	89	01.	04	97	100	108.	107.	115
	86	62.	48.	46	40.	34	27	18	8	m.		81.	83	85	87	89.	92	95	98	101.	105.	108
	12.	10		5	0.	66.	62.	48.	44	39	34	79.	81.	83	85	87.	90	93	9	99.	103	107
	28	28.	21	18.	16	13	10			0.	67	78	79.	81.	83.	85.	88	90.	93.	97	100.	104
	37.	35.	33.	31.	29	26.	24	21.	19	16	13	76	77.	79.	81.	83.	88	88.	21.	96	8.	102
	48.	46.	4.	42.	40.	38.	34.	34.	39	29.	27	74.	78	77.	79.	81.	84	86.	89.	92.	96	100
	88	86.	65	63	61.	49.	47.	45.	43.	41.	20.	72	74	76	77.	79.	82	84.	87.	90.	9	97
8	7.	6	3	2.	1	69.	67.	86	84	62.	50.	71	72.	74	76	77.	80	82.	85.	88.	91.	95
	16	14.	13	11.	10	.				2.		69	70.	72	74	76.	78	80.	83	86	89	82
	24	23	21.	20	18.	17.	16	14.	13	11.	10	87.	68.	70.	72	74	76	76.	81	84	87	0
	32	31	29.	28	27	25.	24.	${ }^{23}$	21.	20.	19	66.	67	68.	70	72	74	76.	79	81.	84.	88
	39.	38.	87	${ }^{36}$	35	${ }^{33} 1$	32.	31	30 38	28.	27.	64	${ }_{6}^{65}$	${ }_{64}^{68}$	68	70	72	74.	77	79.	82.	85
	47	46 63	44.	43. 60.	42.	48.	47.	49	38 45.	36. 4.	${ }_{43}^{35}$	82 60.	63. 61.	63.	66.	68	68	72	74.	77.	${ }^{80}$	88
-	0.	89.	68.	67.	66.	86.	64.	63.	82.	51.	60.	88.	69.	61	62.	64	68	68	70.	73	75.	78
	7.	6.	6.	$\underline{4}$	3	2.	1.	1	0	89	88	57	68	69	60.	62.	64	65	68	70.	73	78
	13.	13	18	11	10.	8.	8.	7.	6.	b.	3	85	68	87.	69	60.	62	64	68	68.	71	73
	20	19	18.	17.	17	16	15	14.	13.	12.	11.	6s.	54.	58.	57	58.	60	62	64	66	68.	71
	\%	23.	24.	24	23	22.	21.	20.	20	19	18	51.	82.	68.	58	56.	58	00	62	64	6.	68
	32	31.	81	30	29.	28.	28	27	28,	25.	24.	49.	60.	52	53	85.	66	88	89.	62	64	66
	38	87.	57	3	35.	35	34	33.	82.	32	31	48	49	50	81	32.	64	55.	87	59.	61.	64
	44	45.	43	42	41.	41	40	s9.	38.	38	57.	48	47	48	49.	50.	82	53.	65.	57.	55	61
	50	49	48.	48	47.	47	46	45.	45	44	43.	4.	45.	46.	47.	48.	80	51.	53.	55	87	5
	65.	88	84.	34	53	82.	52	61.	61	50	49.	42.	43.	44.	45.	46.	48	49.	81	53	85	87
10	1	0.	0	69.	89	68.	87.	57	66.	86	55.	41	41.	12	43.	44.	46	47.	49	60.	82.	64
	6.	6	6.)	4.	4	3	3	2		1.	39	40	40.	41.	43	44	45.	47	48.	50	52
	12	11.	11	10.	10	.	8	8.	8	7.	7	37.	88	39	40	41	42	43.	45	46.	48	49
	17.	17	18.	16	15.	15	14.	14	13.	13	12.	36.	36	37	38	39	40	41	42	4	45.	47.
	23	22.	28	21.	21	20.	20	19.	12.	19	18.	34	24.	35	36	37	38	39	40.	42	43.	45
	28	27.	27.	27	28.	26	25.	28	25	24.	34	39	32.	33.	34	35	36	37	83.	39.	41	42
	33.	33	32.	32	83	31.	81	30.	30	30		30	31		32	33	34	35	${ }^{3}$	37.	39	40
	38.	${ }^{38}$	${ }^{38}$	37.	37		38.	36	35.	35	35	28.	29	99.	30.	31	32	${ }^{33}$	34	35.		38
	43.	48	4	48	42	$\begin{aligned} & 48 \\ & 47 \end{aligned}$	$41 .$	41.	41	40.	40	${ }_{28} 8$	27	28	88,	${ }_{7}^{29}$	${ }_{28} 8$	31	32	33	34	${ }^{35}$
	49	48.	48	48	47.	47.	47	46.	48.	46	45.	28	25.	25	88.	27	28	29	30	31	32	83
	54	65.	53	53.	52.	82.	62	62	51.	81	81	23	23.	34	24.	25.	28	27	27.	28.	29.	31
	69	68.	68.	88	58	67.	67.	67	87	88.	66	21.	28	28	22.	23	24	25	25.	28.	87.	28.
11		3.	3.			8	${ }^{2}$								$\begin{aligned} & 21 \\ & 19 \end{aligned}$	19.	22	22	23.	24	28	26
	9	8.	8.	8.	8	${ }^{8}$	7.	7.	7	7	$6 .$	18	18	$18 .$	$\begin{aligned} & 19 \\ & 17 \end{aligned}$	19.	20	20.	21.	23	23	23.
	14	18.	13.	13.	13	13	12.	12.	12.	18	12	16	16.	16.	17	17.	18	18.	19	80	20.	21
	19	18.	18.	18.	18	18	18	17.	17.	17.	17	14	14.	16^{\prime}	15	15.	16	16.	17	17.	18	19
	21	28.	23.	23.	23	23	28	28.	ea	22	22	12.	12	13	13.	13.	14	14.	15	16.	16	${ }_{16} 18$
	28.	28.	28	28.	28.	28	28	28	27.	27.	87.	10.	11	11	11.	11.	12	12	12.	13	13.	14
	${ }^{38}$	38.	33.	${ }_{38} 8$	83	\$3	33	33	${ }^{33}$	32.	32.	7	9	7	7	8.	10	10.	10.	11	11.	12
	38.	38.	38.	38.	38	38	38	38	38	38	37.	7	7	7.	7.	8	8	6	8.	9	9	-
	43.	43.	43.	43.	43	43	43	43	43	43	43	${ }^{6}$	8.	5.	5.	6	6	6	6.	6.	7	7
	48.	${ }^{48} 8$.	48	${ }^{48}$	48	48	48	48	48	48	48	8.	3.	3.	2	2	4	4	4	4.	4.	4
	63 68	$\begin{aligned} & 63 \\ & 68 \end{aligned}$	$\begin{aligned} & 63 \\ & 88 \end{aligned}$	63 68	63 68	63 68	63 68	${ }^{53}$	63 88	63 68	63 63	2	2	2	2	2	2	${ }_{0}^{2}$	${ }_{0}^{2}$	2	2.	2

rable XII.- Convergency of Meridians six miles long ana six miles apart, and other relevant data, to latitude 70° north.

$\begin{aligned} & \text { Lat- } \\ & \text { itude. } \end{aligned}$	Convergency.		Difference of longitude per range.		Difference of latitude for-	
	On the parallel.	Angle.	In arc.	In time.	1 mile in arc.	$1 \mathrm{Tp.} \text { in }$
\bigcirc	Links.	-"'	- ${ }^{\prime \prime}$	Seconds.		
30 31	41.9 43.6	$\begin{array}{ll}3 & \\ 3 & 7 \\ 3\end{array}$	$\begin{array}{ll}6 & 0.36 \\ 6 & 4.02 \\ & 1 .\end{array}$	24.02 24.27		
32	45.4	${ }^{31} 15$	${ }_{6}^{6} 7.7 .93$	${ }^{24.63}$	$0^{1} 887$	5'. 225
$33 ;$	47.2	323	612.00	24.80		
34	49.1	330	616.31	25.09		
35	50.9	338	620.95	25.40		
$\begin{array}{r}36 \\ 87 \\ \hline\end{array}$	52.7 54.7	346 355	6225.60 6 630,59	25.71 26.04	$0{ }^{1} .870$	5'. 221
${ }_{39}^{38}$	56.8	$4{ }^{4}$	${ }^{6} 358.81$	26.39 26	0.83	5.221
39	58.8	413	641.34	26.76		
40	60.9	422	647.13	27.14		
41	63.1 65.4	431 441	653.22 659.62	27.55 27.97	0.868	5!. 217
43	67.7	451.	$7{ }^{7} 6.27$	${ }^{28.42}$		
44	70.1	51	713.44	28.90		
45	72.6	512	720.93	29.39		
46	75.2	${ }_{5}^{5} 23$	728.81	29.92		
48	77.8 80.6	534 546	737.10 745.79	30.47 31.05	0', 869	5'.212
49	83.5	559	755.12	${ }_{31.67}$		
50	86.4	612	84.83	32.32		
51	89.6	625	8 15.17	${ }_{33} 31.01$		
52 53	92.8 96.2	639 654	826.13 837.75	33.74 84.52	$0^{\prime} .868$	5'. 207
54	99.8	79	8.50 .07	35.34		
55	108.5	725	3.18	36.22		
56	107.5	742	917.12	37.14		
57	111.6	80	931.97	38.13	00.867	5', 202
68 59	116.0 120.6	819 838	 10 47.83 10 4.78	39.19 40.32		
60	125.5	859	1022.94	41.52		
61	130.8	922	1042.42	42.83		
${ }_{63}^{62}$	136.3	${ }^{9} 986$	${ }^{11} 3.38$	44.22	0,888	$5^{5} .198$
${ }_{64}^{63}$	148.2 148.6	1038	11 11 11 50.37	45.73 47.36		
	155.0					
66	162.8	1139	1245.55	51.04		
67 68	170.7 179.3	12 125	1316.88 13 51.15	53.12 55.41	$0^{\prime} .866$	51.105
69	1.188.7	1331	1428.77	57.92		
70	199.1	1415	1510.26	60,68	0.866	6'.198

The number of seconds taken from the 5th column of Table XII (opposite the proper latitude), multiplied by the number of ranges, will give the correction for longitude in seconds of time. The correction will be subtracted from the standard railroad time of observation, when the surveyor's station is west, or added when east of the standard meridian, as the case may require, to obtain local time. It is immaterial where the surveyor obtains. the standard time, provided he gets it right, a result which will be determined in the most satisfactory manner by a direct personal comparison at a telegraph office.
Table VII enables the surveyor to obtain the hour angle and azimuth of Polaris at any hour and minute from 1901 to 1911 inclusive, in latitudes 30° to 50°, thus combining in two pages the essentials which under ordinary methods would require twenty.

Mr. A. W. Barber, expert examiner of surveys for the U. S. Land Department, furnishes the following method, which is accurate, and applicable anywhere. It is valuable for use in Alaska and other high latitudes, where the previous methods are difficult to apply, and liable to many serious errors: -

" The Method by Equal Altitudes

depends on the fact that the circumpolar stars describe invariable circular arcs below the true pole; and that when a peg is set on the ground, to mark the course to a certain star when west of north at an altitude of say 35°, and another peg is afterward set to mark the position of that star, when it has passed to the northeast and risen to the same precise elevation, the meridian of the transit will lie exactly midway between the pegs. It may be used by any careful observer having a good common transit with vertical arc.

This process requires no retlecting eye-piece; no full vertical circle; no mathematical tables; no calculations of local mean time, standard time, sidereal time, or astronomical and civil day. It does not depend on the date nor the hour of the day, nor any reckoning of culmination, hour-angle, elongation, or polar azimuth. Neither does the sun's declination or the atmospheric refraction enter at all into the calculation.

Should there be unsuspected error in the graduation or setting of the vertical arc, or some defect of collima-
tion in the telescope, it would equally affect both parts of the observer's work, and produce no effect in the resulting meridian. Proceed as follows in any latitude or time of the year when the stars are sufficiently discernible:

1. Choose a suitable station, set transit firmly, and level precisely, by the telescope level turned in all directions.
2. Set the index arm for vertical angles at zero, and keep it tightly clamped for reading elevation angles.
3. Provide suitable illumination for cross-wires, and also for reading angles, horizontal and vertical.
4. Select a conspicuous star, perhaps 30° or 40° from the pole, which appears two hours more or less before is lower culmination, - that is, which stands west of north and is rapidly descending. Identify this star beyond all chance of error, noting it on a diagram for certainty some hours later.
5. Direct the telescope to this point, fixing the star at the intersection of the cross-wires, and clamp the axis so it will retain the altitude shown on the arc. Read and note down the angle of elevation, and read more than once.
6. Unclamp the axis, bring the telescope to the earth, and have an assistant drive a peg in line with the crosswire, from 3 to 5 chains distant. A candle held there before a white surface, will exhibit the wire and give the exact point for a tack.
7. Repeat the observation once or twice, at intervals of 10 or 15 minutes, for confirmation of results, marking successive pegs A, B, etc., with degrees and minutes of elevation found.
8. Be ready to observe the upward path of the same star, after it has passed east below the pole. Correct the leveling, set the vertical index successively at each altitude previously noted (beginning with the lowest); and when the star (diagonally ascending in the field of the glass) approaches the horizontal wire, bring the vertical wire also upon the star at the intersection, using the slow-motion screw of the horizontal plate.
9. Keep the plate at that point, bring the telescope down, and set peg in line as before. Repeat the process for each observation A, B, etc., taken before midnight, marking each peg B, A, etc., with the elevation in figures.
10. Measure the arc between pegs $A \mathbf{A}$ denoting equal altitude, and take one half. Lay off this half from either peg, and set a peg and tack for the true meridian. As a test of correctness, the middle point between pegs

B B, and between C C should be found to coincide with the one first found. A single pair is sufficient, except for confirmation.

By Equal Altitudes of the Sun.

In this operation a reflecting eye-piece with dark glass will be necessary. The sun's large image in the field can not be centered as truly as a star. It is therefore found best to place the intersection of the wires at the lower limb (apparently the sun's upper edge, as reversed by the mirror), and at the precise point of tangency, when the sun is just leaving the horizontal wire, apparently descending, with the vertical wire bisecting its disk.

This is convenient for the forenoon observations, hence at the corresponding times after noon, with proper altitude of telescope, one must be ready at the moment the sun (now apparently ascending) first reaches the level wire, having the vertical one bisect the sun by the point of tangency, as before.

The pair of pegs in this case will be set southeast and southwest of the station. The center of bisecting line of the included arc would be the meridian, were it not for the sun's change of declination in the intervening time. This slight change requires a calculation for correction, which the star process avoids.

Working by a Reference Mark.

Instead of using pegs and tacks for day-work it is easier to use a reference point or mark.

On April 17, after careful leveling, I set the horizontal plates at zero with the telescope directed at a distant spire for my mark. Clamp the lower plate fast, and direct the telescope to the sun, observing it as above shown. Find by the horizontal angle that the sun's azimuth to the left or east of the spire is $30^{\circ} 27^{\prime}$; and by the vertical arc I find his altitude $47^{\circ} 09^{\prime}$. (The semidiameter may be disregarded in each pair of observations, if the same limb of the sun is used each time.)

For the corresponding afternoon observation, I have the index of altitude fixed at $47^{\circ} 09^{\prime}$, and watch the sun rise (apparently) to the proper position. At the right moment, clamp the plate, use the slow-motion, and when the disk is in position, find from the horizontal plate that the sun is $84^{\circ} 49^{\prime}$ west of the spire or mark.

The whole arc is $30^{\circ} 27^{\prime}+84^{\circ} 49^{\prime}=115^{\circ} 16^{\prime}$; and the bisecting meridian is $57^{\circ} 38^{\prime}$ from either position of the sun. From this one-half, I subtract the first azimuth of the sun from the mark; $57^{\circ} 38^{\prime}-30^{\circ} 27^{\prime}=27^{\circ} 11^{\prime}$ as
the true bearing of the mark from the uncorrected meridian, and it apparently bears S. $27^{\circ} 11^{\prime} \mathrm{E}$. from the transit.

The Correction for Declination

at or near the times of the solstices, will be merely theoretical, as an hourly difference of declination less than 10 seconds will be quite negligible. But during the rest of the year it should be ascertained; for it would amount to as much as a change of 10^{\prime}, were observations taken six hours apart on September 25, in latitude 65°.

To calculate this correction: Take one half the change in declination between observations at equal altitude; divide these minutes of change by the product of the cosine of the latitude by the sine of half the difference in time expressed in degrees (15° per hour) ; the quotient will be the minutes of arc for the correction. This is to be applied from south to west from June 21 to December 21 (declination decreasing) and from south to east the rest of the year.

Example.- On April 17, in latitude 39°, using standard watch time; second and third pairs of observations, the first pair being already noted.
B. 10:01 A. M. Altitude $49^{\circ} 36^{\prime}$ Azimuth E. from mark $26^{\circ} 07^{\prime}$
C. 10: 16 A. M. Altitude $51^{\circ} 48^{\prime}$ Azimuth E. from mark $21^{\circ} 38^{\prime}$
C. 1: 59 P. M. Altitude $51^{\circ} 48^{\prime}$ Azimuth W. from mark $76^{\circ} 00^{\prime}$
B. 2: 14 P. M. Altitude $49^{\circ} 36^{\prime}$ Azimuth W. from mark $80^{\circ} 29^{\prime}$
The sum of the measured arcs of the B B positions, $26^{\circ} 07^{\prime}+80^{\circ} 29^{\prime}=106^{\circ} 36^{\prime}$. The middle point for meridian is at $53^{\circ} 18^{\prime}$. As the reference mark is $26^{\circ} 07^{\prime}$ from the forenoon sun, its arc from the south meridian point must be $53^{\circ} 18^{\prime}-26^{\circ} 07^{\prime}$, and its course from the transit is again found S. $27^{\circ} 11^{\prime} \mathrm{E}$. (Uncorrected.)

The third pair, C C, gives $21^{\circ} 38^{\prime}+76^{\circ} 00^{\prime}=97^{\circ} 38^{\prime}$. One half of this, or $48^{\circ} 49^{\prime}$, less $21^{\circ} 38^{\prime}$, gives the same resulting arc, $27^{\circ} 11^{\prime}$.

Correction for Change of Declination

One half of the change on that day in $41 / 4$ hours was 1.9^{\prime}. The cosine of the latitude 39° is .78 ; the sine of half the difference in time ($21 / 8$ hours = about 32°) is .53 ; their product is $.78 \times .53=.41$. Dividing 1.9^{\prime} by .41 , the quotient is $41 / 2$ minutes of arc, for correction of the south meridian point eastward. This gives the bearing of the spire or mark from the true meridian, S. $27^{\circ} 06^{\prime}$ $30^{\prime \prime}$ E.

Fig 6.

VII. The essential parts of the Transit, as shown in the cut, are the telescope with its axis and two supports, the circular plates with their attachments, the sockets upon which the plates revolve, the leveling head, and the tripod on which the whole instrument stands.

The telescope is from ten to eleven inches long, firmly secured to an axis having its bearings nicely fitted in the standards, and thus enabling the telescope to be moved in either direction, or turned completely around if desired.

The different parts of the telescope are shown in Fig. 7.

The object-glass, composed of two lenses, so as to show objects without color or distortion, is placed at the end of a slide having two bearings, one at the end of the outer tube, the other in the ring $C C$, suspended within the tube by four screws, only two of which are shown in the cut.

The object-glass is carried out or in by a pinion working in a rack attached to the slide, and thus adjusted to objects either near or remote as desired.

The eye-piece is made up of four plano convex lenses, which, beginning at the eyeend, are called respectively the
eye, the field, the amplifying, and the object lenses, the whole forming a compound microscope having its focus in the plane of the cross-wire ring $B B$.

The eye-piece is brought to its proper focus usually by turning its milled end, the spiral movement within carrying the eye-tube out or in as desired; sometimes a pinion, like that which focuses the object-glass, is employed for the same purpose.

1. The Cross-Wires, (Fig. 8), are two fibres of spider-web or very fine platinum wire, cemented into the cuts on the surface of a metal ring, at right angles to each other, so as to divide the open space in the center into quadrants.
2. Optical Axis.-The intersection of the wires

Fig. 8 forms a very minute point, which, when they are adjusted, determines the optical axis of the telescope, and enables the surveyor to fix it upon an object with the greatest precision.

The imaginary line passing through the optical axis of the telescope, is termed the Line of Collimation, and the operation of bringing the intersection of the wires into the optical axis is called Adjusting the Line of Collimation. This will be hereafter described.
3. The Vertical Circle firmly secured to the axis of the telescope is $4 \frac{1}{2}$ inches diameter, plated with silver, divided to half degrees, and with its vernier enables the surveyor to obtain vertical angles to single minutes.
4. The Level on Telescope consists of a brass tube about $6 \frac{1}{2}$ inches long, each end of which is held between two capstan-nuts connected with a screw or stem attached to the under side of the telescope tube.
5. The Magnetic Needle is four to five inches long in the different sizes of transits, its brass cup having inserted in it a little socket or center of hardened steel, perfectly polished, and this resting upon the hardened and polished point of the center-pin, allows the needle to play freely in a horizontal direction, and thus take its direction in the magnetic meridian. The needle has its north end designated by a scallop or other mark, and on its south end has a coil of fine brass wire, easily moved, so as to bring both ends of the needle to the same level. The needle is lifted from the pin by a concealed spring underneath the upper plate, actuated by a screw shown above, thus raising the button so as to check the vibrations of the needle, or bring it up against the glass when not in use, to avoid the unnecessary wear of the pivot.
6. The Lower Plate, called the Limb, is divided on its upper surface-usually into degrees and half-degreesand figured in two rows, viz., from 0 to 360 , and from 0 to 90 each way; sometimes but a single series is used, and then the figures run from 0 to 360 or from 0 to 180 on each side.
7. The Verniers, of which there are two placed opposite each other against the limb, are auxiliary scales used in measuring smaller portions of the limb than are shown by its graduations. Thirty divisions on the vernier correspond precisely with twenty-nine half degrees on the limb. Hence one division on the limb exceeds one division on the vernier by one-thirtieth of one-half of a a degree, that is, by one minute.
Accordingly, the number of any division of the vernier, on the side toward which the vernier is moved, which coincides with a division of the limb is the number of minutes of arc intercepted by the zero of the vernier and the last preceding division of the limb.

Thus, by the device of a vernier we are enabled to measure angles to within one minute although the limb of the transit is graduated only to half-degrees.

Adjustments.-The principal adjustments of the Transit are-
(1) The Levels.
(2) The Line of Collimation.
(3) The Standards.
8. To Adjust the Levels.-Set up the instrument upon its tripod as nearly level as may be, and having unclamped the plates, bring the two levels above and on a line with the two pairs of leveling screws; then with the thumb and first finger of each hand clasp the heads of two opposite, and, turning both thumbs in or out, as may be needed, bring the bubble of the level directly over the screws, exactly to the centre of the opening. Without moving the instrument proceed in the same manner to bring the other bubble to its centre; after doing this, the level first corrected may be thrown a little out; bring it in again; and when both are in place, turn the instrument half-way around; if the bubbles both come to the centre, they would need no correction, but if not, with the adjusting pin turn the small screws at the end of the levels until the bubbles are moved over half the error; then bring the bubbles again into the centre by the leveling screws, and repeat the operation until the bubbles will remain in the center during a complete revolution of the instrument, and the adjustment will be correct.
9. To Adjust the Line of Collimation.-To make this adjustment-which is, in other words, to bring the intersection of the wires into the optical axis of the telescope, so that the instrument, when placed in the middle of a straight line, will, by the revolution of the telescope, cut its extremities-proceed as follows:
Set the instrument firmly on the ground and level it carefully; and then having brought the wires into the focus of the eye-piece, adjust the object-glass on some weli-defined point, as the edge of a chimney or other object, at a distance of from two hundred to five hundred
feet; determine if the vertical wire is plumb, by clamping the instrument firmly and applying the wire to the vertical edge of a building, or observing if it will move parallel to a point taken a little to one side; should any deviation be manifested, loosen the cross-wire screws, and by the pressure of hand on the head outside the tube, move the ring around until the error is corrected.
The wires being thus made respectively horizontal and vertical, fix their point of intersection on the object selected; clamp the instrument to the spindle, and having revolved the telescope, find or place some good object in the opposite direction, and at about the same distance from the instrument as the first object assumed.

Great care should always be taken in turning the telescope, that the position of the instrument upon the spindle is not in tho slightest degree disturbed.
Now, having found or placed an object which the vertical wire bisects, unclamp the instrument, turn it half way around, and direct the telescope to the first object selected; having bisected this with the wires, again clamp the instrument, revolve the telescope, and note if the vertical wire bisects the second object observed.
Should this happen, it will indicate that the wires are in adjustment, and the points bisected are with that of the centre of the instrument, in the same straight line.

If not, however, the space which separate the wires from the second point observed,will be double the deviation of that point from a true straight line, which may be conceived as drawn through the first point and the centre of the instrument, since the error is the result of

Fig. 9.
two observations, made with the wires when they are out of the optical axis of the telescope.

For, as in the diagram, let A represent the centre of the instrument, and $B C$ the imaginary straight line, upon the extremities of which the line of collimation is to be adjusted.
B represents the object first selected, and D the point which the wires bisected, when the telescope was made to revolve.

When the instrument is turned half around, and the telescope again directed to B, and once more revolved, the wires will bisect an object, E, situated as far to one side of the true line as the point D is on the other side.
The space, $D E$, is therefore the sum of two deviations of the wires from a true straight line, and the error is made very apparent.
In order to correct it, use the two capstan head screws on the sides of the telescope, these being the ones which affect the position of the vertical wire.
Remember that the eye-piece inverts the position of the wires, and therefore that in loosening one of the screws and tightening the other on the opposite side, the operator must proceed as if to increase the error observed. Having in this manner moved back the vertical wire until, by estimation, one-quarter of the space, $D E$, has been passed over, return the instrument to the point B, revolve the telescope, and if the correction has been carefully made, the wires will now bisect a point, C situated midway between D and E, and in the prolongation of the imaginary line, passing through the point B and the centre of the instrument.

To ascertain if such is the case, turn the instrument half around, fix the telescope upon B, clamp to the spindle, and again revolve the telescope toward C. If the wires again bisect it, it will prove that they are in adjustment, and that the points, B, A, C, all lie in the same straight line.
Should the vertical wire strike to one side of C, the error must be corrected precisely as above described, until it is entirely removed.
10. To Adjust the Standards.-In order that the wires may trace a vertical line as the telescope is moved up or dawn, it is necessary that both the standards of the telescope should be of precisely the same height.
To ascertain this and make the correction, if needed, proceed as follows:
Having the line of collimation previously adjusted, set up the instrument in a position where points of observation, such as the point and base of a lofty spire, can be selected, giving a long range in a vertical direction.

Level the instrument, fix the wires on the top of the object and clamp to the spindle; then bring the telescope down, until the wires bisect some good point, either found or marked at the base; turn the instrument half around, fix the wires on the lower point, clamp to the spindle, and raise the telescope to the highest object.

If the wires bisect it, the vertical adjustment is effected; if they are thrown to either side this would prove that the standard opposite that side was the highest, the apparent error being double that actually due to this cause.
To correct it, one of the bearings of the axis is made movable, so that by turning a screw underneath the slid-ing-piece, as well as the screws which hold on the cap of the standard, the adjustment is made with the utmost precision.
11. To Adjust the Vertical Circle.-Having the instrument firmly set up and carefully leveled, bring into line the zeros of the circle and vernier, and with the telescope find or place some well-defined point or line, from one hundred to five hundred feet distant, which is cut by the horizontal wire.

Turn the instrument half way around, revolvo the telescope, and fixing the wire upon the same point as before, note if the zeros are again in line.
If not, loosen the capstan-head screws which fasten the vernier, and move the zero of tine vernier over half the error; bring the zeros again into coincidence, and proceed
precisely as at first, until the error is entirely corrected when the adjustment will be complete.

It is not always convenient to make this adjustment so as entirely to eliminate the index error. In this case, the error should be noted and the proper correction made in measuring a vertical angle.

To find the index error we have the following
Rule, - Level the instrument and direct the telescope upon some well defined spot. Note the reading of the circle.

Reverse the telescope and turn the vernier plate 180°. Direct the telescope upon the point and note the reading of the circle.

Subtract the first reading from the second, and divide the remainder by 2.

12. To Run a Line with the Transit.

1. Setting up the Transit.-Set the instrument up over the starting point, centreing it by means of the plumb line. While doing so, place it as nearly level as possible, leaving as little as may be, to be done in leveling up the plates by the leveling screws. There is opportunity for the display of a good deal of skill in setting up a transit over a point, quickly, and in próper position. For hill sides, a tripod having adjustable legs, called an extension tripod, is a great convenience. When the legs are not adjustable, set one leg of the tripod down hill and two legs on the upper side of the line. It is important that the instrument should stand firmly on the ground. Some soils are so yielding that it is impossible for the man at the transit to change the weight of his body from one foot to the other, without getting the transit out of position. One remedy is, to not change the centre of gravity of the person, after the transit is in position, until the observation is taken. Another is, to drive stout stakes into the ground, to set the transit legs on. Another is to make a bridge of planks or poles for the transitman to stand on, so as to carry the bearing of his weight
as far as possible away from the instrument. Sometimes the aid of an assistant will need to be called in, so that the transitman need not move around the transit before sighting.

When the transit is set up firmly in place, loosen the lower clamp and turn the instrument on the spindle till the level tubes are each parallel to an opposite pair of the leveling screws.

Turn the parallel pair of screws both inward or outward until the bubble comes to the centre. Each level being treated in this way, the limb of the instrument is caused to be parallel to the horizon.
Unclamp the vernier plate and set the zero of the vernier to coincide with the zero of the limb. Clamp the plates in this adjustment. The leveling screws should be kept bearing equally against the plates.
Do not turn the leveling screws up too tightly. It tends to spring the plate and causes unnecessary wear of the screw threads. Simply bring them to a firm bearing.
2. Assistants and their Duties. The Rodman. - A rodman, often called a flagman, using a rod called a color pole, and one or more axemen are needed. The color pole is often carried by the head chainman.
The man who carries the color pole, selects places to set up the instrument, and gets the transit points, is a very important factor in running a line. Nearly as much depends upon him for accuracy and speed as upon the transitman. He should be thoroughly drilled in his duty. He should hold the color pole perpendicularly, clasping it lightly between the thumb and forefinger of both hands, and the hands held above the head. The point should be lifted a little above the ground or hub. He must keep it squarely in front of him, and move his body the samo distance that he does the color pole, when getting a point. As soon as the "All Right" signal is given, let go of the pole. It will fall vertically and make the point plain. If the pole is held to one side it is apt to have some
uneven pressure given which will make it incline more or less.

A man cannot stand awkwardly and hold a color pole accurately. He must be able to judge of the stability of the ground to set up on. He must select places where the longest sights can be had, and in running through timbered country he should select transit points where the ground begins to ascend or descend. If any deep ravines or gullies are to be crossed, he must select points to get across them with the least possible chopping, and without having to set up on a steep hillside. He should not select a point on the shaded side of a big tree, but where the most light comes in through the leaves. A small limb cut out of the way will often let in a wonderful amount of light, or a white handkerchief spread over the chest, or a light colored straw hat held in the right position, sometimes reflects enough light to show clearly objects which before were indistinct. In fact, he must be a man of gumption and equal to any emergency. But he cannot do good work unless he is provided with a good color pole.
3. The Color Pole.-It should be made from a good piece of straight grained timber. White or Norway pine is good. It is fitted at the bottom with a shoe made from gas pipe, with a steel point welded on, and finished by turning down in a machine. The shoe ought to be of sufficient weight to bring the centre of gravity within two feet of the bottom, so that it will have a greater tendency to hang vertically when held up.
The sizes of color poles vary according to the places where they are used. If one is dressed down with planes to a six or eight-sided stick, tapering slightly toward the top, it will keep straight much longer than a stick turned in a lathe. The shoe should be made of sufficient size to receive the stick, without dressing it down to go into the sooket. When finished it should be thoroughly tested, to see if the point of the shoe has been set in line with the
centre of the pole. Suspend a plumb bob from a point in a ceiling, and mark on the floor the point carried down. Fasten a string in the centre of the top of the color pole and suspend it from the same point. If the point of the shoe covers the mark on the floor it is all right. Prying with a color pole should be prohibited.
4. Axeman. The axemen provide pickets for backsights, clear the line of brush and trees, and drive stakes and hubs for transit points. They should keep close to the line, so that in clearing through woods they do no unnecessary cutting. A clear line two feet wide through the brush is generally all that is needed. Hubs for transit points should be cut square on top and driven firmly into the earth, nearly level with the surface.
5. Projecting the Line. The flagman selects the point and, facing the transitman, holds the color pole directly in front of him, and guided by the transitman, places it in line and makes a mark in the ground. The axeman then drives a hub at the place and the rodman again holds up his pole and finds the exact point where the line crosses the hub and a tack is driven. For,most surveys a line within the limits of a tack head is consid ered close enough.
The hub for transit point should not be driven near a large tree, in soft ground, as a breeze will cause the tree to sway so as to move the earth for many feet around it. For a backsight it is a good plan to set up a picket, pointed at the top, so that the point shall coincide with the hole in the eye piece of the telescope. Or it may be set far enough from the transit so that the point may be aligned by the instrument. The picket should be set so firmly in the ground that it will retain its place as long as it is needed. A root will sometimes so press against a picket as to throw the point out of line after it is set. It may be necessary to drive the picket with the axe and then insert a wooden point in a cleft in the top of the picket. Several such points set up in the line before the transit is moved help to secure accuracy in the line.

When the backsight is set, the transit is takeu forward and set up over the tack point in the hub. The lower clamp is loosened, the telescope reversed and sighted to the backsight and the instrument clamped in that position. The telescope is then righted and the line continued to the next tack point. When two or more backsight points are visible at once, any error in the adjustment of the instrument or in running the line will be readilv detected, and the proper correction may be applied.

If the line of collimation is out of adjustment and it is . not desirable to stop and adjust it, the lower clamp is loosened, the instrument turned half way round and clamped on the backsight. The telescope is then reversed on its axis and a second point marked beside the first. (See Fig. 9.) A tack is then driven in the true line, which is midway between the two. If the instrument is much out of adjustment it may be necessary to drive three huoss for this purpose. The transit is then set up in the true line, and the line continued as far as necessary, in the same manner. Obstacles in line are passed by offsets to parallel lines, in the same manner as when running lines by pickets or compass. Other methods will be considered in connection with Angular Measurements.

Examples, to be solved by the student in the field:

1. Run a line half a mile and mark four or more points along the line with hubs and tacks.
2. Retrace it in the opposite direction, testing the points to see how they agree.
3. Run a line over a hill, marking points at the top and bottom and along the slopes.
4. Retrace it in the opposite direction, testing the points.
5. Run a line across a valley, marking points, and retrace it in the opposite direction, lesting the points.

CHAPTER III.

Description of Instruments, Continued.

FIG. 10. THE SOLAR COMPASS.

1. The Solar Compass is an instrument for utilizing the sun's rays to determine a true meridian which has for a number of years been in use in the surveys of United States public lands, the principal lines of which are required to be run with reference to the true meridian.
The arrangement of its sockets and plates is similar to that of the surveyor's transit, except that the sight vanes are attached to the under plate or limb, and this revolves around the upper or vernier plate on which the solar apparatus is placed.
The limb is divided to half degrees, is figured in two rows, as usual, and reads by the two opposite verniers to single minutes.
2. The Solar Apparatus is seen in the place of the needle, and in fact operates as its substitute in the field.
It consists mainly of three ares of circles, by which can be set of the latitude of a place, the declination of the sun, and the hour of the day.

These ares, designated in the cut by the letters a, b, and c, are therefore termed the latitude, the declination, and the hour ares, respectively.
3. The Latitude Arc, a, has its centre of motion in two pivats, one of which is seen at d, the other is concealed in the cut.
It is moved either up or down within a hollow are, seen in the cut, by a tangent-screw at f, and is securely fastened in any positiou by a clamp-screw.
The latitude are is graduated to quarter degrees, and reads by its vernier, e, to single minutes; it has a range of about thirty-five degrees, so as to be adjustable to the latitude of any place in the United States.
4. The Declination Arc, b, is also graduated to quarter degrees, and has a range of about twenty-eight degrees.

Its vernier, v, reading to single minutes, is fixed to a movable arm, h, having its center of motion at the end of the declination are, at g; the arm is moved over the surface of the declination are, and its vernier set to any reading by turning the head of the tangent-screw, k. It is also securely clamped in any position by a screw, concealed in the engraving.
5. Solar Lenses and Lines.-At each end of the arm, h, is a rectangular block of brass, in which is set a small convex lens, having its focus on the surface of a little silver plate, A, (Fig. 11,) fastened by screws to the inside of the opposite block.

FIG. 11.

On the surface of the plate are marked two sets of lines, intersecting each other at right angles; of these, $b b$ are termed the hour lines, and $c c$ the equatorial lines, as having reference respectively to the hour of the day and the position of the sun in relation to the equator.
In Fig. 11 the equatorial lines are those on the lower block, parallel to the surface of the hour are, c; the hour lines are of course those at right angles to the first.
6. Equatorial Sights.-On the top of each of the rectangular blocks is seen a little sighting piece, termed the equatorial sight, fastened to the block by a small milled head-screw, so as to be detached at pleasure.
They are used, as will be explained hereafter, in adjusting the different parts of the solar apparatus.
7. The Hour Arc, c, is supported by the two pivots of the latitude are, already spoken of, and is also connected with that are by a curved arm, as shown in the figure.
The hour are has a range of about 120°, is divided to half degrees, and figured in two series, designating both the hours and the degrees, the middle division being marked 12 and 90 on either side of the graduated lines.
8. The Polar Axis.-Through the center of the hour are passes a hollow socket, p containing the spindle of
the declinatiou arc, by means of which this are can be moved from side to side over the surface of the hour arc, or turned completely round, as may be required.

The hour are is read by the lower edge of the graduated side of the declination arc.

The axis of the declination arc, or indeed the whole socket p, is appropriately termed the polar axis.
9. The Adjuster.-Besides the parts shown in the cut, there is also an arm used in the adjustment of the instrument as described hereafter, but laid aside in the box when that is effected.

The parts above described constitute properly the solar apparatus.

Beside these, however, are seen the needle-box, n, with its arc and tangent-screw, t, and the spirit levels, for bringing the whole instrument to a horizontal position.
10. The Needle Box has an arc of about 36° in extent, divided to half degrees, and figured from the center or zero mark on either side.

The needle, which is made as in other instruments, except that the arms are of unequal lengths, is raised or lowered by a lever shown in the cut.

The needle-box is attached by a projecting arm to a tangent-screw, t, by which it is moved about its center, and its needle set to any variation.

This variation is also read off by the vernier on the end of the projecting arm, reading to three minutes a graduated arc, attached to the plate of the compass.
11. The Levels seen with the solar apparatus have ground glass vials, and are adjustable at their ends like those of other instruments.

The edge of the circular plate on which the solar work is placed, is divided and figured at intervals of ten degrees, and numbered, as shown, from 0 to 90 on each side of the line of sight.

These graduations are used in connection with a little brass pin, seen in the center of the plate, to obtain approximate bearings of lines, which are nut important enough to require a close observation.
12. Lines of Refraction-The inside faces of the sights are also graduated and figured, to indicate the amount of refraction to be allowed when the sun is near the horizon. These are not shown in the cut.
13. Principles of the Solar Compass.-The interval between two equatorial lines, $c c$, in Fig. 10, as well as between the hour lines, $b b$, is just sufficient to include the circular image of the sun as formcd by the solar lens on the opposite end of the revolving arm, h, Fig. 9.

When, therefore, the instrument is made perfectly horizontal, the equatorial lines and the opposite lenses being accurately adjusted to each other by a previous operation, and the sun's image brought within the equatorial lines, his position in the heavens, with reference to the horizon, will be defined with precision.
Suppose the observation to be made at the time of one of the equinoxes; the arm h, set at zero on the declination arc b, and the polar axis p, placed exactly parallel to the axis of the earth.
Then the motion of the arm h, if revolved on the spindle of the declination arc" around the hour circle c, will exactly correspond with the motion of the sun in the heavens, on the given day and at the place of observation; so that if the sun's image were brought between the lines $c c$. in the morning, it would continue in the same position, passing neither above nor below the lines, as the arm was made to revolve in imitation of the motion of the sun about the earth.
In the morning, as the sun rises from the horizon, the arm h will be in a position nearly at right angles to that shown in the cut, the lens being turned toward the sun,
and the silver plate on which his image is thrown directly opposite.

As the sun ascends, the arm must be moved around, until when h has reached the meridian, the graduated side of the declination arc will indicate 12 on the hour circle, and the $\operatorname{arm} h$, the declination arc b, and the latitude arc a, will be i:? the same plane.

As the sun declines from the meridian, the arm h must be moved in the same direction, until at sunset its position will be the exact reverse of that it occupied in the morning.
14. Allowance for Declination.-Let us now suppose the olsservation made when the sun has passed the equinoctial point, and when his position is affected by declination.

By referring to the Almanac, and setting off on the arc his declination for the given day and hour, we are still able to determine his position with the same certainty as if he remained on the equator.

When the sun's declination is south, that is, from the 22 d of September to the $20: \mathrm{h}$ of March in each year, the are b is turned toward the plates of the compass, as shown in the engraving, and the solar lens, o, with the silver plate opposite, are made use of in the surveys.

The remainder of the year, the arc is turned from the plates, and the other lens and plate employed.

When the solar compass is accurately adjusted, and its plates made perfectly horizontal, the latitude of the place, and the declination of the sun for the given day and hour, being al so set off on the respective arcs, the image of the sun cannot be brought between the equatorial lines until the polar axis is placed in the plane of the meridian of the place, or in a position parallel to the axis of the earth. The slightest deviation from this position will cause the image to pass above or below the lines, and thus discover the error.

We thus, from the position of the sun in the solar system, obtain a certain direction absolutely unchangeable, from which to run our lines, and measure the horizontal angles required.
This simple principle is not only the basis of the construction of the solar compass, but the sole cause of its superiority to the ordinary or magnetic instrument. For in a needle instrument, the accuracy of the horizontal angles indicated, and therefore of all the observations made, depends upon the delicacy of the needle, and the constancy with which it assumes a certain direction, termed the magnetic meridian.

The principal causes of error in the needle, briefly stated, are the dulling of the pivot, the loss of polarity in the needle, the influence of local attraction, and the effect of the sun's rays, producing the diurnal variation.
From all these imperfections the solar instrument is free.
The sights and the graduated limb being adjusted to the solar apparatus, and the latitude of the place and the declination of the sun also set off upon the respective arcs, we are able, not only to run the true meridian, or a due east and west course, but also to set off the horizontal angles with minuteness and accuracy from a direction which never changes, and is unaffected by attraction of any kind.
15. Adjustments.-The adjustments of this instrument, with which the surveyor will have to do, are simple and few in number, and will now be given in order.

1st. To Adjust the Levels.-Proceed precisely as directed in the account of the other instruments we have described, by bringing the bubbles into the centre of the tubes by the leveling screws of the tripod, and then reversing the instrument upon its spindle, and raising or lowering the ends of the tubes, until the bubbles will remain in the centre during a complete revolution of the instrument.

2d. To Adjust the Equatorial Lines and Solar Lenses.-First detach the arm h from the declination are, by withdrawing the screws shown in the cut from the ends of the posts of the tangent-screw k, and also the clamp-screw, and the conical pivot with its small screws by which the arm and declination are are connected.

The arm h, being thus removed, attach the adjuster in its place by replacing the conical pivot and screws, and insert the clamp-screw so as to clamp the adjuster at any point on the declination arc.

Now level the instrument, place the arm h on the adjuster, with the same side resting against the surface of the declination are as before it was detached. Turn the instrument on its spindle so as to bring the solar lens to be adjusted in the direction of the sun, and raise or lower the adjuster on the declination arc, until it can be clamped in such a position as to bring the sun's image as near as may be between the equatorial lines on the opposite silver plate, and bring the image precisely into position by the tangent of the latitude arc or the leveling-screws of the tripod. Then carefully turn the arm half way over, until it rests upon the adjuster by the opposite faces of the rectangular blocks, and again observe the position of the sun's image.
If it remains between the lines as before, the lens and plate are in adjustment; if not, loosen the three screws which confine the plate to the block, and move the plate under their heads, until one-half the error in the position of the sun's image is removed.
Again bring the image between the lines, and repeat the operation until it will remain in the same situation, in both positions of the arm, when the adjustment will be completed.
To adjust the other lens and plate, reverse the arm, end for end, on the adjuster, and proceed precisely as in the former case, until the same result is attained.

In tightening the screws over the silver plate, care must be taken not to move the plate.
This adjustment now being complete, the adjuster should be removed, and the arm h, with its attachments, replaced as before.

3d. To Adjust the Vernier of the Declination Arc. -Having leveled the instrument, and turned its lens in the direction of the sun, clamp to the spindle, and set the vernier v, of the declination arc, at zero, by means of the tangent-screw a: k, and clamp to the arc.
See that the spindle moves easily and yet truly in the socket, or polar axis, and raise or lower the latitude are by turning the tangent-screw f, until the sun's image is brought between the equatorial lines on one of the plates. Clamp the latitude arc by the screw, and bring the image precisely into position by the leveling-screws of the tripod or socket, and without disturbing the instrument, carefully revolve the arm h, until the opposit. lens and plate are brought in the direction of the sun, and note if the sun's image comes between the lines as before.
If it does, there is no index error of the declination arc; if not, with the tangent-screw k, move the arm until the sun's image passes over half the error; again bring the image between the lines, and repeat the operation as before, until the image will occupy the same position on both plates.

We shall now find, however, that the zero marks on the arc and the vernier do not correspond, and to remedy this error, the little flat-head screws above the vernier must be loosened until it can be moved so as to make the zeros coincide, when the operation will be completed.

4th. To Adjust the SolarApparatus to the Compass Sights.-First level the instrument, and with the clamp and tangent-screws set the main plate at 90° by the verniers and horizontal limb. Then remove the clamp-screw and raise the latitude arc until the polar axis is by esti-
mation very nearly horizontal, and if necessary, tighten the screws on the pivots of the arc, so as to retain it in this position.
Fix the vernier of the declination are at zero, and direct the equatorial sights to some distant and well marked object, and observe the same through the compass sights. If the same object is seen through both, and the verniers read to 90° on the limb, the adjustment is complete; if not, the correction must be made by moving the sights or changing the position of the verniers.
16. To Use the Solar Compass.-Before this instrument can be used at any given place, it is necessary to set off upon its ares both the declination of the sun as affected by its refraction for the given day and hour, and the latitude of the place where the observation is made.
To Set off the Declination.-The declination of the sun, given in the ephemeris of the Nautical Almanac from year to year, is calculated for apparent noon at Green wich, England.
To determine it for any other hour at a place in the United States, reference must be had, not only to the difference of time arising from the longitude, but also to the change of declination from day to day.
The longitude of the place, and therefore its difference in time, if not given directly in the tables of the Almanac, can be ascertained very nearly by reference to that of other places given, which are situated on, or very nearly on, the same meridian.
It is the practice of surveyors in the states east of the Mississippi, to allow a difference of six hours for the difference in the longitude, calling the declination given in the Almanac for 12 m ., that of 6 Am ., at the place of observation.
Beyond the meridian of Santa Fe, the allowance would be about seven hours, and in California, Oregon, and Washington Territory about eight hours.

Having thus the difference of time, we very readily obtain the declination for a certain hour in the morning, which would be earlier or later as the longitude was greater or less, and the same as that of apparent noon at Greenwich on the given day. Thus, suppose the observation made at a place, say, five hours later than Green wich, then the declination given in the Almanac for the given day at noon, affected by the refraction, would be the declination at the place of observation for 7 o'clock A. M.; this gives us the starting-point.
To obtain the declination for the other hours of the day, take from the Almanac the declination for apparent noon of the given day, and, as the declination is increasing or decreasing, add to or subtract from the declination of the first hour, the difference for one hour as given in the ephemeris, which will give, when affected by the refraction, the declination for the succeeding hour; and proceed thus in making a table of the declination for every hour of the day.
17. Refraction.-By reason of the increasing density of the atmosphere from its upper regions to the earth's surface, the rays of light from the sun are bent out of their course, so as to make his altitude appear greater than is actually the case.
The amount of refraction varies, according to the altitude of the body observed; being 0 when it is in the zenith, about one minute when midway from the horizon to the zenith, and almost 34^{\prime} when in the horizon.
18. Allowance for Refraction.-The proper allowance to be made for refraction in setting off the declination of the sun upon the Solar Compass has long been a source of perplexity to the surveyor. Accordingly, a table has been prepared, (Table XI), by which the amount of refraction for any hour of the day throughout the year may be readily obtained. The manner of using the table is shown in the solution of the following

Example.-1. To find the declination for the different hours of April 16, 1883, at Troy, N. Y.

Solution.-Latitude of Troy, about $42^{\circ} 30^{\prime}$ N. Longitude, 4 hr ., $54 \mathrm{~min} ., 40$ sec., practically 5 hr .

Apparent noon at Greenwich is 7 A. M. at Troy. Declination of sun at Green wich at noon of April 16, 1883, as given by Nautical Almanac, N. $10^{\circ} 6^{\prime} 2^{\prime \prime}$ 十, and hourly change, $53^{\prime \prime}$.

Refraction in Lat. $42^{\circ} 30^{\prime}$, declination 10°, time 5 hr . before noon as given by table, $1^{\prime} 58^{\prime \prime}$.

Whence the following figures:
N. $10^{\circ} 6^{\prime} 2^{\prime \prime}+$ Ref. 5 hrs. $1^{\prime} 58^{\prime \prime}-10^{\circ} 8^{\prime} 0^{\prime \prime}-$ Dec. at 7 A. m. Troy. add hr. dif. $53^{\prime \prime}$

```
    N. \(10^{\circ}-6^{\prime} 55^{\prime \prime}+" 4{ }^{\prime \prime} 1^{\prime} 11^{\prime \prime}-10^{\circ} 8^{\circ} 0 . .6-\quad \begin{array}{llll} & 0 & 8 & \end{array}\)
add hr. dif. \(53^{\prime \prime}\)
```

N. $10^{\circ} 77^{\prime} 48^{\prime \prime}+" 3$ " $0^{\prime} 52^{\prime \prime}-10^{\circ} 8^{\prime} 40^{\prime \prime}-\quad$ " 9
add hr. dif. $53^{\prime \prime}$
$\begin{array}{lllll}\mathrm{N} .10^{\circ} 8^{\prime} 41^{\prime \prime}+ & & \text { " } 0^{\prime} 39^{\prime \prime}-10^{\circ} 9^{\circ} 20^{\prime \prime} & -\quad \text { " } 10\end{array}$
add hr. dif. $53^{\prime \prime}$
N. $10^{\circ} 9^{\prime} 34^{\prime \prime}+{ }^{\prime \prime} 10^{\prime} 36^{\prime \prime}-10^{\circ} 10^{\circ} 10^{\prime \prime}-{ }^{\prime \prime} 11$
add hr . dif. $53^{\prime \prime}$
N. $10^{\circ} 10^{\prime} 27^{\prime \prime}+" 0 " 00^{\prime} 36^{\prime \prime}-10^{\circ} 11^{\prime} 03^{\prime \prime}-" 12 \mathrm{~m}$.
add hr , dif. $53^{\prime \prime}$
N. $10^{\circ} 11^{\prime} 20^{\prime \prime}+{ }^{\prime \prime} 10^{\circ} 36^{\prime \prime}-19^{\circ} 11^{\prime} 56^{\prime \prime} \quad$ " 1 P. M.
add hr. dif. $53^{\prime \prime}$
$\mathrm{N} .10^{\circ} 12^{\prime} 13^{\prime \prime}+" 2 " 0^{\prime} 39^{\prime \prime}-10^{\circ} 12^{\prime} 52^{\prime \prime}-{ }^{\prime \prime} 2^{\prime \prime}$
add hr. dif. $53^{\prime \prime}$
$\mathrm{N} .10^{\circ} 13^{\prime} 06^{\prime \prime}+{ }^{\prime \prime} 30^{\prime} 52^{\prime \prime}-10^{\circ} 13^{\prime} 58^{\prime \prime}-" 3$ "
add hr. dif 53^{\prime}

Example.-2. To find the declination for the different hours of Oct. 16, 1882, at Troy, N. Y.

Solution.-Declination of sun at Greenwich at noon of Oct. 16, 1883, as given by Nautical Almanac S. $8^{\circ} 51^{\prime} 47^{\prime \prime} .7$. hourly change $55^{\prime \prime}$.

Refraction 5 hr . before noon, Lat. $42^{\circ} 30^{\prime}$, Dec. -9°, is very nearly $9^{\prime} 24^{\prime \prime}$, and operates to diminish the declination.
Whence the following:
S. $8^{\circ} 51^{\prime} 47^{\prime \prime}, 7$-Ref. $5 \mathrm{hr} .9^{\prime} 24^{\prime \prime}-8^{\circ} 42^{\prime} 23^{\prime \prime}-$ Dec. at 7 A. M. at Troy.

19. To Set Off the Latitude.-Find the declination of the sun for the given day at noon, at the place of observation, as just described, and with the tangent-screw set it off upon the declination arc, and clamp the arm firmly to the arc.
Observe in the Almanac the equation of time for the given day, in order to know about the time the sun will reach the meridian.
Then, about fifteen or twenty minutes before this time, set up the instrument, level it carefully, fix the divided surface of the declination arc at 12 on the hour circle, and turn the instrument upon its spindle until the solar lens is brought into the direction of the sun.
Loosen the clamp-screw of the latitude are, and with the tangent-screw raise or lower this arc until the image of the sun is brought precisely between the equatorial lines, and turn the instrument from time to time so as to keep the image also between the hour lines on the plate

As the sun ascends, its image will move below the lines, and the arc must be moved to follow it. Continue thus, keeping it between the two sets of lines until its image begins to pass above the equatorial lines, which is also the moment of its passing the meridian.

Now read off the vernier of the arc, and we have the latitude of the place, which is always to be set off on the arc when the compass is used at the given place.

It is the practice of surveyors using the solar compass to set off, in the manner just described, the latitude of the point where the survey begins, and to repeat the observation and correction of the latitude arc every day when the weather is favorable, there being also nearly an hour at mid-day when the sun is so near the meridian as not to give the direction of lines with the certainty required.
20. To Run Lines with the Solar Compass.-Having set off in the manner just given, the latitude and declination upon their respective arcs, the instrument being also in adjustment, the surveyor is ready to run lines by the sun.

To do this, the instrument is set over the station and carefully leveled, the plates clamped at zero on the horizontal limb, and the sights directed north and south, the direction being given, when unknown, approximately by the needle.

The solar lens is then turned to the sun, and with one hand on the instrument, and the other on the revolving arm, both are moved from side to side, until the sun's image is made to appear on the silver plate; when by carefully continuing the operation, it may be brought precisely between the equatorial lines.

Allowance being now made for refraction, the line of sights will indicate the true meridian; the observation may now be made, and the flag-man put in position.

When a due east and west line is to be run, the verniers of the horizontal limb are set at 90°, and the sun's image kept between the lines as before.

The solar compass being so constructed that when the sun's image is in position the limb must be clamped at 0 in order to run a true meridian line, it will be evident that the bearing of any line from the meridian may be read by the verniers of the limb precisely as in the ordinary magnetic compass, the bearings of lines are read from the ends of the needle.
21. Use of the Needle.-In running lines, the magnetic needle is always kept with the sun; that is, the point of the needle is made to indicate 0 on the arc of the compass box, by turning the tangent-screw connected with its arm on the opposite side of the plate. By this means, the lines can be run by the needle alone in case of the temporary disappearance of the sun; but, of course, in such cases the surveyor must be sure that no local attraction is exerted.

The variation of the needle, which is noted at every station, is read off in degrees and minutes on the arc, by the edge of which the vernier of the needle-box moves.
22. Allowance for the Earth's Curvature - When long lines are run by the solar compass, either by the true meridian, or due east and west, allowance must be made for the curvature of the earth.

Thus, in running north or south, the latitude changes about one minute for every distance of 92 chains 30 links, and the side of a township requires a change on the latitude arc of $5^{\prime} 12^{\prime \prime}$, the township, of course, being six miles square.

This allowance is of constant use where the surveyor fails to get an observation on the sun at noon, and is a very close approximation to the truth.

In running due east and west, as in tracing the stand-
ard parallels of latitude, the sights are set at 90° on the limb, and the line is run at right angles to the meridian.

If no allowance were made for the earth's curvature, these lines would, if sufficiently produced, reach the equator, to which they are constantly tending.

Of course, in running short lines either east or west, the variation from the parallel would be so small as to be of no practical importance; but when long sights are taken, the correction should be made by taking fore and back sights at every station, noting the error on the back sight, and setting off one-half of it on the fore sight on the side toward the pole.
23. Time of Day by the Sun.-The time of day is best ascertained by the solar compass when the sun is on the meridian, as at the time of making the observation for latitude.

The time thus given is that of apparent noon, and can be reduced to mean time by merely applying the equation of time as directed in the Almanac, and adding or subtracting as the sun is slow or fast.

The time, of course, can also be taken before or after noon, by bringing the sun's image between the hour lines, and noticing the position of the divided edge of the revolving arm, with reference to the graduations of the hour circle, allowing four minutes of time for each degree of the arc, and thus obtaining apparent time, which must be corrected by the equation of time as just dedescribed.
24. Caution as to the False Image. - In using the compass upgn the sun, if the revolving arm be turned a little one side of its proper position, a false or reflected image of the sun will appear on the silver plate in nearly the same place as that occupied by the true one. It is caused by the reflection of the true image from the surface of the arm, and is a fruitful source of error to the
inexperienced surveyor. It can, however, be readily distinguished from the real image by being much less bright, and not so clearly defined.
25. Approximate Bearings.-When the bearings of lines, such as the course of a stream, or the boundaries of a forest, are not desired with the certainty given by the verniers and horizontal limb, a rough approximation of the angle they make with the true meridian is obtained by the divisions on the outside of the circular plate.

In this operation, a pencil, or thin straight edge of any sort, is held perpendicularly against the circular edge of the plate, and moved around until it is in range with the eye, the brass center-pin, and the object observed.

The bearing of the line is then read off at the point where the pencil is placed.

Time for Using the Solar Compass.-The solar compass, like the ordinary instrument, can be used at all seasons of the year, the most favorable time being, of course, in the summer, when the declination is north, and the days are long, and more generally fair.

It is best not to take the sun at morning and evening, when it is within half an hour of the horizon, nor, for about the same interval, before and after it passes the meridian.

II. THE SOLAR ATTACHMENT.

1. The Solar Attachment is essentially the solar apparatus of Burt placed upon the cross-bar of the ordinary transit, the polar axis only being directed above instead of below, as in the solar compass. A little circular disk of an inch and a half diameter, and having a short round pivot projecting above its upper surface, is first screwed firmly to the axis of the telescope.

Upon this pivot rests the enlarged base of the polar axis, which is also firmly connected with the disk by four
capstan-head screws passing from the under side of the disk into the base already named.

These screws serve to adjust the polar axis, as will be explained hereafter.

2. The hour circle surrounding the base of the polar axis is easily movable about it, and can be fastened at any point desired by two flat-head screws above. It is divided to five minutes of time; is figured from I. to XII., and is read by a small index fixed to the declination circle, and moving with it.

A hollow cone, or socket, fitting closely to the polar axis and made to move snugly upon it, or clamped at any point desired by a milled-head screw on top, furnishes by its two expanded arms below, a firm suppori for the declination arc, which is securely fastened to it by two large screws.
3. The declination arc is of about five inches radıus, is divided to quarter degrees, and reads by its veraier to single minutes of arc, the divisions of both vernier and limb being in the same plane.

The declination arm has the usual lenses and silver plates on the two opposite blocks, made precisely like those of the ordinary solar compass, but its vernier is outside the block, and more casily read.

The declination arm has also a clamp and tangent movement, as shown in the cut. The arc of the declination limb is turned on its axis and one or the other solar lens used, as the sun is north or south of the equator.
4. The latitude is set off by means of a large vertical limb having a radius of two and a half inches: the arc is divided to thirty minutes, is figured from the centre, each way, in two rows, viz. from 0 to 80°, and from 90° to 10°, the first series being intended for reading vertical angles; the last series for setting off the latitude, and is read by its vernier to single minutes.

It has also a clamp-screw inserted near its cenire, by which it can be set fast to the telescope axis in any desired position.

The vernier of the vertical limb is made movable by the tangent-screw attached, so that its zero and that of
the limb are readily made to coincide when, in adjusting the limb to the level of the telescope, the arc is clamped to the axis.
The usual tangent movement to the telescope axis serves, of course, to bring the vertical limb to the proper elevation, as hereafter described.
A level on the under side of the telescope, with ground vial and scale, is indispensable in the use of the Solar attachment.
The divided arcs, vernier, and hour circle are all on silver plate, and are thus easily read and preserved from tarnishing.
5. Adjustments.-These pertain to the solar lenses and lines, the declination arc, the polar axis and hour arc, as follows:
(1) The solar lenses and lines are adjusted precisely like those of the ordinary Solar, the declination arm being first detached by removing the clamp and tangent-screws, and the conical centre with its two small screws, by which the arm is attached to the arc.
The adjuster, which is a short bar furnished with every instrument, is then substituted for the declination arm, the conical centre screwed into its place, at one end, and the clamp-screw into the other, being inserted through the hole left by the removal of the tangent-screw, thus securing the adjuster firmly to the arc.
The arm is then turned to the sun, as described in the article on the Solar Compass, and reversed by the opposite. faces of the blocks upon the adjuster, until the image will remain in the centre of the equatorial lines.
(2) The vernier of the declination arc is adjusted by setting the vernier at zero, and then raising or lowering the telescope by the tangent-screw until the sun's image appears exactly between the equatorial lines.
Having the telescope axis clamped firmly, carefully revolve the arm until the image appears on the other plate.

If precisely between the lines, the adjustment is complete; if not, move the declination arm by its tangentscrew, until the image will come precisely between the lines on the two opposite plates; clamp the arm and remove the index error by loosening twe screws that fasten the vernier; place the zeros of the vernier and limb in exact coincidence, tighten the screws, and the adjustment is finished.
(3) To Adjust the Polar Axis.-First level the instrument carefully by the long level of the telescope, using in the operation the tangent movement of the telescope axis in connection with the leveling screws of the parallel plates until the bubble will remain in the centre during a complete revolution of the instrument upon its axis.

Place the equatorial sights on the top of the blocks as closely as is practicable with the distinct view of a distant object; and having previously set the declination arm at zero, sight through the interval between the equatorial sights and the blocks at some definite point or object, the declination arm being placed over either pair of the cap-stan-head screws on the under side of the disk.

Keeping the declination arm upon the object with one hand, with the other turn the instrument half around on its axis, and sight upon the same object as before. If the sight strikes either above or below, move the two cap-stan-head screws immediately under the arm, loosening one and tightening the other as may be needed until half the error is removed.

Sight again and repeat the operation, if needed, until the sight will strike the same object in both positions of the instrument, when the adjustment of the axis in one direction will be complete.

Now turn the instrument at right angles, keeping the sight still upon the same object as before; if it strikes the same point when sighted through, the axis will be truly vertical in the second position of the instrument.

If not, bring the sight upon the same point by the other pair of capstan-head screws now under the declination arc, reverse as before, and continue the operation until the same object will keep in the sight in all positions, when the polar axis will be made precisely at right angles to the level and to the line of collimation.

It should here be noted that, as this is by far the most delicate and important adjustment of the solar attachment, it should be made with the greatest care, the bubble kept perfectly in the center and frequently inspected in the course of the operation.
(4) To Adjust the Hour Arc.-Whenever the instru ment is set in the meridian, as will be hereafter described the index of the hour are should read apparent time.

If not, loosen the two flat-head screws on the top of the hour circle, and with the hand turn the circle around until it does, fasten the screws again, and the adjustment will be complete.

To obtain mean time, of course the correction of the equation for the given day, as given in the Nautical Almanac, must always be applied.
6. To Find the Latitude. -First level the instru. ment very carefully, using, as before, the level of the telescope until the bubble will remain in the center during a complete revolution of the instrument, the tangent movement of the telescope being used in connection with the leveling screws of the parallel plates, and the axis of the telescope firmly clamped.

Next clamp the vertical arc, so that its zero and that of its vernier coincide as near as may be, and then bring them into exact line by the tangent screw of the vernier.

Then, having the declination of the sun for 12 n'clock of the giveat day as affected by the meridianal refraction carefully set off upon the declination arc, note also the equation of time, and fifteen or twenty minutes before noon, the telescope being directed to the north, and the
object-end lowered until, by moving the instrument upon its spindle and the declination arc from side to side, the sun's image is brought nearly into position between the equatorial lines. Now bring the declination are directly in line with the telescope, clamp the axis firmly, and with the tangent screw bring the image precisely between the lines and keep it there with the tangent screw, raising it as long as it runs below the lower equatorial line, or in other words, as long as the sun continues to rise in the heavens.

When the sun reaches the meridian, the image will remain stationary for an instant and then begin to rise on the plate.

The moment the image ceases to run below is of course apparent noon, when the index of the hour arc should indicate XII, and the latitude be determined by the reading of the vertical arc.

It must be remembered, however, that the angle through which the polar axis has moved in the operation just described is measured from the zenith instead of the horizon as in the ordinary solar, so that the angle read on the vertical limb is the complement of the latitude.

The latitude itself is readily found by subtracting this angle from 90°; thus, at Troy, the reading of the limb being found as above directed to be $47^{\circ} 16^{\prime}$, the latitude will be $90^{\circ}-47^{\circ} 16^{\prime}=42^{\circ} 44^{\prime}$.

It will be noticed that with this apparatus the latitude of any place can be most easily ascertained without any index error, as in the usual solar compass.
7. To Run Lines with the Solar Attachment.Having set off the complement of the latitude of the place on the vertical arc, and the declination for the given day and hour, as in the solar, the instrument being also carefully leveled by the telescope bubble, set the horizontal limb at zero and clamp the plates together, loosen the lower clamp so that the transit moves easily
upon its lower socket, set the instrument approximately north and south, the object end of the telescope pointing to the north, turn the proper solar lens to the sun, and with one hand on the plates and the other on the revolving arm, move them from side to side until the sun's image is brought between the equatorial lines on the silver plate.

The lower clamp of the instrument should now be fastened and any further lateral movement be made by the tangent screw of the tripod. The necessary allowance being made for refraction, the telescope will be in the true meridian, and being unclamped, may be used like the sights of the ordinary solar compass, but with far greater accuracy and satisfaction in establishing meridian lines. Of course when the upper or vernier plate is unclamped from the limb, any angle read by the verniers is an angle from the meridian, and thus parallels of latitude or any other angles from the true meridian may be established as with the solar compass.

- The bearing of the needle, when the telescope is on the meridian, will also give the declination of the needle at the point of observation.

The declination of the needle being set off, the needle kept then at zero, or "with the sun," lines may be run by the needle alone, when the sun is obscured.

The sun, however, must ever be regarded as the most reliable guide, and should, if possible, be taken at every station.

CHAPTER IV.

Measurement of Angles.

1. The instruments already described are used both for running lines and for measuring angles. The transit is used where the greatest degree of accuracy is required and where angles are to be measured within 1^{\prime} or less.

The compass is used when no great degree of accuracy is required and the measurement of an angle within 5^{\prime} is as close as is ordinarily expected.

Professional Surveyors are provided with the compass or transit in some of their various forms.

Students and others may or may not have them. In case of necessity, the tape may be used to measure angles, and in connection with the picket, sections of the United States Survey may be subdivided, irregular fields measured, and other similar operations performed, with a rapidity ard accuracy equal to, if not superior to work done with a compass, the picket being used to run the lines and the tape to measure both distances and angles.

2. To Measure Angles with the Tape.

This is most conveniently done with the aid of tables of trigonometrical functions with which the student is supposed to be familiar.

Prob. 1. To lay off a right angle from a point p in a given line $A B$.

Fig, 13.

When the sides of a triangle are to each other as 3,4 and 5 , the angle between the smaller sides is a right angle. Hence to lay off a right angle with the tape or chain, stick a marking pin at p and then measure along the line $p m=3$ and stick another pin at m. Then from p as a center with a radius 4 and from m as a center with radius 5 strike ares intersecting at n. Then will $m p n$ be the required angle. If the line $p n$ is to be prolonged as a picket line, it will be better to range from, if longer sides, as 60,80 and 100 are used.

This is the most useful of the many methods of laying off a right angle with the tape, and can be applied where any method can be. The other methods are, for the most part, more curious than useful. The following is one of the best of them:
2d Méthod. Measure along the line in opposite directions from p and stick pins in the line at m and m^{\prime} mak. ing $p m=p m^{\prime}$. Then from m and m^{\prime} as centres with any radius greater than $p m$ strike two arcs intersecting at $n . M p n$ is the required angle.

Fig. 14.
Prob. 2. From a point p in a given line $-A B$ to run a line making any required angle with the line $A B$.

1st Method. From p measure $p m$ equal to the cosine of the required angle and stick a pin in the line at m. Then from m as a centre with a radius equal to the sine of the required angle and from p as a centre and radius r strike arcs intersecting at n. Then $m p n$ will be the required angle and p and n will be points in the required line. If $r=100$ then the lengths of cosine and sine are used just as taken from the table of natural sines, only
changing the decimal point. Otherwise the tabular numbers must first be multiplied by the length adopted for r.

Fig. 15.
$2 d$ Method. In a similar manner we may use the natural tangents and secants. From p and m as centres, with the secant and tangent of the required angle as radii, strike arcs intersecting at n. Secants not given in the table may be found from the table of natural sines by the formula secant $=\frac{1}{\operatorname{cosine} .}$

Fig. 16.
Example 1. Lay off, by the use of sines and cosines, an angle of $36^{\circ} 28^{\prime}$.

Solution.- Let $r=100=p n$. Then $m n=59.44$, $p m=80.4$.

Ex. 2. Lay off by the use of tangent and secant, an angle of $25^{\circ} 20^{\prime}$.

Solution.- Let $r=100=p m$. Then $m n=47.34 ;$ $p n=110.64$.

Ex 4. Lay off by each method, angles of $48^{\circ} 20^{\prime}, 63^{\circ} 15^{\prime}$, $26^{\circ} 32^{\prime}, 8^{\circ} 40^{\prime}, 18^{\circ} 23^{\prime}, 37^{\circ} 06^{\prime}, 82^{\circ} 45^{\prime}$.

3d Method. By chords. From the point p as a centre, with any radius,-preferably 100 , strike an are $m x$. Find the natural sine of half the angle. Double it for the chord. With this distance as radius, from m as a centre, strike an are intersecting the arc $m x$ at n. Then p and n are points in the required line and mpn the required angle.

Fig. 17.
Example 1. Having run the line from the east quarter post of section 26 north to the section corner and marked it with a sufficient number of pickets, it is required to locate the centre line of a highway commencing at the quarter post and running north $22 \frac{1}{2}{ }^{\circ}$ west.
Solution.-Measure north in the line from the quarter post the full length of the tape $=100$, stick a marking pin m carefully in line, and strike an are to the left around the quarter post as a centre. Find the sine of half the angle and double it. Si..e $11^{\circ} 15^{\prime} \times 2=.19509 \times 2=.39018$ or correcting the decimal point 39.018 . With this distance as a radius, from m as a centre, locate the intersecting point n which is a point in the required line.
The student should now select a level plat of ground, mark out a line upon it with pickets and solve the preceding examples or similar ones, on the ground, each one by the several different methods and compare results,

Also set pickets at the angles of a field of three or more sides and measure the sides and angles of the field.

3. To Measure Angles with the Compass.

Set the compass up at the intersection of the lines, between which the angle is to be measured. Put the sights in range with one f the lines and note the reading of the
needle. Then put them in range with the other line and again note the reading of the needle. Read off from the limb, or calculate the number of de grees passed over by the needle between the two readings. In land surveying, a line traced out upon thr ground is termed a course and the angle which the lins makes with a north and south line is called its bearing or course. In compass work the bearings only are taker The angles between the lines of the survey may be computed therefrom if necessary. They are seldom requiredIn reading and writing down the bearings it is customary to state first the direction of the line from which the bearing is taken and then the angl3, to the east or west, which the course makes with that line, e. g., North 60 degrees West. South 5 degrees East. Written N. 60° W; S. $5^{\circ} \mathrm{E}$.

It is customary in Land Surveying to refer all lines to a meridian real or assumed. The cosine of a bearing multiplied by the length of its course is called the Latitude.
The sine of the bearing multiplied by the length of the course is called the Departure.
When desirable to find the angles between two lines from their bearings, they may be computed as follows:
Calling N. and S. meridianal letters, we have for the angle between two lines from the same station, the following:
Principles.-1. When the meridianal letters are alike and the others untike, the angle is the sum of the bearings.
(2) When the meridianal letters are unlike and the others alike, the angle is the supplement of the sum of the bearings.
(3) When both the meridianal and the other letters are alike, the angle is the difference of the bearings.
(4) When both the meridianal and the other letters are unlike, the angle is the supplement of the difference of the cearings.

Observe that the bearings are given in their proper relative direction with each other and none of them are reversed, as S. E. when it should be N. W.

Examples. 1. The bearings, of two lines are $\mathrm{N} .60^{\circ} \mathrm{W}$. and N. 3° E. What is the angle between them?

$$
\text { Ans. } 63^{\circ}
$$

8. Required the angles between lines having the following bearings: N. 37° E. and S. 26° E.; N. 87° E. and S. $86^{\circ} \mathrm{W} . ;$ S. $15^{\circ} \mathrm{E}$. and S. $26^{\circ} \mathrm{E}$. Ans. $117^{\circ} ; 179^{\circ} ; 11^{\circ}$.
9. Stake out a triangle in the field and take the bearings of the sides.

Find the angles of the triangle and compare the sum with 180.
4. Stake out fields having 4,5 and 6 sides. Take the beartngs and find the angles between the sides.

4. To Correct Courses of Random Lines.

CASE 1ST:- Where the line has but one course.
Random lines as they are usually called are simply trial lines run to find the true line between two fixed points which are not visible from each other. These lines are usually started from one of the points and run as nearly in the true direction as can be estimated. If the estimate proves correct, and the line strikes the point aimed for, the random becomes the true line. If not, the perpendicular distance from the line to the point is measured, from which the correction for the course may be computed.

Fig. 18.
If $P C$ is made perpendicular to $A B$ as is generally the case where randoms are run between corners of the rnited States survey then Tan. $C A P=\frac{C P}{A P}$ whence
the angle CAP is found, which is the correction to be applied to the bearing.
The angle $C A P$, when it is quite small, may be found by multiplying 57.3° by $P C^{\prime}$, and dividing by $A C^{\prime}$. This is called the Fifty-seven and three-tenths rule. The rule depends upon the fact that for small angles, $A P$ differs insensibly from $A C$, and $C P$ from the are subtending the angle CAP.

Whence, angle $C A P: 360^{\circ}:: C P: 2 \times 3.1416 \times A P$,
or angle $C A P=\frac{C P}{A P} \times \frac{360^{\circ}}{6.2832}=\frac{C P \times 57.3^{\circ}}{A P}$, or $\frac{C P \times 57.3^{\circ}}{A C}$
The semi-circumference of a circle, with radius $A P$, is $3.14159265 \times A P$.
Whence are $1^{\prime}=3.14159265 \times A P \div 10800$.
If $A P=1 \mathrm{ch}$., arc $1^{\prime}=0.00029088 \mathrm{ch} .=0.0290881$.
If $A P=1 \mathrm{mi} .=80 \mathrm{ch} .$, arc $1^{\prime}=0.029088 \mathrm{l} . \times 80$ $=2.327 \mathrm{l}$. $=21 / 3 \mathrm{l}$.

When angle $P A C=1^{\prime}$ and $A P$ or $A C=1 \mathrm{mi}$., the perpendicular $P C$, without perceptible error, is $21 / 3$ links. The line $P C$ is called the departure of $A C$, for the distance $A P$ or $A C$.

Taking $21 / 3 \mathrm{l}$, as the departure of 80 ch . at an angle of 1^{\prime}, the departure for 40 ch ., would be $1 / 2$ of $2 \frac{1}{3} \mathrm{l}$. $=1 \frac{1}{6} \mathrm{l}$. $=11$. $+\frac{1}{6}$ of 11 .
For quite small angles, the departure varies directly as the angle. Whence, for 40 ch., the following:

Dep. for $1^{\prime}=11$. $+\frac{1}{6}$ of 11 .;
" " $2^{\prime}=21$. $+\frac{1}{8}$ of 21 .;
" " $3^{\prime}=31 .+\frac{1}{6}$ of 31 .;
and so on, practically true, to 60^{\prime} or 1°.
For any other distance, at the same angle, the departure varies directly as the distance. Accordingly,

Given minutes of angle, to find links of departure, we have the following:

Rule.-To the number of minutes, add its one-sixth and multiply the sum by the ratio of the distance to 40 ch . (Good to sixty minutes.)

On the following:
General Rule.-Multiply 0.0291 by the number of minutes, and multiply the product by the number of chains in the distance. (Good to 240 minutes.)

Example.-Given angle $=30^{\prime}$ and distance $=23.20 \mathrm{ch}$., to find the departure.

Since for $40 \mathrm{ch} ., 1^{\prime}$ of angle gives $1 \frac{1}{6}$ l. of departure, we may say, without sensible error for a small angle that 11 . of departure gives $\frac{6}{7}$ of 1^{\prime} of angle, for the same distance.

Or as it may be written,

$$
\begin{array}{ll}
& \text { Dep. of } 11 .=1^{\prime}-\frac{1}{7} \text { of } 1^{\prime} \\
\text { Similarly, } & \text { " } 21 .=2^{\prime}-\frac{1}{7} \text { of } 2^{\prime}, \\
& \text { " " } 31 .=3^{\prime}-\frac{1}{7} \text { of } 3^{\prime}
\end{array}
$$

and so on, practically true to 60^{\prime} or 1°.
For any other distance with the same departare, the angle varies inversely as the distance. Accordingly,

Given links of departure, to find minutes of angle, we have the following:

Rule-From the number of links of departure, subtract its one-seventh and divide the remainder by the ratio of the distance to 40 ch . (Good to 60 minutes.)

General Rule.-Multiply 0.0291 by the number of chains in the distance, and divide the number of links of departure by the product. (Good to 240 minutes).

In the Table of Departures, the value of $P C$ in chains and decimals is given for angles from 1^{\prime} to 60^{\prime}, and for the distances most commonly required in making resurveys and subdivisions of Sections of the United States Survey. To use the Table: Having measured the outing $P C$ on the ground, find the nearest tabular number in the column for the corresponding distance.

The angle will be found in the minute column.
Example 1. Commencing at the west quarter post of Section 16, and running north, the random line intersected
the north line of the section, 15 links east of the corner What is the amount of the correction for course?

Solution. In 40 chain column, nearest number .151. Corresponding number of minutes 13.
2. Commencing at the south quarter post of section 16 with declination of needle estimated at $2^{\circ} 17^{\prime}$ E. set off on the vernier, ran north on random and intersected the north line of the section, 42 links east of the quarter post. What is the declination of the needle as referred to the quarter line?
Solution. Distance 80 chains, correction 18^{\prime}. As the line came out east of the corner, it is evident that the angle between the magnetic meridian and the quarter line was 18^{\prime} greater than was estimated, $=2^{\circ} 35^{\prime}$.

> Note.-The North and South lines of the United States Survey are, in a legal sense all true meridians, whatever they may be astronomically, and their locations are fixed by the monuments planted for the section corners and quarter posts. Hence it is a custom among Surveyors to refer the declination of the needle-or the variation as it is more frequently called, to these lines, and to mark on each line on their plats, the declination for that line. Under that custom the line referred to in Example 2 would be marked Var. $2^{\circ} 35^{\prime}$ E.
> 3. "East on random between Sections 13 and 24. 79.98 chains intersected east boundary 34 -links south of post." What is the bearing of the corrected line running west? Ans. S. $89^{\circ} 45^{\prime} \mathrm{W}$.
> Case 2nd.- Where the line is a broken one of several courses.

Surveyors are frequently called on to retrace the lines of angling roads to settle the boundaries of adjacent lands, or to locate meander lines, or to find the boundaries of irregular tracts, where several courses have to be run between the nearest known points of the original survey.

In such cases random lines are run according to the notes of the original survey, and temporary stakes driven at the angles of the random line. It will generally be found that corrections for course or distance or for both will have to be made to place the stakes in their correct location.

Problem.-To correct a random line of several courses.
In Fig. 19 let A, B, C, D represent the lines and angles of the original survey between the known points A and D.

Fig. 19.
Let D^{\prime} represent the terminus of a random run to retrace these lines, the direction and distance of which from D is known.

From A draw the line $A D$, producing it indefinitely beyond D; also, from A as a centre, with radius $A D$, draw an arc through D. Now, if the error in the random was of direction only, then the point D^{\prime} would be in the arc. If it was an error of the chain only, D^{\prime} would be in the line $A D$ or $A D$ produced. Hence the position of D^{\prime} with reference to the are and the line $A D$ indicates the kind of correction and in what direction it is to be applied. $A D$

- is the length of the original chain in terms of the $A D^{\prime}$
chain used on the random. That portion of the arc whieh is intercepted between the point D and a line joining $A D^{\prime}$, measures the angle of correction. In the field we may calculate the course and length, and run a sufficient part of the line $D^{\prime} A$, and then trace the arc from D to its intersection with that line, and thus find the relative length of the lines $A D$ and $A D^{\prime}$, by which to determine the correction for the chain and also find the chord of the angular correction; or they may be calculated as shown in the following example:

Example 1.-The boundaries of a farm between the nearest known monuments are as follows, (See Fig. 19):

1. N. 16°, E. 12.00 chains.
2. N. 72°, E. 26.00

66
3. S. 22°, E. 14.00

A random was run with var. $2^{\circ} 30^{\prime}$ E. and came out N. 28° E. 32 links from the monument. Required the correction for the variation of needle and for the stakes in the angles of the random line.

We will first find the total latitudes and departures of each station on the random line, and the direction and distance of a line, $A D^{\prime}$, which will join the termini.

		N. Lat.	S. Lat.	E. Dep.	Tot. Lat.	Tot. Dep.	
1.	N. 16°	E. 12.00	11.54			3.31	11.54
2.	N.	E2	E.	26.00	8.03		3.31
3.	S. 22	E.	14.00		12.98	5.73	19.57

If we now divide the total departure of the point D^{\prime} by its total latitude we will have the tangent of the bearing of the line $D^{\prime} A$.

$$
\frac{33.28}{6.59}=5.050=\tan 78^{\circ} 48^{\prime} \text { or S. } 78^{\circ} 48^{\prime} \mathrm{W}
$$

The length of the line $D^{\prime} A=\sqrt{6.59^{2}+33.28^{2}}=33.927$.
If we now subtract the bearing of the line $D^{\prime} D$ from the bearing of the line $D^{\prime} A$ we shall have the angle $D D^{\prime} A=78^{\circ} 48^{\prime}-28^{\circ}=50^{\circ} 48^{\prime}$. Let $D H$ be a perpen. dicular from D to the line $A D^{\prime}$; then we have the follow ing equations:

$$
\begin{aligned}
& D H=D^{\prime} D \sin A D^{\prime} D=.32 \times .77494=.24798+ \\
& D^{\prime} H=D^{\prime} D \cos A D^{\prime} D=.32 \times .63203=.20225 \\
& A H=A D^{\prime}-D^{\prime} H=33.926-.20225=33.7237+ \\
& \frac{D H}{A H}=\tan D A D^{\prime}=.24798+\div 33.7237+=.00735=
\end{aligned}
$$

$\tan 25^{\prime}=$ correction for course.

$$
A D=\sqrt{A H^{2}+H D^{2}}=\frac{A H}{\cos D A D^{\prime}}=33.7237 \div .99997=
$$

33.724. When the angle $D A D^{\prime}$ is small, $A D$ and $A H$ may be considered equal, without sensible error.

$$
\frac{A D}{A D^{\prime}}=\frac{33.724}{33.926}=.99404=\text { length of original chain in }
$$

terms of the chain used on the random. As the randon
came out to the left of the true line the variation, $2^{\circ} 30^{\prime} \mathrm{E}$., was too great, hence we subtract the 25^{\prime}, giving $2^{\circ} 05^{\prime}$ as the variation of the needle from the meridian of the original survey. To find corrections for the stakes it will be better to refer them to the meridian of the random, hence we will now apply the corrections for course and distance to find the courses and distances of the original survey, as they would be according to the meridian and measure of the random. This done, we calculate their total latitudes and departures. The difference between these and the latitudes and departures of the corresponding points of the random is the correction to be applied.

				N. Lat.	S. Lat.	E. Dep.	Tot. Lat.	Tot. Dep.	
1.	$\mathbf{N} .16^{\circ}$	25^{\prime}	\mathbf{E}.	11.928	11.44		3.37	11.44	3.37
2.	\mathbf{N}.	2	25	\mathbf{E}.	25.844	7.81		24.64	19.25
3.	S. 21	35	\mathbf{E}.	13.916		12.94	5.12	6.31	33.12

The last course is computed in this table simply as a check on the work, as it was a condition of the problem that the line $D D^{\prime}$ was N. $28^{\circ}, \mathrm{E} .32$ links; from which it is known that the difference between the two points is: latitude 28 lks ., and departure 15 lks . We will now compare the results in the two tables and find the correction at B, C and D.

	Lat. ${ }^{B}$ Dep.		Lat.	Dep.	Lat.	Dep.
Random Line--	11.54	3.31	19.57	28.04	6.59	33.28
Original Line--	11.44	3.37	19.25	28.01	6.31	33.13
Correction	S. 10	E. 6	S. 32	W. 3 .	S. 28	W. 15

Example 2.-Description of a highway between two known points:

1. N. 62° E. 14.00 chains.
2. N. $431 / 2^{\circ}$ E. 8.00 "
3. N. 5° W. 12.00 "
4. N. $721 / 2^{\circ}$ E. 10.25 "
5. S. 12° W. 6.43 "

A random run with var. $2^{\circ} 17^{\prime}$ E. came out 62 lks . east of the point. What is the correction for variation of
needle, and what change must be made in the position of each stake at the angles of the random?

5. To Measure Angles with the Transit.

1. Set up the transit at the apex of the angle and set the zero of the vernier to coincide with the zero of the limb. Clamp the plates in this adjustment and with the clamp to the spindle loosened, turn the telescope in the direction of one of the lines. Clamp the spindle and bring the wire exactly to centre the line by the slow motion screw to the spindle clamp. Unclamp the vernier and turn the telescope in the direction of the other line. Clamp the vernier in that position and make the final adjustment of the wire to the line by the use of the upper tangent screw. The angle may then be read from the limb.
2. Instead of first setting the verniers at zero they may be clamped in any position on the limb and then the difference in the two readings will be the angle. When great accuracy is required numerous readings of the angle aie taken on various parts of the limb and the mean of the several results taken for the final reading.
3. To find the angle which the parts of a broken line form with any given line.

Fig. 20.

Suggestions.-Let $A B C D E F$ be a broken line, and suppose it is required to find the angles which the parts $B C, C D, D E$ and $E F$ form with the line $A B$.
Set the transit at B, with the vernier set at zero. Loosen below, reverse the telesoope, and dizeet, it to A. Clamp the limb, revolve the teleseope on its horizental axis, unclamp the vernier and direct the telescope to C. The reading of the instrument will be the angle $b B C$ the line which $B C$ forms with the line $A B$.
Remove to C; and, leaving the vernier clamped, unclamp below, reverse the telescope, and direct it to, B.
The limb remaining securely clamped, revolve the telescope, unclamp the vernier, and direct to D. The reading will now be the angle $c C D$ which the line $C D$ forms with the line $C c$ or its parallel $A B$.
The work goes on in this manner to its close.
Let the student further describe it.
If the broken line enclose a field, the reading of the instrument when set as at A and directed to B, having gone entirely around the field, should be 360°. This constitutes a check against errors occu-ring anywhere in the work.
4. To measure an angle of elecation or depression.

FIG. 21.
Suggestions. - Set the instrument at the vertex of the angle and level the horizontal limb.

Revolve the telescope upward or downward as the case may require, and adjust the line of sight to the inclined side of the angle. Take the reading of the vertical cirale, applying the proper correction for index errar.

Otherwise, take the reading of the circle, repeat the observation with the telescope and vernier platereversed, and find the mean of the two readings for the angle sought.
6. Verniers are auxiliary scales for measuring smaller portions of space than those into which the main scale is divided. They are movable beside the main scale and are divided into parts which are either a little shorter or a little longer than the parts into which the main scale is divided. This small difference in length is what we are enabled to measure.

When the limb of a transit is divided to half degrees it is common to make either 29 or 31 divisions of the Vernier Scale equal to 30 on the limb, making each division on the vernier 31^{\prime} or 29^{\prime} in length.

The zero of the Vernier Scale is the point to which the reading is to be taken. Suppose the zero line of the vernier to make a straight line with some even division of the limb and each division on the vernier scale is 29^{\prime} in length. Now if the Vernier be moved 1 ', the first line of the Vernier Scale from zero in the direction in which the vernier was moved, will be in a line with the first division on the limb. If moved 2^{\prime} the second lines will coincide; if 3^{\prime} the third lines ; and so on to the end of the scale. Such a vernier is called direct reading. It is the kind most commonly used on surveyors' instruments.

Suppose however that the spaces on the vernier were 31^{\prime} long. Then when the vernier was moved forward 1^{\prime} the first line back of the zero point would coincide with the line in the limb and so on. Such a vernier is called a retrograde vernier.

To read any vernier. If the zero of the vernier coin cides with any division of the scale, that will be the correct reading. If not, note the nearest next less division on the limb, and then look along the vernier scale till a line is found which coincides with a line on the limb. The number of this line on the vernier tells that so many of the subdivisions which the vernier indicates (usually minutes) are to be added to the reading of the entire divisions on the limb.
If several lines appear to coincide equally well, take the middle line.

CHAPTER V.

Passing Obstacles. Measuring Inaccessible Distances.

Having considered the various methods of running lines and measuring angles we are now prepared to take up some further problems in passing obstacles in the line and measuring inaccessible distances.

These problems may be solved in the field by the use of the picket and tape, the compass, or the transit.

1. To pass an obstacle in the line and measure the distance.

1st, by Parallel Lines. From a in the line $A B$ run and measure the line $a c$ in any convenient direction, a sufficient distance. From c run $c d$ parallel with $A B$.

FIG. 22.
From d, run and measure $d b$ equal to and parallel with $a c$. Then $a b=c d$ and b is a point in the line $A B$. When running through heavy forests or towns it will often be necessary to run several parallel lines before returning to the original line.
2. By 60° Angles. From a run and measure $a c$ making the angle $B a c=60^{\circ}$. Run and measure $c b=a c$ and the angle $a c b=60^{\circ}$. Then b is a point in the line
$A B$ and the angle $a b c=60^{\circ}$, whence the line may be continued; $a b$ will equal $a c$.

Fig. 23.
2. To Measure Inaccessible Distances.

CASE 1sT. When the points are visible from each other as over a stream or pond.

Fig. 24.

1. By Similar Triangles.

From a point a in the line $A B$, required the distance $a b$ across the stream.

At a erect a perpendicular $a c$ to the line $A B$. From c run a perpendicular to $c b$ intersecting $A B$ at d. Measure $a c$ and $a d$. Then as the triangles $c a d$ and $b c d$ are similar, $a d: a c=a c: a b$, whence $a b=\frac{a c^{2}}{a d}$.

There are numerous other devices for obtaining the distance $a b$ by similar triangles on the ground. Let the student work out some of them in the field.
2. Method by Tangents.

Erect a perpendicular to $A B$ at a and run it a sufficient distance ac. Measure the angle $a c b$. Then $a b=a c \times t a n$ $a c b$. If ac is made

Fig. 25. 100 or $1,000, a b$ may be read directly from the table of natural tangents, observing to put the decimal point in the proper place. If $a c b=45^{\circ}$ then $a b=a c$.

3. Method by Sines.

From a run a line $a c$ as most convenient. Measure the angles $a c b$ and $c a b$ and the side $a c$. Compute the angle $a b c$. Then $\sin a b c: \sin a c b$
 $=a c: a b \quad \therefore a b=\frac{a c \sin a c b}{\sin a b c}$.

4. Method by Cosines.

From a run a line $a c$ to the point c in a line perpendicular to $A B$ at b,

Measure the angle $c a b$ and the line $a c$.

Then $a b=a c \times \cos$

Fig. 27. $c a b$.

5. Method by Secants.

Run $a c$ as before, to a point c from which a perpendicular to $a c$ will strike the the point b. Measure $a c$ and the an-

FIG. 28.
gle $b a c$. Then $a b=a c \times$ secant $b a c$. If $a c=100$ or 1,000 the distance $a b$ is taken directly from the table.

6. By $5^{\circ} 43^{\prime}$ Angle.

From a lay off the angle $b a c=5^{\circ} 43^{\prime}$, making $b c$ perpendicular to $a b$. Measure $b c$. Then $a b=$

Fig. 29. $10 b c$. This method gives results too large by 1.07 in $1,000$.

Case 2nd. Where the points are invisible from earh other.

1. If visible and accessible from a common point c outside the line. Measure the lines $a c$ and $b c$ and the angle $a c b$. Sub-

Fig. 30. tract this angle from 180° and we have the sum of the remaining angles of the triangle, to find the difference.
Then $a c+b c: a c-b c=\tan \frac{a b c+b a c}{2}: \tan \frac{a b c-b a c}{2}$
And $\frac{a b c+b a c}{2}+\frac{a b c-b a c}{2}=a b c$.
Also $\frac{a b c+b a c}{2}-\frac{a b c-b a c}{2}=b a c$.
$a b=a c \times \cos b a c+b c \times \cos a b c$.

If a and b are inaccessible from c, the sides $a c$ and $b c$ may be measured by any of the preceding methods.
2. If instead of two lines $a c$ and $b c$, we have a broken line of any num. ber of courses, as abcdef, the bear-

Fig. 31.
ings of which are referred to the line af as a meridian -then the algebraic sum of the products of the cosines of the several bearings into their respective distances will be equal to $a f$.
In the United States Surveys distances across lakes and bends of large streams are frequently computed from the latitudes and departures of the courses around them.

Examples.-1. In Fig. $24 a c=100 a d=27$. Required $a b$. Ans. 370.37+
2. Same Figure, $a c=250, a d=96$. Required $a b$. Ans. 651.04+
3. Fig. $25, a c=100$, angle $c=61^{\circ} 20^{\prime}$. Required $a b$. Ans. 182.9.
4. Same Figure, $a c=250$, angle $c=61^{\circ} 10^{\prime}$. Required $a b$. Ans. 454.1+
5. Fig. $26, a c=500$, angle $a=48^{\circ} 20^{\prime}$, angle $c=118^{\circ}$ 10. Required $a b$.

Ans. 1888.1
6. Same Figure, $a c=658, a=54^{\circ} 16^{\prime}, c=88^{\circ} 32^{\prime}$. Required $a b$.

Ans. 1087.9+
7. Fig. $27, a c=1,000$, angle $a=28^{\circ} 35^{\prime}$. Req́uired $a b$. Ans. 878.12+
8. Same Figure, $a c=950$, angle $a=18^{\circ} 56^{\prime}$. Required $a b$. Ans. 898.6.
9. Fig. $28, a c=100$, angle $a=76^{\circ} 40^{\prime}$. Required $a b$. Ans. 433.6+
10. Same Figure, $a c=250$, angle $a=56^{\circ} 20^{\circ}$. Required $a b$.

Ans. 450.97.
11. Fig. 29, $a c=900, b c=648$, angle $c=112^{\circ}$. Required $a b$.

Ans. 1291.
12. Given the following courses and distances along a broken line between the points a and b. Required the distance $a b$.

1. N. 18° E. 6.25 chains.
2. N. 40° E. 8.00
3. N. 5° W. 12.00
4. N. 44° W. 8.68
x3. The field notes of the meanders of a lake in sections 11 and 12 in the towaship 1, south, range 10 west, meridian of Michigan, - by the government survey, read as follows:

Courses	Chs. Lks.	Began at post in line of sections 11 and 12 on Nouth side of lake: thence in sec. 12.
N. 58 E.	10.00	
N. 11 W.	20.00	
N. 63 W.	5.16	to post in line of sec. 11 and $12, \mathrm{~N}$. side of lake.
N. 63 W.	5.00	in section 11.
S. 60 W.	6.00	
S. 14 E.	10.00	
S. 33 W.	15.00	
S. 51 E	10.00	
N. $731 / 2 \mathrm{E}$	7.90	to place of beginning.

Required the distance between the posts on the opposite sides of the lake. Compute the distance by the meanders on each side of the lake. Compare the results together, and also with the distance returned in the field notes which is 27.27 chains.
14. There is a cliff beside a railroad in the Wasatch Mountains known as the Castle Gate. Desiring to know its height above the railroad grade I set up the transit at Station 744 of the railroad survey and took the angle of elevation to the top of the cliff $=38^{\circ} 42^{\prime}$. Elevation of station $744=6573.62 \mathrm{ft}$.

Height of instrument above station $744=4.84 \mathrm{ft}$.
I next went to station 748 in the line with and 400 ft . farther away from the cliff and again took the angle of elevation to the top of the cliff $=26^{\circ} 15^{\prime}$.

Elevation of station $748=6567.62 \mathrm{ft}$.
Height of instrument above the station, 4.56 ft .

Required the height of the Castle Gate above the station 744 and its horizontal distance.
Answer.
Height 501.54.
Distance 620.
15. On Christmas 1881 a party of surveyors climbed a mountain peak, erected a monument on its summit and named it Christmas Peak. Observations from the line of the railroad survey were made as follows, the stakes of that survey being 100 feet apart:

From station $933+49.6$ P. T.
Angle of elevation of summit, $23^{\circ} 42^{\prime}$.
Angle to right from railroad line ahead, $76^{\circ} 10^{\prime}$.
Elevation of station, 5005.28 ft .
Instrument above station, 4.82 ft .
From station, $940+31.4$ P. C.
Angle to left from railroad line back $=82^{\circ} 18^{\prime}$. Ile quired the height of the peak and its distance from station $933+49.6$.

3. Other Methods of Measuring Distances.

1. To cross a stream or pond.

Set up the transit at a convenient point, a. Set up a rod at b in the line,

Fig. 33. at a convenient distance, as 100 feet, from a. Set up a second rod in line at c, over the stream. Any plain, straight rods will answer. Leveling rods with targets are convenient. They should be set up plumb. Mark points d and e, in line, on the rods where the horizontal wire of the telescope cuts them. Raise or lower the telescope and mark two other points, f and g, in line on the rods where the wire cuts them. Measure $d f$ and eg. Then $a d f$ and aeg are similar triangles, and $d f: a f:: e g: a g$. If $d f=1$ and $a f=100, e g=6.25$; then $a g=625$.

2. Stadia Measures.

1. Instead of using two rods as described in the dast paragraph, two wires are sometimes placed in the dia
phragm of the telescope and adjusted at such a distance apart that they will cover a specified space on a rod, as 1 foot when the rod is 100,200 or any other specified distance away. These wires are one on each side of and parallel with the horizontal wire of the telescope. They may be either fixed on the diaphragm or attached to slides by which their distance apart may be adjusted. When the wires are adjusted to cover a certain space, as one foot on a rod placed 100 feet away, they will cover two feet on a rod 200 feet away, or .5 foot on a rod 50 feet away. This proportion is strictly true only when the measures are taken from a point in front of the instrument at a horizontal distance from the object glass equal to its focal length. The focal length may be found nearly enough by measuring from the plane of the object glass to the capstan-headed screws which carry the diaphragm. When the telescope is focused on some very distant object, as the moon or a star, the horizontal distance from the plumb line to the point mentioned forms a constant which is to be added to all the distances as taken from the rod.
2. It is more convenient, though less accurate, to adjust the wires so that they will cover the required space on the rod at a specified distance measured from the center of the instrument. This method is usually adopted on the government surveys, where stadia measures are taken, the length of the base being taken at about a mean of the distances which the stadia is intended to measure. For all shorter distances the reading is too small. For longer distances it is too large. The error is neglected as of no consequence in the class of work for which the stadia is used.

When the stadia wires are not adjustable the rod is graduated to conform to the wires. A rod is set up at the selected distance from the transit. The space intercepted on it by the wires is subdivided decimally, and the stadia rod graduated to that scale.

Where the wires are adjusted to cover a foot on a rod

100 or 200 feet away, the ordinary leveling rod answers the purpose of a stadia rod.
3. In case the measures are not on horizontal lines it will be necessary to apply a correction to the stadia readings to reduce them to the horizontal. If the rod has been held perpendicular to the line of sight, the horizontal distance is found by multiplying the distance to the rod by the cosine of the angle of elevation or depression.
The position of the rod is determined either by a rightangle sight applied to the rod, or by the rodman slowly moving the top of the rod back and forth until the smallest intercept is obtained. On hillsides it will be found quite as easy to hold the rod perpendicular to the line of sight as to hold it plumb.

When the rod is held plumb and the base is measured from the point in front of the transit the reduction to horizontal is made as follows:
Let $f=$ focal distance of the telescope, $r=$ space intercepted on the rod as held vertically, $s=$ image of the same intercepted by the stadia wires, $C O^{\prime}=$ line of sight at an angle e with the horizon.

Fig. 34.

Let $A^{\prime} B^{\prime}=r^{\prime}$ be the intercept on the rod as inclined at an angle e with the vertical; and let $b^{\prime}=\stackrel{r^{\prime}}{f-b e}$ s the corresponding base. Let the angle $O^{\prime} C B$ or $O^{\prime} C A$ $=v$. We shali then have:
Angle $O C B=e+v$, and angle $O C A=e-v$, whence angle $O B C=90^{\circ}-(e+v)$, and angle $O A C=90^{\circ}-(e-v)$. The angle $O^{\prime} B^{\prime} B=90^{\circ}+v$, and angle $O^{\prime} A^{\prime} A=90^{\circ}-v$.

In the triangle $O^{\prime} B^{\prime} B$ we have

$$
\frac{\partial^{\prime} B^{\prime}}{O^{\prime} B}=\frac{\sin \left[90^{\circ}-(e+v)\right]}{\sin \left(90^{\circ}+v\right)} \text { or, } \frac{\gamma^{\prime}}{2 O^{\prime} B}=\frac{\cos (e+v)}{\cos v}(a)
$$

[n the triangle $O^{\prime} A^{\prime} A$ we have

$$
\begin{equation*}
\frac{O^{\prime} A^{\prime}}{O^{\prime} A}=\frac{\sin \left[90^{\circ}-(e-v)\right]}{\sin \left(90^{\circ}-v\right)} \text { or, } \frac{r^{\prime}}{2 O^{\prime} A}=\frac{\cos (e-v)}{\cos v} \tag{b}
\end{equation*}
$$

Adding (a) and (b), we obtain

$$
\begin{equation*}
\frac{r^{\prime} r}{2 O^{\prime} B \times O^{\prime} A}=2 \cos e \tag{c}
\end{equation*}
$$

Multiplying (a) and (b) together, we obtain

$$
\frac{r^{\prime} r^{\prime}}{4 O^{\prime} B \times O^{\prime} A}=\frac{\cos ^{2} e \cos ^{2} v-\sin ^{2} e \sin ^{2} v}{\cos ^{2} v}
$$

Dividing (cj) by (d), we have, after a little reduction,

$$
\begin{equation*}
\frac{r}{r^{\prime}}=\frac{\cos e}{\cos ^{2} e-\sin ^{2} e \tan ^{2} v} \tag{e}
\end{equation*}
$$

which is an expression of the relation sought.
Cor.-With the wires adjusted to one foot on the rod for a base of 100 feet, we should have

$$
\tan v=0.005 \mathrm{ft} ., \text { or } \tan ^{2} v=0.000025 \mathrm{ft}
$$

Thus, $\tan ^{2} v=0$, without material error.
Whence formula (e) becomes $r^{\prime}=r \cos e$.
To find the distance $C O^{\prime}$ we have

$$
C O^{\prime}=d^{\prime}=f \frac{r^{\prime}}{s}+f+c=b^{\prime}+f+c
$$

Whence, $C O=d=\left(b^{\prime}+f+c\right) \cos e$.
For vertical rod we have, b ' $=\frac{b \cos e \text {. } . ~ \text {. }}{}$
Whence, $d=b \cos ^{2} e+(f+c) \cos e$. (f)
The height $O O^{\prime}=h=\frac{1}{2} b \sin 2 e+(f+c) \sin e$. (g)
Example.-Given $e=10^{\circ} 30^{\prime}, r=5.36 \mathrm{ft}$., and $f+c=$ 1 ft ., to find d and h.

Solution.-Suppose the wires adjusted to give 1 ft . on the rod to the 100 ft ., whence $b=536 \mathrm{ft}$.
$\operatorname{Cos} e=0.983$ and $\cos ^{2} e=0.9668$.
Whence, $d=536 \times 0.9668+0.98=519.18 \mathrm{ft}$.
$\operatorname{Sin} e=0.182$, and $\frac{1}{2} \sin 2 e=0.1792$.
Whence, $h=536 \times 0.1792+0.18=96.23 \mathrm{ft}$.
Formula (f) may be put in the form
$d=b \cos ^{2} e+(f+c) \cos ^{2} e+(f+c) \cos e(1-\cos e)$.
Dropping the last term, we have

$$
d=(b+f+c) \cos ^{2} e
$$

Assuming $f+c=1 \mathrm{ft}$. as a mean value in different instruments, the omission of the term $(f+c) \cos e$ $(1-\cos e)$ introduces an error for ordinary elevations of less than 0.01 ft . in a base of 1000 ft .

Moreover, the use of formula (h) operates to diminish the very minute error introduced by use of formula (f)

For slight elevations, as from 1° to 2°, the reduction to horizontal may be omitted. For $5^{\circ} 44^{\prime}$ the amount of the reduction is about one per cent. The correction for horizontal measurement is sometimes made by omitting to add $f+c$ to the base.

Fig. 35.
4. The Gradienter is an attachment to the transit for fixing grades and determining distances.

As made by Gurley, it consists of a screw attached to the semicircular expanded arm of the ordinary clamp of the telescope axis; the screw is accurately cut to a given number of threads, and passing through a nut in one side of the arm, presses against a little stud, A, fixed to the inside surface of the right-hand standard.

In the other side of the semicircular arm is inserted a hollow cylinder containing a pin actuated by a strong spiral spring, the end of the pin pressing against the side of the stud opposite that in contact with the screw.

Near the other end of the screw, and turning with it, is a wheel, or micrometer, the rim of which is plated with silver, and divided into 100 equal parts.

A small silver scale, attached to the arm and just above the micrometer wheel, is divided into spaces, each of which is just equal to one revolution of the screw; so that by comparing the edge of the wheel with the divisions of the scale, the number of complete revolutions of the screw can be easily counted.

It will be seen that when the clamp is made fast to the nxis of the clamp-screw, and the gradienter-screw turned, it will move the telescope vertically, precisely like the tangent-screw ordinarily used.

And as the value of a thread is such that a complete revolution of the screw will move the horizontal crosswire of the telescope over a space of one foot on a rod at a distance of one hundred feet, it is clear that when the screw is turned through fifty spaces on the graduated head, the wire will pass over fifty one-hundredths, or one-half a foot on the rod, and so on in the same proportion.

In this way, the gradienter can be used in the measurement of distances, precisely like the stadia.

Grades can also be established with great facility, as follows: Level the instrument; bring the telescope level to its centre by the clamp and gradienter screw; move the graduated head until its zero is brought to the edge of the scale, and then turn off as many spaces on the head as there are hundredths of feet to the hundred in the grade to be established.

Having a transit with gradienter attachment, let the student solve the following problems in the field:

Prob. 1. To find the grade between two points.
Suggestions. - Set the instrument over one of the points, level the plates and the telescope, and bring the zero of the screw to the edge of the scale.

Set the target of the leveling rod at height of instrument.

With the rod held upon the other point, note the number of revolutions of the screw required in bringing the cross-wire upon the center of the target. That number, as so many feet, is the grade.

Prob. 2. To find the distance between two points.
Suggestions.-Set up and adjust the parts of the instrument as in Prob. 1. On a leveling rod held upon the other point, note the number of feet covered by one revolution of the screw, and multiply that number by 100 .

If, in order to cover r feet on a rod at a distance of d feet, n revolutions of the screw are required, then we should have: $d: 100:: r: n$; whence $d=100 r \div n$.

$$
\begin{array}{r}
\text { Example.-Given } n=2.30 \text { and } r=5 \mathrm{ft} \text {, to find } d . \\
\text { Result, } d=217.39 \mathrm{ft.} .
\end{array}
$$

On inclined ground the horizontal sight line may be. above or below the rod. In such cases, as in stadia measurement, a formula of reduction to a horizontal is employed, which may be deduced as follows:

Let $C O=d$ (Fig. 34), be a horizontal sight line;
Angle $O C O^{\prime}=e$, the elevation of telescope to foot of rod;

Angle $O^{\prime} C B=v$, the angle described by n revolutions of the screw;
$O^{\prime} B^{\prime}=r^{\prime}$, the space on a rod perpendicular to $C O^{\prime}$, subtending angle v, and
$O^{\prime} B=r$, the corresponding space on a vertical rod.
We shall then have, [Formula (a)],

$$
\frac{r^{\prime}}{r}=\frac{\sin \left[90^{\circ}-(e+v)\right]}{\sin \left(90^{\circ}+v\right)}=\frac{\cos e \cos v-\sin e \sin v}{\cos v}
$$

Whence, $r^{\prime}=r(\cos e-\sin e \tan r)$.
Let $C O^{\prime}=d^{\prime}$. Then, $\tan v=\frac{r^{\prime}}{d^{\prime}}=\frac{n}{100}$.
Whence, $d^{\prime}=\frac{100 r^{\prime}}{n}=\frac{100 r}{n}\left\{\cos e-\sin e \times \frac{n}{100}\right\}$

$$
\begin{equation*}
\text { or } d^{\prime}=r\left\{\frac{100 \cos e}{n}-\sin e\right\} \tag{1}
\end{equation*}
$$

Now, $d=d^{\prime} \cos e$.
Whence, $d=r\left\{\frac{100}{n} \cos ^{2} e-\frac{1}{2} \sin 2 e\right\}$.
Cor.-If $n=1$, we have,

$$
\begin{equation*}
d^{\prime}=r(100 \cos e-\sin e) \tag{3}
\end{equation*}
$$

$$
\text { and } d=r\left(100 \cos ^{2} e-\frac{1}{2} \sin 2 e\right),
$$

in which r is the space on a vertical rod included by one revolution of the screw.

The numbers by which this value of r must be thus multiplied for various elevations are given in Table IX.

Examples.-1. Given $e=15^{\circ} 20^{\prime}$, and $r=5.42$ for one revolution of the screw, to find d^{\prime} and d.

Solution.-We find in Table IX,
factor for inclined distance for $15^{\circ}=96.33$

Whence, factor for inclined distance for $15^{\circ} 20^{\prime}=96.17$.
Accordingly, $d=5.42 \times 96.17=521.24 \mathrm{ft}$.
Again, in Table IX we have
factor for horizontal distance for $15^{\circ}=93.05$
" " " $\quad 15^{\circ} 30^{\prime}=92.59$

$$
\begin{aligned}
& \text { Difference for } 30^{\prime}=0.46 \\
& \text { whence, } \quad " \quad \text { " } 20^{\prime}=0.31
\end{aligned}
$$

Whence, factor for horizontal dist. for $15^{\circ} 20^{\prime}=92.74$.
Hence, $d=5.42 \times 92.74=502.65 \mathrm{ft}$.
2. Given $e=10.35$ rev. to foot of rod, and $r=6.25$, to find d^{\prime} and d.

Suggestion.-From Table X find the angle e, and solve as above.

When e is an angle of depression, the point σ^{\prime} is the upper end of the rod. The application of the formula is, however, the same in this case as in the one considered.

Stadia and Gradienter Measurements are found very convenient in solving some of the problems in land surveying, but are almost useless in others. They save time and trouble in measuring across streams, bogs and other places inaccessible to the chain or tape. They furnish a quick and easy means of determining how far it is to an object, but a slow one of locating points at any desired distance, such as setting stakes for a town plat, a ditch line, or a railroad.

CHAPTER VI.

Platting and Computing Areas.

1. A Plat or Plot is a representation, upon a small scale, of the lines of a survey. Platting is simply surveying on paper. The instruments used are analogous to those used in the field.

Lines are marked upon the paper with pencil or pen and ink. Generally they will first be drawn lightly in pencil; afterward the permanent lines will be inked, and all erroneous or superfluous lines erased. Pencils hard enough to hold a fine point without breaking are the best for this use.

The right line pen is used for drawing straight lines. tic is made in various sizes and forms. One of the best is shown at b, in Figure 36.

The scale of equal parts is the counterpart of the chain or tape. A great variety of scales are made. One of the most useful is the triangular scale (Fig. 36, e). It has six different graduations, all brought to the edge, so that the scale may be laid down on the paper and the distance marked off directly from the scale. The scale in which the inch is divided into $10,20,30,40,50$ and 60 equal parts is the one most useful to the surveyor. Paper scales are made on fine Bristol board, with any graduation desired. They are cheap, and as good as any scale as long as they last. The student may make his own scales on paper.

The protractor (Fig. 36, a) takes the place of the compass or transit. It is simply the whole or part of a graduated circle or limb. Protractors are made in a great variety of forms. One of the cheapest and best has the

Fig. 36.
entire circle graduated to quarter degrees. It is made of paper, has the middle part cut out, and fine threads or wires crossing at the centre of the circle. A paper protractor 14 inches in diameter, graduated to quarter. degrees, costs from 30 to 40 cents.

Dividers, (Fig. 36,f) are used to space off distances on the plat, or transfer distances from the scale to the plat or the reverse. When provided with pen or pencil points they are used to strike circles and arcs. When they are used for the latter purpose they should have a needle point on the stationary leg.

Parallel rulers, as the name indicates, are used in drawing parallel lines. When a paper protractor is used in platting, it is found convenient to fasten it at some point outside the plat aud transfer the bearing of the lines from the protractor to the plat by means of the parallel rule. The best rule for this purpose moves upon rollers, (Fig. 36, d.)

The straight-edge ruler and triangle are also used to mark parallel lines, as well as to lay off angles. Many other articles will be found convenient in platting. A drawing board, made of the softest wood, planed smooth and true, and thumb-tacks to fasten the paper to the board, may almost be considered as necessaries. Neither the student nor surveyor needs many instruments for platting, but those he has should be perfect in their kind. It is not deemed necessary at this point to give further details of these instruments and their uses, any suggestion which the student may need being left to the teacher to make.

EXERCISES.

The first seven exercises are the elementary problerus of Geometry, and are designed to be solved on paper by use of the dividers and ruler.
2. 1. To draw a straight line equal to a given straight line.
2. To make an angle equal to a given angle.
3. To draw through a given point a line parallel to a given line.
4. To draw through a given point a line perpendicular to a given line. Two cases.
5. To bisect a given line; a given angle.
6. To construct lines proportional to given lines.
7. To construct a polygon similar to a given polygon.
8. Plat the following lines:
(1) 8 chains, to scale of 2 chains to the inch.
(2) 10 chains, to scale of 5 chains to the inch.
(3) 10 chains, to scale of 4 chains to the inch.
(4) 17.25 chains, to scale of 3 chains to the inch.
(5) 25.40 chains, to scale of 4 chains to the inch.
9. Plat a triangle whose sides are $13.50 \mathrm{ch} ., 14.25 \mathrm{ch}$. and 16.20 ch., on a scale of 5 chains to an inch; on a scale of 3 chains to an inch.
10. Plat a rectangle whose adjacent sides are 9.24 ch . and 13.78 ch ., on a scale of 4 chains to the inch.
11. Plat a quadrilateral the sides of which are 22.60 ch ., $14.35 \mathrm{ch} ., 12.20 \mathrm{ch}$. and $9.80 \mathrm{ch} .$, on a scale of 4 chains to the inch, and having one angle of $83^{\circ} 30^{\prime}$.
12. Measure the remaining angles and find their sum.
13. Plat any figure having five equal sides; measure the interior angles and find their sum.
14. Plat a right triangle having a base of 16.25 ch . and a perpendicular of 8.60 ch . Find the remaining side and angles of the triangle.

II. Computing Areas.

In land surveying the areas are computed in triangles and quadrangles. If a field has more than four sides, in making the computation it is parted off into triangles and rectangles or trapezoids, the area of which is computed and their sum taken.

1. Area of Triangles.

1. To find the area of a right angled triangle.

Multiply the base by one-half the perpendicular.
2. To find the area of an oblique angled triangle.

Case 1st.-When the sides are giren.

Fig. 37.

Let A, B, C represent the angles, and a, b, c the sides opposite them.

$$
\text { Let } \frac{a+b+c}{2}=s . \text { Let } x=\text { area }
$$

Then $x=\sqrt{s(s-a)(s-b)(s-c)}$.
Case 2nd.-Haxing two sides and the included angle.
Let a, b be the sides, C the given angle, and $x=$ area.
From B drop a perpendicular, d, to the side b. This divides the triangle into two right triangles, the area of each of which equals its base multiplied by half the perpendicular, d, and the sum of their areas equals the sum of their bases multiplied by half the perpendicular; bd
$=\frac{a b \sin C}{2}$
Case 3D.-Given two angles and the included side.
Let A and B be the angles, and c the side given. Find $C=180^{\circ}-(A+B)$. Find b.
$\operatorname{Sin} C: \sin B:: c: b \quad \therefore \quad b=\frac{c \sin B}{\sin C} \quad x=\frac{b c \sin A}{2}$.
Case 4 TH.-Given two angtes and a side opposite, $(A, B$ and a.)

Find $C=180^{\circ}-(A+B)$. Find $c=\frac{a \sin C}{\sin A}$.
Find $b=\frac{a \sin B}{\sin A} . \quad$ Then $x=\frac{b c \sin A}{2}$.

2. Areas of Quadrangles.

Case 1st.-Squares and rectangles.
Multiply the base by the perpendicular.

CASE 2ND.-Trapezoids. A trapezoid is a figure having four sides, only two of which are parallel.

Its area is equal to the half sum of the parallel sides, multiplied by the perpendicular distance between them.
Trapezoid. Fig. 38.
Case 3Rd.-Trapeziums have no two sides parallel.

Trapezium. Fic. 39.

The area is found by parting off into triangles and comput ing their areas.

1. Having the sides and angles given.

Let A, B, C, D represent the angles, and a, b, c, d the sides of the trapezium. Let $A C$ be a diagonal dividing the trapezium into the triangles $A B C$ and $A D C$. In each of these we have two sides and an included angle given; hence, $x=\frac{a b \sin B}{2}+\frac{c d \sin D}{2}$.
2. Given the diagonals of a quadrilateral and an angle formed by their intersection, to find the area.

Fig. ${ }^{40}$.

Solution.-Let $A B C D$ be the quadrilateral, m and n its diagonals, and O an angle at which the diagonals intersect.

By Case 2nd, under "Area of Triangles,"

$$
\begin{gathered}
\text { area } A O B=\frac{1}{2} A O \times B O \sin O \\
\text { " } A O D=\frac{1}{2} A O \times D O \sin O \\
" \quad D O C=\frac{1}{2} C O \times D O \sin O \\
" \quad B O C=\frac{1}{2} C O \times B O \sin O
\end{gathered}
$$

Whence, by addition, area $A B C D=\frac{1}{2}(A O+C O) \times$ $(B O+D O) \sin O$,
$m n \sin 0$
or, area $A B C D=-\quad$

Example.-The diagonals of a four-sided field were found to measure 18 ch . and 24 ch . Setting a compass at their intersection, the bearings of two adjacent corners of the field were found to be $\mathrm{N} .30^{\frac{1}{2}} \mathrm{E}$. and S. $50^{\circ} \mathrm{E}$. Required the area of the field.
Solution.-A pplying logarithms in the above formula, having found $O=99 \frac{1}{2}^{\circ}$, we have

3. Given three sides, a, b, d, and the included angies, A and D. (See Fig. 39.)
Let $A C=e$, be a diagonal. Let the angle $B C A=E$, $B A C=F$, and $C A D=G$. In the triangle $A B C$ the sides a, b and angle B are known. In the triangle $C A D$ the side d only is known. It is required to find the side e and the angle G. To find $G: E+F=180^{\circ}-B$. By trigo$\tan E+F \quad \tan E-F$
nometry, $a+b: a-b:: \frac{1}{2}: \frac{}{2}$, by which we find the sum and the difference of the angles E and $F . \frac{E+F}{2}-\frac{E-F}{2}=F$, and $G=A-F$. $b \sin B$
To find $e: \sin F: \sin B:: b: e \quad \therefore e=\frac{b \sin B}{\sin F}$.
$x=\frac{a b \sin B}{2}+\frac{c d \sin D}{2}$.
4. This method of finding the area of a trapezium may be applied to polygons of any number of sides, when the sides and angles are given. The polygon is divided into triangles two less in number than the number of sides. Each triangle has two sides and the included angle given or readily found.

Take for example the irregular polygon of eleven sides shown in Fig. 41, which is divided into nine triangles.

Fig. 41.

In the triangles A, B, C and D two sides and the included angle of each are given. From the remaining sides and angles we find two sides and the in cluded angle of the triangles E and F, and so each triangle in turn furnishes the data for computing the adjacent triangle, till all are complete.
3. Offsets. - When it is desired to find the area of a field having irregular sides, such as along a stream or lake, it is well to run a straight line where most convenient to do so, and then run and measure perpendiculars to the margin of the field. These are called offsets. They divide the space between the straight line and the margin

Fig. 42. of the field into triangles and trapezoids, whose areas may be computed separately and the sum taken.
If the offsets are equidistant the area may be found by the following

Rule.-From the sum of the offsets, subtract the half sum of the extreme ones, and multiply the remainder by the common distance between them.
4. What is the area in acres of the following right angled triangles?

1. Base $=23.20 \mathrm{ch}$. , perpendicular $=14.60 \mathrm{ch}$. ?

Ans. 16.936 A
2. Base $=19.46 \mathrm{ch}$., perpendicular $=12.18 \mathrm{ch}$. ?

What is the area in acres of the following oblique angled triangles: (See Fig 37.)
3. $a=14.26$ ch., $b=19.40$ ch., $c=12.18 \mathrm{ch}$. ? Ans. 8.666 A
4. $a=9.43$ " $b=11.61$ " $c=8.42$ "
5. $a=6.23$ " $b=14.26$ " $C=22^{\circ} 40^{\prime}$? Ans. $1.71+A$.
6. $a=12.20$ " $b=20.00$ " $C=36^{\circ} 15^{\prime}$?
7. $A=16^{\circ} 45^{\prime}, B=82^{\circ} 30^{\prime}, c=21.16 \mathrm{ch}$? Ans. $6.458+A$.
8. $A=35^{\circ}, \quad B=62^{\circ} 42^{\prime}, c=18.20$ "
9. $A=46^{\circ}, \quad B=58^{\circ} 15^{\prime}, a=26.50$ " Ans. $40.264 A$. 10. $A=37^{\circ} 20^{\prime}, B=72^{\circ} 40^{\prime}, a=19.36$ "
11. A square field is 6.25 chains on a side. Required its area.
12. A square field contains 20 acres. What is the length of its sides? Ans. 14.142 ch.
13. What is the area of a rectangle whose sides are 16.41 and 8.26 chains?
14. A rectangular field containing 16 acres measures 12.50 chains on the base. What is the perpendicular? Ans. 12.80 ch .
15. Commencing on the margin of a river a line was run across a bend 20.00 chains to the margin. Commencing at the end of the second chain, offsets were taken every two chains, to the margin of the river, as follows: 1.61 ch., $2.27 \mathrm{ch} ., 3.72 \mathrm{ch} ., 1.96 \mathrm{ch} ., 4.23 \mathrm{ch} ., 2.92 \mathrm{ch} ., 3.26 \mathrm{ch}$., 2.50 ch . and 1.25 ch . Required the area between the line and the river.

Ans. 4.744 acres.
16. Required the area of a field bounded as follows:

1st. North 17.65 ch .
2nd. S. $36^{\circ} 12^{\prime}$ W. 8.20 ch .
3rd. S. $12^{\circ} 34^{\prime}$ W. 7.26 "
4th. S. $58^{\circ} 26^{\prime}$ E. $7.531 / 2^{\prime \prime}$
Suggestion. - First: Change bearings into angles between the lines and compute as two triangles.

Second: Take the first line as a base, divide the figure into two right angled triangles and a trapezoid, and compute the area. Compare the two methods as to number of figures required for the solution.
17. The sides of a pentagon measure 6.25 chains each. What is its area?

SugGestion.-Part the figure into three triangles and compute. Also part into five isosceles triangles. Compute and compare the two methods.
5. 1. Rectangular Coordinates. - Let $X X^{\prime}$ and

Fig. 43. $Y Y^{\prime}$ be two lines intersecting each other at right angles, as at O.
Let P_{1}, P_{2}, P_{3} be any points in the plane of the lines.
Let $P_{1} a_{1}, P_{2} a_{2}, P_{3} a_{3}$ be perpendiculars from the points upon the axis $X X^{\prime}$, and $P_{1} b_{1}, P_{2} b_{2}, P_{3} b_{3}$ be perpendiculars from the points upon the axis $Y Y^{\prime}$.

The distances $O a_{1}, O a_{2}, O a_{3}$ are called Abscissas of the points P_{1}, P_{2}, P_{3}; and the distances $O b_{1}, O b_{2}, O b_{3}$ are called Ordinates of the points.

The point O is called the Origin.

The abscissa and ordinate of a point are together called Coordinates of the points.

Coordinates at right angles with each other are called Rectangular Coordinates.
It is customary to denote abscissas by x and ordinates by y, coordinates of different points in connection with each other being distinguished by use of subscripts.

Thus, of the point P_{1}, the coordinates $O a_{1}$ and $O b_{1}$ or $a_{1} P_{1}$ may be denoted by x_{1} and y_{1}; of the point P_{2}, the coordinates $O a_{2}$ and $O b_{2}$ or $a_{2} P_{2}$ may be denoted by x_{2} and y_{2}; and so on.

It will be seen that the coordinates of a point afford the means of locating it with respect to the axes.

> The use of longitude and latitude in Geography is an illustration.

By use of the signs + and - , the coordinates of any point in the plane of the axes are readily expressed.

EXERCISES.

2.-1. Construct the point of which $x=4$ and $y=7$.
2. Given $x=-5$ and $y=3$, to construct the point.
3. Given $x=-3$ and $y=-6$, to construct the point.
4. Given $x=6$ and $y=-4$, to construct the point.
5. Given $x=0, y=2 ; x=-5, y=0 ; x=0, y=0$. Pequired the points.
3. Application to Area. - Let it be required to find the area of a series of trapezoids included between perpendiculars from the points of a broken line upon a
 straight line. Suppose the straight line, as $O X^{\prime}$, to be an axis of abscissas, and the first perpendicular at the left, as $O A$, to be an axis of ordinates.

Let x_{1}, x_{2}, x_{3}, etc., be the abscissas of the points A, B, C, etc., and y_{1}, y_{2}, y_{3}, etc., the corresponding ordinates.

Accordingly, the area of the several trapezoids is $\frac{1}{2}\left[x_{2}\left(y_{1}+y_{2}\right)+\left(x_{3}-x_{2}\right)\left(y_{2}+y_{3}\right)\right.$

$$
\left.+\left(x_{4}-x_{3}\right)\left(y_{3}+y_{4}\right)+--\left(x_{n}-x_{n-1}\right)\left(y_{n-1}+y_{n}\right)\right]
$$

in which u is the number of trapezoids plus one.
The above formula may be clanged to the form

$$
\begin{align*}
& \frac{1}{2}\left[x_{2}\left(y_{1}-y_{3}\right)+x_{3}\left(y_{2}-y_{4}\right)+x_{4}\left(y_{3}-y_{5}\right)\right. \\
& \left.\quad+\cdots x_{n-1}\left(y_{\mathrm{n}-2}-y_{\mathrm{n}}\right)+x_{\mathrm{n}}\left(y_{\mathrm{n}-1}+y_{\mathrm{n}}\right)\right] . \tag{a}
\end{align*}
$$

Whence, for the area included between a straight line, as a base, and a broken line whose points are given by their coordinates upon the base, we have the following

Rule.-From each ordinate subtract the second succeeding one and multiply the remainder by the abscissa corresponding to the intervening ordinate.

Also, multiply the sum of the last two ordinates by the last abscissa.

Divide the algebraic sum of the products by 2.

The above formula and Rule have been deduced independently of any supposition as to the relative directions of the parts of the broken line. They are therefore true whatever may be the form of the broken line. That is, whether any part should be perpendicular to the base, either toward or from it, or whether any part should be turned backward respecting the preceding one.

Suggestion.-Let the student verify the rule in a case, for example, like the

[Fig. 45. following, in which $B C$ is represented as being parallel to the base, $C D$ as perpendicular toward it, and $F G$ as being turned backward from $E F$.
Find how it would be, if one or more of the ordinates were zero; if one or more were negative.

EXERCISES.

4.-1. Given $y_{1}=12, y_{2}=12, y_{3}=16, y_{4}=8$ and $y_{5}=6$, also $x_{1}=10, x_{2}=18, x_{3}=24, x_{4}=30$ and $x_{5}=20$, to find area.

Given the following, to find area:

	(2)		(3)	(4)	
140	1000	000	950	1000	200
435	812	240	844	1150	317
250	725	306	530	828	420
200	500	640	325	650	305
360	450	115	200	460	524
320	000	000	000	000	250

5. As a second example of the application of coordinates in finding area, let there be taken an ordinary polygon, as $A R C D E F$. (Fig. 46.)

Let x_{1}, x_{2}, x_{3}, etc., be the abscissas of the points A, B, C, etc., and y_{1}, y_{2}, y_{3}, etc., tne corresponding ordinates.

Fig. 46.
Now, since formula (α) is true for any broken line, it holds for the case in which the broken line beginning, as at A, returns to the same point, forming thus a polygon, as $A B C D E F A$:

In this case, the last term of (α) vanishes, and we have as the area a polygon of n sides,
$\frac{1}{2}\left[x_{1}\left(y_{\mathrm{n}}-y_{2}\right)+x_{2}\left(y_{1}-y_{3}\right)+x_{3}\left(y_{2}-y_{4}\right)+x_{4}\left(y_{3}-y_{5}\right)\right.$ + etc., to n terms].
or, factoring with respect to y, we have the form
$-\frac{1}{2}\left[y_{1}\left(x_{\mathrm{n}}-x_{2}\right)+y_{2}\left(x_{1}-x_{3}\right)+y_{3}\left(x_{2}-x_{4}\right)+y_{4}\left(x_{3}-x_{5}\right)\right.$ + etc., to n terms].

Whence, for the area of a polygon whose vertices are given by their coordinates, we have the following

Rule.-From the ordinate of each vertex subtract the second succeeding one, and multiply the remainder by the abscissa of the intervening vertex; or, from the abscissa of each vertex subtract the second succeeding one, and multiply the remainder by the ordinate of the intervening vertex.

Divide the sum of the products by 2

SCH.-Formulas (b) and (c) will be seen to be in accordance with any situation of the coordinate axes, agreeably with convenience of field work. In particular cases, one or more terms will be found to disappear. Due attention to algebraic signs is important.

The formulas are easy to remember, and simple of application. With an instrument adapted to laying off right angles, they afford a practical means of computing the contents of irregular tracts.

EXERCISES.

6. Required the area and a plat of a field the coordinates of whose corners are

$$
x_{\mathrm{n}}=x_{6}=0, x_{1}=7 \mathrm{ch} ., x_{2}=12 \frac{1}{2} \mathrm{ch} ., x_{3}=18 \mathrm{ch} ., x_{4}=15 \mathrm{ch} .
$$ $x_{5}=10 \mathrm{ch} . ;$ and

$$
y_{\mathrm{n}}=y_{6}=6 \mathrm{ch} ., y_{1}=12 \mathrm{ch} ., y_{2}=20 \mathrm{ch} ., y_{3}=15 \mathrm{ch} .
$$

$$
y_{4}=8 \frac{1}{4} \text { ch., } y_{5}=0 \text { ch. } \quad \text { Area, } 16.175 \text { acres. }
$$

Find the area, supposing a different situation of the axes.
7. Given the lengths and bearings of the sides of a polygonal field, to find the area.

Solution. - Let $A B C D E$ represent the field. Let $N S$ denote the meridian of the most westerly station. This line, which may be assumed as passing through any station at pleasure, but more conveniently the extreme western or the eastern one, is called the Principal Meridian.

To the principal meridian let there be drawn from the several stations the per-

Fig. 47.
pendiculars $B a, C d, D h$ and $E k$, and upon $C d$ and $D h$ let there be drawn the perpendiculars $B b, C c$ and $E e$.

These perpendiculars are, respectively, the bases and the altitudes of trapezoids composing a portion of the field.

Now, if from the sum of the areas of the trapezoids the sum of the areas of the triangles $\grave{A} B a$ and $A E k$ be şubtracted, the remainder will be the area sought.

That is, clearing of fractions, $2 \times$ area pol. $=(a B+C d) B b+(d C+D h) C c+(h D+E k)$ $\times E e-(a B \times a A)-(E k \times k A$.
It is now to be considered how the dimensions of the trapezoids and triangles depend upon the lengths and bearings of the sides of the field.
8. Latitude and Departure.-For convenience of description, let it be supposed that a survey of the field above represented was made " with the land on the right," beginning at A.

In going from A to B, there was made a distance $A a$, north, and a distance $a B$, east; in going from B to C there xvas made a distance $B b$, south, and a distance $b C$, east. Finally, in going from E to A, there was made a distance $k A$, north, and a distance $E k$, west. Distances made north are called Northings, and south, Southings; distances made east are called Eastings, and west, Westings. Northings and southings are together called Latitudes, and eastings and westings are called Departures.
It will be seen that the length of a course is the hypotenuse of a right triangle of which the latitude of the course is the side adjacent to the bearings, and the departure, the side opposite the bearing. Whence,

Latitude $=$ length of course \times cosine of bearing, and Departure $=$ length of course X sine of bearing.

From these fundamental formulas. several others ex-
pressing relations of either of the four quantities to two others are easily derived.
Thus, denoting the latitude by l, the departure by d, the length of course by c, and the bearing by b, is obtained the following

TABLE OF CASES.

No. Given.	Required.	Formulas.		
1	b, c	l, d	$l=c \cos b$	$d=c \sin b$.
2	b, l	c, d	$c=\frac{l}{\cos b}$	$d=l \tan b$.
3	b, d	c, l	$c=\frac{d}{\sin b}$	$l=\frac{d}{\tan b}$.
4	c, l	b, d	$\cos b=\frac{l}{c}$	$d=\sqrt{c^{2}-l^{2}}$.
5	c, d	b, l	$\sin b=\frac{d}{c}$	$l=\sqrt{c^{2}-d^{2}}$.
6	l, d	$0, c$	$\tan b=\frac{d}{l}$	$c=\sqrt{l^{2}+d^{2}}$.

The Traverse Table.-This table, which is given with others in the back part of the book, shows the latitude and departure for any bearing to each quarter degree for any distance from 1 to 10. For other distances, the latitude or departure is found by adding the latitudes or the departures of the partial distances, as shown in the following

EXERCISES.

9.-1. Find the latitude and the departure for a bearing of 24°, for a distance of 7 ch. ; for a distance of $5 \mathrm{ch} . ;$ for a distance of 10 ch .
2. Find the latitude and the departure on a bearing of $37 \frac{1}{1}^{\circ}$, for a distance of 12 ch .

OPERATIONS.

3. Find the latitude and departure on a bearing of $40 \frac{3}{4}^{\circ}$ for a distance of 17.23 ch .

OPERATIONS.

ANOTHER FORM OF WORK.

Bearing.	Distances.	Latitudes.	Departures.
403°	1000	07576	06528
	700	53030	45693
	20	15151	13055
	$\frac{3}{1723}$	$\frac{22727}{1305.3237}$	1124.7433

We take the distance in links, and write the latitude and departure for the first figure of the number, omitting the decimal point; we write under them the latitude and departure for the second figure, setting them down one place farther toward the right; under them, the latitude and departure for the third figure, setting them one place farther toward the right, and so on.

We then add the separate latitudes and separate departures, and point off four figures from the right. The results thus obtained are the latitude and departure sought, as expressed in links.

Notice that bearings from 45° upward are found in the right hand column of the table, and the columns of latitude and departure are denoted at the foot of the page. Care needs to be taken here to avoid maistakes of latitudes for departures and departures for latitudes.

Find the latitudes and departures for the following bearings and distances:
(1) Bearing $52 \frac{1}{2}^{\circ}$, Distance 437.
(2) Bearing $65_{1^{10}}{ }^{\circ}$, Distance 3669 .
(3) Bearing $21^{\frac{30}{}{ }^{\circ}}$, Distance 2030.
(4) Bearing 40°, Distance 506.
(5) Bearing $81^{\frac{1}{2}}$, Distance 12.34 ch .
10. Meridian Distance. -The distance of a station or any point from the principal meridian is called its Meridian Distance. The meridian distance of a line is the meridian distance of its middle point. If the meridian passing through the extreme easterly or westerly station of a survey around a tract of land be taken as a base and perpendiculars be drawn from it to each station of the survey, the tract and the space between. it and the meridian will be divided into triangles and trapezoids whose areas are readily computed.

Beginning with the station through which the meridian passes which we call Sta. 0 , then the meridian distance of Sta. 1 will equal the departure of the first course.

The meridian distance of any station will equal the algebraic sum of the departures of all the preceding courses up to that point.

The meridian distance of any course or line will equal the half sum of the meridian distances of the stations at the two ends of that course or line.

The area of any triangle or trapezoid thus formed will equal the product of the latitude of the line or course on which it is based multiplied by the-meridian distance of that line.

The area of the tract is equal to the sum of the areas of all the triangles and trapezoids thus formed minus the sum of the areas of those triangles and trapezoids which lie outside the lines of the survey.
The area of the tract is also equal to the difference between the sums of those areas found from latitudes which are northings and of thase where they are southings.

We will now apply the foregoing principles to find the area of the tracts described in the following Field Notes and shown in the figure. On the figure each station is numbered to correspond with the field notes and each line is also numbered in its order as run. The several triangles and trapezoids formed by perpendiculars from the stations to the meridian are lettered in their order.

Station	Bearing	Distance
0	N. $201^{\circ} \mathrm{E}$ E.	12.00 ch .
1	N. $59{ }^{\circ} \mathrm{E}$.	9.80 "
2	S. $66^{\circ} \mathrm{E}$.	19.60 "
3	S. $35^{\circ} \mathrm{W}$.	15.68 "
4	S. $66^{\circ} \mathrm{W}$.	13.12 "
5	N. $46^{\circ} \mathrm{W}$.	11.72 "

Finding from the Traverse Table the latitudes and departures to the nearest link, we have

Bearin	$26 \frac{1}{2}^{\circ}$	Dist	$2!n$	Lat	0.74 N	Dep. 5.35
	59°	"	9.80	"	5.05 N .	" 8.40 E .
"	66°	"	19.60	"	7.97 S.	17.91 E .
"	35°		15.68	"	12.85 S.	8.99 W
"	66°	"	13.12		5.34 S.	11.9
	46°	,	14.72		10.23 N	10.59

Obviously, in going entirely around a field there should be made the same southing as northing, and the same westing as easting. But from unavoidable lack of precision in the use of instruments, this is practically seldom found to have been done, according to the figures used. The error, however, can usually be made very small. Finding it large, the entire field work should be reviewed.

It is not a settled point among surveyors how great an error of latitude or departure may be allowed without resurveying the lot. Some would admit a difference of one link for every three chains in the sum of the distances, others for every five chains, and again others would require it to be within one link for every ten chains.

As a check against errors of bearing, a back sight should be taken at every station, and the reverse bearing compared with the corresponding direct bearing of that station. If the two are found to differ considerably, both should be reviewed. Let us now see how small an error of latitude and of departure we have in the present case.

Sum of northings $=10.74+5.05+10.23=26.02$.
" " southings $=7.97+12.85+5.34=26.16$.
Difference of latitudes $=00.14=$ error of latitude.
Sum of eastings $=5.35+8.40+17.91=31.66$.
" " westings $=8.99+11.99+10.59=31.57$.
Difference of departures $=00.09=$ error of departure.
The above errors may be considered reasonably small for a field of the size of the present one.

In practice, some of the courses may have been measured over rough or uneven ground, and, accordingly, such courses should beat a larger proportion of the error.

Some of the bearings may have been taken with an indistinct sight, which would dictate the allotment of more than a proportionate amount of the error to them.

Distances as measured over uneven ground are liable to be too long. In such cases, the length of a course may be diminished when such change would favor the balancing. Similarly, a doubtful bearing may be changed, if the error should appear to be attributable to it.

It is a common mistake to reverse the position of the latitude and departure in the columns. If the bearing is greater than 45° the departure is greater than the latitude, and it is less when the bearing is less than 45°. Scan the columns for such errors.
11. Balancing.-The next work is to distribute the errors among the several courses in proportion to their lengths, in accordance with the following

Principle.-As the sum of the lengths of all the courses is to the length of each course, so is the total error to the error of that course.

This operation is called Balancing.
Applying the above principle, we divide the errors by the sum of the lengths of all the courses and multiply the quotients by the length of each course, indicating the products as positive or negative, accordingly as they are to be added or subtracted in making the required correction.

Thus, $00.14 \div 84.92=00.00165$; and $00.09 \div 84.92=00.00106$; $00.00165 \times 12=00.0198$ or +00.02 ; and $00.00106 \times 12=00.01272$ or -00.01 , to the nearest link.

In the same manner, by multiplying the above quotients by the lengths of the other courses, the correction for them is readily obtained.

Collecting results thus found, we have the following
TABLE I.

Sta.	Latitude.		Departure.		Cor.L	Cor D	Balanced.			
	N.	S.	E.	W.			N.	S.	E.	W.
1	10.74		5.35		+. 02	-. 01	10.76		5.34	
2	5.05		8.40		$+.02$	$-.01$	5.07		8.39	
3		7.97	17.91		-. 03	$-.02$		7.94	17.89	
4		12.85		8.99	$-.03$	+.02		12.82		9.01
5		5.34		11.99	$-.02$	$+.01$		5.32		12.00
6	10.23			10.59	+. 02	$+.02$	10.25			10.61

We next find the Meridian Distance of the several stations.
M. D. of Sta. $1=$ Dep. of Course $1=5.34$.
M. D of Sta. $2=$ M. D. of Sta. $1+$ Dep. of C. 2
$=5.34+8.39=13.73$.
M. D. of Sta. $3=$ M. D. of Sta. $2+$ Dep. of C. 3
$=13.73+17.89=31.62$.
M. D. of Sta. $4=$ M. D. of Sta. 3-Dep. of C. 4

$$
=31.62-9.01=22.61
$$

M. D. of Sta. $5=$ M. D. of Sta. 4-Dep. of C. 5
$=22.61-12.00=10.61$.
M. D. of Sta. $0=$ M. D. of Sta. $5-$ Dep. of C. 6

$$
=10.61-10.61=0.00
$$

M. D. of C. $1=\frac{\text { M. D. Sta. } 0+\text { M. D. Sta. } 1}{2}=\frac{0+5.34}{2}=2.670$.

$$
\begin{array}{ll}
66 & 6 \quad 2=\frac{\text { M. D. Sta. 1+M. D. Sta. } 2}{2}=\frac{5.34+13.73}{2}=9.535 . \\
66 & \text { 6 } 3=\frac{\text { M. D. Sta. } 2+\text { M. D. Sta. 3 }}{2}=\frac{13.73+31.62}{2}=22.675 .
\end{array}
$$

M. D. of C. $4=\frac{\text { M. D. Sta. } 3+\text { M. D. Sta. } 4}{2}=\frac{31.62+22.61}{2}=27.115$.

$$
\begin{array}{ll}
\text { " } & \text { " } 5=\frac{\text { M. D. Sta. } 4+\text { M. D. Sta. } 5}{2}=\frac{22.61+10.61}{2}=16.610 . \\
\text { " } & \text { " } 6=\frac{\text { M. D. Sta. } 5+\text { M. D. Sta. } 0}{2}=\frac{10.61+0.00}{2}=5.305 .
\end{array}
$$

We may now put the whole matter in compact tabular form as follows.

In this example the area of the tract is evidently equal to the sum of the areas of the trapezoids $c d$ and e based on courses 3,4 , and 5 minus the sum of the areas of the triangles and trapezoid $a b$ and f based on courses 1, 2, and 6 .

The area of the triangle a equals the M. D. of course or line 1 multiplied by its latitude $=2.67 \times 10.76$.

The area of the trapezoid b equals the M. D. of course 2 multiplied by its latitude $=9.535 \times 5.07$.

In a similar manner we find the area of each triangle and trapezoid.

Examples for Solution:

The fllowing examples are taken from the field notes of the original United States Surveys in Michigan and are fair samples of the average work done on the government land surveys. The meanders of lakes and streams are run for the purpose of finding how much dry or uncovered land is contained in the adjacent tract to be paid for by the purchaser.

Ex. 1. Meanders of a Lake in Section 5.
Began at post corner to Sections 4, 5, 8, and 9, thence in Section 5, N. 60° W. 6.50 ch . to S. E. Margin of Lake, thence in Sec. 5, N. 25° E. 4.00 ch., thence N. 51° W. 0.00 ch., thence N. 18° W. 7.00 ch ., thence N. 3° W. 7.00 ch ., thence N. 63° W. 10.00 ch., thence S. 79° W. 6.00 ch ., thence S. 7° W. 13.00 ch ., thence S. $20^{\circ} \mathrm{E} .6 .00 \mathrm{ch}$., thence S. 6° W. 5.00 ch., thence N. 78° E. 14.00 ch., thence S. 27° E. 5.00 ch ., thence N. 71° E. 3.87 ch. to place of beginning on margin of Lake.
Find the area of the lake. Also find the areas of the North and South halves respectively of the quarter section in which the lake lies, on the supposition that the quarter section is just 40 chains square and that the lines are run with the same variation of the needle as was used in meandering the lake. These areas are given in the official plat as follows: North $\frac{1}{2}$, A. 66.18. South t, A. 55.92.
2. Find the area of the lake described in the example 13, page 109, also the area of each of the quarterquarter sections adjoining the lake in the south half of Sections 11 and 12. These areas are marked in the oficial plat as follows : In Section 11, S. E. 4 of S. E. $亡$ A. 31.50, N. E. $\frac{1}{2}$ of S. E. $\frac{1}{4}$ A. 20.40.rIn Section 12, S.sW. tof S. W. $\frac{1}{4}$ A, 37,61, N. W. 1 of S. W. 1 A. 27.10. The meander post at the beginning of the survey is 14.00 chains North from the Section Corner.
3. Meander of a Lake in section 2.

Began at quarter post in line of Sections 2 and 11, thence North 10.00 ch ., to S. margin of Lake, thence in Sec. 2, thence S. 50° E. 13.00 ch., thence E. 3.00 ch., thence N. $45^{\circ} \mathrm{E} .5 .00 \mathrm{ch} .$, thence N. $4^{\circ} \mathrm{W} .6 .00 \mathrm{ch} .$, thence N. 70° W. 15.00 ch., thence S. $80^{\circ} \mathrm{W} .6 .00^{\circ} \mathrm{ch}$., thence S. $24 \frac{1}{2}$ E. 7.17 ch ., to place of beginning in margin of Lake.

Find the area of the Lare also the area of the W. $\frac{1}{2}$ of S. E. $\frac{1}{}$ of Section 2 and of the S. E. $\frac{1}{4}$ of the S. W. $\frac{1}{6}$ ot the Section. The first is given on the official plat as A. 62.88 and the latter as A. 38.95.

13. Problem.-Given the bearings of the sides of a

 field, to find the bearings when the field is supposed to be revolved so as to cause one of the sides to coincide with a meridian.
EXAMPLES.

1. The bearings of the sides of a field are, 1 st, N. 12° E., $2 d, N .83^{10}$ E., 3d, S. 21° W., and 4th, N. 47° W. What will the bearings be, if the field be supposed to be revolved so as to cause the first side to be on a meridian?

Ans. $-1 \mathrm{st}, \mathrm{N} ., 2 \mathrm{~d}, \mathrm{~N} .7 \frac{1}{4}^{\circ} \mathrm{E} ., 3 \mathrm{~d}, \mathrm{~S} .9^{\circ} \mathrm{W}$. , and 4 th , N. $59^{\circ} \mathrm{W}$.

Suggestion.- Suppose the field to be revolved toward the left, through an angle of 12°. Accordingly, each bearing would be changed by that amount. The readings of the new bearings are readily determined by inspection.
2. The bearings of the sides of a field are 1 st $\mathrm{S} .3 \frac{1}{2}^{\circ} \mathrm{W}$., $2 d$ N. $86_{\frac{1^{\circ}}{}}$ W., 3d N. $16_{\frac{1}{2}}{ }^{\circ}$ E., and 4th E. Required the new bearings when the first side is made to coincide with the meridian.

Ans. -1 st S., 2 d W., 3 d N. 13° E., and 4 th N. $86 \frac{1}{2}^{\circ}$ E.
3. The bearings of the sides of a field are $1 \mathrm{st} \mathrm{S} .20^{\circ} \mathrm{W}$., 2d S. 70° W., 3 d N. 31° W., 4 th N. 45° E., and 5 th S. 60° E. Required the new bearings when the third side is made to coincide with the meridian.

Ans.-1st S. 51° W., 2 d N. 79° W., 3d N., 4 th N. 76° E., and 5th S. 29° E. ${ }^{15}$
4. The bearings of the sides of a field are, 1 st N. $45^{\circ} \mathrm{E}$., $2 \mathrm{~d} \mathrm{S}. 30^{\circ} \mathrm{W} ., 3 \mathrm{~d} \mathrm{S}. 5^{\circ}$ E., 4th W., and 5th N. 20° E. What will the bearings become, if the field be revolved so as to bring the third side to the meridian?

Ans. -1 st N. 50° E., 2 d S. 35° W., 3d S., 4 th N. $85^{\circ} \mathrm{W}^{\circ}$., 5 th N. $25^{\circ} \mathrm{E}$.
5. The bearings of the sides of a field are, 1st E., $2 d$ N. 9° E., 3 d S. 69° E., 4 th S. 66° E., 5 th S. 42° W., 6 th S. $75^{\circ} \mathrm{W}$., 7 th N. $39^{\circ} \mathrm{W}$., and 8 th N. $42^{\circ} \mathrm{E}$. What will the bearings become, if the field be revolved so as to cause the fourth side to coincide with the meridian?

Ans. -1 st S. 24° E., 2 d N. 75° E., $3 \mathrm{~d} \mathrm{S}. 3^{\circ}$ E., 4 th S., 5 th N. $72^{\circ} \mathrm{W}$., etc.

Additional exercises may be formed from the above by requiring different sides to be brought to coincide with the meridian.

Rule.-Change each bearing agreeably with the direc tion in which the field is supposed to be rvolved by an amount equal to the bearing of the side which is brought to the meridian, and express the result in accordance with the proper form of denoting bearings.
6. What were the bearings of the sides of a field which are now N. $16 \frac{1}{2}^{\circ}$ E., E., S. $3 \frac{1}{2}^{\circ} \mathrm{W}$., and N. $86 \frac{1}{2}^{\circ} \mathrm{W}$., the variation of the needle having changed $2 \frac{1}{2}^{\circ}$ toward the west since the former survey?

Supplying Omissions. -From inaccessibility of lines and sometimes from accident, omissions may occur in the field notes of a survey. In a closed survey, any two omissions may, in general, be supplied by computation. It is, however, desirable to avoid as far as possible the necessity of supplying omissions in this manner, since it infringes upon the tests which otherwise serve to verify the work.

The several cases which may occur are presented in the following problems:
14. Prob. 1. To find an omitted bearing and distance.

Case 1.-When the omissions pertain to the same course.
In a closed survey, the sum of the northings should equal the sum of the southings; and the sum of the eastings should equal the sum of the westings. The defect of these equalities in the present case must be on the one hand the latitude and on the other the departure of the omitted course.

| Sta. | Bearing. | Dist. | Lat. | Dep. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A | $\mathrm{N} .31^{\circ} \mathrm{W}$. | 240 | +8.057 | -4.841 |
| B | $\mathrm{~N} .45^{\circ} \mathrm{E}$. | 9.30 | +6.576 | +6.576 |
| C | Omit | ted. | | |
| E | $\mathrm{~S} .20^{\circ} \mathrm{W}$. | 5.30 | -4.980 | -1.813 |
| F | $\mathrm{~S} .70^{\circ} \mathrm{W}$. | 10.90 | -3.728 | -10.243 |

Solution.-Sum of

Diff. $=G E=10.321$

The latitude of the omitted course is thus a southing and its departure, an easting. Its bearing is therefore S. - ${ }^{\circ} \mathrm{E}$.

To find the bearing or angle $G C E$, we have

$$
\tan G C E=\frac{G E}{C G}=\frac{10.321}{5.925}=1.74194
$$

Whence, $G C E=60^{\circ} 8^{\prime}$; or the required bearing is S. $60^{\circ} 8^{\prime} \mathrm{E}$.

To find the distance $C E$, we have

$$
C E=\left(5.925^{2}+10.321^{2}\right)^{3 / 2}=12.00 .
$$

Remark.-It will be noticed that a plat of the field may be made, and the area found without supplying the omissions.

Case 2. - When the omissions pertain to different courses.

If the field be supposed to be revolved until the side whose length is omitted becomes a meridian, the given bearings being changed accordingly (Art. 13, Prob.), then, since the departure of the side made a meridian is 0 , the difference between the sums of the eastings and westings of the other courses is the departure, in its new position, of the side whose bearing is omitted.

Knowing the length and the departure of this side, its latitude and bearing may be found, (Art. 8).

The difference between the sums of the northings and southings of the courses in their new positions, is the length of the side which was made a meridian.

Example.-

Sta.	Bearing.	Changed Bearing.	Distance.	Lat.	Dep.
A	N. $20^{\circ} \mathrm{E}$.	North.	Omitted.		0.0000
B	$\mathrm{~N} .45^{\circ} \mathrm{E}$.	$\mathrm{N} .25^{\circ} \mathrm{E}$.	8.00	+7.2505	+3.3809
C	$\mathrm{S}. 30^{\circ} \mathrm{W}$.	$\mathrm{S} .10^{\circ} \mathrm{W}$.	5.00	-4.9240	-0.8682
D	Omitted.		7.20		
E	West.	$\mathrm{S} .70^{\circ} \mathrm{W}$.	5.92	-2.0248	-5.5630

Solution.-Sum of eastings $=3.3809$

$$
\text { " " westings }=6.4312
$$

Difference $=3.0503$ (an easting).
Latitude of $D E=\left(7.20^{2}-3.0503^{2}\right)^{1 / 3}=6.5219$ (a southing). Sine of changed bearing of $D E=3.0503 \div 7.20=0.42365$.
Whence " " "DE is S. $25^{\circ} 4^{\prime} \mathrm{E}$.
Whence original " "DE was S. $5^{\circ} 4^{\prime} \mathrm{E}$.

Sum of northings $=7.2505$
" " southings $=13.4707$

$$
\text { Difference }=6.22=\text { length of } A B .
$$

Remark.-It is sometimes doubtful whether the latitude of the course whose bearing is omitter is a northing or a southing.

In the present case, the question is determined by a simple inspec. tlon of the latitudes, since the sum of the southings is less than the sum of the northings, without considering the northing of the first course.
In other cases, there may be two sets of values of the omitted parts, with either of which the problem is satisfied.
Practically, however, the ambiguity is removed by a general knowledge whieli the surveyor has of the directions of the lines.

15. Prob. 2. To find the omitted lengths of two courses.

CASE 1.-When the courses are consecutive.

The bearing and length of a line which would close a survey, leaving out the unknown sides, may be found by Prob. 1, Case 1. This line and the unknown sides form a triangle in which the angles, as found from the given bearings, and the length of one side are known. The lengths of the other sides may therefore be computed.

The procedure will be readily worked out by the student, without illustration.

CASE 2.-When the courses are not consecutive.
This case may be treated in the same manner as the preceding.
Or, we may suppose the field to be revolved so as to make one of the sides whose length is omitted, a meridian, the bearings of the other sides being changed accordingly.
We may then find the difference of the sums of the eastings and westings, which will be the departure, in its new position, of the other side whose length is wanting.

Having the bearing of that side and its departure, its length and latitude may be found. Finding the difference between the sums of the northings and southings, we obtain the length of the side which was made a meridian.
Example.-

Sta.	Bearing.	Changed Bearings.	Distance.	Lat.	Dep.
A	$\mathrm{N} .15^{\circ} \mathrm{E}$.	$\mathrm{N} .30^{\circ} \mathrm{W}$.	5.00	+4.33	-2.50
B	$\mathrm{~N} .45^{\circ} \mathrm{E}$.	North.	Omitted.		0.00
C	$\mathrm{~S} .55^{\circ} \mathrm{E}$.	$\mathrm{N} .80^{\circ} \mathrm{E}$	10.05	+1.75	+9.90
D	$\mathrm{~S} .15^{\circ} \mathrm{W}$.	$\mathrm{S} .30^{\circ} \mathrm{E}$.	12.25	-10.61	+6.12
E	$\mathrm{~S} .75^{\circ} \mathrm{W}$.	$\mathrm{S} .30^{\circ} \mathrm{W}$.	Omitted.		
F	$\mathrm{~N} .33^{3}{ }^{\circ} \mathrm{W}$	W.	$\mathrm{N} .783 / 4^{\circ} \mathrm{W}$.	9.96	+1.95

Sum of eastings $=16.02$
" * westings $=12.27$
Difference $=3.75=$ Dist. $\times \sin 30^{\circ}$.
Whence, length of $E F=3.75 \div 0.5=7.50$.
Lat. $E F=3.55 \div \tan 30^{\circ}=6.50$.
Sum of northings $=8.03$
" " southings $=17.11$

$$
\text { Difference }=9.08=\text { length of } B C .
$$

Remark.-If the sldes whose lengths are omitted are parallel, the problem is indeterminate.
16. Prob. 3. To find the omitted bearings of two courses.

We find, (Prob. 1, Case 1) the bearing and length of a line which would close a survey, having the lines whose bearings are given as the other sides.

The line thus found and the two lines whose bearings are omitted form a triangle. The lengths of the sides of the triangle being known, its angles may be found; and from the angles and the bearing of one of the sides the bearings of the other sides may be found.

The closing line and the triangle are illustrated by the diagram accompanying the following

Sta.	Bearing.	Dist.	Lat.	Dep.
A	N. $15^{\circ} \mathrm{E}$.	5.00	$+4.8296$	+1.2941
B	Omitted.	9.08		
C	S. 55° E.	10.05	-5.6645	+8.2325
D	S. $15^{\circ} \mathrm{W}$.	12.25	-11.8327	-3.1705
E	Omitted.	7.50		
F	N. $33 \frac{1}{4}{ }^{\circ} \mathrm{W}$.	9.96	+8.2814	-5.5334

The side $E F$, without change of bearing, is represented by $C G . B G$ is the
 closing line of the field $A B G H F$, in which we have

Sum of
northings $=13.1110$ southings $=17.5972$

Difference $=4.4862$ (a northing).

Sum of
eastings $=9.5266$
westings $=8.7039$
Difference $=0.8227$
(a westing.)
Fig. 49.

Whence (Prob. 1), bearing $B G$ is N. $10^{\circ} 23^{\prime} 30^{\prime \prime}$ W., and length $B G$ is 4.56 .
In the triangle $B G C, B C=9.08$ and $C G=E F=7.50$.
Solving the triangle, we find
angle $G B C=55^{\circ} 25^{\prime} 40^{\prime \prime}$, ana angle $B G C=94^{\circ} 31^{\prime} 49^{\prime \prime}$.
Whence, bearing $B C$ is $\mathrm{N} .45^{\circ} 2^{\prime} 10^{\prime \prime} \mathrm{E}$., and bearing $E F$ is $\mathrm{S} .75^{\circ} 4^{\prime} 41^{\prime \prime} \mathrm{W}$.

Remark. - The problem may possibly have two solutions, accordingly as the triangle may fall on either side of the closing line. The ambiguity is, however, practically unimportant.

Exercises.-To be made by the student in the field.
17. Most of the foregoing problems for finding areas may be simplified and much labor saved in calculation. by reducing the irregular polygons and oblique triangles to right triangles and trapezoids on the plat, and taking their dimensions by direct measurements from the plat, instead of calculating them. If the plat is made on a large enough scale-showing not more than four chains
to the inch-and the drafting is carefully done, the measures on the plat will be very nearly if not quite as good as those taken on the ground, and will give results sufficiently close for most purposes.

1st Method.-Draw a diagonal between two distant angles of the figure, and perpendiculars to it from the other angles.

Fig. 50.
2nd Method.-Reduce the figure to a single equivalent triangle.

Fig. 51.

1. To reduce the trapezium $a b c d$ (Fig. 51) to its equivalent triangle.

Produce the line $a b$ an indefinite distance. With the parallel ruler, or straight edge and triangle, find the point e, where a line through d parallel to $c a$ intersects the line $a b$. Draw the line $e c$, intersecting $a d$ at g.

Then the triangle ecb is equivalent to the trapezium $a b c d$, for the triangles $a c d$ and $a c e$, having the same base $a c$ and equal altitudes, are equal; and the triangle $a c g$ being taken from both leaves the triangle eag, which is added to the original figure, equal to the triangle $c d g$, which is taken from it.

The perpendicular may now be drawn from c, and the base $e b$ and altitude $f c$ measured on the plat.
2. By an extension of the same process, any polygon may be reduced to one or more equivalent triangles. It will frequently be found convenient to divide the figure into two or more parts, and reduce the sides separately. The process is indicated in Figure 52.

Fig. 52.
Let $a b c d e f g h$ be the polygon to be reduced. Extend one side, as $a b$, indefinitely for a base. From c draw $c i$
parallel to $b d$. From d draw $d k$ parallel to $e i$. From e draw el parallel to $f k$. Having selected f as the vertex of the triangle, we next draw $f l$ for one of its sides.

Next, from h draw $h m$ parallel to $g a$.
From g draw $g n$ parallel to $f m$.
From f draw $f n$ for the third side of the triangle, and $f o$, its altitude.

The triangle $f l n$ is equivalent to the polygon $a b c d e f g h$. It is best to draw all these lines lightly on the plat, to avoid errors.

If we consider each point, i, k, l, marked in succession on the base as an angle of the polygon, which it is until its successor is located, we have the following

General Rule.-Extend one side indefinitely as a base. Commencing at the first angle from the base, draw from it to the base a line parallel to a line joining the two adjacent angles of the polygon. Continue drawing lines to the base from each angle in succession as far as required. Join the last angle from which a parallel was taken, with the last point of intersection on the base, for a side of the final triangle.

It is sometimes more convenient not to produce one of the lines of the figure for a base, but to draw a perpendicular to it from one end or from the end produced. The same rule applies.
18. The preceding methods of taking measurements from the plat are found very convenient in estimating the area of land benefited by drainage, under the drain laws. Surveyors are frequently called on to make surveys and maps of drainage districts, showing the location of the drains and the location and area of the lands, belonging to the various owners, which will be benefited by the drainage. In most, if not all these cases, no man can tell, either before or after the drainage has been executed, just exactly where the dividing line is, between land which is benefited and that which is not benefited. For this reason a rapid survey of the approximate line, by stadia
measures, is just as good as the most elaborate work with the chain or tape. The one is likely to get as near the true dividing line as the other.

The writer has found the following method to work well in his practice. Suppose a tract of marsh or swamp is to be measured and mapped, having more or less cleared upland around it:

Assume some line as a base. A section line or quarter line of the United States Survey answers well for this purpose. From this base run a broken line around the swamp wherever it is most convenient to do so. Set a stake at each angle in the line. Note the length of each course and the angle which it makes with the common base, as described on page101.

When the circuit of the swamp has been made, and the transit again set up at the starting point, the work will prove itself. After taking a back sight on the last station and pointing the telescope along the base line, if the work has all been correctly done, the vernier should give the same reading as it did to start with, showing that just 360° have been passed around.

In passing around the swamp an assistant with the stadia rod follows its margin, setting up his rod at every point where it changes its general direction. The transitman notes down the direction of each point at which the rod is set up, by its angle from the base line and its distance from the transit as read off from the rod.

When as many points are jaken as are convenient from one station, the transit is moved up to the next one, and the operation continued till all the desirable points are located. This being done in the field, they are reproduced on the plat on a scale large enough to permit measurements on the plat with a reasonajle degree of accuracy. The points along the margin of the swamp having been laid down on the plat, are connected by straight lines, and all intersecting farm lines or other points of interest are also laid down.

We now have a map, showing as correctly as it is possible to do so, the location of the swamp on each man's land. The areas of the several tracts are found by taking the parallel rule and needle point and reducing these irregular polygons to their equivalent triangles and rectangies, making the necessary measures on the plat and computing the areas from these measures.
19. Division and Partition of Land.-The surveyor is sometimes called on to divide areas into portions having a specified relation to each other, or to part off from a field a given number of acres by a line fulfilling some specified condition with respect to the field divided.

There is a great variety of these problems, most of which occur very rarely in the surveyor's practice. A few of those which occur most frequently are given.

Prob. 1.-To divide a triangle into parts having a given ratio.

Case 1.-By lines from an angle.
Solution.-Let $A B C$ be any triangle, and suppose it is

Fig. 53. required to divide it by a line from B, into two parts having the ratio of m to n.

Let $B D$ be the line of division, so that $A B D: D B C:: m: n$ (1) But $A B D: D B C:: A D: D C$ (2)
Combining (1) and (2), we have

$$
A D: D C:: m: n
$$

$$
\text { whence, } A D: A C:: m: m+n \text {, }
$$

whence, $A D=\frac{m \times A C}{m+n}$. Similarly, $D C=\frac{n \times A C}{m+n}$.
Measure the distance $A D$ thus found, and run the line $B D$.

If the triangle were to be divided into three parts in the ratio of $m: n: p$, we should have

$$
A D=\frac{m \times A C}{m+n+p} \text { and } D E=\frac{n \times A C}{m+n+p}
$$

Cor.-To part off by a line, as $B D$, a given area a, we have $A D: A C:: a:$ area $A B C$, whence $A D=\frac{a \times A C}{\operatorname{area} A B C}$.

Examples.-1. Find the measurements required to divide a trianglar field by lines from an angle to a side whose length is $12.30 \cdot \mathrm{ch}$., into parts to each other as 2,3 and 4.
2. Find the measurement required to part off 3.5 acres from a triangular field a side of which is 18.50 ch ., and a perpendicular thereupon from the opposite angle is 10.40 ch .

Case 2.--By lines parallel to a side.
Solution. - Let D be the point in the side $A B$ from which a line parallel to $B C$ shall

FIG. 54. divide $A B C$ so that $A D E: D E C B$ $:: m: n$. Then

$$
A D E: A B C:: m: m+n
$$

But $A D E: A B C:: A D^{2}: A B^{2}$, whence, $A D^{2}: A B^{2}:: m: m+n$, giving $A D=A B\left\{\frac{m}{m+n}\right\}^{1 / 2}$
Measure the distance $A D$ thus found, and run $D E$ parallel to $B C$.

If the triangle is required to be divided into three parts in the ratio of $m: n: p$, we should have
$A D=A B\left\{\frac{m}{m+n+p}\right\}^{1 / 2}$ and $A F=A B\left\{\frac{m+n}{m+n+p}\right\}^{1 / 2}$
Cor. 1.-To part off a triangle, as $A D E$, of given area a
we have $A D=A B\left\{\frac{c}{\text { area } A B C}\right\}^{3 / 3}$.
Cor. 2.-To part off a quadrilateral, as $D E C B$, of given area, a^{\prime}, we may find by Cor. 1 the distance $A D$ required to part off a triangle of the area $A B C-a^{\prime}$ and measure $B D=B A-A D$.

Examples.-1. Find the measurement for dividing a triangular field of 12 A . into parts in the ratio of 4 to 5 by a parallel run from a point in a side whose length is 10.35 ch .
2. Find measurements for dividing by parallels, the above field into three equivalent parts.
3. Find measurement for parting off from the same field by a parallel, a triangle of 5 A .; a quadrilateral of $71 / 2$ A.
Case 3.-By lines perpendicular to a side.
Solution.-Let $A B C$ be a triangle required to be divided

Fig. 55. by a perpendicular to $A C$, into parts having the ratio of m to n.
Let $E F$ be the line of division, so that $A E F: E B C F:: m: n$, or $A E F: A B C:: m: m+n$. (1) Let $B D$ be a perpendicular upon $A C$
Then $A E F: A B C:: A F \times E F: A C \times B D:: m: m+n$. (2)
From similar triangles, $A F: E F:: A D: B D$,
whence, $E F=\frac{A F \times B D}{A D}$.
Substituting this value of $E F$ in (2), we have

$$
\begin{aligned}
& \frac{A F^{2} \times B D}{A D}: A C \times B D:: m: m+n, \\
& \\
& \text { or } A F^{2}: A C \times A D:: m: m+n \\
& \text { whence, } A F^{\prime}=\left\{\frac{A C \times A D \times m}{m+n}\right\}^{3 /} .
\end{aligned}
$$

Find $A D$ and then $A F$. Measure the distance $A F$ and run $F E$ perpendicular to $A C$.

Similarly, may be found the distances to perpendiculars dividing the triangle into three or more parts having a given ratio.

Cor.-To part off a triangle, as $A E F$, of given area, a, we have $A F^{\prime}=\left\{\frac{A C \times A D \times a}{\text { area } A B C D}\right\}^{1 / 2}$.

The distance $A F$ to a perpendicular which shall part off a triangle $A E F=a$, may be found otherwise, as follows: triangle $A E F=\frac{1}{2} A F \times E F=\alpha$, and $E F=$ $A F \times \tan A$. Whence, $A F^{\prime}=\left\{\frac{2 a}{\tan A}\right\}^{1 / 2}$.

Examples.-1. The bearings and lengths of two sides of a triangular field from the same corner are N. 20° E., 15 ch ., and $\mathrm{N} 50^{\circ} \mathrm{E} ., 20 \mathrm{ch}$. Required the measurement from that corner to a perpendicular upon the longer side which shall divide the field into two parts having the ratio of 2 to 3 .
2. Required the measurement to a perpendicular which shall divide the above field into two equivalent parts; into three equivalent parts.
3. Required the measurement to a perpendicular which shall part off from the same field a triangle of 4 A.; a quadrilateral of 5 A .
20. Prob. 2. To divide a trapezoid into parts having a given ratio.

Case 1.-By lines dividing the bases proportionally.
Solution.-Let $A B C D$ be any trapezoid required to be divided into parts having the ratio of $m: n: p$.

This is done in the easiest manner by dividing each

Fig. 56. base into parts having the ratio to each other as m, n and p, and joining the corresponding points or division. The measurements necessary to find the points of division are:
$B E=\frac{m \times B C}{m+n+p}, E G=\frac{n \times B C^{r}}{m+n+p}, A F=\frac{m \times A D}{m+n+p}$,
and $F H=\frac{n \times A D}{m+n+p}$.
Cor.-To part off a given area a by a line, as $E F$, which shall divide the bases proportionately, we have

$$
B E=\frac{a \times B C^{\prime}}{\operatorname{area} A B C D} \text { and } A F=\frac{a \times A D}{\operatorname{area} A B C D}
$$

Examples.-1. Given $A D, N .80^{\circ}$ E., $12.60 \mathrm{ch} ., A B$, N. $10 \frac{1}{2}^{\circ}$ E., 8.12 ch ., and $B C$, N. 80° E., 10.34 ch. , to find the measurements required in dividing the field into parts having the ratio of 4 to 7 , by a line dividing the parallel sides proportionally.
2. Find the measurements for parting off from the above field an area of 5 A ., by a line dividing the parallel sides proportionally.

CASE 2.-By lines parallel to the bases.

lic. 5.

Solution.-Let $A B C D$ be a trapezoid to be divided into parts in the ratio of m to n, by a line parallel to $B C$.

Suppose $E F$ to be the required :ne of division, so that
$E B C F: A E F D:: m: n$.
Regarding the sides $A B$ and $D C$ as prolonged to meet at O, we have $O A D: O B C:: A D^{2}: B C^{2}$, whence, $O A D-O B C$,

$$
\begin{equation*}
\text { or } \quad A B C D: O B C:: A D^{2}-B C^{2}: B C^{2} \tag{1}
\end{equation*}
$$

Similarly, we have $E B C F: O B C:: E F^{2}-B C^{2}: B C^{2}$. (2)
Combining (1) and (2), $A B \dot{C} D: E B C F:: A D^{2}-B C^{2}$: $E F^{2}-B C^{2}$,

$$
\text { or } m+n: m:: A D^{2}-B C^{2}: E F^{2}-B C^{2}
$$

$$
\begin{equation*}
\text { whence } E F=\left\{\frac{m \times A D^{2}+n \times B C^{2}}{m+n}\right\}^{3 / 2} \tag{a}
\end{equation*}
$$

Supposing $B H$ to be parallel to $C D$, the triangles $A B H$ and $E B G$ give $A B: A H:: E B: E G$,

$$
\text { or } A B: A D-B C:: E B: E F-B C .
$$

$$
\text { Whence, } E B=\frac{A B(E F-B C)}{A D-B C}
$$

Thus, first finding $E B$ by formula (a), we can then find $E B$ by formula (b), and measuring that distance from B, we may run $E F$ parallel to $B C$, dividing the trapezoid as required.

Similarly, a trapezoid may be divided in three or more parts having a given ratio. Indeed, the above formulas may be directly applied to that purpose by making a simple substitution.

Cor--To part off a trapezoid of given area a, adjoining $B C$, we obtain from formula (a)

$$
E H=\left\{\frac{a \times A D^{2}+(\operatorname{area} A B C D-\alpha) B C^{2}}{\text { area } A B C D}\right\}^{1 / 2}
$$

The distance $B E$ is then found from formula (b).
Examples.-1. Given a trapezoidal field $A B C D$ in which $A B$ is an east and west line, 9 ch., $B C$ a north and south line, 5.19 ch , and $A D$ a north and south line, 8 ch ., it is required to run a north and south line dividing the field so that the parts on $B C$ and $A D$ shall have the ratio of 2 to 3 .
2. Find the measurement from A to part off from the above field by a north and south line an area of 3 A . adjoining $A D$.

Case 3.-By lines perpendicular to the bases

Solution.-Let $A B C D$ be a trapezoid to be divided into parts in the ratio of m to n by a line perpendicular to $A D$.
Let $E F$ be the line joining the middle points of the non-parallel sides $A B$ and $C D$. We divide $E F$, as at G, into two parts having the ratio of m to n, and through G run $H I$ perpendicular to $A D$.

To find the point G on the ground, we have the formula $E G=\frac{m(B C+A D)}{2(m+n)}$. Whence, measuring from E the distance $E G$ on the bearing of $B C$, we have the point sought.

Cor.-To part off a given area a, by a line perpendicular to the bases, we have $E G=\frac{a(B C+A D)}{2 \times \text { area } A B C D}$,

Or, denoting the altitude of the trapezoid by h, we have $E G=\frac{a}{h}=\frac{a}{A B \times \sin A}$.

The point I or H may be found by the formula $A I=E G+A E \times \cos A$, or $B H=E G-E B \times \cos A$.

Examples.-1. Given $A D$, E. 20 ch., $A B$, N. 15° E., 9.50 ch ., and $B C, \mathrm{E} .12 \mathrm{ch}$., required the measurement for dividing the field by a perpendicular to $A D$ into two parts having the ratio of m to n.
2. Required the measurement for parting off from the above field, by a perpendicular to $A D$, an area of 4 A . adjoining $A B$.
21. Prob. 3.-To dicide a trapeziuin into parts having a given ratio.

Case 1.-By lines from an angle.

Solution.-Let $A B C D$ be a trapezium to be divided into two parts having the ratio of m

Fig. 59. to n, by a line from C.

We draw $A C$, and from B draw a line parallel to $A C$, meeting $7 A$ produced at E. We then divide $E D$, as at F, into the parts $E F$ and $F D$, having the ratio of m to n. The line $C F$ divides the trapezium as required. That is, $A B C F: F C D:: m: n$, or $A B C F: A B C D:: m: m+n$.

SCH.-The above solution is readily executed on the ground.
In a similar manner a trapezium may be divided into any number of parts having a given ratio.

The point F may be otherwise found as follows:
The triangle $D C F=\frac{n \times A B C D}{m+n}$,

$$
\text { and again, } D C F=\frac{D C \times \sin D \times D F}{2}
$$

$$
2 n \times A B C D
$$

Whence, $D F=\frac{}{D C(m+n) \sin D}$.

Cor.-To part off a triangle, as $D C F$, of given area α, $2 a$
we have $D F=\frac{}{D C \times \sin D}$.
Examples.-1. Given $A B$, N. 8° W., 7.60 ch., $B C$ N. $76 \frac{1}{2}^{\circ}$ E., $10.21 \mathrm{ch} ., C D, \mathrm{~S} ., 11.40 \mathrm{ch}$., and $D A$, N. $80^{1^{\circ}} \mathrm{W}$. 9.00 ch . Required the measurement ior locating a line $C F$ which shall divide $A B C D$ into the parts $A B C F$ and $F C D$, to each other, respectively, as 2 to 3.
2. Required the measurement for parting off from the above field a triangle $D C F$ of 1.6 A .

Case 2.-By lines parallel to a side.
Solution.-Let it be required to divide a trapezium, as $A B C D$, by a line, as $E F$, parallel

Fig. 60. to $A D$, into two parts, $E B C F$ and $A E F D$, to each other as m to n.

Suppose the sides includiug the parallel to be produced to meet at O. The triangle $B O C$ may be regarded as known. Call its area
a. The trapezium $E B C F$ is known as to area, being $m \times A B C D$
$\xrightarrow{ }$. Call this area b.
$n+n$
The area of the triangle $A O D$ is known. Call it c. Its side $A O$ is also known.

Now, (Art. 19, Prob. 1, Case 2), $O E=A O\left\{\frac{(a+b)}{c}\right\}^{1 / 2}$
Whence, $B E=O E-O B$.
Measure this distance and run $E F$ parallel to $A D$.
Another procedure is to draw $B I$ parailel to $A D$, forming the triangle $B C I$, whose area and side $B I$ may be found; whence the ratio of the trapezoid $E B I F$ to the trapezoid $A B I D$ is obtainable, and accordingly the distance $B E$. *

Sch.-The problem of parting off a given area from a trapezium by a line parallel to a side, is essentially the same as the above.

Examples.-1. The field being as given in Ex. 1, Case 1, it is required to find the measurement for locating a parallel to $B C$ that shall divide the field into two parts in the ratio of 3 to 4 .
2. Find the measurement required to part off from the same field an area of 4.5 A ., by a line parallel to $B C$.
22. Prob. 4. Two men own land situated between a

Fig. 61. road $X I^{\prime}$ and a line $Y Y^{\prime}$, and divided by a line $B A^{\prime}$.

It is required to run a line $A B^{\prime}$, at right angles with the road, which shall part off areas of equalvaluefrom the two portions.

Solution.-Let I^{\prime} be the triangle $A O B$, and $I^{\prime \prime}$ the triangle $A^{\prime} O B^{\prime}$.

Let $v=$ value per acre of T, and $v^{\prime}=$ value per acre of T^{\prime}.

Let angle $O B A=B$, and angle $O A^{\prime} B^{\prime}=A^{\prime}$ be known; and let $A B=x, B A^{\prime}=c$, and $B O=z$.

We shall then have

$$
\begin{equation*}
\operatorname{area} T=\frac{z^{2} \sin B \cos B}{2} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\text { and area } T^{\prime}=\frac{(c-z)^{2} \sin A^{\prime} \cos B}{2 \cos \left(A^{\prime}-B\right)} \tag{2}
\end{equation*}
$$

By conditions of the problem, $T v=T^{\prime} v^{\prime}$.
Whence, $T: T^{\prime}:: v^{\prime}: v$. Let the ratio $v^{\prime}: v=r$.
Then $T^{\prime}=T^{\prime} r$. Whence, from (1) and (2),
$\frac{z^{2}}{(c-z)^{2}}=\frac{r \sin A^{\prime}}{\sin B \cos \left(A^{\prime}-B\right)}$

$$
\text { or } \frac{z}{c-z}=\left\{\frac{r \sin A^{\prime}}{\sin B \cos \left(A^{\prime}-B\right)}\right\}^{3 / 2}=n
$$

Whence, $z=\frac{c n}{n+1}$, and $x=z \cos A=\frac{c n \cos B}{n+1}$.
23. Many problems which the surveyor meets with may be readily solved by trial lines and successive approximations. A line is run or assumed to meet the required conditions as nearly as can be judged. The area parted off by the line is computed and the amount of error found. A new line is assumed to correct the error, and thus successive approximations to the true line are made until the error disappears. If good judgment is used, it is sometimes the quickest and easiest method to solve the problem.

Example.-The northwest quarter of Section 30 is divided by an angling road. The owner wishes it laid off into five acre lote, commencing at the south end, the lot lines to be parallel with the quarter line, and running from the center of the road west to the section line. Required the number of lots, the area of the fractional lot, if any, at the north end, and the dimensions of the several lots. The total dimensions are given on the figure.

Fig. 62.

Solution, (First Lot). Length of south line, 7.65 ch. If the lot were a rectangle of 9.00 chains base, the perpendicular $a c$ would 50.0000 be $\frac{0.00}{9.00}=5.555+$ chains . Assume that $a c=5.60$, to find $c d$. The line $b x$ diverges from $a y$ at the rate 23.38-7.65 of $-\mathbf{~ o r ~} .39325 \mathrm{ch}$. 40.00
per chain. Then $c d=$ $7.65+(560 \times .39325)=9.852$ chains. Area abcd= $9.852+7.65$

2
4.900056 acres. This is too small hy .1 acre, which must be added.

For the next approximation we observe that the addition of 1 link along the line $c d$ adds nearly .01 A . to the area. So we will add 10 links for the trial. $5.60+.10=$ 5.70 , and $5.70 \times .39325=2.2415=$ divergence of lines. $2.2415+7.65+7.65$

2

still a trifle short, but in ordinary surveying would be sufficiently correct.

To find the remaining side of the lot, $b d$, we have a right triangle, with a base equal to $a c$ and perpendicular equal to $c d-a b$.

The method is now sufficiently described so that the student may finish the computations and make a plat of the example.

Field Notes.-Nearly every surveyor has a method of his own for keeping the field notes of his surveys. For general purposes probably no better plan has been devised than that employed in the United States land surveys. This method gives, in a condensed narrative form, each item in the survey, in the order in which it was executed, and affords opportunity for explaining all the details as fully as may be necessary.

It is a common fault among surveyors to condense their notes into the least possible space by omitting many things of importance and by the use of arbitrary signs, which may or may not be understood by any one else who may have nced to refer to them. The notes are thus deprived of much of their value, and in case it were desired to use them as evidence in the courts, they might be excluded altogether.

The field notes should be full and explicit, and, especially in re-surveys, should state in plain, concise words every material fact in regard to the work done. Starting points should be described and identified; the direction of lines, how determined, whether from the true meridian, the magnetic meridian, or from an arbitrary meridian
adopted for the line, should be shown. It is not enough to say that the survey started from a certain corner. That may be disputed, and the notes should give the evidence by which it is known to be the corner. Tell what was found to mark the corner. If a bearing tree of a former survey is found, give its direction and distance from the corner. Make everything so clear and plain that the average citizen can understand it and judge of the trustworthiness of the survey. The following is a sample of the field notes of the United States survey. It is an extract from the
FIELD NOTES
of the survey of the

SUBDIVISION AND MEANDER LINES

or

Township No. 6 North, Range No. 34 East

> OF THE

PRINCIPAL BASE AND MERIDIAN

or.

MONTANA TERRITORY,
as surveyed by
Walter W. de Lacy,
U. S. Deputy Surveyor,

Under his Contract, No. 87,
Dated July 3, 1830
T. 6 N., R. 34 E.

Chains.

Preliminary to commencing this survey, I ran west on a blank line on the south boundary of Sec. 36 , and at 39.97 chs . found the $1 / 4$ sec. cor. and at 80.01 chs. found the sec. cor. As the east boundary of Sec. 31 crosses the Yellowstone River it was not rerun. My compass will therefore run the same line as the exterior boundaries, and the chaining practically agrees.

Survey commenced August 6th, 1879, with a Burt's improved solar compass.

I commenced at the cor. to Secs. $1,2,35$, and 36 , on the south boundary, which is a sandstone $30 \times 8 \times 21 / 2 \mathrm{ins}$. firmly set in the ground, with one notch on E. and 5 notches on W. edges, and pits $18 \times 18 \times 12 \mathrm{ins}$. in each sec. $5^{1 / 2} \mathrm{ft}$. dist. with mound of earth 2 ft . high, $41 / 2 \mathrm{ft}$. base alongside. Thence I run North bet. Secs. 35 and 36 . Va. $18^{\circ} 30^{\prime} \mathrm{E}$.
Enter scattering timber. Alexander's house bears N. $31^{\circ} \mathrm{W}$.
Leave scattering timber.
Set a post 3 ft . long, 3 ins. square, with marked stone, 12 ins. in the ground, for $1 / 4$ sec. cor., marked $1 / 4$ S. on W. side, dug pits $18 \times 18 \times 12$ ins. N. and S . of post $51 / 2 \mathrm{ft}$. dist 2 , and raised a mound of earth $11 / 2 \mathrm{ft}$. high, $31 / 2 \mathrm{ft}$. base, around post.
Alexander's house bears S. $533^{\circ}{ }^{\circ} \mathrm{W}$.
Enter brush.
Right bank of the Yellowstone River. Set a post 4 ft . long, 4 ins. square, with marked stone, 12 ins. in the ground, for meander cor. to fractional secs. 35 and 36 , marked M. C., and
T. 6 N . on S .,
R. 34 E.S. S. 36 on E., and
S. 35 on W faces, dug pit 3 ft . square, 12 ins . deep, 8 lks . S. of post, and raised mound of earth 2 ft . high, $41 / 2$ ft. base, around post.
There being an island on line on N. side of channel, I send a flag across, and set it on line bet. secs. 35 and 36 , on bar S. of island. I then go across to flag and run a base line W. 11.14 chs., to a point from which meander cor. on right bank bears $\mathrm{S} .37^{\circ} 50^{\circ}$ E., which gives for distance across the river to edge of bar 14.34 chs. I then run north from flag 66 lks . to south bank of island, making the whole distance $53.82+$ $14.34+0.66 \mathrm{chs} .$, or
To south bank of island, which point I established by setting a post 4 ft . long, 4 ins. square, with marked stone, 12 ins. in the ground, for meander cor. to fractional secs. 35 and 36 on S. bank of island, marked M. C., and
T. 6 N . on N.,
R. 34 E. S. 36 on E., and
S. 35 on W. faces, dug pit 3 ft . square, 12 ins . deep, 8 lks .

N . of post, and raised a mound of earth 2 ft . high, $41 / 2 \mathrm{ft}$. base, around post.
Thence continue on line across island, enter brush.
Leave brush, enter timber.
Set a post 4 ft . long, 4 ins. square, with marked stone, 12 ins. in the ground, for cor. to secs. $25,26,35$, and 36 , marked
T. 6 N.S. 25 on N. E.,
R. 34 E. S. 36 on S. E.,
S. 35 on S. W., and
S. 26 on N. W. faces, with 1 notch on S. and E. edges, from which
A cottonwood, 12 ins , diam., bears N. 1234° E., 180 lks . dist., marked T. 6 N., R. 34 E., S. 25 B. T.
A cottonwood, 18 ins. diam., bears S. 82° E., 154 lks . dist., marked T. 6 N, R. 34 E., S. 36 B. T.
A cottonwood, 10 ins. diam., bears $\mathrm{S}_{.} 291 / 2^{\circ} \mathrm{W}$., 56 lks . dist., marked T. 6 N., R. 34 E., S. 35 B. T.
A cottonwood, 10 ins. diam., bears N. $46^{1 / 2}{ }^{\circ}$ W., 119 lks . dist., marked T. 6 N., R. 34 E., S. 26 B. T.
Land, level.
Soil, rich loam-1st rate.
Timber. cottonwood and willow, undergrowth same, 12.30 ch .

The following is a sample of Field Notes of a Resurvey, kept upon the same plan:

Survey on Section 14, Township 2 South Range 10 West, For J. R. Comings and H. Rowland.
May 22, 1874.

S. F. Kingsley, \} Chainmen.
 S. Comings, Flagrnan.

Commenced at the S. E. corner of Section 14. Found a piece of strap railroad iron driven for the corner, which Hugh Shafter says he knows to have been kept in the same place, unquestioned, as the corner for over 30 years. Marked

Chains.
40.00
80.24
40.12
60.18

I set up a tall flag on the corner and then ran west on random Va. $2^{\circ} 10^{\prime}$ E., setting temporary stakes every 10 chains in line. Quarter section corner lost.
Intersected the west line of Sec. 14, 42 links south of the corner. Found rotten stake at correct point, N. 26° E., 104 lks . from stump of wh. oak 24 in . diam., bearing tree of U. S. Survey, having surveyor's mark distinct on it. Set a piece of steel T rail 28 inches long for corner. Marked
locust, 16 in . diam., S. 28° W., 116 lks. distant, burr oak, 18 " "N. 78° E., 152
Ian thence east on corrected line at single sight witl transit, from corner to corner. Va. $2033^{\prime} \mathrm{E}$. $\quad 10: 30 \mathrm{~A} . \mathrm{M}$.
Found cedar stake 3 feet below surface of road crossing and $21 / 2$ links south of line. No other evidence of corner to be found. Put a piece of Trail 24 inches long on top of the stake for quar. sec. cor., 55 links south of south rail of M. C. R. R. No tree near.
Planted granite boulder 20x12x6 inches, with cross + mark, for $1 / 2$ quarter corner, in true line between qr. post and section corner and marked
maple, 12 in diam., S. $16^{\circ} \mathrm{E} ., 55 \mathrm{lks}$ distant, burr oak, 16 " "N. 54^{3} E., 118

In some surveys, such as laying out additions to cities or villages, or any similar work, it is better to make a rough sketch or plat of the work in the field bock and mark the dimensions and directions of lines on the plat. Field bocks which are ruled in small cross sections are best adapted to this use.

Abbreviations. - Where the work of the land surveyor consists in re-surveys and sub-dividing sections of the United States Surveys, the field notes may be made more concise and liability of error reduced by always using a deflnite symbol to refer to each corner ofthe section or sub-division. The symbols should be simple and adopted upon some system by which
they may be easily remembered and located in tho mind.

The system shown in the figure has been used many years by surveyors in Michigan and found sat.
 isfactory.

All the corners lying in the exterior lines of the section are numbered in a definite order of rotation in accordance with their relative importance. Letters are used for the interior corners, the first letters being used for the corners lying in the quarter lines and the others for the centers of the quarter sections.

The following is a sample of the manner of using the symbols in keeping notes upon the U. S. System when sub-dividing a section.

Began at 7. Found stake in place and both bearing trees standing. Planted stone $25^{\prime \prime} \times 8^{\prime \prime} \times 6^{\prime \prime}$ marked + for corner. Thence north on random. Var. $2^{\circ} 30^{\prime} \mathrm{E}$, setting temporary stakes every 10 chains
At 5 found rotten stake at correct point, S. $28^{\circ} \mathrm{W} .661 \mathrm{ks}$ from stump of W. Oak bearing tree of U.S. Survey.
Drove stake for corner and put broken earthenware and glass around it and marked

Wh. Oak $12^{\prime \prime} \mathrm{d}$; N. 66° E. 42 lks.
Wh. Oak 18 N. 34 W. 63 lks .
From 5 ran east on random, setting temporary stakes every 10 chains.
Intersected Sec. line 12 ks . North of 2. Found earthen post in correct position and bearing trees of resurvey standing. Thence West on corrected line.
Set stake on true line.
At 10 set stake with stones around it and marked
Pine $12 \mathrm{~N} .46^{\circ} \mathrm{W} .79 \mathrm{ks}$. dist.
Red Oak $24 \mathrm{~S} .192^{\circ} \mathrm{W} .72$ dist.
Set stake on true line.
From 10 ran south on random Var. $2^{\circ} 19^{\prime} \mathrm{E}$. and set temporary
stakes at 20 and 40 chains.
Then went to 6 . Found post and bearing trees of resurvey standing. Ran thence West on random Var. $2^{\circ} 20^{\prime} \mathrm{E}$.
Intersected random from North 6 links South of temp. stake.
Intersected random $1 / 4$ line 8 links North of temp. stake.
Int. Sec. line 10 links South of 8 . Corner post dug out in road. Set iron plow beam for corner S. 29 W. 76 lks . from bearing tree of U. S. Survey.
Thence East Corrected line.
At intersection of quarter lines set post.

The following method of abridging fleld notes is used by the land department of the United States. The plat of a township is lettered and numbered as shown in the diagram. Corners in the township boundary are

referred to by letter; e. g., B or k. Interior section corners are referred to by the numbers of the sections; e. g., corner of $9,10,15$, and 16. Interior quarter section corners are referred to by their position on the lines, e. g., K to W at 3 or R to C at 6 . The descriptions of corners thus referred to are writtenout in the margins of the plats, while all other matter contained in the field notes is, as far as possible marked on the plats themselves. The letters along the margin of the diagram are arranged the same as in Plate III, Instructions of 1902. A different arrangement has been used commencing in the upper left hand corner and passing around the plat in the opposite direction.

CHAPTER VII.

CURVELINEAR SURVEYING.

1. As land surveyors have occasion in laying out streets in villages, parks, cemeteries, race courses, drains, etc., sometimes to make use of curved lines, it has been deemed proper to include in this work a short discussion of the manner of locating the simpler curves, and add such tables as are needed for this use. For a more complete exposition of the subject, consult the field books of Henck, Trautwine, Shunk, or Searles.
The curve most commonly used is the circular curve, simple or compound.
The simple circular curve, as its name indicates, is a circle or an arc. When an arc is used to connect two straight lines, these lines, from their relation to the circle, are termed tangents.
The compound circular curve is a combination of ares having different radii. At the point of junction of any two of these ares their radii lie in the same straight line.
Of the several geometrical propositions on which the theory of running curved lines depends, it will not be necessary for our purpose to recall more than the following

PRELIMINARY PROPOSITIONS.

1. If a circle be drawn touching each of two intersecting lines at but a single point, then the exterior angle made by the intersection of these lines is equal to the angle at the center of the circle which is measured by the arc intercepted by the two lines at their points of tangency.
2. The angle which either line makes with the chord of the intercepted arc equals one-half the angle at the centre of the circle which is subtended by that chord.

In Fig. $63 C E$ and $T I$ represent the two lines tangent to the circle at C and Y, and intersecting at 7 . The angle $F T T=C O$ 虫, and the angle $\mathrm{RCT}=$ $1 / 2$ COT.

The angle EIT IS called the deflection angle, and the angle $F C T$ the tangential angle.
Fig. 63.
Curves are named from the angle which is subtended by a chord 100 feet long. Thus, if the 100 foot chord subtends an angle of 1 degree, the curve is spoken of as a 1° curve; if of 5°, as a 5° curve, and so on. Tables have been prepared giving the various functions of a 1° curve, which are of great assistance in running curved lines, saving nearly all the trouble of calculation. The foot is taken as the primary unit of these tables and is most commonly used, but any other unit using the decimal notation, as a link or metre, is just as readily applied.

Curves are run on the ground by successive deflections of chords. The amount of each deflection may be measured on the ground with the tape or turned off on the transit.
2. To run a Curve with Pickets and Tape. -First, determine the radius of the curve and the length of chord to be used. The latter is usually 100 . From these data the amount of deflection for each chord is determined as follows:
chord ${ }^{2}$
Defl. dist. $=\overline{\text { radius }}$
Tangential d.st. $=1 / 2$ defl. dist.

Example 1.-Let $a b$ be the straight line or tangent which is to be continued from b by a curve having a radius of 1,433 feet, using chords of 100 feet.

Extend the line $a b$ to c, making $b c=\sqrt{b d^{2}-c d^{2}}$. Extend the chord $b d$ to e, making $d e=b d=d f$. Extend the chord $d f$ in a similar manner. $c b d$ is the tangential angle, and $c d$ the amount of the deflection to be measured from the tangent to find the line of the curve. edff is the deflection angle, and ef is the amount of deflection to be measured off from the extension of the chord $b d$ to find the line of the curve.

To find the distance ef.-The triangles edf and dof being similar, ef $: d f:: d f \cdot d o . \quad \therefore e f=\frac{d f^{2}}{d o}=\frac{100^{2}}{1433}$ $=6.98$ nearly. The tangential deflection being one-half the chord deflection, $c d=1 / 2 e f=3.49$. The triangle $b c d$ is right-angled at c, hence $b c=\sqrt{b d^{2}-c d^{2}}=\sqrt{100^{2}-3.49^{2}}$ $=99.94$. The difference between $b c$ and $b d$ is so small that in all curves of large radius it may be neglected on the ground and $b c$ be measured off $=b d$.

These lines may be run with pickets, the chords measured with the tape, and the deflections when not too large measured off by a graduated rod or a rod cut to the exact length.

Example 2.-Lay off on the ground a curve having a radius of 2,640 feet, using chords of 50 feet.

Ex. 3-Lay off a curve having a radius of 819 feet and chord of 50 feet.

Ex. 4.-Lay off a curve with radius 2,865 feet, chord 100 feet.

Ex. 5.-Lay off a curve with radius 1,910 , chord 100.
$E x .6$.-Lay off a curve with radius 882 , chord 50 -
Ex.7.-Lay off a curve with radius 1,042 , chord 190.
3. Keeping the Field Notes of Transit Lines.-The field notes of transit work where long lines are being run, as for railroads, drains, etc., are usually kept in a different manner from those of other surveys. The notes proper are kept on the left-hand page of the field book. The opposite page is used for explanatory matter, sketches of topography along the line, such as road and stream crossings and obstacles in line, in greater or less minuteness of detail according to circumstances. The line is marked by stakes driven at regular intervals, usually 100 feet or 100 links, and numbered from 0 upwards. The corresponding numbers are kept on the lefthand column of the note book, commencing at the bottom of the page and running upwards.

If the topography is sketched on the right-hand page, the number of every stake is put down in its regular order, and the ruling of the book forms a scale by which the sketches are made. A book ruled in cross-sections is very convenient for this work. If the topography is not taken, the important stations are noted down and the intermediates are omitted. The following abbreviations are used: P.I., point of intersection; P. C., point of curve, or point where the curve begins; P. C. C., point of compound curve; P. R. C., point of reverse curve; P. T., point tangent, or point where the curve ends; T. P., turning point, indicating where the transit was set up, also indicated by O or \triangle.
The direction of the tangents is kept as shown by the magnetic needle. This serves as a check on the angles of deflection, and assists in locating errors.

SPECIMEN OF ABRIDGED NOTES.

4. To Run a Curve with the Transit.-The transit is set up on the point in the tangent from which the curve is to commence. The limb is clamped with the verniers at zero, the telescope ranged along the line of the tangent, and the instrument clamped in that position. The tangential angle, $=1 / 2$ the deflection angle, is then turned off on the limb. The leading chain-man draws out the chain or tape in the desired direction, and when out at full length, places his rod in line as directed by the signals of the transit-man. He then carefully measures the length of the chord, marking the distance with his rod, which is then aligned the second time. A stake is driven to mark the point, and the chain-men go ahead and measure the second chord, being aligned by the transit-man as before, and thus continue as far as necessary or convenient. The transit-man turns off equal
angles on the transit for each successive chord as it is measured. At the end of the last chord which is run from any one setting of the transit, a short stake is driven firmly into the ground and a tack driven in the top of the stake, to mark the exact point. If the curve is to be continued, the transit is moved up to this point, and with the limb clamped as it was used at the last observation, the telescope is ranged back to the point from which the observation was taken, and the instrument clamped in that position. As the angles have all been turned off from a point in the circumference of the circle, they are only half as great as the angle at the center subtended by the same chords. Hence the transitman now unclamps the limb and turns off as much more angle as he had previously laid off. This gives him a new line, tangent to the curve, from which he may continue to lay off chords as before.

Some transit men, instead of doubling the angle after the back-sight is taken, turn off an equal amount in the opposite direction on the limb before taking the backsight. Then, after getting the back-sight, the verniers are brought to zero on the limb, when the telescope will give the line of the new tangent, as before.

Curves are usually run to connect two straight lines which have been previously located. In such a case, preliminary to running the curve, it is necessary to find-

1st. The deflection angle between the lines.
2 nd. The radius of the curve to be used.
3d. The P. C. and P. T.
4th. The length of the curve.
The manner of procedure in such a case is indicated in the following:

Example 1.-To join two straight lines having a deflection angle of $48^{\circ} 16^{\prime}$, by a curve the iniddle puint (f) of which shall be at a distance of 112 feet from the point of intersection.

Assume that the line $a b r$ has been marked with stakes 100 feet apart, and that the point of intersection is found to be at stake No. 116, +43.7 ; in other words, that the P. I. is 43.7 feet beyond stake No. 116 .

Fig. 65.
The transit is set up over the point of intersection, the verniers clamped at zero, the telescope reversed and ranged along the line $a b$, and the instrument clamped in that position. The telescope is then righted, the appar clamp loosened, the telescope turned and the limb again clamped with the telescope pointing along the line $c d e$, and the angle read $=48^{\circ} 16^{\prime}$. Before proceeding further, it is necessary to determine the degree of curve to be used. By the conditions of the example, the middle point of the curve is to be 112 feet from the P. I. Turning to the table of functions of a 1° curve, we find its external secant, $c f$, to be 548.8 feet for an angle of $48^{\circ} 16^{\prime}$. 548.8

Dividing this by 112 , we find $-\frac{112}{}=4.9$, or $4^{\circ} 54^{\prime}$, to be 112
the degree of curvature to be used. Next we find the distance $b c=c d$, which is to be measured along the lines to find the beginning and end of the curve, the P. C. and P. T. Referring again to our table, we find that the tangent of a 1° degree curve for a deflection of $48^{\circ} 16^{\prime}$ is 25567.1 , which divided by 4.9 , the degree of curvature, gives 523.9.

We now measure from the P.I. 523.9 feet along the line cde, and set a hub and drive a tack in it for the P.T. In a similar manner we next locate the beginning of the curve, which, subtracting $5+23.9$ from $116+43.7$, we find to be at Station 111, +19.8 . If the ground be clear and open,
so that the whole curve may be seen at once, the transit may now be set up on the P. T., and the whole curve and as much of the next tangent $d e$ as desired run at one setting of the instrument, at the same time avoiding most of the errors usually made in running the curve from the P. C. If this cannot be done, the transit is set up at the P. C. with verniers at zero and a foresight on the P. I., or back-sight to some point along the line $a b$. The P. C. being at Sta. 111, +19.8 , the first deflection will be for the partial chord found by subtracting 19.8 from $100=80.2$, or 802 of the full deflection. The tangential deflection for a full chord being $2^{\circ} 27^{\prime}$, for the partial chord would be .802 of $2^{\circ} 27^{\prime}=1^{\circ} 58^{\prime}$ for the first deflection. For each subsequent full chord $2^{\circ} 27^{\prime}$ additional is turned off on the transit as far as the line can be seen. Say that the line cannot be seen farther than Sta. 116; the several deflections up to that point would be, for Sta. 112, $1^{\circ} 58^{\prime}$; Sta. $113,4^{\circ} 25^{\prime} ;$ Sta. 114, $6^{\circ} 52^{\prime}$; Sta. 115, 9° 19'; Sta. $116,11^{\circ} 46^{\prime}$. A hub and tack are driven at Sta. 116, and the transit moved up to that point or, what is better, to the P.T., if the station is visible from there. If the transit is set up at Sta. 116, the back-sight is taken on the P. C., with the limb clamped at $11^{\circ} 46^{\prime}$, as at the last observation. The telescope is then righted, and an additional $11^{\circ} 46$ ' turned off for the new tangent, from which the subsequent deflections are turned off. For Station 117 the deflection would be $11^{\circ} 46^{\prime}+11^{\circ} 46^{\prime}+2^{\circ} 27^{\prime}=$ $25^{\circ} 59^{\prime}$; for Sta. $118,28^{\circ} 26^{\prime}$; for Sta. $119,30^{\circ} 53^{\prime}$; for Sta. $120,33^{\circ} 20^{\prime}$; for Sta. $121,35^{\circ} 47^{\prime}$.
Before passing this point, we must know the length of the curve. As there are $48^{\circ} 16^{\prime}$ total deflection, and each chord cuts off $4^{\circ} 54^{\prime}$ of it, it is evident there are as many 100 foot chords as $4^{\circ} 54^{\prime}$ is contained in $48^{\circ} 16^{\prime}$. Reducing 48.266
the minutes to decimals and dividing, we have $-\frac{19}{49}=$ 4.9
9.85 chords for the length of the curve. This added to $111+19.8$ gives us $121+04.8$ for the end of the curve, and 04.8 feet for the last partial chord. We find the
deflection for this distance to be $.07^{\prime}$, giving for the last deflection $35^{\circ} 47^{\prime}-07^{\prime}=35^{\circ} 54^{\prime}$.

The work should now prove itself, by coming out at the stake which was previously set for the end of the curve, and we may further test it by setting the transit up at the P. T., back-sight to Sta. 116, with the instrument clamped at $35^{\circ} 54^{\prime}$, as last used. Unclamp the limb and turn off as much more as has been turned from Sta. 116, $35^{\circ} 54^{\prime}-23^{\circ} 32^{\prime}=12^{\circ} 22^{\prime}$, which added to $35^{\circ} 54^{\prime}=48^{\circ} 16^{\prime}$, the total deflection. If the work has been accurately performed, a back-sight through the telescope should strike the P.I. It is very seldom that curves run in this way will come out just right, hence it is better to never set up the transit at points in the curve between the P.C. and P. T. when it can readily be avoided. Still it is the ordinary and sometimes the only way the curves can be run.

Let the student make the necessary calculations to locate curves from the following data:
$E x$. 2.-Total deflection, $26^{\circ} 50^{\prime}$. External ($c f$, Fig. 65), 120.87 feet. P. C. at Sta. $112,+40$. Transit moved every 550 feet.

Ex. 3.-Total deflection, $35^{\circ} 15^{\prime}$. External, 126.2 feet. P. I. ąt Sta. 262, + 07.3. T. P. at Sta. 263.

Ex. 4.-Total deflection, $18^{\circ} 36^{\prime}$. Curve, $1^{\circ} 2^{\prime}$, P. I. at $96,+42.6$. T. P. at Sta. 93 and 100 .

The starting point of a curve is sometimes so situated that it is not convenient to set up the transit at that point, or to run the line from it if it were, as in streams, gullies, etc., and it then becomes convenient to set up the transit first at some intermediate point in the curve which has to be found.
5. To Locate a Curve from the Middle Point.-Set the transit up at the P. I. Bisect the interior angle $b c d$ (Fig. 65). Find the external of of the desired curve and measure it off on the line of bisection, This gives the middle point of the curve. The transit is then set up at this point and a back-sight taken either on the P. C. or P. I., and the curve run in. Let the student make the necessary calculations and give the various
deflections which would be used on the transit to locate from the middle point the curve required in Ex. 1, Fig. 133, the first back-sight to be taken from the P. C. Give the same, the back-sight being taken from the P.I. Also, solve the following curves, to be run from the middle points, back-sights from P. C., also from P. I.:
Examples.-1. Total deflection, $16^{\circ} 24^{\prime}$. Curve, $1^{\circ} 32^{\prime}$. P. I. at $96,+27$.
2. Total deflection, $26^{\circ} 18^{\prime}$. Curve, $2^{2} 24^{\prime}$. P. I. at 13 , +62.7 .
3. Total deflection, $30^{\circ} 40^{\prime}$. Curve, $3^{\circ} 16^{\prime}$. P. I. at 97 , +62.6 .
It is sometimes convenient, from various reasons-
6. To Locate the Curve with the Transit at some other Intermediate Point on the Curve than the middle. Such points may be located by ordinates from the tangent. This is usually done to avoid obstacles in the line of the curve. To find approximately on the ground at what point the transit may be set up, the following formula may be used:
Let $x=$ length of the ordinate,
$d=$ distance along the tangent from the P. C.,
$t=$ nat. tangent of $1 / 2$ the deflection angle of the curve,
Then $x=d^{2} t$.
Example.-To find whether the transit can be set up at a point on a 4° curve opposite a point on the tangent $4 C 0$ feet from the P. C.
$t=$ nat. tang., $2^{\circ}=03.5 . \quad d^{2}=16 . \quad \therefore x=56 . \quad$ A measure of 56 feet from the tangent will show whether the transit can be set up at this point or not.

It will be fonnd the most convenient in running the curve to select the point at a regular station at the end of a full chord, which may be located as follows:
Example 1.-Total deflection, $48^{\circ} 48^{\prime}$. P. I. at $62,+36$. Curve, 4°. To find the 4th full station on the line of the curve, and locate the remainder of the curve from that point.

Fig. 66.

First find the number of the station at the P. C. $b e=$ tangt. of 1° 2599.2 $\div 4=\frac{200.2}{4}=649.8$ or $6+49.8$. This taken from $62+36=55+$ 86.2 , which is the number of the station at the P. C. From here to the 4th full station there is then a short chord of 13.8 feet and four full chords. The tangential angle $c b d$ is therefore $4.138 \times 2^{\circ}=8^{\circ} 16 \frac{1}{2} 2^{\prime}$; whence the deflection angle $=16^{\circ} 33^{\prime}$, the chord of which, $b d,=413.4$. In the right-angled triangle $b c d$, we now have the side $b d$ $=413.4$, and the angle $c b d=8^{\circ} 16 \frac{1}{2}$ ', to find the sides $b c$ and $c d$, from which we find that $b c=-409.1$ and $c d=58.5$. The point c may be found by measuring from the P. I. $649.8-409=240.7=e c$. Having thus located the point d, which is station 60 on the curve, the transit is set up at that point, with the vernier clamped at 90°, and a backsight taken to the point c. The upper clamp is then loosened and the limb brought to $16^{\circ} 33^{\prime}$, which gives the tangent from which the remainder of the curve is located.
Let the student calculate the following curves:
2. Total deflection, 36 ' 20 '. P. I. at $26,+44.6$. Curve, $2^{\circ} 30^{\circ}$, to be located from the 3rd full station on the curve.
3. Total deflection, $61^{\circ} 18^{\prime}$. P. I. at $42,+28.5$. Curve, $4^{\circ} 40^{\prime}$, to be located from 6th full station on the curve.
4. Total deflection, $42^{\circ} 50^{\prime}$. P. I. at $112,+72$. Curve, $3^{\circ} 18^{\prime}$, to be located from Station $114+50$ on the curve.
7. Short Curves.-When the deflections between the lines are but small, and it is not important that any particular degree of curvature be used, it will be found convenient to make the curve an even two or four stations in length. In case this is done, the curve may be marked out before the transit is moved from the P. I., after observing the deflection angle, and it will not be
necessary to set it up on the curve at all. The middle of the curve will be located by laying off the external secant as before directed. The P. C. and P. I. are also located as usual. If four stations are used, the intermediate stations may be determined from the P. I., the same as if the transit were at the P. C. or P. T., the error being so small that it may usually be neglected.
8. Passing Obstructions in the Line.-One method of doing this, by offset from the tangent, has already been sufficiently explained. Another method, which is very generally applicable, is by parallel offsets from the curve. An offset is made in any convenient direction far enough to pass the obstruction. The curve is continued from this point till the obstacle is passed, when the true line is regained by an inset equal to and parallel with the offset. If the lines are run in the manner indicated on page 82 , (3), this will be a very simple matter, as the telescope will always point in the same direction when the verniers mark the same point on the limb.

Fig. 67 illustrates this method of passing obstacles. $b c$ and $d e$ are equal and parallel.

Fig. 67.
9. Compound Curves, being a combination of simple curves, have their several components located in the same manner. They are usually run to fit the topography of the country through which they are laid, in order to get uniform gradients on street or railroad lines, or save labor and expense in construction.

- Having the several straight lines determined which are to form the tangents of the curve, it is only necessary to find the degrees of curvature of the several component curves, which are then located in the manner already described. Usually there will be found on the ground special reasons for selecting a particular radius for one of the component curves, which will thus dictate the radii of the rest.

Fig. 68.
Example 1.-Let $a c, c e, e g, g i$ and $i k$ represent tangents of the curve, and bcd, def, fgh and hik the angles of deflection.

Let $c e=1370, e g=1200, g i=1000$.
Let $b c \dot{d}=92^{\circ}$, def $=36^{\circ}, f g h=23^{\circ} 15^{\prime}$, and $h i k=$ $43^{\circ} 30^{\prime}$, the corresponding curves of which we will number $1,2,3$ and 4.

Let the tangents $c e$ and $e g$ be united by a 3^{\wedge} curve.
Required the radii or degrees of curvature of the remaining components of the curve, and the length of the curve.

SugGestions.-First find the tangent of a 3° curve for an angle of 36°. Tangent of 1° curve for $36^{\circ}=1861.8$; \therefore for 3° curve $=620.6$. This leaves $1370-620.6=749.4$, length of tangent of curve No. 1 . Tangent of 1° curve for $92^{\circ}=5933.2$, which divided by $749.4=7.917^{\circ}$ or $7^{\circ} 55^{\prime}$, the degree of curvature. Radius, 724.3. Length of curve 92
$=\frac{2}{7.917}=1162$ feet. We find the tangent of curve No. 3
by sulutracting the tangent of curve No. $2,620.6$, from the length of the line eg, $1200,=579.4$. The tangent of a 1° curve fur a deflection of $23^{\circ} 15^{\prime}$ we find from the table to lie 1178.8 , which divided by 579.4 gives the degree of curve to be used, $2.034^{\circ}=2^{\wedge} 02^{\prime}$. The calculations for the remainder of the curve are made in a similar manner.

It is customary in running long lines for drains, railways, etc., to run preliminary lines by angles, omitting the curves, till the location of the tangents is definitely determined. Stakes are set and numbered the same as on the final location. Both the staking and measuring are sometimes omitted, the lines being run as simple picket lines. In such case, when the final location is made, the line is staked out to the point of intersection of the tangents and afterward, as the curve is run in, the stakes between the P. C. and P.I. are taken up and moved to their proper place in the line of the curve.
Examples for solution.-1. Let the student calculate the curves and plat the line from the following notes of a preliminary angle line, making all the calculations that would be required in the field, and giving the corrected numbers of the stations at the several P. C.'s, P. T.'s, P. C. C.'s and P. R. C.'s:-

$\begin{aligned} & 176 \circ \\ & 165 \circ \end{aligned}$	P. I, Compound Curve. Angle right, 14°.
$163+20$ o	P. I. Reverse Curve. Angle right, 36°.
153 -	P. I. Reverse Curve. A ng'e left, $17^{\circ} \mathbf{2 6}$.
$144+26$ o	P. I. 2° Curve. Angle right, $16^{\circ} 30^{\circ}$
129 -	
118 -	
108 o	
$98+15$ 。	P. I. of Reverse Curve. Angle right, $53^{\circ} 122^{\prime}$.
$85+60$ o	P. I. Compound Curve. Angle left, 16°.
$76+48$ 。	P. I. Compound Curve. Angle left, $7^{\circ} 8^{\prime}$.
67 o	P. I. - Curve. Angle left, $12^{\circ} 23^{\prime}$.
58 o	
48 o	
41.	P. I. $2^{5} 16^{\prime}$ Curve. Angle right, 14°.
30 -	
210	P. I. 3° Curve. Angle left, $26^{\circ} 32^{\prime}$.
140	
00	N. $45^{\circ} \mathrm{E}$.

9. The following are notes of the north side of a street in Park Beidler. The measures are taken with a 66 foot tape of 100 links. The street is one chain wide. A tier of lots two chains deep is laid out on each side of the street. The lots are one chain wide on the street, and are marked by stakes set and numbered at regular intervals of one chain. The lines for the south side of the street and for the back ends of the two tiers of lots are to be run with the transit and tape. Required the details of these lines and the widths of lots at the back end, the lot lines being at iight angles with the street and on the radii of the curves.

48	Intersect west line of Dawn Street.	Course N. and S.	
45	P. T.		
40	P. R. C. 10° Curve right.		
36	P. C. C. 8° Curve left.		
32	P. C. C. 5° Curve left.		
26	P.C. 2° Curve left.		
24	P. T.		
21	P. C. C. 6° Curve right.		
18	P. R. C. 4° Curve right.		
12	P. C. C. 4° Curve left.		
$8+50$	P. R. C. 8° Curve left.		
$6+20$	P. C. C. $4^{\circ} 30^{\prime}$ Curve right.		
2	P. C. 3° Curve right.		
0	East at right angles with Sylvan St. Course N. and S.		

The following formula has been found very useful in solving many problems in the location of curves. Like the formula $x=d^{2} t$ in Art. 6 , it is designed to express *he length of an ordinate from the tangent to the curve:

Let $x=$ length of the ordinate,
$n=$ length of the curve in chords of 100 feet each, $d=$ degree of curvature.
Then $x=\frac{7}{8} n^{2} \partial$. Thus a 6° curve will have diverged from its tangent at the end of 500 feet, $\frac{7}{8} \times 5^{2} \times 6=131.25$ feet.

By making d equal the difference of the degree of curvature of two curves of different radii but having a common origin, x will be their divergence from each other
at the end of n stations. This formula is not mathematically exact, and therefore gives only approximate results, but it is sufficiently correct for all ordinary cases. It is easily remembered; it requires no tables; and with its aid, with such modifications as a little ingenuity will suggest, and a table of actual tangents for a 1° curve, the surveyor can solve almost any case that will ordinarily arise in the field. For example: Suppose a 5° curve to the right 8 stations long has been located, and its extremity falls 28 feet too far to the right to throw the tangent on the best ground. Making $x=28$, we obtain $d=\frac{1}{2}$, showing that a $4^{\circ} 30^{\prime}$ cutre starting from the same origin would pass through the required spot. Again: suppose that in this same case the new curve is to commence 200 feet back of the first one; then the required divergence from the tangent will be $\frac{7}{8} \times 8^{2} \times 5-23=252$. Substituting this value for x, and making $n=8+2$, we have $d=2.88=$ $2^{\circ} 53^{\prime}$ 。

CHAPTER VIII.

ORIGINAL SURVEYS.

1. In land surveying, the surveyor has two distinct classes of problems to deal with. In the first class, he is called upon
(a) To lay down upon the ground the corners and boundary lines of tracts of land of specified dimensions; and
(b) To find the areas of tracts which are already defined by natural or artificial boundaries.

In this class is included the original marking out upon the ground of the boundaries of every tract of land however great or small. Hence we call surveys of this nature Original Surveys.
2. When the boundaries have once been laid down upon the ground an i marked by persons having authority to do so, then the surveyor, who is afterward called upon, has a different class of problems to deal with. He then has
(a) To find the corner posts and monuments;
(b) To re-locate them when lost; and
(c) To retrace old boundary lines.

Surveys of this nature we shall call Resurveys.
3. Original Surveys include: First. The rectangular surveys of the United States, known as the government survey; similar surveys in Canada and other countries by government authority, and the subdivision of sections. Second. Surveys made by the proprietors in those regions where the government surveys do not extend, including in the United States the surveys of all
land not granted by the original states of the Union to the general government; and surveys for town plats, highways and like purposes.
4 United States Survey.-The territory embraced within the present States of Ohio, Indiana, Illinois, Michigan, Wisconsin, and Tennessee, that part of Minnesota lying east of the Mississippi River, and all of Alabama and Mississippi lying north of the thirty-first parallel, was held by Massachusetts, Connecticut, New York, Virginia, North Carolina, South Carolina, and Georgia, under grants from Great Britain, during their colonial condition. These territorial interests were surrendered to the General Government of the Union by the last named States at different times hereinafter set forth, and constituted the nuclens of our public domain with some reservations as to former grants, and was the remainder of the territory conceded to the United States under the definitive treaty of 1783 , and consisted of $401,955.91$ square miles, or $259,171,787$ acres. This was the public domain of the United States on April 30, 1803, the date of the Louisiana purchase, and for which the original survey and disposition laws were made.
The United States were recognized by the Crown in the definitive treaty of peace with Great Britain as "free sovereign and independent States, and that he treats with them as such, and for himself, his heirs, and successors relinquishes all claims to the government, proprietary and territorial rights of the same, and every part thereof."
The Government of the United States acquired as custodian for the Nation, lands known as the public domain as follows:

From States (colonies prior to July 4, 1776) ceded under the Confederation and under the Constitution.
This was in pursuance of a resolution of the Congress of the Confederation passed Tuesday, October 10, 1780, providing for the reception and care of such unappropri-
ated lands as might be ceded by States to the United states, and for the disposition of the same for the common benefit of the United States.
The dates of cession of these lands to the United States were as follows:

Colony.	State.	Date of Cession.
New Hampshire	New Hampshire.	No cession.
dewnce Plantations........	Rhode Island.	No cession.
New Lastle, Kent and sus-	New Jersey.	
sex, on Delaware..	Delaware.	Do.
Pennsylvania...................	Pennsylvania.	March 1, 1734 and D
Virginia	Vrginia.	March 1, 1734, and De-
Maryland	Maryland.	No cession.
Massachusetts Bay..	Massachusetts.	April 19, 1785.
Connecticut..	Connecticut.	September 13, 1786; con-
South Carolina..........	South Carolina.	August 9, 17
North Carolina	North Carolina.	
Georgia..........................	Georgia.	April 24, 1802.

*An act to change the conditions of the cession of March 1,1784, only so far as to ratify the fifth article of the compact of the ordinance of 1787.

AREA OF CESSIONS.

	'Sq. miles.	Acres.
Massachusetts (disputed) claimed (estimated)*	54.000.00	34,560,000
Connecticu' (41, ,म14.4) and Western Reserve and Fire-lands (estimated)*. \qquad	40.000.00	25,600,000
From New York and Massachusetts cession, actual	315.91	202,187
From Virginia (disputed and undisputed) to the United States (exclusive of Kentucky and including area of Western Reserve and the		
Fire-lands)t ..	$265,562.00$ $4,900.00$	$169,959,680$ $3,136,000$
North Carolina cession, nominal, because the area of Tennessee was almost covered with reservations. \qquad	$4,900.00$ $45,600.00$	$3,136,000$ $29,184,000$
Georgia cession..	88,578.00	56.689,920
Total actual State cessions to the United States for public domain \qquad	404,955.91	259,171,787

[^1]AREA OF PURCHASES-PUBLIO AND NATIONAL DOMAIN.

	Sq. miles.	Acres.
Louisiana purchase, April 30, 1803.	1,182,752	756,961,280
East and West Florida. Feb. 22, 1819.	-59,268	37,931,520
Gaudalupe Hidalgo, February 2,1848	522.568	334,443,520
State of Texas, November 25, 1850...................	96,707	61,892,480
Gadsden purchase. December 30, 1853...............	45,535	29,142,400
Alaska purchase, March 30, 1867	E77,390	369,525,600
	2,484,220	,589,900,800

At a total cost of $\$ 88,157,389.98$.
The Texas annexation of 1845 added to the national domain the area of the present State of Texas, viz., 274,356 square miles, or $175,587,840$ acres, included in the national domain, besides the purchase of 1850 from the State, now public domain.

The total area of purchased and annexed territory, included in the national and public domain since 1803 , is $2,758,576$ square miles, or $1,765,468,640$ acres. This does not include the islands acquired from Spain in the recent Spanish war.
5. The present system of survey of the public lands was inaugurated by a committee appointed by the Continental Congress, and consisting of the following delegates: Hon. Thomas Jefferson, chairman, Virginia; Hon. IIugh Williamson, North Carolina; Hon. David Howell, Rhode Island, Hon. Elbridge Gerry, Massachusetts; Hon. Jacob Read, South Carolina.

On the 7th of May, 1784, this committee reported "An ordinance for ascertaining the mode of locating and disposing of lands in the western territory, and for other purposes therein mentioned." This ordinance required the public lands to be divided into "hundreds" of ten geographical miles square, and those again to be subdivided into lots of one milc square each, to be numbered from 1 to 100, commencinन in the north-western corner, and continuing from west to east and from east to west
consecutively. This ordinance was considered, debated, and amended, and reported to Congress April 26,1785, anu required the surveyors " to divide the said territory into townships of 7 miles square, by lines running due north and south, and others crossing these at right angles. *** The plats of the townships, respectively, shall be marked by subdivisions into sections of 1 mile square, or 640 acres, in the same direction as the external lines, and numbered from 1 to 49. $* * *$ And these sections shall be subdivided into lots of 320 acres."

This is the first record of the use of the terms "township" and "section."

May 3, 1785, on motion of Hon. William Grayson, of Virginia, seconded by Hon. James Monroe, of Virginia, the section respecting the extent of townships was amended by striking out the words "seven miles square" and substituting the words "six miles square." The records of these early sessions of Congress are not very full or complete; but it does not seem to have occurred to the members until the 6 th of May, 1785 , that a to wnship six miles square could not contain 49 sections of 1 mile square. At that date a motion to amend was made, which provided, among other changes, that a township should contain 36 sections; and the amendment was lost. The ordinance as finally passed, however, on the 20th of May, 1785, provided for townships 6 miles square, containing 36 sections of 1 mile square. The first pnblic surveys were made under this ordinance. The townships, 6 miles square, were laid out in ranges, extending northward from the Ohio River, the townships being numbered from south to rorth, and the ranges from east to west. The region embraced by the surveys under this law forms a part of the present State of Ohio, and is usually styled "The Seven Ranges." In these initial surveys only the exterior lines of the townships were surveyed, but the plats were marked by subdivisions into sections of 1 mile square, and mile corners were established on the town-
ship lines. The sections were numbered from 1 to 36 , commencing with No. 1 in the southeast corner of the township, and running from south to north in each tier to No. 36 in the northwest corner of the township, as shown in the following diagram:

36	30	24	18	12	6
35	29	23	17	11	5
34	28	22	16	10	4
33	27	21	15	9	3
32	26	20	14	8	2
31	25	19	13	7	1

The surveys were made under the direction of the Geographer of the United States.

The act of Congress approved May 18, 1796, provided for the appointment of a surveyor-general, and directed the survey of the lands northwest of the Ohio River, and above the mouth of the Kentucky River, "in which the titles of the Indian tribes have been extinguished." Under this law one-half of the townships surveyed were subdivided into sections "by running through the same, each way, parallel lines at the end of every two miles, and by making a corner on each of said lines at the end of every mile," and it further provided that "the sections shall be numbered, respectively, beginning with the number one in the northeast section and proceeding west and east alternately, through the township, with progressive numbers till the thirty-sixth be completed." This method
of numbering sections, as shown by the following diagram, is still in use :

6	5	4	3	2	1
7	8	9	10	11	12
18	17	16	15	11	13
19	20	21	22	23	24
30	29	28	27	26	25
31	32	33	34	35	36

The act of Congress approved May 10, 1800, required the "townships west of the Muskingum, which $*^{*}$ * are directed to be sold in quarter to wnships, to be subdivided into half sections of three hundred and twenty acres each, as nearly as may be, by running parallel lines through the same from east to west, and from south to north, at the distance of one mile from each other, and marking corners, at the distance of each half mile on the lines running from east to west, and at the distance of each mile on those running from south to north. * * * And the interior lines of townships intersected by the Muskingum, and of all the townships lying east of that river, which have not been heretofore actually subdivided into sections, shall also be run and marked. $* * *$ And in all cases where the exterior lines of the to wnships thus to be subdivided into sections or half sections shall exceed, or shall not extend, six miles, the excess or deficiency shall be specially noted, and added to or deducted from the western and northern ranges of sections or half sections in such township, according as the error may be in running the lines from east to west or from south to north."
6. The acts of Congress defining the system of public land surveys, and the principles to be employed in carrying them out, are to be found in the United States Statates as follows:

Act of May	18,1796,	Volume	1,	Chap.	29.	
"	"	10,1800,	$"$	2,	$"$	55.
"	Feb.	11,1805,	$"$	2,	$"$	14.
" April	24,1820,	$"$	3,	"	51.	
"	"	5,1832,	$"$	4,	$"$	55.
" May	30,1862,	$"$	12,	"	86.	
" March	3,1875,	$"$	18,	$"$	130.	
"	"	3,1875,	$"$	19,	$"$	105.

Such portions of the various acts as are now in force are published by the government in a volume entitled "Existing Land Laws." Those Sections which refer directly to the surveys are as follows:
7. United States Laws relating to Surveys and Surveyors.-SEc. 77. There shall be appointed by the President, by and with the advice and consent of the Senate, a surveyor-general for the States and Territories herein named, embracing, respectively, one surveying district, namely: Louisiana, Florida, Minnesota, Kinsas, California, Nevada, Oregon, Nebraska and Iowa, Dakota, Colorado, New Mexico, Idaho, Washington, Montana, Utah, Wyoming, Arizona.

3 Stat. 755; $4 \mathrm{id.492}$; $9 \mathrm{id}$. 496; $10 \mathrm{id.244,306,308,309,611;} 11 \mathrm{id}$.212 ; 12 id. $176,211,24$; 14 id. 7t, $85.344,542$; 15 id .91 ; 16 id. 65,$240 ; 17$ id. 76; 18 id. $18134,121,122,123,201,303 ; 19$ id. 126, 207! R. S. 2207.
SEc. 84, Every surveyor-general shall, before entering on the duties of his office, execute and deliver to the Secretary of the Interior a bond, with good and sufficient security, for the penal sum of thirty thousand dollars, conditioned for the faithful disbursement, according to law, of all public money placed in his hands, and for the faithful performance of the duties of his office; and the President has discretionary authority to require a new
bond and additi nal security, under the direction of the Secretary of the Interior, for the lawful disbursement of public moneys.

3 Stat. 697 ; R. S. 2215, 2216. U. S. v. Vanzandt, 11 Wheat, 184; U. S. v. Tingey, 5 Pet. 115; Farrar and Brown v. U. S,, 5 id. 373; U. S. v. Bradley, 10 id. 343; U. S. vs. Linn, 15 id. 290; U. S. v. Prescott, 3 How. 578; U. S. v. Boyd, 5 id. 29; Bryan v. U. S., 1 Black, 140; Bovden v. United States, 13 Wall. 17 ; Bevans v. U.S., 13 id. 56; U. S. v. Thomas, 15 id. 337; U. S, v. Stephenson, 1 McClean, C. C. 462; U. S. v. Linn, 2 id. 501; U. S. v. Ward, 3 id. 179. 8 Op. Att. Gen. 7. Cir. G. L. O., July 1, 1871; id. May 14, 1879. Treasury Cir., July 13, 1871 (Copp's L. L. 783; 1 Lester's L. L. 312, 314).
SEc. 85. The commission of each surveyor-general shall cease and expire in four years from the date thereof, unless sooner vacated by death, resignation, or removal from office.

3 Stat. 697; R. S. 2217. Best v. Polk, 18 Wall. 112. Decision Com. G. L. O., Feb. 20, 1858 (1 Lester's L. L. 340).

SEc. 86. Every surveyor-general, except where the President sees cause otherwise to determine, is authorized to continue in the uninterrupted discharge of his regular official duties after the day of expiration of his commission and until a new commission is issued to him for the same office, or until the day when a successor enters upon the duties of such office; and the existing official bond of any officer so acting shall be deemed good and sufficient and in force until the date of the approval of a new bond to be given by him, if recommissioned, or otherwise, for the additional time he may so continue officially to act, pursuant to the authority of this section.

10 Stat. 247; 18 id, 62; R. S. 2222.
SEC. 87. Whenever the surveys and records of any surveying district are completed, the surveyor-general thereof shall be required to deliver over to the Secretary of State of the respective states, including such surveys, or to such other officer as may be authorized to receive them, all the field-notes, maps, records, and other papers appertaining to land titles within the same; and the office of
surveyor-general in every such district shall thereafter cease and be discontinued.

5 Stat. 381; 19 id. 121 ; R. S. 2218.
SEC. 88. In all cases of discontinuance, as provided in the preceding section, the authority, powers, and duties of the surveyor-general in relation to the survey, resurvey, or subdivision of the lands therein, and all matters and things connected therewith, shall be vested in and devolved upon the Commissioner of the General Land Office.

10 Stat. 152; R. S. 2219.
SEc. 89. Under the authority and direction of the Commissioner of the General Land Office, any deputy surveyor or other agent of the United States shall have free access to any such field-notes, maps, records, and other papers for the purpose of taking extracts therefrom ur making copies thereof without charge of any kind; but no transfer of such public records shall be made to the authorities of any State until such State has provided by law for the reception and safe-keeping of such public records and for the allowance of free access thereto by the authorities of the United States.

10 Stat. 152; 18 id. 62; R. S. 2220, 2221.
SEc. 90. Every surveyor-general shall engage a sufficient number of skillful surveyors as his deputies, to whom he is authorized to administer the necessary oaths upon their appointments. He shall have authority to frame regulations for their direction, not inconsistent with law or the instructions of the General Land Office, and to remove them for negligence or misconduct in office.

Taylor and Quarlls v. Brown, 5 Cranch, 234; Craig et al.v. Braxford, 3 Wheat, 594; Ellicott et al. v. Pearl, 10 Pet. 412; Brown's Lessee v. Clements, 3 How. 650. Reed v. Conway 20 Mo. 22; same case. $26 \mathrm{id}, 13$; Hamil v. Carr, 21 Ohio St. 258; Doe v. Hildreth, 2 Ind. 274; McClintock vt. Rodgers, 11 Mls. 279. Cir. G. L. O., June 26, 1880.

Second. He shall cause to be surveyed, measured, and marked, without delay, all base and meridian lines through
such points and perpetuated by such monuments, and such other correction parallels and meridians as may be prescribed by law or by instructions from the General Land Office in respect to the public lands within his surveying district, to which the Indian title has been or may be hereafter extinguished.

Gazzen v. Phillips' Lessee, 20 How. 372. 3 Op. Att. Gen., 281, 284. Atshire v. Hulse, 1 Ohio, 170; Hastings v. Stevenson, 2 d. 9; McKinney v. McKinney, 8 id. 423; Lamil v. Carr, 21 Ohio St. 258; Hendrick v. Eno, 42 Iowa 411; Saint Louis v. Waiker, 40 Mo. 383; Jordan v. Barrett, 13 La. 24; Fowler v. Duval, 11 id. 561; Cox v. Jones, 47 Cal. 412. Cir. G. I. O., June 26, 1880.

Third. He shall cause to be surveyed all private land claims within his district after they have been confirmed by authority of Congress, so far as may be necessary to complete the survey of the public lands.
Menard's Heirs v. Massey, 8 How. 293; Kissell v. St. Louis Public
Schools, 18 id. 19; Stanford v. Taylor, 18 id. 409; Ballance v. For-
syth, 24 id. 183; U. S. v. Fossat, 25 id. 445; Carondelet v. St. Louis,
1 Black, 179; U. S. v. Sepulveda, 1 Wall. 104; U. S. v. Halleck, 1 id.
439; U. S. v. Billings, 2 id. 444; Sutter's case, 2 id. 562; U. S. v.
Pacheco, 2 id. 587; Fossat case, 2 id. 649; Dehon v. Bernal, 2 id.
774; U.S. v. Armijo, 5 id. 444; Higueras v. U. S. 5 id. 827; Magulre
v. Tyler, 8 id. 650; Lynch v. Bernal 9 id. 315 ; Henshaw v. Bissell,
18 id. 255; Shepley et al. v. Cowan et al., 1 Otto, 330; Miller ct al. v.
Dale ϵt al., 2 id. 473; Van Reynegand v. Bolton, 5 id. 33; U.S. v.
Throckmorton, 8 id. 61; Snyder v, Sickles, 8 id. 203; Scull v. U. S.,
8 id.410. Bissell v. Henshaw, 1 Saw. C. C. 553 ; Leroy v. Jamison,
3 id. 369. Gibson v. Chouteau, 39 Mo. 536; Milburn v. Hardy, 28 id.
514; Funkhouser v. Hantz, 29 id. 540; Dent v. Legesson, 29 id. 489;
Carondelet v. St. Louis, 29 td. 527; Maguire v. Tyler, $30 \mathrm{id}$. 202;
Robins v. Eckler, 36 id. 494; Clark v. Heammerle, 36 id. 620; Gib-
son v. Chouteau, 39 id. 536; Vasquez v. Ewing, 42 id. 247; Glasgow
v. Lindell, 50 id. 60 ; Rector v. Gaines, 19 Ark. 70; Ashley v. Rector,
$20 i d$. . 309 ; Meaux v. Breaux, 10 Martin (La.) 364; Moon v. Wilkin-
son, 13 Cal. 478; Boggs v. Mining Co., 14 id. 279; Mott v. Smith, 16
id. 534; Johnson v. Van Dyke, 20 id. 225; McGarrahan v. Maxwell,
27 id .75 ; Treadway v. Scmple, $28 \imath d .6 \mathrm{c}_{2}$; Searle v. Ford, 29 id. 104;
Mahoney v. Van WInkle, $33 \mathrm{id.448}$; Morrill v. Chapman, $35 \mathrm{id}$.85 ;
Yates v. Smith, $38 i u$. 60 ; San Diego v. Allison, $46 i d .163$. De-
cisions Sec. Int., July 16, 1872; Aug. 8, 1876 ; Aug. 17, 1876; March
16, 1877. Decisions Com. G. L. O., Aug. 18, 1860; Sept. 18, 1874;
Nov. 3. 1874; Sept. 18, 1875; Oct. 28, 1875; June 26, 1879. CIr. G. L.
O., June 26, 1880.

Fourth. He shall transnuit to the register of the respective land offices within his district general and particular plats of all lands surveyed by him for each land district; and he shall forward copies of such plats to the Commissioner of the General Land Office.

Barnard v. Ashley, 18 How. 43; Water and Mining Co. v. Bugbee, 6 Otto. 165; Hamil v. Carr, 21 Ohio St. 258; Doe v. Hildreth, 2 Ind 274; Pope v. Athearn, 42 Cal. 606; Com. G. L. O. Instructions to Surveyor-General, April 17, 1879.

Fifth. He shall, so far as is compatible with the desk duties of his office, occasionally inspect the surveying operations while in progress in the field, sufficiently to satisfy himself of the fidelity of the execution of the work according to contract; and the actual and necessary expenses incurred by hin while so engaged shall be allowed; and where it is incompatible with his other duties for a surveyor-general to devote the time necessary to make a personal inspection of the work in progress, then he is authorized to depute a confidential agent to make such examination, and the actual and necessary expenses of such person shall be allowed and paid for that service, and five dollars a day during the examination in the field; but such examination shall not be protracted beyond thirty days, and in no case longer than is actually necessary; and when a surveyor-general, or any person employed in his office at a regular salary, is engaged in such special service he shall receive only his necessary expenses in addition to his regular salary.

1 Stat. 464; 13 id. 325; 4 id. 492; 10 id. 245, 247; 18 id. 34 ; 19 id. 126; R. S. 2223. Sec. Int. Instructions, July 1, 1874; Sept. 21, 1874. Cir. G. L. O., June 26, 1880.

Sec. 91. Every deputy surveyor shall enter into a bond, with sufficient security, for the faithful performance of all surveying contracts confided to him: and the penalty of the'bond, in each case, shall be double the estimated amount of money accruing under such contracts, at the rate per mile stipulated to be paid therein. The suffici-
ency of the sureties to all such bonds shall be approved and certified by the proper surveyor-general.

4 Stat. 493; 10 id. 247; R. S. 2230. U. S. v. Vanzandt, 11 Wheat. 184; U. S. v. Tingey, 5 Pet. 115; Farrar et al. v. U. S., 5 id. 373; U. S. v. Bradley, 10 id. 343; U. S. v. Linn, 15 id. 290. U. S. v. Stephenson, 1 McLean, C C. 462.

SEc. 92. The surveyors-general, in addition to the oath now authorized by law to be ądministered to deputies on their appointment to office, shall require each of their deputies, on the return of his surveys, to take and subscribe an oath that those surveys have been faithfully and correctly executed according to law and the instructions of the surveyor-general.

9 Stat. 79; R. S. 2231. Ellicott and Meredith v. Pearle, 10 Pet. 412; U.S. v. Hanson, 16 id. $196 ;$ Boilard et al.v. Dwight et al., 4 Cranch, 421; Taylor et al. v. Brown, 5 id. 234. Cir. G. L. O., June 26, 1880.
SEc. 93. The district attorney of the United States, in whose district any false, erroneous, or fraudulent surveys have been executed, shall, upon the application of the proper surveyor-general, immediately institute suit upon the bond of such deputy, and the institution of such suit shall act as a lien upon any property owned or held by such deputy or his sureties at the time such suit was instituted.

9 Stat. 79; R. S. 2232.
SEC. 99. The public lands shall be divided by north and south lines run according to the true meridian, and by others crossing them at right angles, so as to form townships of six miles square, unless where the line of an Indian reservation, or of tracts of land heretofore surveyed or patented, or the course of navigable rivers, may render this impracticable; and in that case this rule must be departed from no further than such particular circumstances require.

McKinney v. McKinney, 8 Ohio, 423; Hamil v. Carr, 21 Ohio St. 258. Decision Sec. Int , Jan. 24, 1880. Cir. G. L، O , June 26, 1880.
Second. The corners of the townships must be marked with progressive numbers from the beginning, each dis-
tance of a mile between such corners must be also distinctly marked with marks different from those of the corners.

Third. The township shall be subdivided into sections, containing, as nearly as may be, six hundred and forty acres each, by running through the same, each way, parallel lines at the end of every two miles; and by making a corner on each of such lines, at the end of every mile. The sections shall be numbered, respectively, beginning with the number one in the northeast section and proceeding west and east alternately through the township with progressive numbers till the thiriy-six be completed.

Grogan v. Knight, 27 Call.516. Decision Sec. Int., April 14, 1879. Cir. G. L. O., June 26, 1880.

Fourth. The deputy surveyors, respectively, shall cause to be marked on a tree near each corner established in the manner described, and within the section, the number of such section, and over it the number of the township within which such section may be; and the deputy surveyors shall carefully note, in their respective field-books, the names of the corner-trees marked and the numbers so made.

Cir. G. L. O., June 26, 1880.
Fifth. Where the exterior lines of the townships which may be subdivided into sections or half-sections exceed, or do not extend six miles, the excess or deficiency shall be specially noted, and added to or deducted from the western and northern ranges of sections or half-sections in such townships, according as the error may be in running the lines from east to west, or from north to south; the sections and half-sections bounded on the northern and western lines of such townships shall be sold as containing only the quantity expressed in the returns and plats respectively, and all others as containing the complete legal quantity.

Knight v. Elliott, 57 Mo. 317; Vaughn v. Tate, 64 id. 491; Walters v. Commons, 2 Port. (Ala-) 38 ; Lewen v. Smith, 7 id. 428. Decision Sec. Int., April 14, 1879, Cir. G. L. O., June 26, 1880.

Sixth. All lines shall be plainly marked upon trees, and measured with chains, containing two perches of sixteen and one-half feet each, subdivided into twenty-five equal links; and the chain shall be adjusted to a standard to be kept for that purpose.

Bradley v. Taylor, 5 Cranch, 191; McIvers v. Walker, 9 id. 173; Shipp v. Miller's Heirs, 2 Wheat. 316 ; Holmes v. Trout, 7 Pet. 171; Brown v. Huger, 21 How. 305; Meron v. Whitney, 5 Otto, 551 ; Robinson v. Moon, 4 McLean, C. C. 279. Oakley v. Stuart, 52 Cal. 521. Cir. G. L. O., June 26, 1880.

Seventh. Every surveyor shall note in his field-book the true situations of all mines, salt licks, salt springs, and and mill-seats which come to his knowledge; all water courses over which the line he runs may pass; and also the quality of the lands.

Newsom v. Pryor's Lessee, 7 Wheat. 7 ; Preston v. Bowman, 6 id. 580 ; Patterson v Jenks, 2 Pet. 216.

Eighth. These field books shall be returned to the sur-veyor-general, who shall cause therefrom a description of the whole lands surveyed to be made out and transmitted to the officers who may superintend the sales. He shall also cause a fair plat to be made of the townships and fractional parts of townships contained in the lands, describing the subdivisions thereof and the marks of the corners. This plat shall be recorded in books to be kept for that purpose; and a copy thereof shall be kept open at the surveyor-general's office for public information, and other copies shall be sent to the places of the sale and to the General Land Office.

1 Stat. 465; 2 id. 73; 19 id. 348; R. S. 2395. Taylor et al. v. Brown, 5 Cranch, 234; Barnard v. Ashley, 18 How. 43; Water and Minlng Co. v. Bugbee, 6 Otto, 165. Rector v. Gaines, 19 Ark. 70 ; Lewen v. Smith, 5 Port. (Ala.) 428 ; Mott v. Smith, 16 Cal. 534; Hamil v. Carr, 21 Ohio St. 258; Doe v. Hildreth, 2 Ind. 274; McClintock v. Rodgers, 11 Ills. 279. Decision Sec. Int., Jan. 15, 1878 Decision Com. G. L. O., April 17, 1879.

SEc. 100. The boundaries and contents of the several sections, half-sections, and quarter-sections of the public
lands shall be ascertained in conformity with the follow-s ing principles:

First. All the corners marked in the surveys, returned by the surveyor-general, shall be established as the proper corners of sections, or subdivisions of sections, which they were intended to designate; and the corners of half and quarter sections, not marked on the surveys, shall be placed as nearly as possible equidistant from those two corners which stand on the same line.

Second. The boundary lines, actually run and marked in the surveys returned by the surveyor-general, shall be established as the proper boundary lines of the sections, or subdivisions, for which they were intended, and the length of such lines, as returned, shall be held and considered as the true length thereof. And the boundary lines which have not been actually run and marked shall be ascertained by running straight lines from the established corners to the opposite corresponding corners; but in those portions of the fractional townships where no such opposite corresponding corners have been or can be fixed, the boundary lines shall be ascertained by running from the established corners due north and south or east and west lines, as the case may be, to the water-course, Indian boundary line, or other external boundary of such fractional township.

> Mott v. Smith, 1 GCal . 534 ; Guin v. Brandon, 29 Ohio St. 656; McClintock v. Rodgers, 11 Ills . 279; Goodman v, Myrick, 5 Oreg. 65. Cir. G. L. O., June 26, 1880.

Third. Each section or subdivision of section, the contents whereof have been returned by the surveyor-general, shall be held and considered as containing the exact quantity expressed in such return; and the half-sections and quarter-sections, the contents whereof shall not have been thus returned, shall be held and considered as containing the one-half or the one-fourth part. respectively,
of the returned contents of the section of which they make part.

2 Stat. 313; R. S. 2396. Lindsey v. Hawes, 2 Black, 554; U. S. v. Pacheco, 2 Wall. 587; Railway Co. v. Schurmier, 7 id .272 ; County of Saint Clair v. Livingston, 23 id. 46; Heidekoper v. Brooms, 1 Wash. C. C. 109 ; Coon v. Pen, 1 Pet. C. C.496. 2 Op. Att. Gen. 578. Knight v. Elliott, 57 Mo. 317; Vaughn v. Tate, 64 id. ${ }^{\text {191; }}$ Waters v. Commons, 2 Port. (Ala.) 38; Lewen v. Smith, 7 id . 428; Billingsly v. Bates, 30 Ala. 376 ; Doe v. Hildreth, 2 Ind, 274; Grogan v. Knight, 27 Cal. 516. Decision Com. G. L. O., May 17, 1875. Cir. G. L. O., June 26, 1880.
SEc. 101. In every case of the division of a quarter-section the line for the division thereof shall run north and south, and the corners and contents of half quarter-sections which may thereafter be sold shall be ascertained in the manner and on the principles directed and prescribed by the section preceding, and fractional sections containing one hundred and sixty acres or upwards shall ia like manner, as nearly as practicable, be subdivided into half quarter-sections, under such rules and regulations as may be prescribed by the Secretary of the Interior, and in every case of a division of a half quartersection, the line for the division thereof shall run east and west, and the corners and contents of quarter quartersection, which may thereafter be sold, shall be ascertained, as nearly as may be, in the manner and on the principles directed and prescribed by the section preceding; and fractional sections containing fewer or more than one hundred and sixty acres shall in like manner, as nearly as may bo practicable, be subdivided into quarter quartersections, under such rules and regulations as may be prescribed by the Secretary of the Interior.

3 Stat. 560 ; 4 id. 503 ; R. S. 2397. Gazzam v. Phillips' Lessee, 20 How. 372 ; Railway Co. v. Schurmier, 7 Wall. 272. Buel v. Tuley, 4 McLean, C. C. 268. Wharton v. Littlefield, 30 Ala. 245. 3 Op. Att. Gen. 281, 284. Decision Sec. Int., April 14, 1879. Decision Com. G. L, O., May 17, 1875. Cir. G. L. O., June 26, 1880.

SEC. 102. Whenever, in the opinion of the President, a departure from the ordinary method of surveying land
on any river, lake, bayou, or water-course would promote the public interest, he may direct the surveyor-general, in whose district such land is situated, and where the change is intended to be made, to cause the lands thus situated to be surveyed in tracts of two acres in width. fronting on any river, bayou, lake, or water-course, and running back the depth of forty acres; which tracts of land so surveyed shall be offered for sale entire, instead of in half quarter-sections, and in the usual manner, and on the same terms in all respects as the other public lands of the United States.
4 stat. 31; R. S. 2407.
SEC. 103. In extending the surveys of the public lands in the State of Nevada, the Secretary of the Interior may vary the lines of the subdivisions from a rectangular form, to suit the circumstances of the country.
14 Stat. 86 ; R. S. 2408. Heydenfeldt v. Mining Co., 3 Otto, 634.
Sec. 104. The Secretary of the Interior, if he deems it advisable, is authorized to continue the surveys in Oregon and California, to be made after what is known as the geodetic method, under such regulations and upon such terms as have been or may hereafter be prescribed by the Commissioner of the General Land Office; but none other than township lines shall be run where the land is unfit for cultivation; nor shall any deputy surveyor charge for any line except such as may be actually run and marked or for any line not necessary to be run.
9 Stat. 496; 10 id. 245 ; r. S. 2409.
SEC. 105. Whenever, in the opinion of the Secretary of the Interior, a departure from the rectangular mode of surveying and subdividing the public lands in California would promote the public interests, he may direct such change to be made in the mode of surveying and designating such lands as he deems proper, with reference to the existence of mountains, mineral deposits, and the advantages derived from timber and water privileges; but such lands shall not be surveyed into less than one hun-
dred and sixty acres or subdivided into less than forty acres.

10 Stat. 245 : R. S. 2410. Cir. G. L. O., June 26, 1880.
SEc. 106. The public surveys shall extend over all mineral lands, and all subdividing of surveyed lands into lots less than one hundred and sixty acres may be done by county and local surveyors at the expense of claimants; but nothing contained in this section shall require the survey of waste or useless lands.

10 Stat. 15, 21 ; 16 id. 218 ; R. S. 2406.
SEc. 107. The printed manual of instructions relating to tne puolic surveys, prepared at the General Land Office, and bearing date January first, nineteen hundred and three, the instructions of the Commissioner of the General Land Office, and the special instructions of the surveyor-general, when not in conflict with such printed manual or the instructions of the Commissioner, shall be taken and deemed to be a part of every contract for surveying the public lands.

12 Stat. 409; R. S. 2399. Cir. G. L. O., June 26, 1880.
SEc. 108. Legal subdivisions of forty acres of placer lands may be subdivided into ten-acre lots.

16 Stat. 213 ; R. S. 2330.
SEC. 2320. Mining-claims upon veins or lodes of quartz or other rock in place bearing gold, silver, cinnabar, lead, tin, copper, or other valuable deposits, heretofore located, shall be governed as to length along the vein or lode by the customs, regulations, and laws in force at the date of their location. A mining-claim located after the tenth day of May, eighteen hundred and seventy-two, whether located by one or more persons, may equal, but shall not exceed, one thousand five hundred feet in length along the vein or lode; but no location of a mining-claim shall be made until the discovery of the vein or lode within the limits of the claim located. No claim shall extend more than three hundred feet on each side of the middle
of the vein at the surface, nor shall any claim be limited by any mining regulation to less than twenty-five feet on each side of the middle of the vein at the surface, except where adyerse rights existing on the tenth day of May, eighteen hundred and seventy-two, render such limitation necessary. The end-lines of each claim shill we parallel to each other.

10 May, 1872, c. 152, s. 2, v. 17, p. 91.
Sec. 2322. The locators of all mining locations heretofore made or which shall hereafter be made, on any mineral vein, lode, or ledge, situated on the public domain, their heirs and assigns, where no adverse claim exists on the tenth day of May, eighteen hundred and seventy-two, so long as they comply with the laws of the United States, and with State, Territorial and local regulations not in conflict with the laws of the United States governing their possessory title, shall have the exclusive right of possession and enjoyment of all the surface included within the lines of their locations, and of all veins, lodes, and ledges throughout their entire depth, the top or apex of which lies inside of such surface-lines extended downward vertically, although such veins, lodes, or ledges may so far depart from a perpendicular in their course downward as to extend outside the vertical side-lines of such surface locations. But their right of possession to such outside parts of such veins or ledges shall be confined to such portions thereof as lie between vertical planes drawn downward as above described, through the endlines of their locations, so continued in their own direction that such planes will intersect such exterior parts of such veins or ledges. And nothing in this section shall authorize the locator or possessor of a vein or lode whick extends in its downward course beyond the vertical lines of his claim to enter upon the surface of a claim owned or possessed by another.

10 May, 1872, c. 152, s. 3, v. 17, p. 91.
Sec. 2323. Where a tunnel is run for the development of a vein or lode, or for the discovery of mines, the own-
ers of such tunnel shall have the right of possession of all veins or lodes within three thousand feet from the face of such tunnel on the line thereof, not previously known to exist, discovered in such tunnel, to the same extent as if discovered from the surface; and locations on the line of such tunnel of veins or lodes not appearing on the surface, made by other parties after the commencement of the tunnel, and while the same is being prosecuted with reascnable diligence, shall be invalid; but failure to prosecute the work on the tunnel for six months shall be considered as an abandonment of the right to all undiscovered veins on the line of such tunnel. 10 May, 1872, c. 152 , s. 4, v. 17, p. 92.
Sec. 2324. The miners of each mining-district may make regulations not in conflict with the laws of the United States, or with the laws of the State or Territory in which the district is situated, governing the location, manner of recording, amount of work necessary to hold possession of a mining-claim, subject to the following requirements: The location must be distinctly marked on the ground so that its boundaries can be readily traced. All records of mining-claims hereafter made shall contain the name or names of the locators, the date of the location, and such a description of the claim or claims located by reference to some natural object or permanent monument as will identify the claim.

10 May, 1872, c. 152, s. 5, v. 17, p. 92.

Sec. 109. The surveyor-general of the United States may appoint in each land district containing mineral lands as many competent surveyors as shall apply for appointment to survey mining claims. The expenses of the survey of vein or lode claims, and the survey and subdivision of placer claims into smaller quantities than one hundred and sixty acres, shall be paid by the applicants, and they shall be at liberty to obtain the same at the most reasonable rates, and they shall also be at liberty to employ any United States deputy surveyor to make the
survey. The Commissioner of the General Land Offlce shall have power to establish the maximum charges for such surveys; and to the end that he may be fully informed on the subject, each applicant shall file with the register a sworn statement of all charges and fees paid by such applicant for surveys, which statement shall be transmitted to the Commissioner of the General Land Office.

17 Stat. 95 ; 19 id. 52; R. S. 2334. Decision Com. G. L. O., April 20, 1877.

Sec. 110. The surveyor-general of the United States shall prepare.or cause to be prepared a plat and field-notes of all mining surveys made by authority of law, which shall show accurately the boundaries of such claims; and, when warranted by the facts, he shall give to the claimant his certificate that five hundred dollars' worth of labor has been expended or improvements made upon the claim by the claimant or his grantors, and that the plat is correct, with such further description by such reference to natural objects or permanent monuments as shail identify the claim, and furnish an accurate description. to be incorporajed in the patent.

17 Stat. 92 R. S. 2325
Sec. 111. Contracts for the survey of the public lands shall not become binding upon the United States until approved by the Commissioner of the General Land Office, except in such cases as the Commissioner may otherwise specially order.

12 Stat. 409 ; R. S. 2398. Maguire v. Tyler, 1 Black, 201 ; Parks v. Ross. 11 How. 362; Spencer v. Lapsley, 20 id 264. Reed v. Conway, 26 Mo. 13. Decision Sec. Int., Feb. 27, 1078.

SEC. 112. The Commissioner of the General Land Office has power, and it shall be his duty, to fix the prices per mile for public surveys, which shall in no case exceed the maximum established by law; and, under instructions to be prepared by the Commissioner, an accurate account shall be kept by each surveyor-general of the cost of sur-
veying and platting private land claims, to be reported to the General Land Ofice, with the map of such claim; and patents shall not issue for any such private claim, nor shall any copy of such survey be furnished, until the cost of survey and platting has been paid into the Treasury by the claimant or other party; and before any land granted to any railroad company by the United States shall be conveyed to such company or any persons entitled thereto, under any of the acts incorporating or relating to said company, unless such company is exempted by law from the payment of such cost, there shall first be paid into the Treasury of the United States the cost of surveying, selecting, and conveying the same by the said company or persons in interest.

12 Stat. 4 C9 ; 18 id. $384 ; 19$ id. 122; R.S. 2400 Railway Co.v. Prescott, 16 Wall. 6c3; Railway Co. v. McShane, 22 id. 444; Hannewell v. Cass Co., 22 id. 464 ; Colorado Co. v. Commissicuers, 5 Otto, 259. Decisions Eec. Int., Dec. 17, 18:4; Feb. 27, 18:3; Fcb. 20, 1879; March 5, 1870; April 2, 1879. Decisions Com. C. L. O., April 18, 1867; August 18, 1867; Feb. 17, 1869; March 26, 1870. Cir. G. L. O., June 26, 1880 .
SEC. 113. The Commissioner of the General Land Office may authorize, in his discretion, public lands in Oregon densely covered with forests or thick undergrowth, to be surveyed at augmented rates, not exceeding eighteen dollars per mile for standard parallels, fifteen dollars for townships, and twelve dollars for section lines; and under like conditions he may allow augmented rates in California, and in Washington Territory, not exceeding eighteen dollars per linear mile for standard parallels, sixteen dollars for township, and fourteen dollars for section lines.

16 Stat. 304,$305 ; 17$ id. $358 ;$ R. S. 2404,2405 . Decision Sec. Int., June 16, 1879. Cir. G. L. O., June 26, 1880.
SEC. 114. Whenever the public surveys, or any portion of them, in the States of Oregon and California, are so required to be made as to render it expedient to make, compensation for the surveying thereof by the day instead
of by the mile, it shall be lawful for the Commissioner ot the General Land Office, under the direction of the Secretary of the Interior, to make such fair and reasonable allowance, as, in his judgment, may be necessary to insure the accurate and faithful execution of the work.

10 Stat. 247; R. S. 2411. Decision Sec. Int., June 16, 1879. Cir. G. L。 O., June 26, 1880.

SEc. 118. Each surveyor-general, when thereunto duly authorized by law, shall cause all confirmed private land claims within his district to be accurately surveyed, and shall transmit plats and field-notes thereof to the Commissioner of the General Land Office for his approval. When publication of such surveys is authorized by law, the proof thereof, together with any nbjections properly -filed and all evidence submitted either in support of or in opposition to the approval of any such survey, shall also be transmitted to said Commissioner.

2 Stat. 326,$352 ; 3$ id. 32 ; 5 id. 740 ; 9 id. 242,$633 ; 10$ id. $244,308,599$; 11 id. 294; 12 id. 172, 209, 369, 409; 13 id. 332, 344; 14 id. 218 ; 16 id. 64, 304 ; 18 id. 305 ; 19 id. 121, 202: R. S. 2447. Bissell v. Penrose, 8 How. 317 ; Villalobus v. U. S., 10 id. 541; Ledoux v. Black, 18 id. 473; U. S. v. Fossat, 20 id. 413; Brown v. Huger, 21 id. 305 ; U. S. \boldsymbol{v}. Fossat, 21 id. 445, Castro v. Hendricks, 23 id. 438; Ballance v. Forsyth, 24 id. 183; U. S. v. Sepulveda, 1 Wall. 104; U. S. v. Halleck, 1 id. 439; U.S. v. Vallejo, 1 id. 658; Sutter's case 2 id. 562 ; Fossat case, 2 id. 649; Higueras v. U.S , 5 id. 827 ; Alviso v. U. S., 8 id. 337. 12 Op. Att. Gen. 116, 250; $14 i d, 74,601$. U. S, v. Garcia, 1 Saw. C.C. 383; Russell v. Henshaw, 1 id. 553; Leroy v. Jamison, 3 id. 369; U. S. v. Flint, $4 i d .42$. Dent v. Sergerson, 29 Mo. 480 ; Fowler \boldsymbol{v}. Duvall, 11 La. Ann. 501; Waterman v. Smith, 13 Cal. 373; Moorev Wilkerson, 13 id. 478; Merrit v. Judd, $14 i{ }^{\text {d. }} \mathbf{C 0}$; Mott v. Smith, $16 i d$. 534 ; Johnson v. Van Dyke, 20 iđ. 225; McGarraghan v. Maxwell, 27 id. 75 ; Seale v. Ford, 29 id. 104. C̉ir. G. L. O., June 26, 1880.

Sec. 120. Every person who in any manner, by threat or force, interrupts, hinders, or prevents the surveying of the public lands, or of any private land claim which has been or may be confirmed by the United States, by the persons authorized to survey the same, in conformity with the instructions of the Commissioner of the General

Land Office, shall be fined not less than fifty dollars nor more than three thousand dollars, and be imprisoned not less than one nor more than three years.

$$
4 \text { Stat. } 417 \text {; R. S. } 2412 .
$$

Sec. 121. Whenever the President is satisfied that forcible opposition has been offered, or is likely to be offered, to any surveyor or deputy surveyor in the discharge of his duties in surveying the public lands. it may be lawful for the President to order the marshal of the State or district, by himself or deputy, to attend such surveyor or deputy surveyor with sufficient force to protect such officer in the execution of his duty, and to remove force should any be offered.

4 Stat. 417 ; R. S. 2413.
Sec. 122. The President is authorized to appoint surveyors of public lands, who shall explore such vacant and unappropriated lands of the United States as produce the live-oak and red-cedar timbers, and shall select such tracts or portions thereof, where the principal growth is of either of such timbers, as in the judgment of the Secretary of the Navy may be necessary to furnish for the Navy a sufficient supply of the same. Such surveyors shall report to the President the tracts by them selected, with the boundaries ascertained and accurately designated by actual survey or water-courses.
3 Stat. 377; R. S. 2459 U. S. v. Briggs, 9 How. 351.
SEc. 123. The director of the geological survey shall, under the Interior Department, have the direction of the geological survey and the classification of the public lands and examination of the geological structure, mineral resources, and products of the national domain.

20 Stat. 394.
8. Manner of Field Work and Changes that have been Made. - In accordance with these laws, instructions have been issued from time to time, by the

Commissioners of the General Land Office, directing the manner in which the field work should be performed.

In the earlier surveys under the act of 1796 (Sec. 2395 R. S. See p. 199, Sec. 99, Third,) the township was subdivided by parallel lines two miles apart. The mile posts were planted on these lines, but no half mile (or quartersection) corners set.

The act of 1800 provided that the townships west of the Muskingum River should be subdivided into half sections of 320 acres each, as near as may be, by parallel lines run through them from east to west and from north to south ait distances of a mile apart. Half-mile posts were to be set on the east and west lines, but not on the lines running north and south.

The act of 1805 (Sec. 2396 R. S. P. 200, Sec. 100) covers in its provisions the two classes of surveys above noted, as well as the principles governing all subsequent surveys of the public lands.

Since that time, few changes have been made in the manner of carrying on the surveys.

The principal changes have been in the instruments used and in the manner of closing the subdivisional lines on the exterior boundary of the township.

In the earliel surveys, the lines were all run by the magnetic needle. Now the direction of all lines must be determined independently of the needle, the use of which for running lines or determining courses is prohibited.

In the surveys made previous to 1846, the deputy surveyors were required to close the subdivision lines upon the corners previously set on the east line of the township, but not on those set on the north and west lines. Double corners were thus produced on all the exterior lines of the township. The same system
prevailed in some of the surveying districts as late as 1854, and perhaps later. It is thus laid down in the instructions of 1815 .
"Each side of a section must be made one mile in measure by the chain, and quarter-section corners are to be established at every half mile, except when in the closing of a section if the measure of the closing side should vary from 80 chains or one mile, you are in that case to place the quarter-section corners equidistant, or at an average distance from the corners of the section; but in running out the sectional lines on the west or north side of the township, you will establish your quartersection posts or corners at the distance of half a mile from the last corner, and leave the remaining excess or defect on the west or north tier of quarter-sections, which balance or remainder you will carefully measure and put down in your field-notes in order to calculate the remaining or fractional quarter-section on the north and west side of the township: also in running to the western or northern boundary, unless your sectional lines fall in with the posts established there for the corners of sections in the adjacent townships, you must set post and mark kearing trees at the points of intersection of your lines with the town boundaries, and take the distance of your corners from the corners of the sections of the adjacent townships, and note that and the side on which it varies in chains or links, or both.

The sections must be made to close by running a random line from one corner to another, except on the north and west ranges of sections, and the true line between them is to be established by means of offsets."
Under the present system, which has been in use in some parts of the country since 1846 , the section lines are required to close on the corners previously set on the north and west boundaries, the same as on the east, thus doing away with the system of double section corners.

The practice in the several surveying districts in the United States does not seem to have been uniform at any time previous to 1860 , and perhaps not always since that date. For instance, in the Instructions of the Commissioner of the General Land Office to surveyors-general, dated Feb. 22, 1855, which is stated to be a revision of the manual of surveying instructions prepared for Oregon in 1851, it is expressly ordered that "double corners are to be nowhere except on the base and standard lines;" while in the instructions to deputy surveyors of the United States for the district of Illinois and Missouri, published in 1856, P. 9, the deputy surveyors were directed to plant their closing corners at the intersestion of their lines with the north and west boundary and return their direction and distance from the corners of the corresponding sections on the north and west of these boundaries," the surveyor-general of that district thus giving different instructions from those of the Commissioner of the General Land Office.
9. Fractional Areas.-It has been a puzzle to many surveyors to know how the area of the fractional quarter-sections adjoining the north and west boundaries of the township were calculated. It has been just as much of a puzzle to the surveyors-general and Commissioners of the General Land Office.

Edward Tiffin, surveyor-general of the Northwest Territory, in 1815 issued instructions how to do it, which instructions were made applicable to the surveys in Ohio, Michigan, Arkansas and Missouri. Under these instructions, the calculations of the areas of these fractions were to be made on the assumption that the quarterposts on the township and range lines were common to the sections on both sides of these lines, thus making the lengths of the fractions more or less unequal where there were double section corners. This plan does not seem to have been in force long, or to have been very generally followed. Another plan quite extensively adopted was to make the calculations on the theory that all the north and south quarter-lines of these fractional sections were to be parallel with the east line of the sec-
tions, and all east and west quarter-lines parallel with the south line of the sections. Neither plan was in harmony with the law of 1805 , which required "the corners of half and quarter sections not marked on the surveys to be placed as nearly as possible equidistant from those two corners which stand on the same line."

The plan under which most if not all the fractional areas of Michigan were calculated was on the theory that the quarter-posts on the township and range lines were to be placed midway between their respective section corners.

Previous to 1828 , the deputy surveyors were required to return with their field notes plats of all the townships which they surveyed, and to calculate the area of the fractions. These plats were rudely constructed, and in many cases the areas put down on them were erroneous. If this was found out before the land was sold, the areas were re calculated in the surveyor-general's office. In making the calculations of the areas of the fractions along the township and range lines, some of the deputies considered the quarter-section corners along those lines as common to the sections on both sides, some adopted the second method described above, while the areas of many of the fractions appear to have been put down without any calculation whatever.

In the U. S. Surveying Instructions of Jan. 1, 1902, the following rules are given :-

In the north tier of Sections the fractional lots along the boundary are numbered 1 to 4 from east to west. In the west tier they are numbered from north to south. In Section 6 they are numbered from 1 to 7 from the N. E. corner of the Section along the boundary to the S. W. corner.

1. In regular townships, the tracts of land in each section adjoining the north and west boundaries of such townships, in excess of the regularly subdivided 480 acres (except in section 6), will, in general, be in the form of trapezoids, 80.00 chains in length by about 20 chains in width.

On the plats of such townships, each of said tracts will be divided into four lots, by drawing broken lines
at intervals of 20.00 chains, parallel to the ends of the tracts, which will be regarded as parallel to each other.

With the exception of section 6, the south boundaries of sections of the north tier, when within prescribed limits, will be called 80.00 chains.

When the abore-named conditions obtain, the areas of the lots in any one tract (except in section 6) may be determined, as follows:-

Divide the difference between the widths of the ends of the tract by 4 ; if 3 remains, increase the hundredth figure of the quotient by a unit; in all other cases disregard the fraction; call the quotient thus obtained, " $d ; "$ then, taking the end widths of the tract in chains and decimals of a chain, the areas of the lots, in acres, will be:-

Of the smallest lot: twice the width of the lesser end, plus "d;"

Of the largest lot: twice the width of the greater end, minus "d;"

Of the smaller middle lot: sum of the widths of the ends, minus "d;"

Of the larger middle lot: sum of the widths of the ends, plus "d."

A check on the computation may be had by multiplying the sum of the widths of the ends of the tract by 4 ; the product should agree exactly with the total area of the four lots.

The proper application of the above rules will always give areas correct to the nearest hundredth of an acre; and, as the use of fractions is entirely avoided, the method is recommended for its simplicity and accuracy.

Example 1.
The $\frac{1}{4}$ difference of latitudinal boundaries is $0.03 \frac{3}{x}$ chains; consequently, " d " is . 04 chains; then,

$$
\begin{aligned}
18.35 \times 2+.04 & =36.74 \text { acres, the area of lot } 1 ; \\
18.50 \times 2-.04 & =36.96 \text { acres, the area of lot } 4 ; \\
18.50+18.35-.04 & =36.81 \text { acres, the area of lot } 2 \\
180+18.35+.04 & =36.89 \text { acres, the area of lot } 3 ; \\
\text { Check: }[18.35+18.50] \times 4 & =147.40 \text { acres, the area of the four lots. }
\end{aligned}
$$

The arithmetical operations are here wricten in detail, for the purpose of illustration; but the practical computer will perform all the work mentally.
2. Section 6. The areas of lots 5,6 , and 7 may be obtained by the foregoing rules in all cases, except when the township closes on a base line or standard parallel; also, the area of lot 4, provided both meridional boundaries are 80.00 chains in length; when the last condition obtains, the areas of lots 1,2 , and 3 will be equal, and each will contain 40.00 acres.
In any case where the west boundary of $\sec .6$, is 80.00 chains, and the east boundary either greater or less than 80.00 chains, the areas of lots $1,2,3$, and 4 will be computed as follows:-

Determine the difference, " q," between the east boundaries of lots 1 and 4 by the following propor-tion:-
N. bdy. sec. 6.: diff. of meridional bdrs. sec. $6 .:: 60$ chs.: q; then will E. bdy. lot $4=\mathrm{E}$. bdy. lot $1 \pm q$; in which, " q " will be added when the east boundary of sec. 6 is less than 80.00 chains; but subtructed when said east boundary is greater than 80.00 chains.
Now take one third of " q ," and add it to the shorter east boundary of lots 1 or 4 , as conditions may require, and thereby determine the length of one of the meridional boundaries of lot 2 ; to which again add "one third of q," and thus obtain the length of the opposite side of lot 2 . The areas of lots 1,2 , and 3 , in acres, will be found by taking the sum of their respective meridional boundaries, expressed in chains and decimals of a chain.
The area of lot 4 may be had by multiplying its mean width by its mean length.

Finally, to test the entire work, multiply the sum of the latitudinal boundaries by 4 , and to the product add the area of the small triangle C A B, if the east boundary is greater than 80.00 chains; but subtract the area of said small triangle if the east boundary is less than 80.00 chains. These operations, correctly performed, will give the true area of the section, which should agree exactly with the total area of its legal subdivisions, obtained as directed in the preceding paragraphs.

Example 2.

Compute areas of lots 5,6 , and 7 of sec .6 , as directed
in paragraph 1, and illustrated by the example; then write:-

$$
\begin{aligned}
& \text { chs. chs. chs. chs. chs. } \\
& 77 . \text { č. } 0.05: 60.00: 0.0386=\mathrm{q} ; 1 / 3 \mathrm{q}=0.0129 \\
& \text { chs. chs. chs. } \\
& 20.0500-0.0386=20.01 \text {, the E. bdy. of lot } 4 ; \\
& 20.0114+0.0129=20.02 \text {, the E. bdy. of lot } 3 \text {; } \\
& 20.0243+0.0129=20.04 \text {, the E. bdy. of lot } 2 \text {. }
\end{aligned}
$$

Then, for the areas of lots $1,2,3$, and 4 , we have: -

Also $[17.78+17.8 i] \times 3 \quad=106.95{ }^{\circ}$ the area of lots 5,6 , and 7 .
Area of regular subdivisions $=360.00$
Tutal $\ldots .$. . $=622.6 \pi$, the area of Sec. 6.
chs. chs.
Check: $[77.87+77.75] \times 4=622.48$
$77.75 \times 0.025=0.19$, the area of triangle C A B.
Total $\ldots \ldots \ldots=622.67$, which agrees with the area of section 6 , before determined.
3. The area in acres of a tract 40.00 chains long, adjoining north or west township boundaries (except in N. W. $\frac{1}{4}$ sec. 6), is equal to the sum of its parallel boundaries (expressed in chains and decimals thereof) multiplied by $2 ;(e . g$.) the area of lots 6 and 7 , is $[17.87+17.81]$ $\times 2=71.36$ acres.

The area in acres of a tract 60.00 chains long, situated as above described (excluding lot 4 , of sec. 6), may be found by multiplying the sum of its parallel boundaries (expressed in chains and decimals of a chain) by $3 ;(e . g$. Fig. 6 ; south boundary lot $4=17.78$ chs.; area of lots 5,6 , and 7 is $[17.78+17.87] \times 3=106.95$ acres. (See example 2.)

The area in acres of quarter sections adjoining north and west township boundaries (excluding N. W. $\frac{1}{4}$ sec. 6 , may be obtained by multiplying the sum of their parallel boundaries (taken in chains and decimals of a chain), by 2 ; (e.g.) the area of S. W. $\frac{1}{4}$ sec. 6 (Fig. 6), is $[37.87+37.81] \times 2=151.36$ acres.

The area in acres of any section along the north and west boundaries of regular townships (except sec. 6) may
be had by multiplying the sum of its parallel boundaries (expressed in chains and decimals of a chain) by 4 ; (e.g.) the area of sec. 1 (Plate IV) is $[80.00+79.77] \times 4=639.08$ acres.

The area in acres of a theoretical township may be obtained by multiplying the sum of its latitudinal boundaries (expressed in chains and decimals of a chain) by 24 (e. g.) the area of a township is $[480.00+479.34] \times 24=23$, 024.16 acres.
10. Instructions of $\mathbf{1 9 0 2}$. - The U. S. Manual of Surveying Instructions for 1902, is a large volume of 203 pages, and contains minute instructions in regard to all the operations of the survey of the public lands and private land claims. It is furnished to Deputy U.S. Surveyors and may be had by others who apply for it to the Commissioner of the General Land Office at Washington. The following extracts are made from it:-

SYSTEM OF RECTANGULAR SURVEYING.

1. Existing law requires that in general the public lands of the United States "shall be divided by north and south lines run according to the true meridian, and by others crossing them at right angles so as to form townships six miles square," and that, the corners of the townships thus surveyed "must be marked with progressive numbers from the beginning."

Also, that the townships shall be subdivided into thirty-six sections, each of which shall contain six hundred and forty acres, as nearly as may be, by a system of two sets of parallel lines, one governed by true meridians and the other by parallels of latitude, the latter intersecting the former at right angles, at intervals of a mile.
2. In the execution of the public surveys under existing law, it is apparent that the requirements that the lines of survey shall conform to true meridians, and that the townships shall be 6 miles square, taken together, involve a mathematical impossibility due to the convergency of the meridians.

Therefore, to conform the meridianal township lines to the true meridians produces townships of a trapezoidal form which do not contain the precise area of 23,040 acres required by law, and which discrepancy increases with the increase in the convergency of the meridians, as the surveys attain the higher latitudes.
In view of these facts, and under the provisions of section 2 of the act of May 18, 1796, that sections of a mile square shall contain 640 acres, as nearly as may be, and also under those of section 3 of the act of May 10, 1800 , that "in all cases where the exterior lines of the townships, thus to be subdivided into sections and half sections, shall exceed, or shall not extend 6 miles, the excess or deficiency shall be specially noted, and added to or deducted from the western or northern ranges of sections or half sections in such township, according as the error may be in running lines from east to west, or from south to north; the sections and half sections bounded on the northern and western lines of such townships shall be sold as containing only the quantity expressed in the returns and plats, respectively, and all others as containing the complete legal quantity." the public lands of the United States shall be surveyed under the methods of the system of rectangular surveying, which harmonizes the incompatibilities of the requirements of law and practice, as follows:-
First. The establishment of a principal meridian conforming to the true meridian, and, at right angles to it, a base line conforming to a parallel of latitude.

Second. The establishment of standard parallels conforming to parallels of latitude, initiated from the principal meridian at intervals of 24 miles and extended east and west of the same.
Third. The establishment of guide meridians conforming to true meridians, initiated upon the base line and successive standard parallels at intervals of 24 miles, resulting in tracts of land 24 miles square, as nearly as may be, which shall be subsequently divided into tracts of land 6 miles square by two sets of lines, one conforming to true meridians, crossed by others conforming to
parallels of latitude at intervals of 6 miles, containing 23,040 acres, as nearly as may be, and designated townships.
Such townships shall be subdivided into thirty-six tracts, called sections, each of which shall contain 640 acres, as nearly as may be, by two sets of parallel lines, one set parallel to a true meridian and the other conforming to parallels of latitude, mutually intersecting at intervals of 1 mile and at right angles, as nearly as may be.
Any series of contiguous townships situated north and south of each other constitutes a range, while such a series situated in an east and west direction constitutes a tier.

By the terms of the original law, and by general practice, section lines were surveyed from south to north and from east to west, in order to uniformly place excess or deficiency of measurement on the north and west sides of the townships. But under modern conditions many cases arise in which a departure from this method is necessary. Where the west or the north boundary is sufficiently correct as to course, to serve as a basis for rectangular subdivision, and the opposite line is defective, the section lines should be run by a reversed method.

For convenience the well-surveyed lines on which subdivisions are to be based, will be called governing boundaries of the township.
3. The tiers of townships will be numbered, to the north or south, commencing with No. 1, at the base line; and the ranges of the townships, to the east or west, beginning with No. 1, at the principal meridian of the system.
4. The thirty-six sections into which a township is subdivided are numbered, commencing with number one at the northeast angle of the township, and proceeding west to number six, and thence proceeding east to number twelve, and so on, alternately, to number thir-ty-six in the southeast angle. In all cases of surveys of fractional townships, the sections will bear the same numbers they would have if the township was full, and where doubt arises as to which section numbers should
be omitted, the proper section numbers will be used on the side or sides which are governing boundaries, leaving any deficiency to fall on the opposite sides.
5. Standard parallels, formerly called correction lines, shall be established at intervals of every 24 miles, north and south of the base line, and guide meridians at intervals of every 24 miles, east and west of the principal meridian; thus confining the errors resulting from convergence of meridians and inaccuracies in measurement within comparatively small areas.

Instruments.-6. The surveys of the public lands of the United States, embracing the establishment of base lines, principal meridians, standard parallels, meander lines, and the subdivisions of townships, will be made with instruments provided with the accessories necessary to determine a direction with reference to the true meridian, independently of the magnetic needle.

Burt's improved solar compass, or a transit of approved construction, with or without solar attachment, will be used in all cases. When a transit without solar attachment is employed, Poluris observations and the retracements necessary to execute the work in accordance with existing law and the requirements of these instructions will be insisted upon. Observations every clear night will be necessary to secure accuracy in the direction of transit reference lines, when solar apparatus is not used. The method of connecting surveys with the stellar meridian should distinctly appear in the field notes, as evidence that the courses were not derived from the magnetic needle.
7. Deputies using instruments with solar apparatus will be required to make observations on the star Polaris at the beginning of every survey, and, whenever necessury, to test the accuracy of the solar apparatus.

The observations required to test the adjustments of the solar apparatus will be made at the corner where the survey begins, or at the camp of the deputy surveyor nearest said corner ; and in all cases the deputy will
fully state in the fleld notes the exact location of the observing station.

Deputy surveyors will examine the adjustments of their instruments, and take the latitude daily, weather permitting, while running all lines of the public surveys. They will make complete records in their field notes, under proper dates, of the making of all observations in compliance with these instructions, showing the character and condition of the instrument in use, and the precision attained in the survey, by comparing the direction of the line run with the meridian determined by observation.

On every survey executed with solar instruments, the deputy will, at least once on each working day, record in his field notes the proper reading of the latitude arc; the declination of the sun, corrected for refraction, set off on the declination arc; and note the correct local mean time of his observation, which, for the record, will be taken at least two hours from apparent noon.

In field inspection of contract surveys, the examiners are required to obtain the meridian, both by solar and stellar observations, testing their instruments fully before reporting on the courses of the deputy's lines. Hence no deputy should incur risk by omitting any of the safeguards here required as essential to accurate work.
8. The construction and adjustments of all surveying instruments used in surveying the public lands of the United States will be tested at least once a year, and oftener, if necessary, on the true meridian, established under the direction of the surveyor general of the district; and if found defective, the instruments shall undergo such repairs or modifications as may be found necessary to secure the closest possible approximation to accuracy and uniformity in all field work controlled by such instruments.
9. Chaining. - The instruments for measuring lines are the chain and pins. Each deputy will be provided with a standard steel chain or steel tape of approved style, precisely adjusted to the standard measures kept by the surveyor general. The deputy's standard measure will not be used on the field work, but be carefully preserved in camp and used for purposes of frequent comparison with his field chains or steel tapes, in order that changes due to constant use may be discovered at the beginning of each day's work. All his returns of distance will be made in miles, chains, and links, a chain of 100 links being equal to 66 feet. Engineers' chains reading by feet only are not to be used in public land surveys. Distances of height or depth may be given in feet or inches. In these details the specimen field notes are to be observed.

The simple conditions imperatively demanded for all accurate measurements are specified in the chainman's oath, promising that he will level the chain upon even and uneven ground, will plumb the pins, either by sticking or dropping them, and will report the true distances. These brief rules, faithfully observed, will render chaining sufficiently exact to stand the test of inspection by strict examiners.

Before chainmen are entrusted with their actual duties, they should be exercised for practice and thoroughly instructed, under the eye of their employer, by chaining two or three times over one or more trial lines of hilly or mountainous surface, to ascertain the accuracy and uniformity of the results. The methods used by competent surveyors to obtain true horizontal distance over steep slopes, are too important to be disregarded, yet too elementary to be given here. When using only a portion of the chain, on steep hill-sides, especially in a strong wind, accuracy requires a plumb-line or some equivalent means, to mark the vertical. The dropping of flagged pins not loaded, too often in such cases leads to repeated and serious error, which may be avoided by
dropping a more suitable object, such as a piece of metal carried in the pocket.

If any other methods of obtaining measurements up or down hills or across ravines be resorted to, except that here authorized, the facts will be stated in the returns, and the distances must well sustain the tests of the field examiner.
10. Marking Line.-The marking of trees and brush along lines was required by law as positively as the erection of monuments, by the act of 1796 , which is still in force. The old rules therefor are unchanged.

All lines on which are to be established the legal corner boundaries will be marked after this method, viz: Those trees which may be intersected by the line will have two chops or notches cut on the sides facing the line, without any other marks whatever. These are called sight trees, or line trees. A sufficient number of other trees standing within 50 links of the line, on either side of it, will be blazed on two sides diagonally or quartering toward the line, in order to render the line conspicuous, and readily to be traced in either direction, the blazes to be opposite each other, coinciding in direction with the line where the trees stand very near it, and to approach nearer each other toward the line, the farther the line passes from the blazed trees. In early surveys, an opposite practice prevailed

Due care will ever be taken to have the lines so well marked as to be readily followed, and to cut the blazes deep enough to leave recognizable scars as long as the trees stand. This can be attained only by blazing through the bark to the wood. Trees marked less thoroughly will not be considered sufficiently blazed. Where trees two inches or more in diameter occur along a line, the required blazes will not be omitted.

Lines are also to be marked by cutting away enough of the undergrowth of bushes or other vegetation to facilitate correct sighting of instruments. Where lines cross deep wooded valleys, by sighting
over the tops, the usual blazing of trees in the low ground when accessible will be performed, that settlers may find their proper limits of land and timber without resurvey.

The practice of blazing a random line to a point some distance away from an objective corner, and leaving through timber a marked line which is not the true boundary, is unlawful, and no such surveys are acceptable. The decisions of some State courts make the marked trees valid evidence of the place of the legal boundary, even if such line is crooked, and has the quarter-section corner far off the blazed line.

On trial or random lines, therefore, the trees will not be blazed, unless occasionally, from indispensable necessity, and then it will be done so guardedly as to prevent the possibility of confounding the marks of the trial line with the true. But bushes and limbs of trees may be lopped, and stakes set on the trial or random line, at every ten chainc, to enable the surveyor on his return to follow and correct the trial line and establish therefrom the true line. To prevent confusion, the temporary stakes set on the trial or random line will be removed when the surveyor returns to establish the true line.

The terms of each act making appropriation for compensation of surveys, allow increased pay for lines passing through lands "covered with dense undergrowth." The evident purpose of the increase is to compensate the surveyor for the additional labor and delay of cutting away brush and trees which obstruct the proper survey of the line, and also of blazing the line as required by law.

By dense undergrowth is meant thick bushes, boughs, or other vegetable growth of such height as to obstruct the use of the transit and require cutting away to obtain sights along line ; also bushes, brush, or vines, that are of such character as to seriously impede the work of traversing and chaining the line.

Increased rates for heavy timber or dense undergrowth will not be allowed for lines on which no
cutting away of brush is done or is necessary, or where blazing of timber is generally neglected, if these conditions shall be shown by field inspection.

Insuperable Objects on Line-Witness

 Points.-1. Under circumstances where the survey of a line is obstructed by an impassable obstacle, such as a pond, swamp, or marsh (not meanderable), the line will be prolonged across such obstruction by making the necessary right-angle offsets; or, if such proceeding is impracticable, a traverse line will be run, or some proper trigonometical operation will be employed to locate the line on the opposite side of the obstruction; and in case the line, either meridional or latitudinal, thus regained, is recovered beyond the intervening obstacle, said line will be surveyed back to the margin of the obstruction and all the particulars, in relation to the field operations, will be fully stated in the field notes.2. As a guide in alinement and measurement, at each point where the line intersects the margin of an obstacle, a witness point will be established, except when such point is less than 20 chains distant from the true point for a legal corner which falls in the obstruction, in which case a witness corner will be established at the intersection.
3. In a case where all the points of intersection with the obstacle to measurement fall more than 20 chains from the proper place for a legal corner in the obstruction, and a witness corner can be placed on the offset line within 20 chains of the inaccessible corner point, such "witness corner" will be established.
Establishing Corners. -1 . To procure the faithful execution of this part of a surveyor's duty, is a matter of the utmost importance. After true coursing and most exact measurements, the establishment of corners is the consummation of the field work. Therefore, if the corners be not perpetuated in a permanent and workmanlike manner, the principal object of surveying operations will not have been attained.
4. The points at which corners will be established are
fully stated in the several articles: "Base Lines," "Principal Meridians," "Standard Parallels," etc., following the title "Initial Points."

All marking of letters and figures should be done neatly, distinctly, and durably, using the tools best adapted to the purpose, and keeping them in good order. These tools are the chisel and hammer for marking stones, and the scribing-tool or gouge for surfaces of wood. Since the greatest permanency requires stone corner monuments, and the perishable nature of wood prohibits its use where stones can be found or brought, the deputy should be provided with good chisels, to enable him to mark neatly and expeditiously, using arabic figures for all numbers.

Surveying Monuments - 1. These consist of what is called the corner, and its accessories. The corner itself should be durable and firmly imbedded. It may consist of an iron monument, rod, or pipe, a cross cut on a ledge, or a marked stone; or in case these can not be obtained, then a post of durable timber. Where a stone corner has to be set upon a ledge of surface rock, it should be of large size and supported in a well-built stone mound, with its marks well shown ; in addition to which, the usual witness mound will be separately built.
Descriptions of Corners.-1. The form and language used in the following articles, in describing, for each one of the thirteen classes of corners, eight specific constructions and markings, with the stated modifications in certain cases, will be carefully followed by deputy surveyors in their field notes; and their field work will strictly comply with the requirements of the descriptions.
2. When pits and mounds of earth are made accessories to corners, the pits will always have a rectangular plan; while the mounds will have a conical form, with circular base; and in all cases both pits and mounds will have dimensions at least as great as those specified in the descriptions. Deputy surveyors will strictly adhere to
these provisions, and no departure from the stated requirements will be permitted, either in instructions or practice in the field.
3. Referring to the numbered paragraphs, the corners described in " 3 " will be preferred to those described in either " 1 " or " 2 ," when corners are established in loose, sandy soil, and good bearing trees are available; under similar conditions, the corners described in " 5 " and " 8 " will be preferred to those described in " 4 " and " 7 ," respectively.
4. The selection of the particular construction to be adopted in any case will be left, as a matter of course, to the judgment and discretion of the deputy, who will assign the greatest weight to the durability of the corner materials and permanency of the finished corners.

Abbreviations Allowed in Returns. - Dimensions of stones, posts, and pits should for brevity be expressed in a regular manner, in consecutive crder of length, breadth, and thickness, as shown in specimens; for instance, "a stone $23 \times 10 \times 8$ ins." To describe a mound the material, the altitude, and diameter of base will be given, as " mound of earth 4 ft . base, $2 \frac{1}{2} \mathrm{ft}$. high."

The following contractions are authorized to be used in the preparation of field notes, transcripts, inspection reports, and similar records, and no others should be introduced. The arrangement of lines, blanks, spaces, numbers, and the general form of the specimen notes should be observed.

| A. | for acres. |
| :--- | :--- | :--- |
| a. m. | " forenoon. |
| A. M. C. | " aux. meander |
| corner. | |

M. C. for meander corner.
mer. " meridian
mkd. " marked.
N. " north.

NE. " northeast.
NW. " northwest.
obs. " observe.
obsn. " observation.
p. m. " afternoon.

Pol.
Pr. Mer.
" Polaris.
" principal meridian.
Pt . of Tr . " point of triangulation.
1/4 sec. "quarter section.
R., Rs. " range, ranges.
red. " reduce, reduction.
S. " south.
S. C. " standard corner.
SE. " southeast.
sec., secs.,
S. M. C.
sq.

St. Par. " standard parallel.
SW. " southwest.
T., or Tp. " township.

Ts.,or Tps." townships.
temp. " temporary.
U. C. " upper culmination.
var. " variation.
W. " west.
W. C. " witness corner.
w. corr. " watch correction.
W. P. " witness point. w. t. " watch time.

The forms given below will guide the surveyor in the choice and erection of monuments and accessories, and the same forms will be followed in preparing field notes. In case a deputy is compelled to choose another style of corner, he should state in his notes the reasons that made it necessary to depart from the rules, and should erect a monument of equal or greater permanence than the one prescribed.

The punctuation marks heretofore shown in former editions, to be used with letters and figures on stones, posts, and trees, are now omitted, for the reason that they are neither made, nor desired to be made, in the actual field work, and hence should not be inserted in the official returns.

The stated dimensions of posts are minimum ; if posts are longer than 3 feet, the extra length will be placed in the ground; the posts will in no case project more than 12 ins . above the natural surface of the earth.

STANDARD TOWNSHIP CORNERS.

METHOD OF MARKING.
When more than one half of all the standard township and section corners on any 6 miles of a base line or standard parallel are stone corners, the descriptions in paragraphs 1 and 2 , if the corners therein described are established, will be modiffed as follows: Strike out "S. C., on N." After "marked," insert the words:-
"S. C., 13 N. on N.,
22 E. on E., and
21 E. on W. faces;"
When under the conditions above specifled, the corner described in paragraph 1 is established, a stake may be driven in the east pit and marked instead of the stone, and described as exemplifled in the last clause of paragraph 6.

1. Stone, with Pits and Mound of Earth.

Set a - stone, - $X-X$-ins., - ins. in the ground, for standard cor. of (e. g.) Tps. 13 N., Rs. 21 and 22 E., marked S. C. on N.; with 6 grooves on N., E., and W. faces; dug pits, $30 \times 24 \times 12$ íns., crosswise on each line, E . and W., 4 ft ., and N. of stone, 8 ft . dist.; and raised a mound of earth, 5 ft . base, $2 \frac{1}{\frac{1}{2}} \mathrm{ft}$. high, N. of cor. The direction of the mound, from the corner, will be stated wherever a mound is built.
2. Stone, with Mound of Stone.

Set a - stone, - x - \times-ins., -ins. in the ground, for standard cor. of (e.g) Tps. 13 N., Rs. 21 and 22 E., marked S. C., on N.; with 6 grooves on N., E., and W.faces; and raised a mound of stone, 2 ft . base, $1 \frac{1}{2} \mathrm{ft}$. high, N. of cor. Pits impracticable. Mound of stone will consist of not less than four stones, and will be at least $1 \frac{1}{2} \mathrm{ft}$. high, with 2 ft . base.
3. Stone, with Bearing Trees.

Set a - stone, $-\times-x$ - ins., - ins. in the ground, for standard cor. of (e. g.) Tps. 13 N., Rs. 21 and 22 E., marked S. C., on N.; with 6 grooves on N., E., and W. faces; from which

A -, - ins. diam., bears N. - ${ }^{\circ}$ E., - lks. dist., marked
T. 13 N., R. 22 E., S. 31, B. T.

A -, - ins. diam., bears N. - ${ }^{\circ}$ W., - lks. dist., marked
T. 13 N., R. 21 E., S. 36, B. T.

All bearing trees, except those referring to quarter section corners, will be marked with the township, range, and section in which they stand.
4. Post, with Pits and Mound of Earth.

Set a - post, 3 ft . long, 4 ins. sq., with marked stone (charred stake or quart of charcoal), 24 ins. in the ground, for standard cor. of (e. g.) Tps. 13 N., Rs. 22 and 23 E., marked
S. C., T. 13 N . on N.
R. 23 E., S. 31 on E., and
R. 22 E., S. 36 on W. faces; with 5 grooves on N., E., and W. faces; dug pits, $30 \times 24 \times 12$ ins., crosswise on each
line, E. and W., 4 ft ., and N. of post, 8 ft . dist.; and raised a mound of earth, 5 ft . base, $2 \frac{1}{2} \mathrm{ft}$. high, N. of cor. 5. Post, with Bearing Trees.

Set a - post, 3 ft . long, 4 ins . sq., 24 ins . in the ground, for standard cor. of (e. g.) Tps. 18 N., Rs. 22 and 23 E., marked
S. C., T. 13 N. on N.,
R. 23 E. S. 31 on E., and
R. 22 E., S. 36 on W. faces; with 6 grooves on N., E., , and W. faces, from which

A -, - ins. diam., bears N. - ${ }^{\circ}$., - lks. dist., marked
T. 13 N., R. 23 E., S. 31, B. T.

A -, - ins. diam., bears N. - ${ }^{\circ}$ W., - lks. dist., marked
T. 13 N., R. 22 E., S. 36, B. T.
6. Mound of Earth, with Deposit, and Stake in Pit.

Deposited a marked stone (charred stake or quart of charcoal) 12 ins. in the ground, for standard cor. of (e.g.) Tps. 13 N., Rs. 22 and 23 E.; dug pits, $30 \times 24 \times 12 \mathrm{ins}$., crosswise on each line, N., E., and W. of cor., 5 ft . dist.; and raised a mound of earth, 5 ft . base, $2 \frac{1}{2} \mathrm{ft}$. high, over deposit.
In E. pit drove a - stake, 2 ft. long, 2 ins. sq., 12 ins. in the ground marked
S. C., T. 13 N. on N.,
R. 23 E., S. 31 on E., and
R. 22 E., S. 36 on W. faces; with 6 grooves on N., E., and W. faces.
7 Tree Corner, with Pits and Mound of Earth.
A -, - ins. diam., for standard cor. of (e. g.) Tps. 13
N., Rs. 22 and 23 E., I marked
S. C., T. 13 N. on N.,
R. 23 E., S. 31 on E., and
R. 22 E., S. 36 on W. sides; with 6 notches on N., E., and W. sides; dug pits, $24 \times 18 \times 12$ ins., crosswise on each line, N., E., and W. of cor., 5 ft . dist.; and raised a mound of earth around tree.
8. Tree Corner, with Bearing Trees.

- A -, - ins. diam., for standard cor. of (e. g.) Tps. 13
N., Rs. 22 and 23 E., I marked
S. C., T. 13 N. on N.,
R. 23 E., S. 31 on E., and
R. 22 E., S. 36 on W. sides; with 6 notches on N., E., and W. sides; from which

A -, - ins. diam., bears N. - ${ }^{\circ}$ E., - lks. dist., marked
T. 13 N., R. 23 E., S. 31, B. T.

A -, - ins. diam., bears N: - ${ }^{\circ}$ W., - lks. dist., marked
T. 13 N., R. 22 E., S. 36, B. T.

Witness Corners.-1. When the true point for any corner described in these instructions falls where prevailing conditions would insure its destruction by natural causes, a witness corner will be established in a secure position, on a surveyed line if possible, and within twenty chains of the corner point thus witnessed.
2. Markings on Witness Corners.

A witness corner will bear the same marks that would be placed upon the corner for which it is a witness, and in addition, will have the letters "W. C." (for witness corner), conspicuously displayed above the regular markings; such witness corners will be established, in all other respects, like a regular corner. marking bearing trees with the proper numbers for the sections in which they stand.
When bearing trees are described as accessories to a witness corner, the prescribed markings on each tree will be preceded by the letters "W. C.," distinctly cut into the wood.
The true bearing and distance of witness corners, from the true point for the corner, will always be clearly stated in the field notes.
4. Witness Corners to Corner Points Falling in Roads, etc.

The point for a corner falling on a railroad, street, or wagon road, will be perpetuated by a marked stone charred stake or quart of charcoal, deposited 24 inches in the ground, and witnessed by two witness corners, one of which will be established on each limiting line of the highway.

In case the point for any regular corner falls at the intersection of two or more streets or roads, it will be perpetuated by a marked stone (charred stake or quart of charcoal), deposited 24 inches in the ground, and witnessed by two witness corners established on opposite sides of the corner point, and at the mutual intersections of the lines limiting the roads or streets, as the case may be.

Witness Points will be perpetuated by corners similar to those described for quarter section corners, with the marking "W. P." (for witness point), in place of " $\frac{1}{4}$," or " $\frac{1}{4} \mathrm{~s}$.", as the case may be.

If bearing trees are available as accessories to witness points, each tree will be marked W. P. B. T. (See "Insuperable objects on line - Witness Points."

Miscellaneous.-1. Corners on Rock in Place, or on Boulders.

When a corner falls on rock in place, or on a boulder, a cross (X), will be made at the exact corner point, and witnessed by the proper number of bearing trees, if they are available; in the absence of suitable trees, a mound of stonts will be raised, or of earth if stones are not found and pits are available. Owing to the difficulty of identifying the corner coming upon a flat rock in place, when only a cross is cut thereon, it is imperative that some adequate witness be used and marked.
2. Location of Mounds.

When mounds of earth or other material are raised as accessories to corners, they will be placed as specifled in the foregoing Description of Corners, and in every case the direction of the mound from the corner will be carefully stated. The use of the indefinite description "alongside" will not be approved.
In case the character of the land is such that the mound cannot be placed as hereinbefore described, the deputy will state in his notes, by bearing and distance, exactly where the mound is located with reference to the corner, and will give bis reasons for placing it as described.
3. Mounds of Stone, Covered with Earth.

In a case where pits are practicable and the deputy prefers raising a mound of stone, or a mound of stone covered with earth, he will use the form given for "Stone with mound of stone," when the corner thus described is established; but when the corner "Stone, with mound of stone covered with earth," is constructed, the description will be modified as follows: Strike out the words "Pits impractic:ab!e;" in place of "Mound of Stone, 2 ft . base, $1 \frac{1}{2} \mathrm{ft}$. high," write "Mound of stone covered with earth, - ft. base, - ft. high," inserting in the blank spaces the dimensions of the mound given in paragraph 1, following the designation of each class of corners. Mounds of stone, or of stone covered with earth must never be built around the corner stone, but separate. When stones are necessary to hold the corner stone upright and firm, they should be in addition to the witness mound, and not a part of it. 4. Bearing Trees.

Bearing trees marked as accessories to standard corners, either township, section, or quarter section, will be selected on the north side of base lines or standard parallels, and bearing trees referring to the closing corners on said lines, will be located on the south side; in general, the bearing trees referring to any particular closing corner, together with one pit and the mound belonging to such corner, will be located on the same side of the line closed upon, and on the side from which the surveys have been closed.

When the requisite number of trees can be found within 300 links of the corner point, two (2) bearing trees will be marked and described for every standard or closing township or section corner, or corner common to two townships or sections, only; four (4) for every correr common to four townships or four sections; one (1) for a corner referring to one township or one section, only; two (2) for every quarter section corner or meander corner, and four (4) for each mile or half mile corner, or corner monument on a reservation or other boundary, not conforming to the system of rectangular surveying.

The limit of 300 links will not be held to prohibit the use of bearing trees or rocks beyond that distance. Where such objects are few but accessible, they are too useful as evidences of corners to be disregarded by a faithful deputy, even when several chains distant. In the surveys of 50 or 60 years ago, corners were often witnessed by trees 8 or 10 chains distant, with great advantage to subsequent retracements.

In case the prescribed number of trees cannot be found within practicable distance, the deputy will state in his field notes, after describing those marked, "No other trees within limits," and add "Dig pits $-\times-\times$-ins.," etc., or "Raise a mound of stone, - ft . base, - ft . high, - of cor.," as prevailing conditions may require.

Bearing trees, being important accessories to the corners, will have their exact bearings from the true meridian taken with the instrument used in running the lines of survey; and the distance from the middle of each bearing tree to the middle point of the corner will be carefully measured, and recorded in the field notes.
7. As to the height or position of marks placed on bearing trees, practice differs in various localities. The custom of placing these important evidences high enough to insure their destruction when some woodman, ignorant or careless of the penalty of the law, cuts down the tree, is a direct violation of rules. A tree will be so marked that if inadvertently cut down its stump will retain evidence of its importance. Many surveyors have adopted the plan of placing all the marks at the height of 4 or 5 feet, except the letters B T, which are made on another blaze about one foot above the ground. The intent is commendable; but as a better rule, applicable to trees of every size, the following is now adopted: Place all figures and letters on that part of the tree which would probably remain as the stump ; and make one plain blaze high on the same
side, to attract notice in case of snow or dense undergrowth. No tree less than 4 inches in diameter should be chosen for a wituess, if larger ones are convenient: and if none over 3 inches are found, pits will be dug to witness the corner.
6. Stones for Corners.

Stones 18 ins. long, or less, will be set with two thirds of their length in the ground, and those more than 18 ins. long will have three fourths of their length in the ground.
No stones measuring less than 504 cubic inches, or less than 12 ins. in length, will be used for corners.
7. Lines Discontinued at Leyal Corners.

No mountainous lands, or lands not classed as surveyable, will be meandered, and all lines approaching such lands will be discontinued at the section or quarter-section corner nearest the unsurveyed land.
8. Marks to be cut.

All letters and figures on posts, trees, or stones, etc., will be cut into the object upon which they are placed. Arabic figures and plain letters will be used for all markings.
9. Orientation of Corners.

Corners referring to one, two, or four townships or sections, not identical with standard or closing corners, will be set with their faces directed NE. and SW., and NW. and SE., while all other corners will be set with their sides facing the cardinal points; except corners on boundaries of reservations and private land claims, which will be set squarely on line.
10. Size of Posts, Mounds, etc.

The sizes of wooden posts, mounds, and pits, noted in the foregoing descriptions, will be regarded as minimum, and their dimensions will be increased whenever practicable.
11. Corner Materials.

In establishing corners the first preference will be given durable stones when obtainable; then, posts ; and lastly, mounds, with stake in pit.

Wood of a perishable nature will not be used for posts or stakes.
12. Instructions to be studied.

Deputy surveyors will carefully read, study, and familiarize themselves with all instructions contained in this volume, and will instruct their assistants as to their duties before commencing work. An extra copy of this Manual may be furnished each deputy, for the use of his assistants.
Initial Points.-Initial points from which the lines of the public surveys are to be extended will be established whenever necessary, under such special instructions as may be prescribed in each case by the Commissioner of the General Land Office. The locus of such initial points will be selected with great care and due consideration for their prominence and easy identification, and must be established astronomically.

An initial point should have a conspicuous location, visible from distant points on lines; it should be perpetuated by an indestructible monument preferably a copper bolt firmly set in a rock ledge ; and it should be witnessed by rock bearings, without relying on anything perishable like wood.
115. The initial point having been established the lines of public-land surveys will be extended therefrom. They are classified as follows:

Class 1. Base lines and standard parallels.
Class 2. Principal and guide meridians.
Class 3. Township exteriors (or meridional and latitudinal township boundaries).

Class 4. Subdivision and meander lines.
Only the base line and principal meridian can pass through the initial point.

Base Line.-1. From the initial point the base line will be extended east and west on a parallel of latitude, by the use of transit or solar instruments, as may be
directed by the surveyor general in his written special instructions. The transit will be used for the alinement of all important lines.
2. The direction of base lines will conform to parallels of latitude and will be controlled by true meridians; consequently the correct determination of true meridians by observations on Polaris at Elongation is a matter of prime importance.
3. Certain reference lines, called tangents and recants, having a known position and relation to the required parallel of latitude, will be prolonged as straight lines. Two back and two fore sights are taken at each setting of the instrument, the horizontal limb being revolved 180° in azimuth between the oloservations, in one method, taking the mean of observations. Another method, called double back and fore sights, is still more exact and therefore preferable. In this process the vertical cross-wire is fixed upon two transit points at some distance apart, in the rear, and then reversed to set one or two new points in advance. This not only insures a straight line, if the transit is leveled, but also detects the least error of collimation.
4. Where solar apparatus is used in connectio: with a transit, the deputy will test the instrument, whenever practicable, by comparing its indications with a meridian determined by Polaris observations; and in all cases where error is discovered, he will make the necessary corrections of his line before proceeding with the survey. All operations will be fully described in the field notes.
5. The proper township, section, and quarter section corners will be established at lawful intervals, and meander corners at the intersection of the line with all meanderable streams, lakes, or bayous.
6. In order to detect errors and insure accuracy in measurement, two sets of chainmen will be employed; one to note distances to intermediate points and to lo
cate topographical features, the other to act as a check. Each will measure forty chains and in case the difference is inconsiderable, the proper corner will be placed midway between the ending points of the two measurements; but if the discrepancy exceed 8 links on even ground, or 25 links on mountainous surface, the true distance will be found by careful re-chaining by one party or both.

The deputy will be present when each corner is thus established, and will record in the body of his field notes the distances to the same, according to the measurement by each set of chainmen.

To obviate collusion between the sets of chainmen, the second set should commence at a point in advance of the beginning corner of the first set, the initial difference in measurement thus obtained being known only to the deputy

Principal Meridian.-1. This line shall conform to a true meridian and will be extended from the initial point, either north or south, or in both directions, as the conditions may require, by the use of transit or solar instruments, as may be directed by the surveyor general in his special written instructions.
2. The methods used for determination of directions, and the precautions to be observed to secure accuracy in measurement, are fully stated above under the title "Base Line," and will be complied with in every particular.
3. In addition to the above general instructions, it is required that in all cases where the establishment of a new principal meridian seems to be necessary to the surveyor general, he shall submit the matter, together with his reasons therefor, to the commissioner of the General Land Office, and the survey of such principal meridian shall not be commenced until written authority, together with such special instructions as he may deem necessary, shall have been received from the commissioner.

Standard Parallels.-1. Standard parallels, which are also called correction lines, shall be extended•east
and west from the principal meridian, at intervals of 24 miles north and south of the base line, in the manner prescribed for running said line, and all requirements under the title "Base Line" will be carefully observed.
2. Where standard parallels have been placed at intervals of 30 or 36 miles, regardless of existing instructions, and where gross irregularities require additional stand-ard-lines, from which to initiate new, or upon which to close old surveys, an intermediate correction line should be established to which a local name may bi given, e. g., "Cedar Creek Correction Line;" and the same will be run, in all respects, like the regular standard parallels.
Guide Meridians.-1. Guide meridians shall be extended north from the base line, or standard parallels, at intervals of 24 miles east and west from the principal meridian, in the manner prescribed for running the principal meridian, and all the provisions for securing accuracy of alinement and measurement found, or referred to under the titles "Base Line," and "Principal Meridian," will apply to the survey of said guide meridians.
2. When existing conditions require that such guide meridians shall be run south from the base or correction lines, they will be initiated at properly established closing corners on such lines marked as closing corners.
3. Where guide meridians have been improperly placed at intervals greatly exceeding the authorized distance of 24 miles, and standard lines are required to limit errors of old, or govern new surveys, a new guide meridian may be run from a standard, or properly established closing corner, and a local name may be assigned to the same, e. g., "Grass Valley Guide Meridian." These additional guide meridians will be surveyed in all respects like the regular guide meridians.

Township Exteriors.-1. Whenever practicable, the township exteriors in a block of land 24 miles square, bounded by standard lines, will be surveyed successively through the block, beginning with those of the southwestern township.
2. The meridional boundaries of townships will have precedence in the order of survey and will be run from south to north on true meridians, with permanent corners at lawful distances; the latitudinal boundaries will be run from east to west on random or trial lines, and corrected back on true lines.

The falling of a random, north or south of the township corner to be closed upon, will be carefully meas ured, and, with the resulting true return course, will be duly recorded in the field notes.

Should it happen, however, that such random intersects the meridian of the objective corner, north or south of said corner, or falls short of, or overruns the length of the south boundary of the township by more than three chains (due allowance being made for convergency), said random, and, if necessary, all the exterior boundaries of the township, will be retraced and remeasured to discover and correct the error

When running random lines from east to west, temporary corners will be set at intervals of 40.00 chains, and proper permanent corners will be established upon the true line, corrected back in accordance with these instructions, thereby throwing the excess or defficiency against the west boundary of the township, as required by law.
3. Whenever practicable, the exterior boundaries of townships belonging to the west range, in a tract or block 24 miles square, will first be surveyed in succession, through the range, from south to north; and in a similar manner, the other three ranges will be surveyed in regular sequence.
4. In cases where impassable objects occur and the foregoing rules cannot be complied with, township corners will be established as follows:-

In extending the south or north boundaries of a township to the west, where the southwest or northwest corners cannot be established in the regular way by running a north and south line, such boundaries will be run west on a true line, allowing for convergency on the west half
mile; and from the township corner established at the end of such boundary, the west boundary will be run north or south, as the case may be. In extending south or north boundaries of a township to the east, where the southeast or northeast corner cannot be established in the regular way, the same rule will be observed, except that such boundaries will be run east on a true line, and the east boundary run north or south, as the case may be.
5. Allowance for the convergency of meridians will be made whenever necessary.

Method of Subdividing.-1. The exterior boundaries of a full township having been properly established so far as possible the subdivision thereof will be made as follows:-

At or near the southeast corner of the township, a true meridian will be determined by Polaris or solar observations, and the deputy's instrument will be tested thereon; then from said corner the first mile of the east and south boundaries will be retraced, if subdivisions and survey of the exteriors have been provided for in separate contracts; but if the survey of the exterior and subdivisional lines are included in the same contract, the retracements referred to will be omitted. All discrepancies resulting from disagreement of bearings or measurements will be carefully stated in the field notes.

The meridional sectional lines will be made parallel to the range line or east boundary of the township, by applying to the bearing of the latter a small correction dependent on the latitude, taken from the following table, which gives, to the nearest whole minute, the convergency of two meridians 6 miles long and from 1 to 5 miles apart; and supplies directly the deviation of meridional section lines west of north, when the range line is a true meridian. Add the correction to the bearing of the range line, if the same is west of north, but subtract when it bears east of north.

Table II.-Corrections for Convergency within a Township.

Latitude.	Correction to be applied to bearing of range lines at a distance of -				
$\bigcirc 0$	1 mile.	2 miles.	3 miles.	4 miles.	5 miles,
30 to $35 \ldots$.	1	1	2	2	3
35 to $40 \ldots .$.	1	1	2	3	3
40 to $45 \ldots .$.	1	2	2	3	4
45 to 50....	1	2	3	4	5
50 to 55.....	1	2	3	5	6
55 to 60.....	1	3	4	5	7
60 to 65....	2	3	5	8	8
65 to 70.....	2	4	6	8	10

Example.-Latitude 47°. Range line bears N. $0^{\circ} 2^{\prime} \mathrm{E}$. ; then parallel meridional section lines will be run as follows:

From the corner for sections-

$$
\begin{aligned}
& 35 \text { and } 36, \mathrm{~N} .0^{\circ} 1^{\prime} \mathrm{E} . \\
& 34 \text { and } 35, \text { north. } \\
& 33 \text { and } 34, \mathrm{~N} .0^{\circ} 1^{\prime} \\
& 32 \text { W. } 33, \mathrm{~N} .0^{\circ} \\
& 2^{\prime} \\
& 31 \text { W. } \\
& 31 \text { and } 32, \mathrm{~N} .0^{\circ} \\
& 3^{\prime} \\
& \mathrm{W} .
\end{aligned}
$$

2. After testing his instrument on the true meridian thus determined, the deputy will commence at the corner to sections 35 and 36 , on the south boundary, and run a line parallel to the range line, establishing at 40.00 chains, the quarter section corner between sections 35 and 36 , and at 80.00 chains the corner for sections 25,26 , 35 , and 36.
3. From the last-named corner, a random line will be run eastward, without blazing, parallel to the south bound-. ary of section 36 , to its intersection with the east boundary of the township, placing at 40.00 chains from the point of beginning, a post for temporary quarter section corner. If the random line intersects said township
boundary exactly at the corner for sections 25 and 36 , it will be blazed back and established as the true line, the permanent quarter section corner being established thereon, midway between the initial and terminal section corners.

When the objective corner is in sight from the starting corner, or the deputy has evidence of its location to prove that a different random course would fall closer to the corner, he may use such changed course for his random. A line may be run as a "random for distance only," when the course is certain.
If, however, the random intersects said township boundary to the north or south of said corner, the falling will be carefully measured, and from the data thus obtained, the true return course will be calculated, and the true line blazed and established, and the position of the quarter section corner determined, as directed above.
The details of the entire operation will be recorded in the field notes.
4. Having thus established the line between sections 25 and 36 ; from the corner for sections $25,26,35$ and 36 , the west and north boundaries of sections $25,24,13$, and 12, will be established as directed for those of section 36; with the exception that the random lines of said north boundaries will be run parallel to the established south bounduries of the sections to which they belong, instead of the south boundary of section 36 ; e. g. the random line between sections 24 and 25 will be run parallel to the established south boundary of section 25 , etc.
5. Then, from the last established section corner, i. e. the corner for sections $1,2,11$, and 12 , the line between sections 1 and 2, will be projected northward, on a random line, parallel to the east boundary of the towиship, setting a post for temporary quarter section corner at 40.00 chains, to its intersection with the north boundary of the township. If the random intersects said north boundary exactly at corner for sections 1 and 2, it will be blazed back and established as the
true line, the temporary quarter section corner being established permanently in its original position, and the fractional measurement thrown into that portion of the line between said corner and the north boundary of the township.
If, however, said random intersects the north boundary of the township, to the east or west of the corner for sections 1 and 2, the consequent falling will be carefully measured, and from the data thus obtained, the true return course will be calculated, and the true line established; the permanent quarter section corner being placed upon the same at 40.00 chains from the initial corner of the random line, thereby throwing the fractional measurement in that portion lying between the quarter section corner and the north boundary of the township.
When the north boundary of a township is a base line or standard parallel, the line between sections 1 and 2 will be run parallel to the range line as a true line, the quarter section corner will be placed at 40.00 chains, and a closing comer will be established at the point of intersection with such base or standard line; and in such case, the distance from said closing corner, to the nearest standard corner on such base or standard line, will be carefully measured and noted as a connection line.
6. Each successive range of sections progressing to the west, until the fifth range is attained, will be surveyed in a similar manner; then, from the section corners established on the west boundary of said range of sections, random lines will be projected to their intersection with the west boundary of the township, and the true return lines established as prescribed for the survey of the first or most eastern range of sections, with the exception that on the true lines thus established, the quarter-section corners will be established at 40.00 chains from the initial corners of the randoms, the fractional measurements being thereby thrown into those portions of the lines situated between said quar-ter-section corners and the west boundary of the township.
7. The following general requirements are reiterated for emphasis:-
The random of a latitudinal section line will always be run parallel to the south boundary of the section to which it belongs, and with the true bearing of said boundary; and when a section has no linear south boundary, the random will be run parallel to the south boundary of the range of sections in which it is situated, and fractional true lines will be run in a similar manner.
8. The deputy is not required to complete the survey of the first range of sections from south to north before commencing the survey of the second or any subsequent range of sections, but the corner on which any random line closes shall have been previously established by running the line which determines its position, except as follows: Where it is impracticable to establish such section corner in the regular manner, it will be established by running the latitudinal section line as a true line, with a true bearing, determined as above directed for random lines, setting the quarter-section corner at 40.00 chains and the section corner at 80.00 chains.
9. Quarter-section corners, both upon meridional and latitudinal section lines, will be established at points equidistant from the corresponding section corners, except upon the lines closing on the north and west boundaries of the township, and in those situations the quartersection corners will always be established at precisely forty chuins to the north or west (as the case may be) of the respective section corners from which those lines respectively start, by which procedure the excess or deficiency in the measurements will be thrown, according to law, on the extreme tier or range of quarter sections, as the case may be.
10. Where by reason of impassable objects only a portion of the south boundary of a township can be established, an auxiliary base line for lines, as the case may require) will be run through the portion which has no linear south boundary, first random, then corrected, connecting properly-established corresponding section
corners (either interior or exterior) and as far south as possible, and from such line or lines, the section lines will be extended northwardly in the usual manner, and any fraction south of said line will be surveyed in the opposite direction from the section corners on the auxiliary base thus established.
11. Where by reason of impassable objects no portion of the south boundary of a township can be regularly established, the subdivision thereof will proceed from north to south and from east to west, thereby throwing all fractional measurements and areas against the west boundary, and the meanderable stream or other boundary limiting the township on the south.

If the east boundary is without regular section corners and the north boundary has been run eastwardly as a true line, with section corners at regular intervals of 80.00 chains, the subdivision of the township will be made from west to east, and fractional measurements and areas will be thrown against the irregular east boundary.
12. When the proper point for the establishment of a township or section corner is inaccessible, and a witness corner can be erected upon each of the two lines which approach the same, at distances not exceeding twenty chains therefrom, said witness corners will be properly established, and the half miles upon which they stand will be recognized as surveyed lines.

The witness corner will be marked as conspicuously as a section corner, and bearing trees will be used wherever possible.

The deputy will be required to furnish good evidence that the section corner is actually inaccessible.

Where impassable precipices, deep cauyons, or lands otherwise quite unsurveyable, prevent the extension of regular lines, deputies are not authorized to set meander corners, nor to meander the line separating lands that can be traversed from those that cannot. In place of meandering, they are to set
witness corners on line, near the intersection of section lines with the briuk or foot of the impassable cliffs, or at the margin of the impracticable marsh, to represent an inaccessible regular section or quarter-section corner if within twenty chains. Such quarter sections thus marked may be platted as surveyed.

Where a large or desirable tract is found to have its accessible section lines too short to justify the erection of such witness corners, and to render it regularly surveyed, offset lines may be run on lines of legal subdivision, far enough to show, by necessary witness corners, the 40 -acre tracts that would otherwise have been excluded from survey.

The topographic sketches of mesas and impassable canyon regions, returned by deputies, will show as nearly as practicable the location of these features and their margins; and where possible the corners on opposite sides of a canyon should be connected by triangulation at least once in each township.

Meandering.-1. Lands bounded by waters are to be meandered at mean high-water mark. This term has been defined in a State decision (47 Iowa, 370) in substance as follows: High-water mark in the Mississippi River is to be determined from the river bed; and that only is river bed which the river occupies long enough to wrest it from vegetation. In cases where the deputy finds it impossible to carry his meander line along mean high-water mark, his notes should state the distance therefrom, and the obstacles which justify the deviation.

Proceeding down stream, the bank on the left hand is termed the left bank and that on the right hand the right bank. These terms will be universally used to distinguish the two banks of a river or stream.
2. Navigable rivers, as well as all rivers not embraced in the class denominated "navigable," the right-angle width of which is three chains and upward, will be
meandered on both banks, at the ordinary mean high water mark, by taking the general courses and distances of their sinuosities, and the same will be entered in the field book. Rivers not classed as navigable will not be meandered above the point where the average rightangle width is less than three chains, except that streams which are less than three chains wide and which are so deep, swift, and dangerous as to be impassable through the agricultural season, may be meandered, where good agricultural lands along the shores require their separation into fractional lots for the benefit of settlers. But such meander surveys shall be subject to rejection if proved unnecessary by field inspection.

Shallow streams, without any well-defined channel or permanent banks, will not be meandered; except tide-water streams, whether more or less than three chains wide, which should be meandered at ordinary high-water mark, as far as tide-water extends.

At every point where either standard, township, or section lines intersect the bank of a navigable stream, or any meanderable shore, corners will be established at the time of running these lines. Such corners are called meander corners, and the deputy will commence at one of these corners, follow the bank or boundary line, and take the bearing and measure the length of each course, from the beginning corner to the next meander corner.

Regular meander corners are those established on standard, township, or section lines.

The meander corners on lines of legal subdivisions, other than standard, township or section lines, will be designated special meander corners.

Meander corners, not on a line belonging to the system of rectangular surveying, will be called auxiliary meander corners.

When a Meander Corner falls at a point where prevailing conditions would threaten its destruction by natural causes, a witness corner to such meander
corner will be established, as provided for in the article Witness Corners.

All courses reported are to be compass courses, taken or counted from the meridian, and not from a latitudinal line ; and "transit angles" showing only the amount of deviation from the preceding course, are not allowed in field notes of meanders.

For convenience of testing by traverse, the courses of meander lines should be given by the nearest quarter degree. As meandered lines are not strict boundaries, this method will give results with approximate accuracy for good closings within the limits of a section. Meander lines will be examined in the field as well as rectangular lines, before acceptance.

All meanders should be traversed before leaving the vicinity, and if misclosure is found indicating error in measurement or in reading courses, the lines must be re-meandered.

The crossing distance between meander corners on same line and the true bearing and distance between corresponding and meander corners, will be ascertained by triangulation or direct measurement, in order that both shores may be protracted. The particulars will be given in the field notes.

For convenience of platting and computation, the deputy is required to use in meanders distances having full chains or multiples of ten links, with odd links only in closing distances.
3. The meanders of all lakes, navigable bayous, and deep ponds, of the area of twenty-five acres and upwards, will be commenced at a meander corner and continued, as above directed for navigable streams; from said corner, the courses and distances of the entire margin of the same, and the intersections with all meander corners established thereon will be noted.
All streams falling into the river, lake, or bayou will be noted, and the width at their mouths stated; also, the position, size, and depth of springs, whether the water be pure or mineral; also the heads and mouths of
all bayous; all islands, raplds, and bars will be noted, with intersections, to their upper and lower ends, to establish their exact situation. The elevation of the banks of lakes, bayous, and streams, the height of falls and cascades, and the length and fall of rapids will be recorded in the fleld notes.

To meander a lake or deep pond lying entirely within the boundaries of a section, two lines will be run from the two nearest corners on different sides of such lake or pond, the courses and length of which will be recorded, and if eoincident with unsurveyed lines of legal subdivisions, that fact will also be stated in the fleld notes, and at each of the points where said lines intersect the margin of the pond or lake, a special meander corner will be established as above directed.

The relative position of these points being thus deflnitely fixed in the section, the meandering will commence at one of them and be continued to the other, noting the intersecition, and thence to the beginuing. The proceedings are to be fully entered in the field notes.
4. Meander lines will not be established at the segregation line between dry and swamp or overflowed land, but at the ordinary high-water mark of the actual margin of the rivers or lakes on which such swamp or overflowed lands border.
5. The precise relative position of an island, in a township made fractional by a river or lake in which the island is situated, will be determined by triangulation from a special and carefully measured base line, initiated from the surveyed lines, on or near the lake or river bank on the main land, so as to connect by course and distance on a direct line, the meander corner on the mainland with the corresponding point on the island, where the proper meander corner will be established.
6. In making the connection of an island lying entirely within a section, with the mainland, a special base will be measured from the most convenient meander corner, and from such base, the location of an auxiliary meander corner will be determined by triangulation, at which the meanders of the island will be initiated.
7. In the survey of lands bordering on tide waters, meander corners may be temporarily set at the intersection of the surveyed lines with the line of mean high tide, but no monument should be placed in a position exposed to the beating of waves, and the action of ice in severe weather. In all such cases, the rule given in section 90 must be observed by establishing a witness corner on line at a secure point near the true point for the meander corner.
8. The field notes of meanders will show the dates on which the work was performed, as illustrated in the specimen notes. The field notes of meanders will state and describe the corner from which the meanders commenced, and upon which they closed, and wili exhibit the meanders of each fractional section separately; following, and composing a part of such notes, will be given a description of the land, timber, depth of inundation to which the bottom is subject, and the banks, current, and bottom of the stream or body of water meandered. The utmost care will be taken to pass no object of topography, or change therein, without giving a particular description thereof in its proper place in the notes of the meanders.

Summary of Objects and Data Required to be

 Noted. -1. The precise course and length of every line run, noting all necessary offsets tlierefrom, with the reason for making them, and method employed.2. The kind and diameter of all bearing trees, with the course and distance of the same from their respective corners; and the precise relative position of witness corners to the true corners.
3. The kind of materials of which corners are constructed.
4. Trees on line. The name, diameter, and distance on line to all trees which it intersects.
5. Intersections by line of land objects. The distance at which the line intersects the boundury lines of every reservation, town site, duration claim, Indian allotment, settler's claim, improvement, or rancho; prairie, bottom land, swamp, marsh, grove, and windfall, with the course of the same at all points of intersection; also the distances at which the line begins to ascend, arrives at the top, begins to descend and reaches the foot of all remarkable hills and ridges, with their courses, and estimated height in fect, above the level land of the surrounding country, or above the bottom lands, ravines, or waters near which they are situated. Also, distance to and across large ravines, their depth and course.
6. Intersections by line of water objects. All rivers, creeks, and smaller streams of water which the line crosses; the distances measured on the true line to the bank first arrived at, the course down stream at points of intersection, and their widths on line. In cases of navigable streams, their width will be ascertained
between the meander corners, as set forth under the proper head.
7. The land's surface-whether level, rolling, broken, hilly, or mountainous.
8. The soil-whether rocky, stony, sandy, clay, etc., and also whether first, second, third, or fourth rate.
9. Timber-the several kinds of timber and undergrowth, in the order in which they predominate.
10. Bottom lands-to be described as wet or dry, and if subject to inundation, state to what depth.
11. Springs of water-whether fresh, saline, or mineral, with the course of the stream flowing from them.
12. Lakes and ponds-describing their banks and giving their height, and whether it be pure or stagnant, deep or shallow.
13. Improvements. - Towns and villages; houses or cabins, fields, or other improvements with owner's names ; mill sites, forges and factories, U. S. mineral monuments, and all corners not belonging to the system of rectangular surveying; will be located by bearing and distance, or by intersecting bearings from given points.
14. Coal banks or beds; peat or turf grounds; minerals and ores with particular description of the same as to quality and extent, and all diggings therefor; also salt springs and licks. All reliable information that can be obtained respecting these objects, whether they be on the line or not, will appear in the general description.
15. Roads and trails, with their directions, whence and whither.
16. Rapids, cataracts, cascades, or falls of water, with the estimated height of their fall in feet.
17. Precipices, caves, sink holes, ravines, remarkable crags, stone quarries, ledges of rocks, with the kind of stone they afford.
18. Natural curiosities, interesting fossils, petrifactions, organic remains, etc.; also all ancient works of art, such as mounds, fortifications, embankments, ditches, or objects of like nature.
19. The magnetic declination will be incidentally
noted at all points of the lines being surveyed, where any material change in the same indicates the probable presence of iron ores; and the position of such points will be perfectly identified in the field notes.

PRESCRIBED LIMITS FOR CLOSINGS AND LENGTHS

OF LINES.

1. If in running a random township exterior, such random exceeds or falls short of its proper length by more than three chains, allowing for convergency, or falls more than three chains to the right or left of the objective point (or shows a proportionate error for lines of greater or less length than six miles), it will be re-run, and if found correctly run, so much of the remaining boundaries of the township will be retraced, or resurveyed, as may be found necessary to locate cause of misclosure.
2. Every meridional section line, except those which terminate upon a fractional side of a township, will be 80 chains in length, without allowance of 50 links per mile for difference of measure, or any other allowance beyond a small reasonable discrepancy according to the nature of the surface, to be determined after examination.
3. The random meridional or latitudinal lines through a tier or range of fractional sections shall fall within 50 links of the objective corners, and a greater falling will indicate negligence or error.
4. The actual lengths of meridional section lines through a fractional north or south tier of sections shall be within 150 links of their theoretical length. The latter will be determined from the given lengths of meridional boundaries on the east and the west range lines.
5. Each latitudinal section line, except in a fractional east or west range of sections, shall be within 50 links of the actual distance established on the governing north and south boundary of the township for the width of the same range of sections.
6. The north boundary and the south boundary of any section, except in a fractional range, shall be within 50 lengths of equal length.
7. The meanders within each fractional section
or between any two successive meander corners, or of an island or lake in the interior of a section, should close by traverse within a limit to be determined by allowing five eighths of a link for each chain of such meander line. This rule does not apply to irregular boundaries of reservations or private claims, except as far as the same are natural water boundaries. The total misclosure of meanders will not be permitted to exceed 150 links, except in large private land claims, which are governed by a different rule and limit.
8. In closing upon accepted surveys, when irregularities beyond the allowable limits are developed, either in the length or direction of the closing lines, closing corners will be set with the quarter-section corners at 40 chains from the last interior section corner.
9. And, in general, when conditions are met which result in a random line being defective, either in length or direction, such procedure will be adopted as will secure the greatest number of new rectangular legal subdivisions, without disturbing the condition of accepted surveys.
Field Notes.-1. The proper blank books for original field notes will be furnished by the surveyor general, and in such books the deputy surveyor will make a faithful, distinct, and minute record of everything done and observed by himself and his assistants, pursuant to instructions, in relation to running, measuring, and marking lines, establishing corners, etc., and present, as far as possible, full and complete topographical sketches of all standard and exterior lines, drawn to the usual scale for township exteriors. These "original field notes" are not necessarily the entries made in the field, in the deputy's pocket note books called tablets; but they are to be fully and correctly written out in ink, from such tablets, for the permanent record of the work. Tablets should be so fully written as to verify the "original field notes" whenever the surveyor-general requires them for inspection.

BY OFFSETS FROM STRAIGHT LINES.

1. The corners on a Base Line or a Standard Parallel could be established from chords of the latitude curve, joining successive township corners; from a tangent to the true latitude curve at a point midway between the township corners; or from an intermediate straight line parallel to the lines above mentioned. In the first case, all the offsets would be measured south; in the second case, all offsets would be measured north; and in both cases, the maximum offset, or greatest distance of the latitude curve from the reference lines would be one-fourth of the greatest offset from a tangent six miles long, i. e., the offset found in table X, opposite the proper latitude, and in the column headed " 3 miles;" while tue mitial bearings of the three lines, would be equal to each other; similar relations between the bearings at corresponding points, would obtain through a range.

The method of establishing corners on a true latitude curve by offsets from a line situated between and parallel to the chord and tangent, which was devised to meet a demand for short offsets, will now be described.

Secant Method. - I. This method consists of running a connected series of straight lines, each six miles long, on such courses that any one of the lines will intersect the curve of the parallel of latitude in two points separated by an interval of four miles; and, from the lines thus established, measuring north or south, as the case may be, to attain other required points on the latitude curve. For the sake of brevity, said straight lines will be called secants.

> UNIVERSITY, OF CALIFORNIA, DEPARTMEMT OF CIVILENGIMEERING DEAKESEY, CALIFORNIA

Tabue VIII.-Azimuths of the Secant, and Offect, in feet, to the Parallel. Atguments: latifude in left hand column and distance from starting point at top or bottom of the table.

$\begin{aligned} & \text { Lati. } \\ & \text { tude. } \end{aligned}$	Azimuths and offeterat-							Deflection Angic and nat. tan. 10 Rad. 66 ft. Rad. 66 ft
	0 miles.	t mile.	1 milie,	11 miles.	2 miles.	21 miles.	3 miles.	
30	$\begin{aligned} & 80058^{\prime} .5 \\ & 1,93^{\mathrm{NN}} . \end{aligned}$	$\begin{aligned} & 899588^{\prime}, 7 \\ & 0.87 \text { N. } \end{aligned}$	$\begin{array}{r} 890 \\ 0.0 .00 \end{array}$	$\begin{aligned} & 89059.2 \\ & \mathbf{0 . 6 7} \mathrm{~s} .2 \end{aligned}$	$\begin{aligned} & 80059.8 \\ & 1.16 \mathrm{~s} . \end{aligned}$	$\begin{aligned} & 89059^{\prime .} 7 \\ & 1.44 \text { s. }^{2} \end{aligned}$	${ }^{000}$ (E. or W. ${ }^{\text {O }}$)	$\begin{array}{r} 8^{\prime} 00^{\prime \prime} \cdot 2 \\ 0.69 \mathrm{sma} . \end{array}$
31	$\begin{aligned} & 80050^{\circ} .4 \\ & 2.01 \mathrm{~K} . \end{aligned}$	$\begin{aligned} & 89958^{\prime} .6 \\ & 0.91 \text { N. } \end{aligned}$	$\begin{aligned} & 800 \\ & 0.98 .9 \\ & 0.00 \end{aligned}$	$\begin{aligned} & 890^{89 \prime} .2 \\ & 0.70^{\prime}{ }^{2} \end{aligned}$	$\begin{aligned} & 89059.5 \\ & 1.20 \mathrm{~s} . \end{aligned}$	$\begin{aligned} & 89089.7 \\ & 1.500^{5} . \end{aligned}$	$\begin{aligned} & 90^{\circ}\left(E_{1} \text { or } W .\right) \\ & 1.60 \mathrm{~S} \text {) } \end{aligned}$	$.22 \ln .4 .$
32	$\left\lvert\, \begin{aligned} & 890.580^{\circ} \\ & 2.09 \mathrm{~N}^{\prime} \end{aligned}\right.$	$\begin{aligned} & 89058^{\prime} .6 \\ & 0.94 \mathbf{N}^{2} . \end{aligned}$	$\begin{array}{r} 890 \\ 88^{\prime \prime} 9 \\ 0 \end{array}$	$\begin{aligned} & 890.59^{\prime} .2 \\ & 0.73 \text { S. } \end{aligned}$	$\begin{aligned} & 890.59 .5 \\ & 1.2 \% \text { S. } \end{aligned}$	$\begin{aligned} & 89059.7 \\ & 1.56 \mathrm{~S} . \end{aligned}$	$90^{\circ}\left(\text { E. or }_{1.67} \mathrm{~S}\right. \text {. }$	$\begin{aligned} & 1 y_{10 .} .0 . \end{aligned}$
33	$\begin{aligned} & 690.56 .3 . \\ & 2.12 \% \mathrm{~N} . \end{aligned}$	$\begin{aligned} & 89058 \prime .5 \\ & 0.97 \text { N. } \end{aligned}$	$\begin{array}{r} 80058^{\prime} .8 \\ 0.00 \end{array}$	$\begin{aligned} & 890.59 .1 \\ & 0.76 \mathrm{~S} . \end{aligned}$	$\begin{aligned} & 89059^{\prime} 4 \\ & 1.30 \mathrm{~S} . \end{aligned}$	$\begin{aligned} & 89039^{\prime} .7 \\ & 1.62 \mathrm{~S}^{2} \end{aligned}$	90° (E. or W. ${ }_{1.73}$)	$3^{\prime} 22^{\prime \prime} .6$ $.78 \mathrm{imb}$
34	$\begin{aligned} & 89088^{\prime} .2 \\ & 2.25 \mathrm{~N}^{2} . \end{aligned}$	$\begin{aligned} & 80058^{\prime} .5 \\ & 1.01 \mathrm{N.} \end{aligned}$	$\begin{array}{r} 800 \\ 58^{\prime} .8 \\ 0.00 \end{array}$	$\begin{aligned} & 89059.1 \\ & 0.79 \mathrm{~S} . \end{aligned}$	$\begin{aligned} & 890 \quad 59^{\prime}, 4 \\ & 1.35 \mathrm{~S} . \end{aligned}$	$\begin{aligned} & 89059.7 \\ & 1.69 \text { S. } \end{aligned}$	$90^{\circ} \text { (E. or W. } \mathbf{1 . 8 0} \mathbf{~} \text {. }$	$\begin{aligned} & 3^{3} 30^{\prime}, 4 \\ & 81 \text { lni. } \end{aligned}$
35	$\begin{aligned} & 89058.2 \\ & 213 M_{0} \end{aligned}$	$\begin{aligned} & 80058^{\prime} .5 \\ & 1.05 \mathrm{~N} . \end{aligned}$	$\begin{array}{r} -890.58 .8 \\ 0.00 \end{array}$	$\begin{aligned} & 890.59 .1 \\ & 0.82 \mathrm{~S} . \end{aligned}$	$\begin{aligned} & 89059^{\prime} .4 \\ & 1.40 \mathrm{~s} . \end{aligned}$	$\begin{aligned} & 89059.7 \\ & 1.75 .5 . \end{aligned}$	$\begin{gathered} \left.90^{\circ} \text { (E. or W. }\right) \\ 1.82 \mathrm{~S} \end{gathered}$	$8^{\prime} 38^{\prime \prime} .4$ $.84 \text { Ins. }$
36	$\begin{aligned} & 890 \text { 58'. } 1 \\ & 2.42 \mathrm{~N} . \end{aligned}$	$\begin{aligned} & 89088^{\prime} .4 \\ & 1.09 \mathrm{~N} . \end{aligned}$	$\begin{array}{r} 890.88^{\prime} 7 \\ 0.00 \end{array}$	$\begin{aligned} & 89059.0 \\ & 0.85 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 890 \quad 59^{\prime} 4 \\ & 1.46 \mathrm{~s}^{2} \end{aligned}$	$\begin{aligned} & 899^{\circ} 59^{\prime} .7 \\ & 1.82 . \mathbf{S}^{2} \end{aligned}$	$90^{\circ}\left(\text { E. or }_{1.94}^{\text {or }} \mathbf{S}\right)$	
37	$\begin{aligned} & 89^{\circ} 88^{\circ} 0 \\ & 2.51 \mathrm{~N}^{2} . \end{aligned}$	$\begin{aligned} & 890^{58} .3 \\ & 1.13 \mathrm{~N}^{2} . \end{aligned}$	$\begin{array}{r} 89088.6 \\ 0.00 \end{array}$	$\begin{aligned} & 89088^{\prime} .9 \\ & 0.88 \text { \&. } \end{aligned}$	$\begin{aligned} & 899^{69} .3 \\ & 1.51 \mathrm{~S} . \end{aligned}$	$\begin{aligned} & 89059.7 \\ & 1.80 \text { S. } \end{aligned}$	$90^{\circ}\left(\mathrm{E}_{2.01} \text { or W. }\right) .$	$3^{3} 55^{\prime \prime} .0$ $.90 \mathrm{In} .$
38	$\begin{aligned} & 890.58^{\prime} .0 \\ & 2.61^{\prime} \mathrm{N} . \end{aligned}$	$\begin{aligned} & 80058^{\prime} .3 \\ & 1.17 \mathrm{Ni} . \end{aligned}$	$\begin{array}{r} 89088 \prime .6 \\ 0.00 \\ 0 \end{array}$	$\begin{aligned} & 89066^{\prime} .9 \\ & 0.91 \text { S. } \end{aligned}$	$\begin{aligned} & 89^{\circ} 89^{\prime} .3 \\ & 1.66 \mathrm{~s}^{2} . \end{aligned}$	$\begin{aligned} & 89059.7 \\ & 1.95 \mathrm{~s} . \end{aligned}$	$\begin{aligned} & 90^{\circ}\left(\mathrm{E}_{2} \text { or W. W. }\right) \\ & 2.08 \mathrm{~S} . \end{aligned}$	$\begin{gathered} { }^{\prime \prime}{ }^{03 n " .6} \\ 0.08 \text { Ins. } \end{gathered}$
30°	$\begin{aligned} & 890 ~ 57 \prime .9 .9 \\ & 2.70 \text { N. } \end{aligned}$	$\begin{aligned} & 89088^{\prime} .2 \\ & 1.21{ }^{2} . \end{aligned}$	${ }^{890} 588^{\prime} .6$	$\begin{aligned} & 89058^{\prime} .9 \\ & 0.04 \text { S. }^{2} \end{aligned}$	$\begin{aligned} & 890.6923 \\ & 1.62 \mathrm{~s}= \end{aligned}$	$\begin{aligned} & 89059^{\prime} .7 \\ & 2.02 \mathrm{E}^{\prime} . \end{aligned}$	$90^{\circ} \text { (E. or W. W.) }$	$\begin{gathered} 4^{1} 12^{\prime \prime}, 6 \\ .97 \mathrm{Im}_{6} \end{gathered}$
40	$\begin{aligned} & 890 ~ 57.8 \\ & 2.79 \times \text { N. } \end{aligned}$	$\begin{aligned} & 89058^{\prime} .1 \\ & 1.25 \mathrm{~N}^{2} \end{aligned}$	$\begin{array}{r} 89058^{\prime \prime} .5 \\ 0.00 \end{array}$	$\begin{aligned} & 890688^{\prime} 9 \\ & 0.98 \text { 8. } \end{aligned}$	$\begin{aligned} & 890 ~ 59 \prime .3 \\ & 1.68 \mathrm{~s} . \end{aligned}$	$\begin{aligned} & 890.59^{\prime} .7 \\ & 2.10^{\prime} \mathrm{S}^{2} . \end{aligned}$	$\begin{aligned} & \left.90^{\circ} \text { (E. or W. }\right) \text {) } \\ & 2.24 \mathrm{~S} \end{aligned}$	
41	$\begin{aligned} & 89057^{\prime \prime} 7 \\ & 2.89 \text { N. } \end{aligned}$	$\begin{aligned} & 89058^{\prime} .0 \\ & 1.30 \mathrm{~N}^{2} \end{aligned}$	$\begin{array}{r} 890 \\ 0.0 .04 \\ 0.0 \end{array}$	$\begin{aligned} & 89058 \prime .8 \\ & 1.08^{\prime} \mathrm{S} \end{aligned}$	$\begin{aligned} & 89059^{\prime} .2 \\ & 1.24 \mathbf{S}^{2} \end{aligned}$	$\begin{aligned} & 890.59{ }^{89} 6 \\ & 2.178 . \end{aligned}$	$\begin{aligned} & \left.90^{\circ} \text { (E. or W. W. }\right) \\ & 2.32 \mathrm{~S} . \end{aligned}$	$\begin{gathered} 4^{\prime 3} 31^{\prime \prime \prime} .2 \\ .04 \mathrm{inm}^{2} \end{gathered}$
42	$\begin{aligned} & 890.577^{\prime 7} \\ & 3.00 \text { N. } \end{aligned}$	$\begin{aligned} & 89088^{\prime} .0 \\ & 1.30^{\prime} \mathrm{N} . \end{aligned}$	$\begin{array}{r} 89^{\circ} 58^{\prime}, 4 \\ 0.0 .4 \end{array}$	$\begin{aligned} & 890^{58} .8 \\ & 1.05 \mathrm{~S}^{\prime} . \end{aligned}$	$\begin{aligned} & 890 \quad 59^{\prime} .2 \\ & 1.80 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 89^{\circ} 59^{\prime} 6 \\ & 2.80^{\circ} \mathrm{S} . \end{aligned}$	$\begin{aligned} & \left.90^{\circ} \text { (E. or W. }\right) \\ & 2.40^{\prime} \mathbf{S} \text {. } \end{aligned}$	$\begin{aligned} & 4^{\prime} 40^{n} .8 \\ & 08 \\ & \hline 10 \end{aligned}$
43	$\begin{aligned} & .89057^{\prime} 6 \\ & 3.11 \text { N. } \end{aligned}$	$\begin{aligned} & 899^{58^{\prime}} \mathbf{0} \\ & 1.40 \mathrm{~N} . \end{aligned}$	$\begin{aligned} & 890 \\ & \\ & 0.58^{\prime} .4 \\ & 0.00 \end{aligned}$	$\begin{aligned} & 89058.8 \\ & 1.08 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 89059.2 \\ & 1.86 \mathrm{~S} . \end{aligned}$	$\begin{aligned} & 89^{5} 59^{\prime} .6 \\ & 2.33 \mathrm{~S} \end{aligned}$	$\begin{gathered} 90^{\circ} \text { (E. or W.) } \\ \text { 2. } 48 \text { S. } \end{gathered}$	4, ${ }^{4} 50^{\prime \prime} .8 .8$
4	$\begin{aligned} & 89057^{\prime} 5 \\ & 3.22 \text { N. } \end{aligned}$	$\begin{aligned} & 89^{\circ} 57^{\prime} 9 \\ & 1.45^{\circ} \mathrm{N} . \end{aligned}$	$\begin{array}{r} 89058.3 \\ 0.00 \end{array}$	$\begin{aligned} & 89058^{\prime} .7 \\ & 1.12 \mathrm{~S} . \end{aligned}$	$\begin{aligned} & 89 \rho^{59 \%} .2^{-} \\ & 1.03^{\circ} \mathrm{S} . \end{aligned}$	$\begin{aligned} & 890.59^{\prime} .6 \\ & 2.41^{\prime} \mathrm{S} \end{aligned}$	$90^{\circ} \text { (E. or W.) }$	$6^{\circ} 01^{\prime \prime} 0$ $.16 \text { Ins. }$
45	$\begin{aligned} & 89057^{\prime \prime} 4^{2.33} \text {. } \end{aligned}$	$\begin{aligned} & 89057^{\prime} .8 \\ & 1.50 \text { N. } \end{aligned}$	$\begin{array}{r} 89058^{\prime, 3} 3 \\ 0.00 \end{array}$	$\begin{aligned} & 89^{\circ} 58^{\prime} .7 \\ & 1.16 \mathrm{~S} . \end{aligned}$	$\begin{aligned} & 89^{\circ} 59^{\prime} .1 \\ & 2.00 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 80^{\circ} 59^{\circ} .5 \\ & 2.49 \mathrm{~S} . \end{aligned}$	$\begin{array}{r} 90^{\circ}\left(\mathrm{E}_{\mathrm{E} .0 \mathrm{~F}} \mathrm{~W}\right) \\ 2.6 \mathrm{~S}^{\prime} \mathrm{S} \end{array}$	$\begin{gathered} 5^{0} 11^{m, 8} 8.8 \\ .20 \mathrm{ln}_{8} \end{gathered}$
46	$\begin{aligned} & 89^{\circ} 57^{\prime} 3 \\ & \mathbf{3 . 4 4} \text { N. } \end{aligned}$	$\begin{aligned} & 890 \quad 57.7 \\ & 1.55 \mathrm{Ni}^{\prime} . \end{aligned}$	$\begin{array}{r} 89088^{\prime} .2 \\ 0.00 \end{array}$	$\begin{aligned} & 89058^{\prime} .6 \\ & 1.21 \mathrm{~S} . \end{aligned}$	$\begin{aligned} & 89059^{\prime} .1 \\ & 2.07 \mathrm{~s} . \end{aligned}$	$\begin{aligned} & 890.59 \cdot 5 \\ & 2.59 \mathrm{~S} . \end{aligned}$	$\begin{aligned} & \text { (E. or W. } \mathrm{W} .) \\ & 2.76 \mathrm{~S} . \end{aligned}$	13.8
47		$\begin{aligned} & 890577^{\prime} 6 \\ & 1.61 \text { N. } \end{aligned}$	$\begin{array}{r} 80058^{\prime} .1 \\ 0.00 \end{array}$	$\begin{aligned} & 80^{\circ} 68^{\prime} .6 \\ & 1.25^{\circ} \text { S. } \end{aligned}$	$\begin{aligned} & 89059^{\prime} .1 \\ & 2.1+\mathbf{S}^{1} \end{aligned}$	$\begin{aligned} & 89059.5 \\ & 2.67_{6} .5 . \end{aligned}$	$\begin{gathered} 00^{\circ}(\mathrm{E} \text { or } \mathrm{W} .) \\ 2.86 \mathrm{~S} \text {) } \end{gathered}$	$\begin{gathered} 5^{5} 3^{3} 4^{\prime \prime} .2 \\ .28 \\ \mathrm{Ims} \end{gathered}$
48	$\begin{aligned} & 89^{\circ} 577^{\prime} 1 \\ & 3.70 \mathrm{~N}^{2} . \end{aligned}$	$\begin{aligned} & 89067.5 \\ & 1.66 \text { N. } \end{aligned}$	$\begin{aligned} & 89088.0 \\ & \mathbf{8 . 0 . 0} \end{aligned}$	$\begin{aligned} & 89^{0} 58^{\prime} .5 \\ & 1.30 \mathrm{~S} . \end{aligned}$	$\begin{aligned} & 89059 \cdot 0 \\ & 2.22 \mathrm{~s} . \end{aligned}$	$\begin{aligned} & 899^{5} 5 \\ & 2.78 \mathrm{~S} . \end{aligned}$	$90^{\circ}\left(\mathrm{E}_{-2.00^{2}} \text { S. }\right)$	
49	$\begin{aligned} & 890.577^{80} \\ & 8.82 \mathrm{Ni} . \end{aligned}$	$\begin{aligned} & 890 \text { } 57 \prime .5 \\ & 1.72 \text { N. } \end{aligned}$	$\begin{array}{r} 890.58^{\prime \prime} 0 \\ \mathbf{0 . 0 0} \end{array}$	$\begin{aligned} & 89088^{\prime} .5 \\ & 1.34 \mathrm{~S} . \end{aligned}$	$\begin{aligned} & 89^{\circ} 59^{\prime} 0 \\ & 8.30 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 89^{\circ} 59^{\prime} .5 \\ & 2.87 \mathrm{~S} . \end{aligned}$	$\begin{gathered} 90^{\circ} \text { (} \mathbf{E}_{3.06} \text { W. } \text {) } . \end{gathered}$	$\begin{gathered} 5^{\prime} 58^{\prime \prime} .6 \\ .38 \\ \hline \text { nat. } \end{gathered}$
50	$\begin{aligned} & 89056^{\prime \prime} 9 \\ & 3.96 \mathrm{~N} . \end{aligned}$	$\begin{aligned} & 89^{\circ} 57^{\circ} 4 \\ & 1.78 \mathrm{~N} . \end{aligned}$	$\begin{array}{r} 890 \\ 87 \prime .9 \\ 0.00 \end{array}$	$\begin{aligned} & 89058.4 \\ & 1.39 \mathrm{~S}^{2} \end{aligned}$	$\begin{aligned} & 89059^{\prime} 0 \\ & 2.3 \mathbf{S}^{\mathrm{S}} . \end{aligned}$	$\begin{aligned} & 89^{59} 89^{\prime} .5 \\ & 2.97 . \end{aligned}$	$\begin{gathered} 90^{\circ}\left(E_{3.17} \text { or } W_{S}\right) \\ \text { S. } \end{gathered}$	$\begin{aligned} & 6^{\prime} 11^{\prime \prime n}, 4 \\ & 1.43 \mathrm{Ins} . \end{aligned}$
	6 miles.	54 miles.	5 miles.	41 nilles.	4 miles.	3) milles.	3 milles.	

2. The direction of the first secant will be determined at its initial point by observations on Polaris at elongation, and similar observations will be made at intervals not exceeding 18 miles; while observaHons by the method given on page 96 et seq, or on Polaris at elongation (as the deputy may prefer), will be taken every night when practicable, to guard against mistakes, detect errors, and check the direction of the line.

The principal advantage of this method, over that by offsets from a tangent, results directly from the proximity of the secant and the parallel of latitude, and the consequent reduced length of the maximum offsets, thereby limiting the cutting, which will contain both secant and parallel, to a single opening less than four feet in width; avoiding the necessity for clearing out roads for, and instrumentally laying off, the long offsets inseparable from the tangent method ; and permitting the noting of topographical features on the lines actually run, a convenience not always attainable by the tangent method.
3. In any given case, the secant lines will bear such relation to the latitude curve, that points on said secants at one and five miles from either end of any secant, will be coincident with two points on the latitude curve four miles apart ; between which points the latitude curve will lie south of the secants; while the curve will lie north of the secant lines on the first and sixth miles; therefore each secant will run south of secs. 31 and 36 , in every range, and through all other sections on the north side of the base line or standard parallel, as the case may be.

Each secant, the azimuth and offsets thereof, and the corresponding part of the parallel, will be symmetrically divided by the middle meridian of each range, i. e., the bearings and offsets at equal distances on opposite sides of the central meridian will
be equal; the bearings, which continually change, will always be north of east (or west), on the first three miles, and south of east (or west), on the last three miles of each secant. The changes of bearing should not be understood to imply a change of direction of any secant with respect to its initial direction ; the change is due to the varying inclination of the meridians to the straight secant, i. e., the effect of convergency of meridians.
4. Employing the data provided by Table II, the practical application of the method herein outlined will be conducted in the field as follows :

Set up the carefully adjusted transit south of the township corner at which the survey will begin, and at a distance therefrom to be interpolated for the given latitude, from the column headed " 0 miles." in Table VIII. By observations on Polaris at elongation, determine and mark a true meridian.

Lay off the azimuth, found in the table under " 0 miles," toward the east (or west), as the case may be, and re-measure the angle a sufficient number of times to secure an accurate result.

Produce the direction of the secant thus determined, a distance of six miles in a straight line, taking double back and fore sights at each setting of the instrument. At each half-mile and mile point, establish on the standard parallel the proper quarter section and section corners, by offsets of correct length, north or south, as indicated in the table by the initial letters N . or S .

The offsets being very short, their direction (perpendicular to the secant, without sensible error), may be determined by the eye; the length of offsets should be carefully measured.

At 6 miles on the secant, turn off to the north the proper deflection angle, given in the right hand column of the table, thereby defining the direction of a new secant, from which points will be estab-
lished on the parallel, as directed in preceding paragraph.
5. Applications of Table VIII.-The true bearing of the secant at each mile and half-mile point will be expressed by the tabular azimuth preceded by the initial meridional letter N., when the distance argument is found at the top of the table; but when said argument is found at the bottom of the table, the meridional letter S . will be placed before the azimuth; while the departure letter, E. or W., will be made to agree with the direction of the survey, east or west, as the case may require. The bearings will be taken from the table, to the nearest whole minute only, and entered at the beginning of each mile recorded in the field notes. The direction of the offsets or distances from the secant north or south to the base line or standard parallel, as the case may be, are indicated by the initial letters, N. or S . following the offsets.

Example 1.-Standard parallel run west, lat. 48° N.; dist. from initial point of secant, 2 miles; the bearing is $\mathrm{N} .89^{\circ} 59^{\prime} \mathrm{W}$., the offset, 2.22 ft ., S. ; at $5 \frac{1}{2}$ miles the bearing is S. $89^{\circ} 57^{\prime} \mathrm{W}$., the offset 1.66 ft . N. In all latitudes the bearing of the secant at 3 miles will be east or west, agreeing with the direction of the parallel.

The offsets may be interpolated for minutes of latitude, by simple proportion, as follows: Multiply the difference between the offsets corresponding to the whole degrees of latitude, immediately preceding and following the given latitude, by the minutes, expressed in decimals of a degree, and add the product to the offset corresponding to the lesser latitude; the sum will be the offset required.

Example 2 -Lat. $45^{\circ} 34^{\prime}, 5$; dist., 0 miles or 6 miles ; the diff. between offsets in latitudes 45° and 46° is $0.11 \mathrm{ft} . ; 34^{\prime} .5=0.575 ; 0.11 \times 0.575=0.06 \mathrm{ft} . ;$ and, $3.33+0.06=3.39 \mathrm{ft}$. the offset required. \mathbf{A}
similar method of interpolation may be applied to the data in the right-hand column.

Example 3.-Latitude $45^{\circ} 34^{\prime} .5$; diff. of angles is $0^{\prime} 11^{\prime \prime} ; 11 \times 0.575=6^{\prime \prime} .3 ;$ and $5^{\prime} 11^{\prime \prime} .8+6^{\prime \prime} .3=$ $5^{\prime} 18^{\prime \prime}$, nearly; also $0^{\prime} .04 \times 0.575=002$ ins. ; and $1.20+0.02=1.22$ ins.
6. The deputy should clearly understand from the foregoing rules and directions that the correct establishment of a standard parallel on a true latitude curve, by offsets from secant lines, will depend in the order of sequence upon careful attention to the following points:

1. Accurate observations on Polaris at elongation, to dètermine a true meridian.
2.) Close measurement of the azimuth angle, to define the initial direction of the secant.
2. Careful prolongation of the secart in a straight line.
. 4 Correct measurement of the deflection angle
3. With ordinary field instruments, usually reading to single minutes only, fractional parts of the "least count" are generally estimated by the eye Greater accuracy may be obtained by making use of a linear measure to lay off deflection angles. Table VIII supplies the requisite data; "the natural tangent of the angle of deflection to a radius of one chain," inserted in the right-hand column, may be employed as follows:

Having taken a back sight at the 6 -mile point on the secant, at exactly one chain in advance of the center of the instrument, place upon the ground in a horizontal position, and precisely at right angles to the line, a rule or scale divided into decimal parts of an inch, move the scale north or south until one of its principal lines appears coincident with the vertical wire; then with the tangent screw of the vernier plate, carry the wire over the scale toward the north, the required distance, i. e., the length of tangent in the right-hand column. The readings of the
vernier will check the measurement and guard against mistakes.

A piece of white paper with two fine parallel lines drawn across it, exactly the proper distance apart, pasted on a thin slip of wood (such as a piece of cigar box 3 inches long by 1 inch wide), will make an accurate and very convenient and portable substitute for a rule or scale. Several copies may be prepared in advance to replace the original in case of loss.
8. To mark the direction of the new secant thus determined, set a flag on line, and as far in advance of the instrument as practicable. The direction will be verified by another similar observation, to be made after revolving the azimuth circle 180°.

Theoretically, it is immaterial whether the scale be placed above or below the level of the telescope provided the horizontal distance from the center of the instrumeut is accurately one chain (66 ft.); practically, the most satisfactory result will be had on level ground, suitable for correct measurement of the distance.
9. The secant method adapted to transit instruments exclusively, is recommended for its simplicity and accuracy, and the facility with which the line may be extended over rough mountainous land or through dense undergrowth; in deep valleys or canyons where the sun cannot be observed in favorable positions; or anywhere during the continuance of adverse weather conditions and under circumstances when the use of solar apparatus would be, if not impossible, at least inconvenient and unreliable.
10. The true bearing of a line joining any two points on a standard parallel will be obtained from Table IX, by taking it from the column headed with one-half of the distance between said points. Ex-
ample. Required the bearing from corner of secs. 32 and 33, R. 22 E., to corner of secs. 32 and 33 E., R. 21 E. The latitude is $45^{\circ} 34^{\prime} .5$, the distance 6 miles. Consequently, the azimuth from the column marked " 3 miles" for the given latitude, is $\mathrm{N} .89^{\circ} 57^{\prime} 20^{\prime \prime} .9 \mathrm{~W}$., the required true bearing.

Tangent Method.- This method consists in laying off from a true meridian, established by obser. vations on Polaris at elongation, an angle of 90° producing the directions thus determined, a distance of 6 miles in a straight line, and measuring north therefrom, at half-mile intervals, distances of correct length, taken from Table X (interpolated if necessary), for the given latitude, to attain other points on the latitude curve passing through the tangential or initial point.

The azimuth or bearing of the tangent at successive mile points will be taken from Table IX to the nearest whole minute only, and will be inserted in the field notes, no interpolation being required, except when test sights are taken. The true bearing between two points on a standard parallel will be derived from Table IX by taking it in the column headed with one-half the distance between said points. The offsets at intervals of one mile are inserted in Table X; to obtain the length of offsets at the half-mile points, take one fourth the offset corresponding to twice the distance of the half-mile point from the tangential point.

This method is suitable for running standard parallels and latitudinal township lines in a level open country, where no intersections with topographical features will be required; but in all cases the secant method will be found most convenient.

Table IX.-Azimuths of the Tangent to the Parallel
TThe azimuth is the smaller angle the tangent makes with the true meridian and always measured' from the north and towards the tangential points.]

TABLE X. -ofsets, in Chains, from Tangent to Parallel.

Latttude.	1 malle.	9 milles.	8 miles.	4 milles.	8 milles.	6 miles.
$\begin{aligned} & 0 \\ & 80 \\ & 81 \\ & 88 \end{aligned}$	Chains. 0.006 0.006 0.006	Clains. 0.023 0.024 0.025	Chains. ${ }^{\text {a }}$ 0.053		Chaing. 0.14 0.15 0.16	Chains. $\begin{aligned} & 0.21 \\ & 0.22 \\ & 0.23 \end{aligned}$
$\begin{aligned} & 88 \\ & 84 \\ & 85 \end{aligned}$	0.007 0.007 0.007	$\begin{aligned} & 0.026 \\ & 0.027 \\ & 0.028 \end{aligned}$	0.059 0.061 0.064	0.10 0.11 0.11	0.16 0.17 0.18	0.24 0.25 0.25
$\begin{aligned} & 86 \\ & 37 \\ & 88 \end{aligned}$	0.007 0.008 0.008	0.023 0.031 0.032	0.066 0.068 0.071	0.12 0.12 0.13	0.18 0.19 0.20	0.26 0.27 0.28
$\begin{aligned} & 39 \\ & 40 \\ & 41 \end{aligned}$	0.008 0.008 0.009	0.033 0.034 0.086	0.074 0.076 0.079	0.13 0.13 0.14	0.20 0.21 0.22	0.29 0.30 0.32
$\begin{aligned} & 48 \\ & 48 \\ & 44 \end{aligned}$	0.009 0.009 0.010	0.036 0.038 0.039	0.082 0.085 0.088	0.14 0.15 0.16	0.23 0.24 0.24	0.33 0.34 0.36
$\begin{aligned} & 48 \\ & 46 \\ & 47 \end{aligned}$	0.010 0.010 0.011	0.040 0.042 0.044	0.091 0.094 0.097	0.16 0.17 0.17	0.25 $-\quad 0.25$ 0.26 0.27	0.36 0.37 0.39
$\begin{aligned} & 48 \\ & 49 \\ & 60 \end{aligned}$	0.011 0.012 0.012	0.045 0.046 0.048	0.101 0.104 0.108	0.18 0.18 0.19	0.28 0.29 0.30	$\begin{array}{r} 0.40 \\ \cdots \\ 0.42 \\ 0.43 \end{array}$
LatI. tude.	7 mlles .	8 miles.	9 miles.	10 milles.	11 miles.	12 miles.
$\begin{aligned} & \text { : } \\ & 80 \\ & 81 \\ & 32 \end{aligned}$	Chains. $\begin{aligned} & 0.29 \\ & 0.30 \\ & 0.31 \end{aligned}$	Chains. $\begin{aligned} & 0.37 \\ & 0.39 \\ & 0.40 \end{aligned}$	Chains. $\begin{aligned} & 0.47 \\ & 0.49 \\ & 0.51 \end{aligned}$	Chains. $\begin{aligned} & 0.58 \\ & 0.60 \\ & 0.63 \end{aligned}$	Chains. $\begin{aligned} & 0.71 \\ & 0.74 \\ & 0.76 \end{aligned}$	Chains. $\begin{aligned} & 0.84 \\ & 0.88 \\ & 0.91 \end{aligned}$
$\begin{aligned} & 88 \\ & 84 \\ & 85 \end{aligned}$	0.32 0.33 0.36	$\begin{aligned} & 0.42 \\ & 0.43 \\ & 0.45 \end{aligned}$	0.63 0.65 0.67	0.65 0.68 0.70	0.79 0.82 0.86	0.95 0.98 1.02
$\begin{aligned} & 36 \\ & 87 \\ & 38 \end{aligned}$	0.36 0.37 0.38	0.17 0.48 0.50	0.69 0.61 0.64	0.73 0.76 0.78	0.89 0.91 0.95	1.06 1.10 1.14
$\begin{aligned} & 89 \\ & 40 \\ & 41 \end{aligned}$	0.40 0.41 0.48	0.52 0.54 0.56	0.66 0.68 0.70	0.81 0.81 0.87	0.99 1.02 1.06	1.18 1.22 1.26
$\begin{aligned} & 48 \\ & 48 \\ & 44 \end{aligned}$	0.44 0.46 0.48	$\begin{aligned} & 0.58 \\ & 0.60 \\ & -0.62 \end{aligned}$	0.73 0.73 0.79	0.90 0.93 0.97	1.09 1.14 1.18	1.31 1.35 1.40
$\begin{aligned} & 45 \\ & 46 \\ & 47 \end{aligned}$	0.49 0.51 0.58	0.64 0.66 0.68	$\begin{aligned} & 0.81 \\ & 0.84 \\ & 0.87 \end{aligned}$	1.00 1.04 1.07	1.22 1.26 1.31	1.45 1.50 1.66
$\begin{aligned} & 48 \\ & 49 \\ & 50 \end{aligned}$	0.65 0.57 -0.69	0.71 0.74 0.77	0.91 0.93 0.97	1.12 1.16 1.20	1.35 1.40 1.45	1.61 1.67 1.73

CHAPTER IX.

SUBDIVISION OF SECTIONS.

1. Subdivisions of sections are original surveys to be made in the following manner:
2. Section and quarter-section corners set by the government surveyors, and the boundaries actually run by them, as well as the length of all lines as returned in their field notes, are to be taken as correct. (See Sec. 2396 R. S., First and Second. P.200, Sec. 100.)
3. The corners of half and quarter sections which were not marked on the government surveys, must be placed as nearly as possible equidistant from those two corners which stand on the same line. (Sec. 2396, First. P.200, Sec. 100.)

This applies to the quarter-posts on the north and west lines of the township which were surveyed previous to 1846; also to those townships which, under the act of 1796, were surveyed into blocks of two miles square (P.200. Sec. 99, Third), and to those surveyed under the act of 1800,* where no quarter-section corners were planted on the lines running from south to north.

[^2]3. The boundary lines of sections, (see Page 198, Sec. 99, Third), and of half and quarter sections, which were not actually run and marked, are to be ascertained by running straight lines from the established corners to the opposite corresponding corners. Where no such opposite corners have been or can be fixed, the line should be run from the established corner due north and south or east and west, as the case may be, to the water-course or other external boundary. (P.200, Sec. 100, Second.) These due lines are to be found by trial of the boundary lines of the section, as actually run by the government surveyor, and the subdivision line, run on a course intermediate between the courses of the section lines which lie parallel with it.

The following figure illustrates the manner of subdividing sections. It shows sections 5, 6, 7, and 8, repre-
other, and marking corners, at the distance of each half mile on the lines running from east to west, and at the distance of each mile on those running from south to north, and making the marks, notes, and descriptions prescribed to surveyors by the above-mentioned act: And the interior lines of townships intersected by the Muskingum, and of all the townshıps lying east of that river, which have not been heretofore actually subdivided into sections, shall also be run and marked in the manner prescribed by the said act for running and marking the interior lines of townships directed to be sold in sections of six hundred and forty acres each. And in all cases where the exterior lines of the townships, thus to be subdivided into sections or half-sections, shall exceed or shall not extend six miles, the excess or deficiency shall be specially noted, and added to or deducted from the western and northern ranges of sections or half-sections in such township, according as the error may be in running the lines from east to west, or from south to north; the sections and half-sections bounded on the northern and western lines of such townships shall be sold as containing onyy the quantity expressed in the returns and plats, respectively, and all others as containing the complete legal quantity. And the President of the United. States shall fix the compensation of the deputy surveyors, chain-carriers, and axemen: Provided, The whole expense of surveying and marking the lines shall not exceed three dollars for every mile that shall be actually run, surveyed, and marked.
senting the four different cases which occur in a township surveyed previous to 1846 . In the later surveys, the de-

Fig. 69. tails would differ a little, owing to the fact that the section and quartersection corners on the township and range lines are common to the townships on each side of and adjoining those lines. The principle of subdivision is, however, the same.

Case 1.-Section 8. All the quarter posts are at equidistant points from the section corners which are on the same line.
Case 2.-Section 5. Quarter posts on the north and the south are at equidistant points. Those on the east and the west are 40 chains from the south line of the section. The fraction is on the north half of the section.
Case 3.-Section 7. Quarter posts on the north and the south are placed at 40 chains from the east line of the section. Those on the east and the west are at equidistant points. The west half of the section is fractional.
Case 4.-Section 6. The quarter posts on the north and the south are placed at 40 chains from the east line of the section. Those on the east and the west are 40 chains from the south line of the section. Fractional both on the north and west.

Note.-In 1856, Thomas A. Hendricks, then Commissioner of the General Land Office, gave the following rule for locating the center of a section: "Run a true line from the quarter-section corner on the cast boundary, to that in the west boundary, and at the equidistance between them establish the corner for the center of the section."

This was in harmony with an opinion previously given by the Surveyor General of Missourl and Illinois, and was very generally followed by the surveyors in those States. This rule has not been sustained by the courts, nor by any other ruling of the Land Office, so far as we can learn. It was expressly overruled by the Secretary of the Interior in 1868.

Quarter-sections are to be subdivided into half-quarters by lines running north and south.

The corners which were not marked are to be placed as nearly as possible equidistant between the two corners of the quarter-section which stand on the same line. Then run straight lines from the established corners to the opposite corresponding corners, (Page 202, Sec. 101.)

Half-quarter sections are to be subdivided into quar-ter-quarters in a similar manner, by east and west lines. (P. 202, Sec. 101.)

It may be well to remark here, that the instructions from the Gen eral Land Office have not been uniform in regard to the proper manner of subdividing quarter-sections, and, as might be expected, the practice is not uniform among good surveyors Commissioners Wilson and Edmunds held that half-quarter and quarter-quarter lines should be "straight lines running through the section" to points on the section line. (See Hawes's Manual, p. 142, and Dunn's Land Laws, p, 19.)

The foregoing rules are those of the statute, and are endorsed by Commissioners Drummond, Williamson, and McFarland.

Commissioner Drummond's instructions are as follows:
"In the subdivision of quarter-sections, the quarter-quarter posts are to be placed at points equidistant, and on straight ines between the section and quarter-section corners, and between the quarter-corners and the common center of the section," etc. The difference in the two methods occurs when, as very often happens, the quarter-posts are not in line between the section corners.
2. Fractional sections are to be subdivided according to the Fifth paragraph of Sec. 2395 of the Revised Statutes, under such rules and regulations as may be prescribed by the Secretary of the Interior. (Sec. 99, Ex. Land Laws, and U. S. Instructions, 1881, p. 39.)

Under these regulations.* the fractional quarter-sections lying next to the north line of the township are divided

[^3]into half-quarters by lines running east and west, parallel with and twenty chains distant from the quarter-section line. (See Keasling v. Truitt, 30 Ind. 506.)

The quarter-sections lying next to the west line of the township are divided into half-quarters by lines running north and south, parallel with and twenty chains distant from the quarter-section line.
3. Section 6 adjoins both the north and the west lines of the township, and is subject to both rules. The north half is divided into half-quarters by an east and west line, and the south half by north and south lines.

The quarter-post on the north side of section six should be placed on the township line at a point 40 chains of original measure west from the northeast corner of the section.
The quarter-post on the west line of section six should be placed at a point on the range line 40 chains of original measure north from the southwest, corner of the section. By atiginal measure is meant such measure as was actually laid down on the ground by the deputy surveyors who made the original survey.

[^4]In further subdividing the northwest quarter of Section 6 into quarter-quarters, it is done by a line parallel with and 20 chains west of the north and south quarter section line.

The foregoing is the general plan adopted for the subdivision of sections of the United States Survey. There have, however, been many exceptions in the earlier official plats, in accordance with which the land was sold. To meet all such cases the rule has been adopted to subdivide in such a way as to suit the calculation of the areas on the official plat. This is sometimes difficult, the areas in some cases seeming to have been put down without any calculation.

Sections made fractional by waters, reservations, etc., should be subdivided in such a manner as to produce the same result as would have been produced had the section been full. This may sometimes be done by extending and by measuring the lines on the ice, or over the reservation.

Fig. 70.

Figure illustrating the Subdivision of a Section fractional on waters.

Commissioner Drummond says (see Copp's Land Laws, p.761): "In the subdivision of fractional sections, where no opposite corners have been or can be fixed, the subdivision lines should be ascertained by running lines from the established corners due north, south, east or west, as the case
may be, to the water-course, Indian boundary line, or other external boundary line of such fractional section. The law presupposes the section lines surveyed and marked in the field by the United States deputy surveyors to be due north and south or east and west lines. But in actual experience, this is not always the case. Hence, in order to carry out the spirit of the law, it will be necessary in the running of subdivisional lines through fractional sections to adopt mean courses where the lines are not due lines, or to run the subdivisional line parallel with the section line when there is no opposite section line."
4. Irregular Subdivisions of Fractional Sec-tions.-In making irregular subdivisions of fractions bounded on streams or lakes, the following rule has been laid down by the authorities.

It has been decided by the Supreme Court of the United States that "the meander lines run in surveying fractional portions of the public lands bordering upon navigable rivers are run not as boundaries of the tract but for the purpose of defining the sinuosities of the stream and as the means of ascertaining the quantity of land in the fraction, and which is to be paid for by the purchascr."
R. R. Co. v. Schurmier, 7th Wallace (U.S.) 272.

It has been held that the same lines are to be used in ascertaining the quantity of land in any portion of the fraction. Thus, as often happens, if a deed calls for so many acres off the end of the fraction, the surveyor in making his computations to determine at what point to locate the dividing line, should in the absence of anything showing to the contrary, use the meander line for the purpose of estimating the area of the tract, and lay down the dividing line accordingly. Otherwise there could be no common basis of calculation and as many different results would be arrived at as there were different surveyors to run the line, or different times of survey.

This is especially true of fractions bordering on lakes whose shore lines are subject to great change from natural causes or artificial drainage.
The common law rule for calculating the quantity of land bordering on a non-navigable stream is that no reference is had to what lies between low water mark and the centre of the stream. On navigable waters, high water mark is the line.

Lamb v. Rickett, 11 Ohio 311.
5. Exceptional Cases.-In the United States surveys made previous to 1815 , there was much irregularity in the practice of the surveyors in carrying on the surveys. The fractional sections were frequently thrown upon the south or east tiers of sections in the township; the surveys being carried on from the north to the south and from the west to the east. Where the to wnship was made fractional by large rivers or lakes, they were frequently so laid off as to throw all the fractions into the sections bordering on the water.

There was even greater irregularity in the manner of subdividing the fractional sections into the lesser tracts. Many of them had no quarter section corners. In some, the government plats show no subdivision: some are subdivided in one way and some in another.

In making resurveys and subdivisions of these and all other exceptional cases, the surveyor must al ways make his resurvey conform to the plan as shown by the fieldnotes and plats of the original survey.
6. Field Notes of the Survey and Subdivision of a Fractional Section. - The following notes of an actual survey are intended as an illustration of the manner of subdividing a section under the ordinary conditions as they are met with in the field, including the manner of restoring: certain lost corners and to a certain extent the principles governing re-surveys as laid down in
subsequent chapters. All the corners of the United States survey have equal weight or authority, hence in subdividing a section or restoring lost corners of that survey it makes no difference at what corner the surveyor begins his work or in what order it is done, except so far as his own convenience and that of his assistants are concerned. It will be rarely, if ever, that the work will be done in precisely the same order in any two sections in a settled country. The student should trace the notes of each operation carefully through and verify the results. The firstthing required by the surveyor is a complete and correct copy of all the field notes of record which refer to the section to be subdivided and of adjacent sections when necessary for restoring lost corners. In order that the student may be able to trace through the several operations properly and understandingly so much of the field notes as were required in the survey are given herewith.

Field Notes of U. S. Survey of Section 2 T 4 S,

> $R 9$ W. North Boundary. Var. $5^{\circ} 10^{\prime}$ E.

West
71.78
80.00

West
22.50
39.00
40.00
59.59
66.44
69.22
80.00

On S. boundary of sec. 36, T $3 \mathrm{~S}, \mathrm{R} 9 \mathrm{~W}$. Black Ash 16 in. Set post cor. to secs. 35 and 36.

Beech 10 in., N. 30 W. 10 lks. Tam'k 6 in., N. $461 / 2$ E. 78 lks .

On S. boundary of sec. 35, T 3 S, R 9 W . Lynn 6 in. Left Swamp.
Set post $1 / 4 \mathrm{sec}$. cor. sec. 35 .

$$
\text { Beech } 9 \text { in., N } 39 \text { W } 39 \text { lks. }
$$ Beech 6 in., N 74 E 48 lks .

Sugar 14 in.
Stream 20 lks . wide, course south.
Stream 10 lks . wide, course south.
Set post cor. secs. 34 and 35.
Beech 6 in., N. $581 / 2$ W. 33 lks . Beech 6 in., N. 52 E. 31 lks . John Mullett D. S., Nov. 8, 1825.

North 35.10
Subdivisions. Var. $5^{\circ} 35^{\prime} \mathrm{E}$.

Between sections 11 and 12.
Stream 25 lks . wide, course S. E.
Set post $1 / 4 \mathrm{sec}$. cor. Secs. 11 and 12.
Water Beech 6 in. N. 55 E. 11 lks .
Sycamore 30 in . N. $77 \mathrm{~W} .281 / 2 \mathrm{lks}$.
Set Post corner to Secs. 1, 2, 11, and 12.
Tam'k 6 in. S. 18 W. 37 iks .
Tam'k 8 in. N. 88 E. 21 lks.
Corrected line between Secs. 1 and 12.
Set $1 / 4 \mathrm{Sec}$. post.
Beech 16 in. N. 23 E. 31 lks. Beech 8 in. S. 41 W. $171 / 2 \mathrm{lks}$.
Sec. Cor.
Between Secs. 1 and 2.
Elm 30 in.
Set post $1 / 4 \mathrm{sec}$. cor. Secs. 1 and 2. Beech 13 in. S. 74 E. 26 lks. Beech 6 in. N. $301 / 2$ W. 11 ks .
Entered swamp.
Intersected N. boundary 20 lks . E. of post. Set post at intersection. Cor. to Secs. 1 and 2.

Black ash 16 in. S. $65 \mathrm{~W} .331 / 2 \mathrm{lks}$.
Black ash 15 in. S. 47 E. 39 lks .
Between Secs. 10 and 11.
Set post $1 / 4 \mathrm{sec}$. cor Secs. 10 and 11. Beech 8 in. S. 78 E. 34 lks . Beech 10 in. S. 79 W. $131 / 2 \mathrm{lks}$ Set post cor. to Secs. 2, 3, 10, and 11. Beech 7 in. S. 62 E. $251 / 21 \mathrm{ks}$. Beech 14 in. N. 63 W. 3 lks.

On random between Secs. 2 and 11. Enter tam'k and birch swamp.
Stream 25 lks. wide, course S. E. Intersected E. boundary 25 lks . S. of post.
${ }^{\circ}$ Corrected line between Secs. 2 and 11.
Set quarter Sec. post.
Beech 12 in. S 50 E. 3 lks .
Beech 8 in. N. 21 W. 18 lks.
Sec. Cor.
Between Secs. 2 and 3.
Entered swamp.
Brook 10 lks . wide, course S. W.
Left Swamp.

40.00	Set post $1 / 4 \mathrm{sec}$. cor. Secs. 2 and 3 . Whitewood 20 in . N. 53 W .27 lks. Beech 8 in. N. 89 E. 20 ks .
61.48	Beech 12 in.
78.32	Intersected N. boundary 45 lks . F. of post. Se post at intersection. Cor. to Secs. 2 and 3. Beech 8 in. S. 74 W. 33 lks . Beech 14 in. S. 16 E. 47 lks.

Notes of Later Survey.

On May 12, 1854, Randolph Nutting found the east and the west quarter section corners of this section, with bearing trees standing and ran the east and west quarter line between them, setting temporary stakes on the true line, dividing it into four equal parts. He also renewed the posts at these quarter section corners. At the corner of Sections $2,3,10$, and 11 he found the decayed post and bearing tree,' Beech 14 N. 63 W. 3 lks., standing, the other bearing tree destroyed. He planted a granite boulder $12 \times 16 \times 24 \mathrm{in}$. one foot below the surface and at the corner drilled a hole $1 \frac{1}{4} \mathrm{in}$. diameter and 4 in . deep. Thence he ran east on random 40.12 ch . to the quarter section corner and correcting back at 20.06 ch . on true line set granite boulder $10 \times 12 \times 18 \mathrm{in}$. 1 foot beneath the surface, marked it with a drill hole and planted side stones 50 links each north and south from the corner.

Re-Survey and subdivision of Section 2, T $4 S, R 9$,

$$
\text { W., April 4, 5, 6, } 1882 .
$$

(Note: For convenience of reference the corners of the several subdivisions are numbered or lettered as shown in the figure, on the system shown at the close of Chapter VI.)

Began at 4, where I found the "rock bound" planted by Nutting, 18 in . below surface at intersection of roads. All parties agree that this corner stone has not been moved from its original position. All traces of bearing trees are destroyed or removed. I accept the corner as correct and mark Sugar 12 in. N. 67 E. 68 lks. Beech 9 in. N. 37 W. 76 lks. Ran thence north on random, setting stakes every 10 chains.
Intersected the quarter line 7 lks . east of 8 . Corner post dug out in the road. The stump of whitewood bearing tree is standing and I ran thence \mathbf{S}. 53 E .27 lks . and plant for $1 / 4 \mathrm{Sec}$. Corner an earthenware post 3 in . diam. 30 in . long with stones around it and mark

$$
\begin{aligned}
& \text { Beech } 8 \text { in. N. } 26 \text { E. } 76 \mathrm{lks} \text {. } \\
& \text { Sugar } 10 \mathrm{in.} \mathrm{S.} 47 \text { E. } 104 \mathrm{lks} \text {. }
\end{aligned}
$$

South corrected line.
Set granite boulder $8 \times 12 \times 24 \mathrm{in}$. marked + for corner (15) with side stones 50 lks . each east and west. Put a back sight on this corner and return to 8 . Set up transit over the post, back sight to 15 and prolong line north, setting temporary stakes at 20.00 chs. and 38.32 chs. and search for sec. corner. Bearing trees are both destroyed and obliterated in the jog in the road. Chapin says a new stake has been driven in the old stake hole, and points out the location, but on digging I find nothing of it there. I then look for the corner of Secs. 34 and 35 . I find remains of a stump, which from its position, may have belonged to one of the bearing trees. I set transit up over it and run S. $581 / 2 \mathrm{E} .33 \mathrm{lks}$. and dig the earth carefully away. I find the decayed remains of a stake from which point I run east 45 links and dig and find the new stake driven in the old stake hole, as described by Chapin. Random line from the south intersects the township boundary 2 lks . east of the corner of Secs. 2 and 3 at 38.46 chains from the quarter post. I plant new stake in old stake hole, cor. of Secs. 34 and 35 and for cor. of Secs. 2 and 3 plant iron landside of plow packed about with brickbats and broken crockery and mark

$$
\begin{aligned}
& \text { Sugar } 10 \mathrm{in} \text {. S. } 431 / 2 \text { W. } 76 \mathrm{lks} \text { Sugar } 14 \mathrm{in} \text { S. } 32 \text { E. } 1.24 \mathrm{lks} .
\end{aligned}
$$

Thence south corrected line.
Set stake with broken brick and glass around for corner (16) 148 lks . south of stump of Beech line tree;

Cherry 18 in. N. 72 E. 64 lks. Elm 24 in. S. 61 1/2 E. 96 lks .

I then return to 8 and offset north $20 \% \mathrm{ks}$. and set up transit in the section line. Backsight to (15) and run thence east at right angles with section line, setting stakes every 10 chs. on random line.
To bank of Mill-pond. Set flag in line across pond and then run a line south at right angles with random 5.00 ch . to a point where I set up transit and measure the angle between lines to back-sight and to flag over the pond $=54^{\circ} 26^{\prime}$ whence nat. tan, $1.3985 \times 5.00=6.9925$ makes the distance across pond $6.99 \mathrm{I} / 4$ and distance on random over pond $=$ $43.00+6.991 / 4=49.991 / 4$. Continue the line.

Set temporary stake and look for $1 / 4 \mathrm{sec}$. cor. Secs. 1 and 2. There are no bearing trees standing and no one knows the location of the corner. I set stakes to mark the random line and go next to 3 , where I find no traces or evidence ot the corner. I then go to the $1 / 4 \mathrm{sec}$. cor. of Secs. 11 and 12, where I find both bearing trees and corner post standing in place.

From thence I run north on random, setting temp. stakes at $40.00,60.00$ and 80.00 chains.

Set temp. stake and look for corner.
The bearing trees of both corners are missing, but there are numerous stumps near by rotted to the ground. I go east along township boundary and find blk ash station tree standing. I take its distance from Tp . cor. at 71.78 chains and continue the measure west on random.

Set temp. stake and search again, and finding what appears likely to be the remains of stump of bearing tree, run thence N. 47 W .39 lks . stick a pin and run from it S. $65 \mathrm{~W} .331 / 2 \mathrm{lks}$. to roots of black ash tree lying on the ground decayed and moss covered. Digging at the point where I stuck the pin, I find 18 in. below the surface in wet soil, the sound bottom of the original post, cor. of Secs. 1 and 2. As a check I measure west 20 lks . and by digging find the post cor. of Secs. 35 and 36 and plant a new post in its place. At the cor. of Secs. 1 and 2 I put in a piece of iron plow beam 24 inches long, pack brick and stone about it and set side stones 50 lks . each east and south from corner. Random line from the south at 118.39 ch . intersects the township boundary 12 lks . west of corner of Secs. 1 and 2.

South between Secs. 1 and 2.
Find by digging the remains of decayed post in position 9 lks . east of random line. I also find roots of "bearing trees at corresponding points called for by field notes.

Random line from the west at 80.04 ch . intersects E. bound 45 lks . north from qr. sec. cor.

I plant a stone $5 \times 8 \times 16$ marked + with brickbats and broken glass around for $1 / 4 \mathrm{sec}$. cor. and mark

Beech 12 in. E. 63 lks .,
Beech 14 in. S. 29 W. 92 lks.

I then return to 3 and locate section corner at distances from nearest corners N. S. E. and W. as follows:
From quarter sec. cor. Secs. 1 and 240.13 chs. From quarter sec. cor. Secs. 11 and 1240.13 chs. From quarter sec. cor. Secs. 1 and $1240.051 / 2$ chs. From quarter sec. cor. Secs. 2 and 1140.14 chs.

I drive a black walnut stake deep in the ground at the corner and over it put a stone $8 \times 12 \times 30 \mathrm{in}$. marked .t..

Black Ash 8 in. S. 43 W. 82 lks ,
Black Ash 10 in. N. 51 W. 126 lks.
Thence north on true line (Var. of needle $2^{\circ} 34^{\prime}$ E.)

Set stake with brick around for corner 12 and mark

Elm 36 in. N. 87 W. 54 lks .
Cherry 24 in . S. 5 W .68 lks.
I then return to 7, set up transit over the corner, sight to flag at 14 and turn angle to right of 89° 40^{\prime} and run thence at that angle north on random setting temporary stakes every 10 ch .
40.14
50.00

Intersected E . and W. corrected quarter sec. line.
To point on bank of mill pond. Set two flags in line over pond to range by, then angle to the left 60° and run 5.00 to 2 nd triangulating point
from which I turn off angle of 90° to right and set flag in the random line over the pond. Distance between the triangulating points 1 and $3=5.00 \times$ secant $60^{\circ}(2.0000)=10.00 \mathrm{ch}$.

Point in random over pond.
Intersect N. boundary 361 ks . east of quarter section cor. Sec. 35. Found both bearing trees standing for quarter section cor. Sec. 35 and decayed stake in right place for corner. Planted a new stake with stones around and ran thence east $321 / 2$ lks . and planted a piece of $11 / 2$ iron pipe 3 ft . long for quarter section corner Sec. 2 and put brick around it and marked

Birch 10 in. S. 48 E. 115 ks.
Beech 12 in. S. 16 E. 32 ks .
South corrected quarter section line.
Set stake with glass and broken crockery around for corner and marked

Swamp oak 12 in . S. 2 E. 186 kks.
38.28

At intersection of quarter section lines set stone $9 \times 13 \times 24$ with stake underneath and cross on top at corner.

Wh. ash 8 in. N. 12 W .10 ks. Hickory 12 in. N. 84 E. 63 ks .
Intersection is 40.02 ch . from 8.

From \bar{C} west corrected line.

North corrected line.
$20.06 \frac{1}{2}$ Set stone $6 \times 8 \times 16$ marked + for cor. h. No tree near.

Returned to c and on corrected line 20.07 from C and 7 set post with broken glass around.

Cherry 10 in. S. $67 \frac{1}{2}$ E. 93 lks . Whitewood 16 in . S. 21 W. 114 lks .

This survey was made with transit and steel tape. On all lines run with the transit temporary stakes were set every ten chains on the random line and afterward corrected to the true line. Let the student find the amount and direction of the correction applied to each stake to place it in the true line. The measurements on this section were more than usually uniform on different lines, the ground being comparatively level. Usually the quarter section corners set in the old compass surveys are more or less out of line between the section corners, causing a discrepancy in the interior measurements. Difference in the character of the surface of the land along different lines also has a tendency to cause discrepancy of measures. It will be also noticed that in this survey the direction of the lines is controlled by the monuments of the original survey and their absolute direction from the true meridian was considered of so little importance that no attention was paid to it. In retracing the more careful surveys now being made by the United States surveyors, the direction from the true meridian is a more important factor in the resurvey.
7. Other Original Surveys.-In a considerable portion of the United States, the general government never had any ownership of the land.
The surveys were there made by the proprietors upon such system or plan as suited themselves.
The further subdivision of these tracts is original surveying. It is sufficient to say of this work that it should be done with great care, and that the marks upon the ground which indicate the boundary lines should bo of
the plainest and most permanent character which tha circumstances of the case permit,
These marks are intended to fix for all time the boun. daries of the tract laid off and they cannot be too plain or permanent. Want of due care and precaution in making permanent land marks upon the ground, at the time of the original survey, is the fruitful cause from whicn arises most of the litigation about boundary lines.
8. Highway surveys, like other surveys, lose much of their value if their corners and lines are not so thoroughly marked as to be readily found at any future time. The centre line of a highway is very commonly used as a boundary line. Good permanent landmarks, well guarded by bearings and distances to the most permanent objects in the vicinity should be planted at the starting and closing points of the survey, at each angle in its course, and at every crossing of a section line. The distance of the crossing points should be given from the nearest government corners each way on the section line.
9. Surveys for town plats are made upon any system to suit the circumstances of the case, or the views of the owners of the land platted.

In making these surveys; it is important that the work be in every respect carefully done; that full and complete notes bo taken, so that the plat when finished shall show every material fact which may be of use to the public or to the future surveyor.

The relation which the lines of the plat bear to the lines of the original boundaries, whether of the government survey or otherwise, should be shown on the plat, and, what is most important of all, the location of the lines upon the ground should be marked by a sufficient number of permanent monuments so that there may never arise any difficulty in determining the exact position those lines occupy.
Such monuments should be placed at the corners and angles of the tract platted, and if included in the United

States survey, they should be placed at the corners of the legal subdivisions of a section which are included in the plat. Monuments should also be placed so as to define the lines and termini of all streets.
For this purpose, they may be placed either along the centre lines and angles of the streets or along their margins at the corners and angles of blocks. Each method has its advantages and disadvantages. The surveyor should consider the special circumstances of each case, and so locate the monuments that, while effecting the purpose for which they were intended, they shall be the most likely to remain in position and the easiest to refer to.
10. In Michigan town plats are required by law (Session Laws of 1885) to be made and recorded in the following manner:

The plats must be made ou sheets of good muslin backed paper, 18 inches by 24 inches in size, on a scale showing not more than 200 feet to an inch.

The plat must have upon it a full, detailed written description of the land embraced in it, showing the township, range, section and subdivision of section of the land platted. If the premises platted are not included in the legal subdivisions of the government survey, then the boundaries are to be defined by metes and bounds and courses.

The plat must contain the full name of the town, city, village or addition platted; the names of the proprietors and of the person making the plat, and the date.

It must be signed by the proprietors and by the person making it, and be wituessed and acknowledged in the same manner as deeds.

The sections and parts of sections must also be designated on the plat by lines with appropriate letters and figures.

There must be a plain designation of the cardinal points of the compass and a correct scale.

When complete and before any copies are made from it, the plat must be submitted to the Auditor General for his approval.
11. The Record.-An exact duplicate of the original plat must be filed in the office of the Register of Deeds for the county in which the land is situated. It must contain all the matter in the original plat and the certificate of the Register of Deeds and the person who made the original plat, that they have separately carefully compared the duplicate with the original plat, and that it is an exact duplicate thereof and of the whole of such plat.

A third copy must be filed in the office of the Auditor General. This copy must contain the certificate of the Register of Deeds and of the person who made the plat, that they have separately compared it with the duplicate plat on record, and that it is a true transcript therefrom and of the whole of such duplicate plat so recorded.

The Register of Deeds receives a fee of $\$ 2.00$ for recording the plat, and the sum of $\$ 1.00$ must accompany the plat filed in the Auditor General's office.

The law was amended in 1887 so as to require the surveyor to plant permanent monuments at all angles in the boundaries of the land platted, and at all the intersections of streets, or streets and alleys, as shown on the plat; and when there are permanent objects in the vicinity of such monuments, the bearings and distances of such objects to be noted. The character of the monuments and the bearings and distances of such objects or witness points must be given in the most convenient manner on the plat. The surveyor must certify that the plat is a correct one, and that the monuments described in it have been planted as therein described. The new provisions of the law are very important. The monuments are the crowning work of the survey, without which all else is of little value. They mark out the standard of measure on the grouud, to which all subsequent surveys must conform. President Steele, of the Michigan Engineering Society, says: "Place more monuments instead of less. Place them everywhere, no matter whether at the intersections of streets at the slde lines, the centre lines, or any other lines. Put down all you can. Plant them in exact relation one to another. Put the bearing on every line, the angle at every intersection. Put it all on your plat, and the more you have the better. Leave nothing to guess at. Have it so plain that a man who never knew anything about the ground can go there and find all the polnts."
II. Monuments.-It is more important to a man to know precisely where his boundary lines are and that they are unchangeable without his consent, than it is that he shall have the precise quantity of land; hence one of the most important duties the surveyor has to perform, is to fix the most permanent and unmistakable monuments to define and preserve boundary lines. This is equally true of all original surveys, whether in country or town. Mathematical accuracy in measuring distances or running lines, fails of its purpose unless there be some means of securing an unvarying starting point; while if the landmarks of the original survey, in accordance with which the land was conveyed, be preserved intact, no measurements, good or bad, are needed to define the boundaries.
Monuments for landmarks should be durable and easily distinguishable from other objects in the vicinity.
They should be accessible, not liable to be moved, and their position located by bearings and distances to the most permanent objects in the vicinity.
Various things are used for landmarks-according to the nature of the soil and the materials, at hand ; chiefly wood, stone, earthenware, or iron, in some of their forms.

Wood. A wooden post, if of suitable size and kind and properly planted, makes an excellent landmark, where very precise definition of the boundary is not required. It should be from $21 / 2$ to 4 inches in diameter, sound and straight and planted vertically in the ground to a depth of at least three feet, for permanent purposes. Red cedar black-walnut, cherry or white oak hearts make very durable posts. When the post has decayed the rotten wood and cavity in the earth preserve the point better than the sound post, as they cannot be pulled up nor moved from place without moving the surrounding earth with them.
Stone. If a rough stone or boulder is used for a monument, it should either be so large as not to be moved by any ordinary accident or so firmly imbedded in the earth as to defy the plow or the road maker. If of a kind common in the vicinity, it should be very plainly marked and have some foreign material like brick, iron, glass, or crockery imbedded around it, to identify it by.

If cut stone is used, it should be of the best quality and be long enough and set deeply enough to insure permanency. If the stone is a soft one it should be protected from injury. A stone $36 \times 8 \times 8$ inches dressed down at the top to 6×6 inches is the size in use in many of the large cities for landınarks. It is common to cut a cross or drill a hole in the top of the stone to indicate more precisely the corner or line. If still greater precision is required a piece of metal is set in the stone and the point indicated by lines cut as finely as desirable.

Iron. Monuments of cast iron have been used and are excellent. A hollow cone 18 to 36 inches in length with a broad flange at the bottom, when set in the ground holds its position very firmly and will last indefinitely. Iron rods, and pieces of gas pipe are also used. They need to be well packed about the top with brick or stone to keep them in position.

Other Materials. Some monuments are made of the same material as the earthenware sewer pipe, and burned and glazed in a similar manner. They are solid, cylindrical, three inches in diameter and of various lengths. The ends are suitably marked before burning. They are very convenient to use and durable, but need to be well protected. Brick set on end two and two to a depth of three feet and packed about the top to prevent moving make an excellent monument. Another excellent device is to make a deep hole in the earth, one or two inches in diameter, and fill it with a paste of quick lime, plaster of paris, or portland cement.

Protection. A good plan for protecting monuments in the streets of a town, is to place them in shallow pits a foot or more in diameter. Set the monument in the pit so that the top of it shall be several inches above the bottom of the pit and as much below the street pavement. Protect it with a cast iron cylinder set about it, having a slightly conical cover which is level with and forms part of the pavement. The summit of the cover answers some of the purposes of the monument, while by removing it the monument ltself is brought to view.

CHAPTER X.

RESURVEYS.

1. In an old settled country, the principal work of the surveyor is to retrace old boundary lines, find old corners, and relocate them when lost. In performing this duty, he exercises, to a certain extent, judicial functions. He usually takes the place of both judge and jury, and acting as arbiter between adjoining proprietors, decides both the law and the facts in regard to their boundary lines. He does this not because of any right or authority he may possess, but because the interested parties voluntarily submit their differences to him as an expert in such matters, preferring to abide by his decision rather than go to law about it.

In making resurveys the surveyor is called upon -

1. To construe descriptions in deeds;
2. To find the location of corners and boundary lines;
3. To renew corner monuments and to mark anew boundary lines.
4. In construing the descriptions the following rules have been laid down by the courts:

Rule 1. The description of boundaries in a deed is to be taken most strongly against the grantor.

Marshall v. Niles, 8 Conn. 369.
Ryan v. Wilson, 9 Mich. 262.
2. Where a deed contains two descriptions, each complete in itself, of the land conveyed,- one of the descriptions including all the land included in the other, and more besides,- the deed passes title to all the land contained in the larger tract.

Lake Erie \& W. R. Co. v. Whitman (III. Sup.) 40 N. E. 1014.
3. In ascertaining boundaries from title papers, he who has the oldest title is entitled to take his courses and distances, go where they may.

Quillen v. Betts (Del. Super. 1897), 39 A. 595.
4. A deed must be construed according to the condition of things at the date thereof.

Crogan v: Burling Mills, 124 Mass. 390.
5. Written descriptions of property are to be interpreted in the light of the facts known to and in the minds of the parties at the time.

Wiley v. Sanders, 36 Mich. 60.
McConnell v. Rathbun, 46 Mich. 305.
6. And should be construed with reference to any plats, facts, and monuments on the ground referred to in the instrument.

Anderson v. Baughman, 7 Mich. 77.
Bowen v. Earl, 28 Mich. 538.
7. In construing a deed, the court will consider the whole instrument, and when the calls in a deed lead to conflicting results, that construction must be adopted which is most consistent with the intent apparent on its face.

Hitchler v. Boyles (Tex. Civ. App. 1899), 51 S. W. 648.
8. The intention of the parties is as much a governing rule in construing a deed as a will.
9. In construing the provisions of a deed, the circumstances of the parties and the property are always elements of interpretation.

Snowden v. Cavanaugh (Pa. Com. Pl. 1900), 10 Kulp, 1.
10. The evident intention of parties to a deed must be given effect, the same as in other writings.

Hale v. Docking (Kan. App. 1897), 51 P. 798.
11. In determining the true construction of a deed, the habendum clause is not absolutely controlling. The
real question is, What was the intention of the grantor, to be gathered from the entire instrument, and not inconsistent with any rule of law? 1 Rev. St. P. 748, § 2.

Harriot v. Harriot, 49 N. Y. S. 447.
12. Ordinarily the intent which is effective in a grant is the intent expressed in its language, and is to be ascertained by giving suitable effect to all the words of the grant, read in the light of the circumstances attending the transaction, the situation of the parties, and the state of the country and of the estate granted.
Proctor v. Maine Cent. R. Co., 52 A. 933,96 Me. 458.
13. Where the description of the boundaries in a deed are indefinite or uncertain, the construction given by the parties, and manifested by their acts on the ground, is deemed the true one unless the contrary is clearly shown.

Reed v. Prop. Locks and Canals, 8 How. (U. S.) 274.
14. Every call in the description of the premises in a deed must be answered if it can be done, and none is to be rejected if all the parts can stand consistently together.
Herrick v. Hopkins, 10 Shep. (Me.) 217.
15. Where the boundaries mentioned are inconsistent with each other, those are to be retained which best subserve the prevailing intention manifested on the face of the deed.

Gates v. Lewis, 7 Vt. 511.
16. The certain description must prevail over the uncertain, in absence of controlling circumstances.

[^5]17. The rule is that as soon as there is an adequate and sufficient definition, with convenient certainty, of what is intended to pass by the particular instrument, a subsequent erroneous addition will not vitiate it.

Airey v. Kunkle (Com. Pl.), 18 Pa. Dist. R. 620, 6 Pa. Dist. R. 1.
18. When one part of the description in a deed is false and impossible, but by rejecting that a perfect description remains, such false and impossible part should be rejected and the deed held good.
Anderson v. Baughman, 7 Mich. 79.
Johnson v. Scott, 11 Mich. 232.
19. A deed is to be construed so as to make it effectual rather than void. (Ibid.)
20. General words in the habendum cannot control or govern special words of limitation used in the grant or premises of a deed.
Hunter v. Patterson (Mo. 1898), 44 S. W. 250.
21. Where the description in ε deed calls for land " owned and occupied," the actual line of occupation is a material call to be considered in locating the lines of the land bounded therein.
Fahey v. Marsh, 40 Mich. 239.
Cronin v. Gore, 38 Mich 386.
22. Where land is described as running a certain distance by measure to a known line, that line will control the measure and determine the extent of the grant.
Flagg v. Thurston, 13 Pick. (N. Y.) 145.
See also 13 Wend. (N. Y.) 300 , and 7 Iredell. (N. C.) 169 and 310.
23. Where a patent calls for unmarked lines of surrounding surveys, the position of which can be accurately ascertained, and there is no evidence as to how the survey was actually made, such unmarked
lines will prevail over courses and distances, in case of a conflict.
Maddox v. Turner (Tex.), 15 S. W. 237.
24. Not so if the line is obscure, not definitely fixed, marked or known, and therefore likely to be looked upon by the parties as less certain than the measure given.
Howell v. Merrill, 30 Mich. 282.
25. In the case of Land Co. v. Saunders in 5th Otto (U. S.), the Supreme Court of the United States held the west line of Hart's location to be the boundary of a grant. It was in a mountainous country and had never been surveyed or marked - although capable of being marked - the line being simply marked on the plat of the location. This line is held to be such a monument as would control course and distance.
26. Where land is conveyed "beginning at" and bounding land of " B ," the point of beginning and boundary is the true line of B's land, and not the line of occupation as shown by a fence set up and maintained by B before and after the conveyance, with the consent of the owner of the lot conveyed, under the mistaken belief that such was the true line.
Cleveland v. Flagg. 4 Cushing (Mass.) 76.
27. A course from corner to corner means prima facie a right line; but this may be explained, by other matters in the case, to be a crooked or curved line, as following a ditch, or hedge, or stream.

Baker v. Talbott, 6 Mont. (Ky.) 182.
28. "Northward" or "northerly" means due north when nothing is mentioned to show the deflection of the course to the east or west.

[^6]29. The use of the term "about" indicates that exact precision is not intended; but where nothing more certain can be found to control the course and distance, the grantee is limited to the exact course and distance given.

Cutts v. King, 3 Greenl. Me. 482.

30. Where a given quantity of land is to be laid off on a given base, it must be included in four lines, so that the lines proceeding from the base shall be at right angles with it, and the line opposite the base shall be parallel with it, unless this form is repugnant to the entry.
Massie v. Watts, 6 Cranch. (U! S.) 148.
Ker v. Watts, 6 Wheat. (U. S.) 550.
31. A deed described land conveyed as " fractional N. W. corner of S. W. $1 / 4$ of section 6, T. 13, R. 6, containing thirty-three acres." Held, that this description operated to convey such a part of the S. W. $1 / 4$ section 6 as was included between lines drawn an equal distance from the point of intersection of the lines bounding the quarter section at its N. W. corner, and extended a sufficient distance to include thirty-three acres between parallel lines, and that the word "fractional" should either be treated as surplusage or as modifying "section," as a fractional corner is a contradiction in terms.
Swan v. New England Mortg. Sec. Co. (Miss. 1898), 23 So. 627.
32. Seventy acres lying and being in the southwest corner of a section, is a good description, and the land will be in a square.
Walsh v. Ringer, 2 Ham. (Ohio) 327.
33. Where lines are laid down on a map or plan, and are referred to in a conveyance of land, the courses, distances, and other particulars appearing on such plan are to be as much considered the true de-
scription of the land conveyed as they would if expressly recited in the deed.

Davis v. Rainsford, 17 Mass. 211.
See also 14 Mass. 149, and 1st Greenl. Me. 219.
34. A conveyance by metes and bounds will carry all the land included within them, although it be more or less than is stated in the deed.

Butler v. Widger, 7 Cow. (N. Y.) 723.
Bratton v. Clawson, 3 Strobh. S. C. 127.
Gillman v. Riopelle, 18 Mich. 164.
35. A definite description in a deed, naming the point of beginning, the monuments, and courses and distances, followed by a statement as to the number of acres conveyed, passes only the quantity of land included in the specified boundaries, though that is less than the number of acres stated.

Silver Creek Cement Corp. v. Union Lime \& Cement Co. (Ind. Sup.) 35 N. E. 125.
36. A grant of land bounded by a highway takes to the center of the highway. If it be designed to exclude the highway, it must be so stated in explicit terms.

Champlin v. Pendleton, 13 Conn. 23.
See also 7 N. H. 275; 6 Shep. Me. 276.
Purkiss v. Benson, 28 Mich. 538.
37. A deed of land lying east of a certain street, and explicitly bounded by the east line of the street, conveys no title to the soil in the street.
G. R. \& I. R. R. Co. v. Mary Heisel, 38 Mich. 62.
38. The fact that a patent describes the land as "the north-east quarter of the south-east quarter of section 8 ," instead of as lot 4, does not exclude from the grant any of the land that would properly be in lot 4 , when it appears by the government plat that it was intended to pass lot 4 , which was marked as containing the same number of acres as were granted by the patent.
39. The fact that lot 4 is in two quarter sections, is immaterial, as a given fractional lot may be crossed by quarter section lines, when the lines of the plat show that it was not intended to extend the intersecting line of the adjoining quarter section so as to exclude from lot 4 the land in controversy, which is necessary to make up the number of acres as called for in the plat for lot 4.

Sheppard v. Wilmott (Wis.) 47 N. W. 1054.
40. The presumption that a conveyance of land passes one half of the soil of the adjoining highway extends to streets in towns, and is not rebutted by the circumstance that the grantor is the municipal authority entitled to part of the soil of the other half of the street.

Eng. 1898.
41. In construing the description in a deed which bounds the land conveyed upon a street, river, or other monument having width, courts incline strongly to such an interpretation of the language as will carry the fee of the land to the center line of such monument, rather than to its edge only.

Paine v. Consumers' Forwarding \& Storage Co. (C. C. A.) 71 F. 626.
42. The mention of quantity of acres after a defi nite description by metes and bounds, or by the aliquot part of the section, is a matter of description only, and quantity being the least certain, does not control.

> Amich v. Holman, 13 Strobh. S. C. 132.
> McClintock v. Rogers, 11 Ills. 279.
> Martin v. Carlin, 19 Wis. 454.
43. Where boundaries are doubtful, then quantity often becomes a controlling consideration.

Winans v. Cheney, 55 Cal. 567.
44. Where the other terms of the description contained in a deed are not sufficiently certain, the num-
ber of acres given is an essential part of the description, and may be resorted to in aid of the defective part of such description.
Campbell v. Carruth (Fla.) 13 So. 432.
45. Grants by government are to be construed according to the common law, unless it has done some act to exclude that construction.
Middleton v. Pritchard, 3 Scam. Ill. 510.
46. In construing a deed describing land by the government survey the court must ascertain the corners of the survey as actually established, and not as they ought to have been established; but the presumption that the deed was intended to convey according to the established corners may be rebutted by evidence that the parties were mistaken as to the location of the government line, and intended to convey a definite tract.
Squire v. Greer (Wash.) 26 P. 222.
47. A reference in a description to the government patent, makes the patent description and the government survey a part of the deed.
Miller v. Topeka Land Co. (Kan.) 24 P. 420.
48. Where a survey is referred to in a deed for greater certainty, it legally forms a part of it and both should be construed together.
Heffleman v. Otsego Water Power Co. (Mich.) 43 N. W. 1096.
49. Extrinsic evidence is always admissible to explain the calls of a deed for the purpose of applying them to the subject-matter, and thus to give effect to the deed.
Thompson v. Southern Cal. M. R. Co. (Cal.) 23 P. 130.
50. The locative calls in a patent, in accordance with which the survey is admitted to have been actually made on the ground, control more general calls as
to the county, and the direction and distance of the land from certain well-known points.
Minor v. Kirkland (Tex. Civ. App.) 20 S. W. 932.
51. An exception in a deed which reads, "Except the dower of fifty acres, as fully described in the deed given the C. B. Co.," is not void, though the boundaries of the excepted land are not defined in any way, as reference may be had to the deed to the C . B . Co. to ascertain them.
McAffee v. Arline (Ga.) 10 S. E. 441.
52. A deed conveying property by lot numbers is not void for uncertainty, though the recorded plat shows no division of the blocks into lots; it being shown that the proprietors had always treated the blocks as divided into lots, and that for many years the property had been assessed, conveyed, and generally known by the lot numbers.
Marvin v. Elliott (Mo.) 12 S. W. 899.
53. Where in a platted block the lots are marked on the plat as having the same number of front feet each, except one, the specific dimensions of which are also marked, and a survey shows that the whole block contains more front feet than are marked on the plat, the excess must be distributed between all the lots, and not given to that lot only which differed in its dimensions from the rest.
Pereles v. Magoon (Wis.) 46 N. W., 1047.
54. A deed of lots according to a plat on which the lots are bounded on one side by an alley, passes title to the center of the alley, where the grantor's title extends thereto. Following Schneider v. Jacob, 5 S. W. 350.
Jacob v. Woolfolk (Ky.) 14 S. W. 415.
55. A grantee of a lot in a recorded plat, unless the terms of his deed or the plat exclude that construction,
takes to the center of adjoining public ways, subject to the public easement; and the fact that the description in his deed, after stating the number of his lot, gives its dimensions, exclusive of the highways, does not effect such construction.
Brown v. City of Baraboo (Wis. 1898) 74 N. W. 223.
56. A deed describing the granted premises as "subdivision of lot No. 4 of division No. 16," etc., followed by the total number of acres contained in lot 4 , and then excepting land previously sold, is not void for indefiniteness, though lot 4 was never subdivided, as it evinces a clear intent to convey the balance of whatever land the grantor owned in lot 4; and the deed will be construed as though the word " of" after the word " subdivision" had been omitted. Weeks v. Martin, 10 N. Y. S. 656.
57. A deed to a railroad company of a right of way " along the line as surveyed and laid out" by the company's engineer is not void for uncertainty where it appears that when the deed was executed the line of the road had been surveyed and distinctly marked by stakes stuck in the ground, and that subsequently the road was constructed following the exact line of the survey.

Thompson v. Southern Cal. M. R. Co. (Cal.) 23 P. 130.
58. A deed conveying the land south of a "railway cut" conveys only the land south of the upper and outer edge of the cut.

Newton v. Louisville \& N. R. Co. (Ala.) 19 So. 19.
59. When land is bounded on a private way, it extends only to the side line of the way.
Winslow v. Reed, 35 A. 1017, 89 Me. 67.
60. In a deed of land by metes and bounds, an exception, of " lot 6 , block 36 , heretofore conveyed to B," excepts a lot so numbered on a plat made by the
grantor and grantee, but not then recorded, there being no other lot 6 block 36, within the land granted. The recital of a conveyance to B . may be rejected as a falsa demonstratio.

Ambs v. Chicago, St. P., M. \& O. R'y Co. (Minn.) 46 N. W. 321.
61. Where a deed conveys lots according to a certain plat, the fact that the plat is invalid does not affect the deed.

Young v. Cosgrove (Iowa) 49 N. W. 1040.
62. Though a plat be incomplete as respects the location of monuments, or in respect to measurements and distances, yet where land so surveyed has been conveyed by reference thereto, and the location of the lots so conveyed and designated is well known by all parties interested, and susceptible of identification according to the actual survey on the ground, the description is sufficient to pass the title.

Bohrer v. Lange (Minn.) 46 N. W. 358.
63. The description in a deed was: "Beginning at * * * ; running thence northeasterly, along Grove street, 25 feet; and thence northwesterly, and parallel with Woodruff avenue, 108 feet 9 inches, to lot No. 80, on said map; thence southwesterly, along lot No. 80, 25 feet; and thence southeasterly, and parallel with Woodruff avenue, 108 feet 9 in., to the westerly side of Grove street, the point or place of beginning." Lines drawn from Grove street, 108 feet 9 inches, parallel to Woodruff avenue, would not reach lot 80 by 5 inches. Held, that there was a mistake in describing the length of the lines parallel to Woodruff avenue, and that it was intended that they should extend 109 feet 2 inches, and not that they should run in such a direction that they would reach lot 80 at the distance of 108 feet 9 inches from Grove street.

[^7]64. It being stated with certainty in the deed that such lines were parallel to Woodruff avenue, it is immaterial, in construing the description, that the corresponding lines in the conveyances of neighboring property were at right angles to Grove street, instead of being parallel to Woodruff avenue.

Casey v. Dunn, 8 N. Y. S. 305.
65. The description in a deed was certain as to the northern and western boundaries. The course of the eastern boundary was south for a distance of 8 rods. The southern boundary was "then west, in a line parallel to, and eight rods south of," the northern boundary, "one hundred and sixty-two feet, to" the western boundary. By reference to another deed, it was made certain that the north 6 rods of the eastern boundary was a straight wall. The course of the other 2 rods was uncertain. Extending the line of the wall 2 rods south, and from the end of this line drawing a line parallel to the northern boundary, to the western boundary, a southern boundary 165 feet in length would be obtained. Held, that from the southern end of the wall the eastern line should be deflected towards the west at such an angle that at the distance of 2 rods it would intersect a line parallel with the northern boundary at the distance of 162 feet from the western boundary.
Ladies' Seamen's Friend Soc. v. Halstead (Conn.) 19 A. 658.
66. A city, by its president and trustees, conveyed to defendants' grantor "that lot of land containing 60 acres, lying in block No. 1111, according to the official map of said city made by * * * A. D. 1856." The deed referred to a resolution of the trustees, under which the lands were sold, which provided that all surveys should be made by the purchaser. At the time of the deed there had been no survey or subdivi-
sion of the block. Held, that the deed conveyed an undivided 60 acres of the block.
Cullen v. Sprigg (Cal.) 23 P. 222.
67. Where a description by metes and bounds is supplemented by a reference to a particular subdivision of land to indicate the tract intended to be conveyed, the former will not necessarily be controlling, when it would leave a strip 13 feet front ly 100 deep in the grantor, which clearly appears to have been intended to be conveyed by the latter description.

Cannon v. Emmons (Minn.) 46 N. W. 356.
68. Ordinarily, calls for natural or artificial monuments will control courses and distances; but a call for course and distance will not be subordinated to a call for an unmarked line in a prairie, which cannot itself be ascertained except by running the boundaries of another survey according to course and distance.
Johnson v. Archibald (Tex.) 14 S. W. 266.
69. A complaint was filed to quiet title to 150 acres of land lying on the south side of a fractional section. A surveyor was ordered to survey that quantity, to be taken the full length of the section from the east side thereof to a river as the western boundary, and extending far enough north to include 150 acres. The surveyor executed the order, and reported a survey, which was accepted, and the court entered judgment, wherein the land was doubly described by inconsistent descriptions. The first described it as in the order of survey, and the second by metes and bounds, by which, after beginning at the southeast corner of the section, and following the south line to the river, it ran up the river, with the meanders thereof, to a stake placed by said surveyor 191-3 chains north of the south line of the section; thence running westerly, parallel with the south line, 53.04 chains, to a stake
in the east line of the section; and thence southerly with said line $91-3$ chains, to the beginning. The stakes were gone, but were shown to have been placed at points $191-3$ chains from the south line, thereby including 150 acres. Held, that the first description. should govern.
Caspar v. Jamison (Ind.) 21 N. E. 743.
70. Under a deed of land bounded by a street, according to a map referred to, the line of the street as actually surveyed is the boundary of the land conveyed.

Andreu v. Watkins (Fla.) 7 So. 876.
71. A deed described the land conveyed as "commencing on the S . road at the north-east corner of the land owned by S.; running south, to the south-east corner of said S.'s land, two acres; from thence, easterly and parallel with said S. road, two acres; thence running northerly two acres, until it strikes said road; and thence westerly, along said road, two acres, to the beginning; containing four acres of land, neither, more nor less." Held, that as the description by quantity so clearly shows the intention to limit the grant to four acres in rectangular form, and as the length of the west line is given, the intention must control distances.

Rioux v. Cormier (Wis.) 44 N. W. 654.
72. A similar construction is to be given the United States statute providing for the survey in certain cases of tracts of land two acres in width and running back a depth of forty acres. R. S. 2407.
73. A city condemned a strip of land for railroad and sewer purposes, and, after constructing a road-bed along this, it conveyed to a railroad company "its title to the road bed, bridges, and right of way" along the entire route, and " all the land belonging to the city,"
between certain streets, "for depot purposes." The company had formerly occupied a right of way for a double track on other streets, and the city, in consideration of the change of the railway to the street forming the line of the road in the conveyance, agreed to furnish the company a road-bed. Held, that outside of the part conveyed for depot purposes nothing but the road-bed was conveyed.

Long v. Louisville \& N, R. Co. (Ky.) 13 S. W. 3.
74. The deed of a city lot, and plat with reference to which it was made, called for the south line of Cherry street as the northern boundary of the lot. The line referred to had been established by the City Surveyor 37 years before and ever since acquiesced in. The other lots in the block had been bought, fenced and built upon on the assumption that this survey was correct. A more recent survey tended to show that the line was three feet too far north. Held, that the presumption of correctness was with the older survey, and as the lot owner had got all he bargained for, and the later survey would cause the lines of the other lcts to cut into the buildings, the older survey must prevail.

Wilmarth v. Woodcock, Mich. 33 N. W. Rep. 401•
75. A description of a deed reads: " The east $1 / 2$ of the east $1 / 2$ of the northwest $1 / 4$, and the east $1 / 2$ of the east $1 / 2$ of the southwest frac. $1 / 4, "$ etc., containing 50 acres of land; being the east half of 100 acres conveyed by A. and B. to E. The south line of the tract is irregular on a lake, and a line north and south through the center of the tract would give one parcel nine acres more land than the other. Held, that the language is apt and proper to divide the tract by a north and south line which would give to each 50 acres, or one-half of the whole.
76. A description of the half of the parcel of land, according to the United States survey, would have excluded the idea of equal quantities and fixed the dividing line in accordance with the Act of Congress. If any other line had been agreed upon between the owners as the boundary line, it would govern the case.
Jones v. Pashby, Mich. 29 N. W. Rep. 376.
Dart v. Barbour, 32 Mieh. 276.
Heyer v. Lee, 40 Mich. 353.
77. A description in a deed, if otherwise good, is not vitiated by the omission of the word "rods" to avoid tautology, when the meaning is plain.
Taber v. Shattuck, 55 Mich. 370.
78. In a deed of the "east half" of a fractional quarter section, the words "east half" refer to the government subdivision of a quarter section, and not to a subdivision of the quarter section by a line dividing it into two equal parts.
Turner v. Union Pac. Ry. Co. (Mo. Sup.) 20 S. W. 673.
79. A deed of the "west half" of a fractional lot containing less than a legal subdivision of 40 acres conveys half of the area.
Owen v. Henderson (Wash.) 47 P. 215.
80. Held, that, in order to determine the south boundary of the north 31 acres of a lot bounded on the east by a lake conveyed to defendant, the land should be measured to the meandered line of the lake, and not to the water's edge; such measurement carrying out the parties' expressed intention of dividing the property equally.
Peck v. Webb, 88 N. W. 888, Mich. 1902.

1. Adverse Possession.-When the boundary line between the lands owned by adjoining land-owners is unknown, they may by parol fix a line between each party, each party mutually agreeing thereto and acting thereon, which is binding between them; but if
the line is known, then the transfer of any portion of the land on one side of the line from the one to the other must be in writing, to be valid.
Jenkins v. Trager, 40 F. 726.
2. The adverse possession of land by a grantor cannot avail his grantee, beyond the boundary line described in the deed.
Jenkins v. Trager, 40 F. 726.
3. Possession as owner is an essential condition by which the ownership of immovables can be acquired without title, or possession in good faith.

Stille v. Schull (La.) 6 So. 634.
4. Continuous possession of land for more than 30 years under claim of ownership, though without color of title, constitutes title in fee.
Bowen v. Swander (Ind.) 22 N. E. 725.
5. One cannot acquire title to land by adverse possession where he claims title under a deed which in fact does not include such land in its description.
Casey v. Dunn, 8 N. Y. S. 305.
6. Where title is claimed by adverse possession, if the possession is by actual occupation of the possessor under claim of title, it is visible, open, notorious, distinct, and will be presumed to be hostile.
Green v. Anglemire (Mich.) 43 N. W. 772.
7. Where the line between adjoining owners is in doubt, but they only claim ownership to the true line, wherever that may be, no title by adverse possession can arise in either, as against the other.
Krider v. Milner (Mo.) 12 S. W. 461.
3. In construing deeds conveying title to lands bordering on waters, it will be necessary for the surveyor to inquire into the local laws of the State in which the premises lie, as different States by their laws and courts give different constructions to the word
"navigable" as applied to streams and the smaller lakes. The statute of the United States provides that

[^8]It is a universal rule that grants of land bordering on navigable streams take only to high-water mark, while grants on non-navigable streams take to the center of the stream, or the filum aquar, as it is termed.

Now, whether the proprietor in any given case owns the land under water to the center of the stream, or only takes to high-water mark, depends on the local construction given to this word navigable.

Under the Common Law, a navigable stream is one in which the tide ebbs and flows. Some exceptions to the rule are made in England.

Under the Civil Law, a navigable stream is one capable of being used as a highway of commerce. In the case of the Railroad Co. v. Schurmier (7 Wallace, 272), the Supreme Court of the United States says that "the words navigable and non-navigable were applied by Congress without respect to the ebb and flow of the tide," and in the case of Bowman and Bumley v. Wathieu and others, (2d McLean, 276), they say that "the common law doctrine as to the navigableness of streams can have no application in this country, and the fact of navigableness does in no respect depend on the ebb and flow of the tide."

The courts of Pennsylvania, North Carolina, South Carolina and Alabama hold the same view. On the contrary, in Maine, New Hampshire, Massachusetts, Connecticut, New York, Maryland, Virginia, Ohio, Illinois, Indiana, and Michigan, the common law doctrine is held to prevail. (See Angell on Tide Waters, pp. 77 and 78.)

Hence, in applying the principles laid down by the courts in the following decisions, the surveyor will bear in mind the locality in which they are to be applied.

1. The grants of the government for land bounded on streams and other waters without any reservation or restriction of terms are to be construed as to their effect according to the law of the state in which the lands lie.
U. S. Sup. Ct., Hardin v. Jordan, 29 N. Y. Rep. 813
2. Proprietors of lands bordering on navigable rivers, under titles derived from the United States, hold only to the stream, as the express provision is, that all such rivers'shall be deemed to be and remain public. highways.
R. R. Co. v. Schurmeir, 7 Wallace (U. S.) 272.
3. Where a sea or bay is named as a boundary, the line of ordinary high-water mark is always the line, where the common law prevails.
U. S. v. Pacheco, 2 Wallace (U. S.) 587.
4. A boundary on a stream or by or to a stream includes flats at least to low-water mark, and in many cases to the middle thread of the river.
Thomas v. Hatch, 3 Sumner (U. S.) 170.
5. A boundary on the bank of a river referring to fixed monuments on the bank, limits the grant to the bank and excludes the flats. (Ibid.)
See also Hopkins v. Kent, 9 Ohio, 13.
6. The words "along the bank" are strong and definite enough to exclude the idea that any part of the river or its bed was granted in the navigable or unnavigable parts of the river.

Howard v. Ingersoll, 13 How. (U. S.) 341, 416
7. A deed describing the land by a boundary running to a stream, and thence along its bank, and reserving the right to use the river front a specified time,
conveys the land to the water's edge and covers the riparian rights to the middle of the stream.

Cole v. Wells, 49 Mich. 450.
8. Congress, in making a distinction between streams navigable and those not so, in the acts relating to the sale of the public lands bordering thereon, intended to provide that the common law rules of riparian ownership should apply to the lands bordering on the latter, but that the title to lands bordering on the former should stop at the stream.
R. R. Co. v. Schurmeir, 7 Wall. (U. S.) 272.
9. In streams which are not navigable, adjacent proprietors own to the center of the stream measured from low-water mark.

Clark v. Caupau, 19 Mich. 325.
Moore v. Sanborn, 2 Mich. 519.
Lorman v. Benson, 8 Mich. 18.
Bay City Gas Light Co. v. Ind. Wks. 8 Mich. 182.
Lamb v. Ricketts, 11 Ohio 311.
10. The same principle is applied to Lake Muskegon, in Michigan (Rice v. Ruddeman, 10 Mich. 125), but not applied to a similar lake in Wisconsin, where the court says (Deidrich v. N. W. U. Ry. Co., 42 Wis. 271): "Riparian owners ùpon a natural lake or pond take only to the shore."
11. In the case of the State of Indiana v. Milk, Circuit Court of the United States, April term, 1882, 11th Bissell, page 197, the court rejects the theory of riparian owership in the lake, and after presenting its reasons at some length, concludes with the following: "That while a general grant of land on a river or stream non-navigable extends the line of the grantee to the middle or thread of the current, a grant on a natural pond or lake extends only to the water's edge."
12. Islands in rivers fall under the same rule as to ownership as the soil under water does. If not
otherwise lawfully appropriated, they belong to the proprietors on either side of the stream, according to the original dividing line or filum aquse as it would run if the islands were under water. The filum aquæe is midway between the lines of ordinary low-water mark, without regard to the channel or depth of water. When the island is appropriated, the boundary is then midway between it and the mainland.
McCullough v . Wall, 4 Rich. (S. C.) 68.
Kimball v. Schaff, 40 N. H. 190.
13. The grant includes any land between the meander line and the water, in an unnavigable stream.
The same principle applies to unnavigable lakes Forsyth v. Smale, 7 Biss. (U. S.) 201.
14. The owners of land bordering on the shore of a meandered non-navigable or dried-up lake, own the bed of the lake in severalty, and their title extends to the center; the boundary lines of each abutting tract being fixed by extending, from the meander line on each side of the tract, lines converging to a point in the center of the lake.
Shell v. Matteson (Minn. 1900) 83 N. W. 491.
15. Where an island springs up in the midst of a stream, it is an accretion to the soil in the bed of the river, and not to the land of the riparian owner.
East Omaha Land Co. v. Hansen, 90 N. W. 705 (Iowa, 1902).
16. Where, after submergence, the water disappears from the land, either by gradual retirement or elevation of the land by natural or artificial means, and its identity can be established by reasonable marks, or by situation or boundary lines, the proprietorship returns to the original owner.
Hughes v. Birney's Heirs, 32 So. 30 (La. 1902).
17. High-water mark in the Mississippi River is to be determined from the river bed, and that only is
river bed which the river occupies long enough to wrest it from vegetation.

Houghton v. Railway Co., 47 Iowa 370.
18. A bank is the continuous margin where vegetation ceases. The shore is the sandy space between it and low-water mark.
McCulleugh v. Wainwright, 14 Penn. St. 59.
19. Where a levee was shown to have been judiciously located by a competent engineer and agents of the State acting under authority conferred by the State Legislature, it was held that such levee became the boundary line of high water, and that no private ownership could be acquired to land lying between that and the bed of the stream.
Musser v. Hershey, 42 Iowa 356.
20. Grant of a city lot bounded on a river, takes to the center of the stream.
Watson v. Peters, 26 Mich. 508.
21. Riparian rights, unless expressly limited, extend to the middle of the navigable channel, and cover any shallows or middle ground not shown in the government surveys, but lying between such shallows and the shore, and it makes no difference that the deed conveying the premises to which the rights attach describes them according to a city plat instead of the government entry.

Fletcher v. Thunder Bay Boom Co., 51 Mich. 277.
22. But if the plat plainly indicates the proprietor's intent to reserve the space between the shore and the thread or main channel, the case would be different.
Watson v. Peters, 26 Mich. 508.
23. Riparian rights extend laterally into the stream. Rocks and shoals along the margin of navigable rivers above tide-water belong to the riparian owner.

Moore v. Willamette T. \& L. Co., 7 Oregon R. 355.
24. When a navigable stream is meandered in making the public surveys, and the United States has granted to the meander line, the grantee takes to the river. The stream, and not the meander line, is the true boundary of the riparian owner.
Minto v . Delaney, id., 337.
25. Lands patented by the United States on a tidewater stream extend to the meandered line of the stream, which is the line of ordinary high water.

Parker v. Taylor, id., 435.
26. A boundary by the shore of a mill pond takes to low water mark.

Stevens v. King, 76 Maine 197.
27. The fact that a deed described the property conveyed as commencing at a known monument on the shore of a pond, and running thence "along said pond," does not show an intention to convey only to the shore.
A deed of land bordering on a small non-navigable lake or pond is presumed to convey title to the center of the lake or pond, unless the contrary appears.

Gouverneur v. National Ice Co. (N. Y. App.) 31 N. E. 865.
28. N. conveyed a lot according to a certain plat. The plat represented the lot as bounded north by a street; south by a stream; on the east and west by lines running from the street to the stream, with figures purporting to give the length of these lines. In fact, the distance to the stream was greater than indicated by these figures. Held, that the conveyance of the lot according to the plat included all the land between the street and the stream.

Nicolin v. Schneiderham, Minn. 33, N. W. Rep. 33.
29. In Turner v. Holland, the Supreme Court of Michigan gives riparian rights to owners of lots
bounded by a bayou of Saginaw river, described by plat similar to the above.
33 N. W. Rep. 283.
30. In a navigable stream, as the DesMoines river in Iowa, high water mark is the boundary line. When, by action of the water, the river bed changes, high water mark changes and ownership of adjoining land changes with it. The location of meander lines does not affect the question. Meander lines are not boundary lines.
Steele v. Sanchez, 33 N. W. Rep. 367.
Krant v. Crawford, 10 Iowa 549.
Lockwood v. R. R. Co., 37 Conn. 387.
31. A boundary stated in a deed as a line forty feet above the border of a river at high water mark, is not ambiguous, and if disputed is to be fixed like any other facts, by testimony and an examination of the ground.

Bresler v. Pitts, 59 Mich. 348.
32. A patent for a fractional quarter section, which is bounded by a meandered stream, passes title to all land within the lines of said quarter section between the meandered line and the water's edge.

Sphung v. Moore, (Ind.) 22 N. E. 319.
33. The owner of land on the margin of a navigable stream, holding under a grant from the United States, does not take to the middle of the stream, but to high water mark, which is determined by the change in the vegetation and the character of the soil, and the beds of all navigable streans, though the tide does not ebb and flow in them, belong to the state.

St. Louis, I. M. \& S. Ry. Co. v. Ramsey (Ark.) 13 S. W. 931.
34. The owner of land on a bay conveyed an acre at the end of the tract nearest the bay, described as follows: "Beginning * * * by the beach, run-
ning * * * along the beach to," etc. In the general description of the tract it was bounded "easterly by the said beach." The grantee was given the privilege of a road from the middle of the front of the lot to the bay, and also half the drift coming on shore in front of the lot, and all the other privileges of the beach were reserved by the grantor, who bound himself not to build any house in front of the lot. The courses and distances would not carry the boundary to high-water mark. Held, that the beach did not pass by the deed.

Benson v. Townsend, 7 N. Y. S. 162.
35. Part of a quarter section of land conveyed was covered by a lake. The deed described the part conveyed as 140 acres in the east part of said quarter section. Held, that the deed was not void for uncertainty, since the land could be laid off in a strip of equal width off the east side of the quarter section, though such strip included part of the lake.
Mendota Club v. Anderson (Wis. 1899) 78 N. W. 185.
36. Where two deeds in plaintiff's chain of title respectively define the boundary. of the land "by the edge of the mill-pond" and as "the bank of said mill-pond," and defendant is entitled to pond as much land as the pond flowed at the time of his purchase, defendant may enter on land orginally covered by the pond, but which has subsequently become dry land by the receding of the water, though plaintiff's deed on its face shows his line to be the eenter of the pond.
Holden v. Chandler (Vt.) 18 A. 310.
37. Where the patentee of "the north half of the southeast quarter, and that part of the northeast fractional quarter, of Section 36," etc., " which lies north of the Kankakee river, containing in all 122.70 acres," conveys " the northeast quarter of Section 36 ,"
etc., "containing 122.70 acres," the deed passes title to all of the land in said northeast fractional quarter lying south of said river.

Sphung v. Moore (Ind.) 22 N. E. 319.
38. Where one who owns a tract of land that surrounds and underlies a non-navigable lake, the lengtin of which is distinguishably greater than its breadth, conveys a parcel thereof that borders on the lake, by a description which makes the lake one of its boundaries, the presumption is that the parties do not intend that the grantor should retain the title to the land between the edge of the water and the center of the lake, and the title of the purchaser, therefore, will extend to the center thereof.
Lembeck v. Nye (Ohio) 24 N. E. 686.
39. A patent from the United States of a surveyed fractional government subdivision, bounded on a meandered lake, conveys the land to the lake, although the meander line of the survey be found to be not coincident with the shore line.

Everson v. City of Waseca (Minn.) 46 N. W. 405.
40. When the United States has disposed of the lands bordering on a meandered lake, by patent, without reservation or restriction, it has nothing left to convey, and any patent thereafter issued for land forming the bed, or former bed of the lake, is void and inoperative. Lamphrey v. Metcalf (Minn.) 53 N. W. 1139.
41. Where the United States has made grants without reservation or restriction of public lands bounded on streams or other waters, the question whether the lands forming the beds of the waters belong to the state, or to the owners of the riparian lands, is to be determined entirely by the law of the state in which the lands lie.

Lamprey v. Metcalf (Minn.) 53 N. W. 1139.
42. Where a section is divided by a water course, and is subdivided in lots instead of regular subdivisions, and a lot bounds on the water course, the water course itself, and not the meander lines thereof, is the proper boundary; and, if the grantee does not find the water course as called for by his patent, he may go as far as the next "eighth line" to locate his boundary.

Lally v. Rossman (Wis.) 15 N. W. 1132.
43. Where the description is by metes and bounds, no reference being made therein to the lake, then only the land included within the lines as fixed by the terms used by the parties to the deed will pass to the grantee.
Lembeck v. Nye (Ohio) 24 N. E. 686.
44. If, however, the call in the description be to and thence along the margin of the lake, no such presumption arises, and the title of the purchaser will extend to low water mark only.

Lembeck v. Nye (Óhio) 24 N. E. 686.
45. Where a deed conveys land "bounded and described according to". a certain survey, does not call for a river, but calls for a line run between certain points, designated by the surveyor as on the bank of a navigable river, and it appears that the lines of such survey exclude flats between high and low water marks, evidence aliunde is admissible that the bank referred to was an artificial dike; that the grantee had notice that the grantors reserved the flats; that the grantors refused to execute a deed expressly conveying the flats; and that the sale was expressly subject to the survey, as tending to show that the flats were excluded. whatever may be the presumption from the deed.
Palmer v. Farrell (Pa.) 18 A. 761.

Second.

4. In locating the corners and boundary lines on the ground, we will consider:
5. General rules which apply to all resurveys:
6. Special application of these rules to the rectangular system of United States surveys.

general rules.

Rule 1.-In locating a deed on the ground, we are to rely-
(1) On the actual lines originally surveyed;
(2) On lines run from acknowledged calls and corners.
(3) On lines run according to the course and distance in the deed.
Avery v. Baum, Wright's Ohio, 576.
1 Rich. (S. C.) 491.
2. When the boundaries of lands are fixed, known and unquestionable monuments, though neither courses, distances, nor computed contents correspond, the monuments must govern.
Pernam v. Wead, 6 Mass. 131.
Nelson v. Hall, 1 McLean (U. S.) 518.
3. Though known and fixed monuments control where they conflict with the courses and distances, yet where there are two conflicting monuments, only one of which corresponds with the courses and distances, that one should be taken, and the other rejected as surplusage.
Zeibold v. Foster (Mo. Sup.) 24 S. W. 155.
4. While natural objects usually control courses and distances in boundaries to land, the rule will not be applied where the natural object is shown to be variable in its position.

Smith v. Hutchinson (Tenn. 1900) 58 S. W. 226.
5. A boundary line described by measurement and without monuments will govern, although the distance be described as so many feet, more or less.
Adkins v. Quest (Mo. App. 1899) 79 Mo. App. 36, 2 Mo. App. Rep. 348.
6. Marked lines and corners control courses and distances. Surplus lands do not vitiate a survey nor does a deficiency of acres called for in a survey operate against it. Wherever the boundaries can be established, they must prevail.

> Robinson v. Moore, 4 McLean (U. S. C. C.) 279.
> Morrow v. Whitney, 5 Otto (U. S.) 551.
7. A deed called for posts as corners. The survey was made and the posts set prior to the execution of the deed. It was afterward found that there was a shortage of several acres. Held that proof that posts were set up as corners between adjoining owners controls the call for course and distance.
Alseire v. Hulse, 5 Ohio, 534.
8. The rule that courses, distances and quantities must yield to monuments, is not inflexible, especially when the distances are very short, and the monuments artificial ones, as here, a mill-race, etc.

Higinbotham v. Stoddard, 72 N. Y. 94.
Ga. R. R. Co. v. Hamilton, 59 Ga. 171.
9. In a case where no mistake could be reasonably supposed in the courses and distances, the reasons of the rule were held to fail, and the rule was not applied.

Davis v. Rainsford, 17 Mass. 207.
10. The rule that natural or artificial boundaries will control distances or courses, authorizes no other departure from the course or distance than such as is necessary to effectuate the apparent intent of the grantor.

Distances may be increased and courses departed from in order to preserve the boundary, but the rule authorizes no other departure from the course and distance than such as is necessary to preserve the boundary.

Johnson v. McMillan, 1 Strobh. (S. C.) 143.
11. If the courses and distances cannot be otherwise reconciled with the monuments in a description, a line in a survey which has evidently been omitted will be supplied to prevent the obvious intent of the grantor from being frustrated. Serrano v. Rawson. 47 Cal. 52. See also Schultz v. Young, 3 Iredell, N. C., 385, where two lines must be run instead of the one called for, to best conform with the whole description in the deed.
12. A survey must be closed in some way or other. If this can only be done by following the course the proper distance, then it would seem that distance should prevail; but when the distance falls short of closing, and the course will do it, the reason for observing distance fails.
Doe v. King, 3 How. Miss. 125.
13. Where land conveyed forms a triangle, and two sides and the acreage are given, a straight line from point to point will be adopted as the third side, when the boundary thus formed will enclose the number of acres called for.

Hostetter v. Los Angeles Terminal Ry. Co. (Cal.) 41 P. 330.
14. Where three sides and the number of acres are known, and it is disputed whether the fourth side is a straight or meandering line, the straight line will be adopted, when the tract thus enclosed contains the number of acres called for, and when the acreage
would be largely increased if the meandering line were adopted.
Hostetter v. Los Angeles Terminal Ry. Co. (Cal.) 41 P. 330.
15. It is a universal rule that course and distance yield to natural and ascertained objects. But where these objects are wanting, and the course and distance can not be reconciled, there is no universal rule that obliges us to prefer the one to the other. Cases may exist in which either one may be preferred, according to the circumstances.

Preston's Heirs v. Bowman, 6 Wall. (U. S.) 580.
16. If no principle of location be violated by closing from either of two points, that may be closed from which will be more against the grantor and include the greater quantity of land.
Johnson v. McMillan, 1 Strobh. (S. C.) 143.
17. The boundary line is to be ascertained by running direct lines from one monument to the other. Melcher v. Merryman, 4 Me. 601.
18. A line actually marked must be adhered to, though not a right line from corner to corner. Where a line has been marked only part of the way, the remainder of the line must run direct to the corner called for.
Cowan v. Fauntleroy, 2 Bibb (Ky.) 261.
19. A marked line of another tract, when called for in a conveyance, must be run disregarding distance; but where such line can not be established, the distance run must govern.
Gause v. Perkins, 2 Jones Law Rep. (N. Y.) 222.
20. Where a line is described as running a certain distance to a particular monument, and that monument has disappeared and its place cannot be ascertained, the course and distance, in the absence of other controlling words, must govern.
Budd v. Brooke, 3 Gill (S. C.) 198.
See also Bruckner v. Lawrence, I Douglass (Mich.) 19.
21. Course and distance yield to known, visible and definite objects; but they do not yield unless to calls more material and equally certain.

Shipp et. al. v. Miller's Heirs, 2 Wheat. (U. S.) 316.
22. Courses and distances in the deed are not to be controlled by monuments or objects variant therefrom and not called for in the description, but they must yield to such objects and monuments as are referred to.

Bruckner's Lessee v. Lawrence, 1 Doug., Mich. 29.
Moore v. People, 2 Doug., Mich. 424.
Bower v. Earle, 18 Mich. 165.
23. Wherever it can be proved that the line was actually run, was marked, and the corners made, the party claiming under the deed will hold accordingly, although there is a mistake in the description in the deed.

Cherry v. Slade, 3 Murph. (N. C.) 82.
24. A sold to B lot 7, informing B, at the time of the sale, that it was four rods wide, and marking it out upon the ground. He subsequently sold to C lot 8 and a vacated alley one rod in width between lots 7 and 8 , informing C , at the time, that lot 8 was four rods wide, and the alley one rod wide, making five rods in all, and pointing out to C the marks previously made by him for the boundary of lot 7 , sold to B, as being also the boundary of the alley sold to C. The premises were occupied by B and C in accordance therewith, without dispute. It was subsequently found, by reference to the plat, that lot 7 was five rods wide, and that there was no alley between the lots; whereupon B claimed the additional rod. Held, that to allow B to hold the rod in width of land which she did not purchase or pay for, and to deprive C of
land which he did purchase and pay for, would be both bad law and bad morals.

> Bolton v. Eggleston, Iowa.
> N. W. Rep., Vol. 16, P. 62.
25. Boundary may be proved by any evidence which is admissible to establish any other fact.

Smith v. Prewitt, 2 A. K. Marsh. (Ky.) 158.
26. Where no bounds were established, the dividing line must be run by aid of the measurements in the deeds, the oldest title receiving its full measure first. Talbott v. Copeland, 38 Me .333 .
27. A long established fence is better evidence of actual boundaries, settled by practical location, than any survey made after the monuments of the original survey have disappeared. A resurvey made after the monuments of the original survey have disappeared, is for the purpose of determining where they were, and not where they ought to have been.
Diehl v. Zauger, 39 Mich. 601.
Hunt's Lessee v. McHenry and Williams, Wright's (Ohio) 599.
28. Where between the plan and the original survey there is a difference in the location of the lines and monuments, the lines and monuments originally marked as such are to govern, however much they may differ from those represented on the plan.

Ripley v. Barry, 5 Greenl. (Me.) 24.
See also 2 Greenl. (Me.) 214, and 3 Gr. (Me.) 126.
29. But no such rule has obtained where the survey was subsequent to the plan.
Thomas v. Patten, 1 Shep. (Me.) 329.
30. Purchasers of town lots have a right to locate them according to the stakes which they find planted and recognized, and no subsequent survey can be allowed to unsettle them. The question afterwards is not where they should have been, in order to make
them correspond with the lot lines as they should be if the platting were done with mathematical accuracy, but it is whether they were planted by authority, and the lots were purchased and taken possession of in reliance on them. If such was the case, they must govern, notwithstanding any errors in locating them.

Flynn v. Glenny, 51 Mich. 580.
31. In ascertaining the true line of a city street, fences built by adjoining lot owners on the line of the street, according to stakes set by the surveyor soon after the original survey was made, and maintained for 45 years, are better evidence of the location of such line than a new survey, made 40 years after the original survey, which changes such line.
City of Racine v. Emerson (Wis.) 55 N. W. 177.
32. Of two overlapping surveys, the one first made has priority, particularly where the second is bounded with express reference to the first.
Van Amburgh v. Hitt (Mo. Sup.) 22 S. W. 636.
33. Any calls of the second survey conflicting with monuments and calls of the first must yield thereto.
Van Amburgh v. Hitt (Mo. Sup.) 22 S. W. 636.
34. Where two surveys call for each other, there can be no vacancy unless the lines marked on the ground contradict the call; and in such case the marked lines must govern.
McGinnis v. Porter, 20 Penn. 80.
35. Where two surveys made twenty-three years apart are found to disagree, the probabilities favor the earlier survey when the original corners and witnesses are gone at the time of the last survey, especially if the line of the first survey has remained unquestioned for many years.

Case v. Trapp, 49 Mich. 61.
36. When the same grantor conveyed to two persons, to each one a lot of land, limiting each to a certain number of rods from opposite known bounds running in a direction to meet if extended far enough, and by measure the lots do not join-when it appears from the same deeds that it was the intention that they should join, a rule should be applied which will divide the surplus between the grantees in proportion to the length of the respective lines as stated in their deeds.

Lincoln v. Edgecomb, 28 Maine, 275.
37. Where original surveys have been made, and returned as a block into the land office, the location of each tract therein may be proved by proving the location of the block. In ascertaining the location of a tract, the inquiry is not where it should or might have been located, but where it actually was located.
38. Every mark on the ground tending to show the location of any tract in the block, is some evidence of the location of the whole block, and therefore of each tract therein.
Coal Co. v. Clement, 95 Pa. St. 126..
39. The beginning corner of a survey, as given in the field notes, is of no more dignity than any other corner found on the ground.
Cox v. Finks (Tex. Civ. App.) 41 S. W. 95.
40. Where lots are conveyed by number according to a plat which is made from an actual survey, the corners and lines fixed by that survey are to be respected.

Pyke v. Dyke, 2 Greenl. Me. 214.
41. Streets which are well defined, and designated by some natural or artificial monument, must govern course and distance in fixing boundaries of lands; but streets which are not thus defined, and themselves re-
quire to be located, would furnish very uncertain guides in arriving at the boundaries of other lands.

Saltenstall v. Riley, 28 Ala. 164.
42. When streets have been opened and long acquiesced in, in supposed conformity to the plat, they should be accepted as fixed monuments in locating lots or blocks contiguous thereto or fronting thereon.
Van den Brooks v. Correon, 48 Mich. 283.
43. Lands have been laid off into lots and blocks, and platted, before being cleared, when, by reason of inequalities of the surface, logs, and other obstructions, strictly accurate surveys were not and could not be made. Where the blocks and streets were staked out at the time, such monuments would be fixed and permanent, leaving the excess or shortage to be dealt with by itself. So where the streets, although not so designated, have by the parties interested or by the public authorities been opened, used, and acquiesced in, they thereby become permanent boundaries and form new starting points in subsequent surveys of the premises.
Twogood v. Hoyt, 42 Mich. 609.
44. Ancient reputation and possession in regard to streets in a town are entitled to more respect in deciding on the boundaries of lots than any experimental survey that may be afterwards made.

Ralston v. Miller, 3 Rand. (Va.) 44.
45. Where lots are sold by numbers and a plat, any variance in the distance between known and fixed points as found by actual measure on the ground, and the distance between the same points as laid down on the plat, is to be divided between the lots in proportion to the respective lengths as laid down on the plat.

[^9]46. Surplus or shortage in a block is to be divided pro rata between the lots.
Newcomb v. Lewis, 31 Iowa 488.
O’Brien v. McGraw, 27 Wis. 446.
47. Where the accuracy of the starting points taken for test surveys is merely matter of speculation, they cannot be used to fix a disputed boundary between two lots when the dispute arises from a discrepancy which affects all the lots in a block, and must therefore be apportioned among them.
Reimers v. Quinnin, 49 Mich. 449.
48. A resurvey is inadmissible in evidence to show that a private boundary is incorrect, if its starting point is outside of and does not belong to the immediate plan or local system by which the original survey was controlled.

Burns v. Martin, 45 Mich. 22.
49. If in running the lines of the grant, one line be found which is admitted or proved to be a line of the grant, which will run with a variation from the calls of the grant, if no other marked lines be found, the other calls should be run with the same variation as that found on the marked line.

Sevier v. Wilson, Peck. 146.
50. Where a deed convers lots in a town, and refers to a plat to identify them, and, in describing their lines, calls the points of compass as designated on the plat by its lines and angles, a correct survey cannot be based on any other system; and although the lines there delineated are not comformable to the true meridian, the plat and not the compass should govern.
Bower v. Earl, 18 Mich. 367.
51. An instruction that, in arriving at a boundary line as originally run, natural objects are controlling calls; artificial objects, second in importance; course,
third, and distance, feurth; and that, where there is still uncertainty, that rule should be adopted most consistent with the intent of the grant, is correct.
Luckett v. Scruggs (Tex.) 11 S. W. 529.
52. An instruction that the beginning corner of a survey is of no higher dignity or importance than any other corner, and that, "if there are well-known and undisputed original corners established upon the ground around the survey, they would control the other calls of the survey, which are conflicting and contradictory, if there are any such," is correct.
Luckett v. Scruggs (Tex.) 11 S. W. 529.
53. Where the beginning corner of a survey is the southwest, but the southeast corner is equally well identified, a charge limiting the jury to finding the unidentified northeast corner by the first and second lines from the southwest corner, is erroneous, as the southeast corner is of equal importance, unless the line from the former corner was actually run and measured, and that from the latter not.
Scott v. Pettigrew (Tex.) 12 S. W. 161.
Lancaster v. Ayres, Id. 163.
54 An instrúction making the importance of an established northeast corner, in locating the north and west lines of a survey, dependent upon the jury's belief that such western line was not run, is erroneous, as such corner has the same weight for the purpose in question, whether the western line was run or not.
Scott v. Pettigrew (Tex.) 12 S. W. 161.
55. In the description of lands, as to questions of boundaries the rule is settled in Virginia and West Virginia that natural land-marks, marked lines and reputed boundaries will control mere courses and distances, or mistaken descriptions in surveys and conveyances.

Gwynn v. Schwartz (W. Va.) 9 S. E. 880.
56. The course of the eastern line of the H. tract, as given in the original survey made in 1745 , was 14 deg. east. The course of the western line of the B. tract, lying immediately east of the H. tract, as given in the original survey made in 1813 , was 17 deg. and 15 min . east. The western line of the B. tract was made of exactly the same length as the eastern line of the H . tract, and the beginning point of the two lines was the same. The difference in the course of the two lines could be satisfactorily explained by the change in the position of the magnetic needle which had taken place in the time intervening between 1745 and 1813. Held, that the two lines must be considered as coincident.
Scott v. Yard (N. J.) 18 A. 359.
57. Where neither the corners of plaintiffs' nor defendants' land are satisfactorily established, and there is a well-established and identified corner of another survey, from which, by following course and distance, defendants' survey can be constructed, such course should be followed though the boundaries thus established include land within the boundaries of plaintiffs' junior survey.
Grifith v. Rife (Tex.) 12 S. W. 168.
58. A county surveyor, employed to restore the lines and corners of adjoining tracts of land according to the original government survey, found township corners only, then (the other quarter and section corners being missing) ran a straight line from one township corner to the other, and on this line placed the quarter and section corners, but did not take any testimony to ascertain the lines or corners of the original survey, did not attempt to prove his lines or corners by re-establishing the missing corners from all the nearest known original corners, in all directions, did
not sufficiently regard the field notes, and did not, where the original monuments had disappeared, regard the boundary lines long recognized and acquiesced in. Held, that such a survey is incomplete, and cannot be approved as the true and correct determination of the boundaries and corners as originally established by the government.

Reinert v. Brunt (Kan.) 21 P. 807.
59. Upon an issue as to the location of a line of the government survey, evidence of the location of monuments is not overcome by field-notes of the original survey, taken at the time of the erection of said monuments or subsequent thereto.

Hubbard v. Dusy (Cal.) 22 P. 214.
60. As between complicated descriptions of a line dividing two sections or quarter sections, that one is to be adopted which is most in conformity with the monument established by the government survey.

Hubbard v. Dusy (Cal.) 22 P. 214.
61. As between different monuments, those best identified should prevail, independent of anything in the field-notes of the original or any subsequent survey.

Hubbard v. Dusy (Cal.) 22 P. 214.
62. Where it is doubtful which of two lines of monuments is the true government line, other things being equal, that one is to be so considered which most nearly conforms to the field-notes.

Hubbard v. Dusy (Cal.) 22 P. 214.
63. Where, in ejectment, the location of the boundary line between two lots is in question, and the lots were staked when platted, such monuments are conclusive of the question; but if they were not staked, other monuments, establishing any given points as platted, furnish starting points to aid in arriving at
the true boundary, and, in the absence of either, old monuments indicating user may be resorted to.
Brudin v. Inglis (Mich. 1899) $80 \mathrm{~N} . \mathrm{W} .115$.
64. Where there is a discrepancy, in a government survey, between the monuments and the distances given in the field notes, the monuments will control, even though the result be that some of the quarter sections will contain less than their proper number of acres.
Ogilvie v. Copeland (Ill. Sup.) 33 N. E. $1 \mathbf{1 8 5}$.
65 In the rule that monuments control courses and distances, and that when monuments and measurements vary, the monuments always control, the reference is to monuments and measurements made by the original survey.
Woodbury v. Venia (Mich. 1897) 72 N. W. 189.
66. On a question as to the true location of a land patent, boundaries fixed by reversing the courses and distances must govern when found to coincide with the natural calls of the patent.
Ellinwood v. Stancliff, 42 F. 316.
67. When the points fixed by reversing the courses and distances do not coincide with the natural calls of the patent, or the natural calls cannot be identified, then the regular courses and distances must govern.
Ellinwood v. Stancliff, 42 F. 316.
68. When a survey calls for the "Dougherty" survey as one of its adjoiners, an instruction that if the jury find that the "King" is the survey intended by the call for "Dougherty," the former being located, the call would furnish "some evidence" of the location of the survey in question, is insufficient, as such a finding would locate the survey in the absence of marks upon the ground.

Tyrone Min. \& Manuf'g Co. v. Cross (Pa.) 18 A. 519.
69. Where no marks are found on the boundaries of a survey, and it cannot be located on the ground, evidence of the location of junior surveys which call for the lines of the elder as adjoiners is admissible, as showing where the surveyors upon the ground located such lines.
Tyrone Min. \& Manuf'g Co. v. Cross (Pa.) 18 A. 519.
70. Where the distances of a survey have been actually measured upon the ground, the courses and distances may be reversed when by so doing they more nearly harmonize with the natural calls of the patent, and the "beginning" corner does not control more than any other corner which is definitely ascertained.
Ayers v. Watson, 11 S. Ct. 201.
71. Where the court, in an action of ejectment, instructs the jury that, "after a survey of blocks had been returned and had remained in the land-office 21 years, it was conclusively presumed that it was run upon the ground, whether marks were found upon the ground or not," but in other portions of his charge repeatedly states the law to be that marks made by the surveyor on the ground are the first and highest evidence of the true survey, the instruction cannot, on the whole, be said to be misleading, as he will be reasonably understood to have charged that the presumption in favor of returns of surveys on file for 21 years is only applicable to such surveys where no monuments or marks on the ground are found to contradict them.

Grier v. Pennsylvania Coal Co. (Pa.) 18 A. 480.
72. The exterior of two adjoining interior surveys were undisputed. The boundary line between them had never been surveyed, but its southern end was marked by an oak. North of these surveys were two others. These four surveys were originally returned
as being of equal size, and having one common corner. The northern end of the line between these two latter surveys was marked by a sugar-maple; which was not directly opposite the oak, and it was proved that the northern line of these surveys was shorter than the southern line of the others. Held, that the boundary line between the two southern surveys should run from the oak parallel to the end lines, and not diagonally from the oak to the maple.

Bloom v. Ferguson (Pa.) 18 A. 488.
73. Where a dividing line is established between tracts of land owned by a county, before purchases are made of land on each side of it, and the deeds under which parties claim have been made, and are known by the parties to have been made with reference to that line, they, and all the persons claiming through them, are bound by it.
Briscoe v. Puckett (Tex.) 12 S. W. 978.
74. The northwest corner of a survey was plainly marked, and part of the west line was also marked. The rest of the survey had apparently not been run on the ground, but the southeast corner was ascertainable from the field-notes, being located on an established line of another survey and at a given distance from an established point. The lines of survey as called for in the field-notes were correct as to courses but were too short to reach from one of said corners to the other. Held, that the survey included all the land between the corners bound by the lines as extended so as to reach from one corner to the other.
Randall v. Gill (Tex.) 14 S. W. 134.
75. Where a deed describes a lot conveyed as of a certain width, and a party-wall stands on the south line, the north line may be found by measuring the given distance north from the middle of such wall.

Warfel v. Knott (Pa.) 18 A. 390.
76. The statement of the quantity of land supposed to be conveyed, and inserted in deeds by way of description, must not only yield to natural land-marks and marked lines, but also to descriptions in deeds by courses and distances.

Gwynn v. Schwartz (W. Va.) 9 S. E. 880.
77. A call for a lot by the name or number which it bears on a plat of the land will prevail over courses and distances, and ordinarily over calls for monuments.

O’Herrin v. Brooks (Miss.) 6 So. 844.

78. Where the descriptions in a deed refer to a survey and a map based thereon, making both a part of the deed, and there is a discrepancy between the map and the survey, the latter will prevail.

Whiting v. Gardner (Cal.) 32 P. 71.
79. The owner of a lot in the city of Rochester, of the area of about one-half acre, rectangular in form, fronting 274 feet on a street, and abutting on the rear for the same distance on a canal, the location of both, as well as the other lines, being undisputed, conveyed a portion, by description, of " 137 feet front and rear, measuring from G. H.'s north line on G. street, and also 137 feet from G. H.'s south line on the canal; being the piece of land occupied as a garden by the grantor." The lot was divided by a fence, one side being used as a garden; the fence starting on G. street midway, but striking the back line at the canal at a point $191 / 2$ feet from the middle of the lot. That fence was not mentioned in the deed. Held, that the reference to the garden was too indefinite to control the calls for exact distances from known bounds, and the divisional point on the canal should be located 137 feet from G. H's line.

Harris v. Oakley, 7 N. Y. S. 232.
80. Plaintiff owned a village lot, No. 124, and a tract of land lying adjacent thereto on the south and east sides. River street, which lay along a river's edge, was the westerly front of both the lot and the tract. He conveyed the tract to defendant, reserving a part thereof, beginning at the S. W. corner of the lot; thence southeasterly, along River street, 32 feet; thence northeasterly, "on a line with the southeast corner of lot No. 124," 10 rods and 23 links; thence N. to M. street; thence W. to the N. E. corner of the lot; thence southwesterly, to the S. E. corner; thence to the beginning. Locating the beginning point at the S. W. corner of the lot as appeared by the village plat on the easterly side of the street, the line passed directly through the S. E. corner of lot 124, taking no part of the lot, and thus making the reservation wholly. within the tract conveyed; but by beginning at the river's edge, on the westerly side of the street, on the theory that plaintiff's property extended to the river, subject only to the easement of the street, the line would pass through and take part of lot 124. Held, that the former location of the corner was correct.
Anderson v. Scott (Mich.) 42 N. W. 991.
81. In an action to recover a tract of land lying between a slough and a river, plaintiff claimed title by virtue of a grant which bounded the land granted by the river, and the defendant introduced evidence that the surveyor who surveyed the grant meandered the slough instead of the river. Held, that, in determining the true boundaries of the grant, the sole question was to ascertain exactly where the surveyor ran his lines, and, if the jury found that he ran the line along the slough, they should find for the defendant.

[^10]82. Where, in ejectment, a surveyor testified that he ran the boundary line in dispute about 1868 ; that he found the original stake of the government survey at the section corner, and used it as a starting point; and it appeared that about the same time defendant built a fence upon this line, which he has ever since maintained-this line must prevail over one surveyed 20 years later, when the corner mark was gone, by one who testified that he located the section corner by measurements from various lines and points, and then by digging found a stump which he took to be the original witness, and based his survey upon it.
Carpenter v. Monks (Mich.) 45 N. W. 477.
83. The monuments or marks of the surveyor on the ground determine the true survey as against call; for adjoinders or courses and distances as returned; but, each block of surveys being separate and complete of itself, the call of a tract in one block for an adjoinder in another does not make the monument of the adjoinder the monument of the later block.
Grier v. Pennsylvania Coal Co. (Pa.) 18 A. 480.
84. Where a boundary line is assented to by the owner of a tract of land at a time when there is n) dispute concerning such line, and on the supposition that it is the true boundary, he is not estopped, on discovering that such is not the case, from claiming title to the real boundary.
Schraeder Min. \& Manuf'g Co. v. Packer, 9 S. Ct. 385.
85. Continuous and uninterrupted possession, under claim of ownership, to the line of a division fence, will not bar title, where it appears that such occupation was under a belief that the fence was on a true line, and without intention of claiming beyond the true line, as described in the deeds.

Skinker v. Haagsma (Mo.) 12 S. W. 659.
86. Lands are not surveyed lands by the United States until a certified copy of the official plat of survey has been filed in the local land office.

United States v. Curtner, 38 F. I.
87. One who receives deeds of lots, and conveys to others, according to an unacknowledged plat of a town, is thereby estopped from denying the sufficiency of the dedication for want of the acknowledgment.
Giffen v. City of Olathe (Kan.) 24 P. 470.
88. Testimony of declarations of a grantor, before the execution of a deed, tending to establish a boundary other than that made by the deed as construed by the court on appeal, is inadmissible, as its effect would be to convey land by parole in contravention of the statute of frauds.
Harris v. Oakley, 7 N. Y. S. 232.
89. Where a town site was surveyed and laid out in lots, blocks, streets and alleys, and a plat thereof made and lithographed, and distributed among the occul,ants of the town site, and one of the lithographed copies was afterwards recorded in- the office of the register of deeds, but the same was not acknowledged, and the town site was pre-empted by the president of the town site company, and a patent was obtained by him for the benefit of the occupants, under the townsite act (5 U. S. St. 657), there was a sufficient dedication of the streets and alleys of said town, despite the want of acknowledgment of the recorded plat.
Giffen v. City of Olathe (Kan.) 24 P. 470.
90. A deed conveying land in a town, but " reserving streets and alleys according to recorded plat of the town," passes the fee in such streets when such fee was at the time held by the grantor subject to the easement of the public therein.
Gould v. Howe (III.) 23 N. E. 602.
91. Where surveys of 1837 and 1856 do not agree the former holds.

Palmer v. Montgomery, 26 N. Y. Rep. 536.
92. The boundary lines of water lots fronting on a river extend into the river at right angles with the thread of the stream, without reference to the shape of the shore.

> Clark v. Campau, 19 Mich. 328.
> Bay City Gas Light Co. v. Ind. Works, 28 Mich. 182.
> Twogood v. Hoyt, 42 Mich. 609 .
> Norris v. Hill, 1 Mich. 202.
93. Where a certain distance is called for from a given point on a navigable stream to another point on the stream to be ascertained by measurement, such measurement must be made by its meanders, and not in a straight line. The same rule prevails when distance is called for along a traveled highway. A different rule is sometimes adopted when the stream is not navigable. When a tract of land is bounded upon a navigable stream, the distance upon the stream will be ascertained, in the absence of other controlling facts, by measuring in a straight line from the opposite boundaries.

People v. Henderson, ,40 Cal. 29.
94. In computing the number of acres in a survey, "from," "to," and "with" the bank of a stream mean to low-water mark.

Lamb v. Ricketts, 11 Ohio 311.

1. Alluvium means an addition to riparian land gradually and imperceptibly made through causes either natural or artificial by the water to which the land is contiguous. It matters not whether the addition be on streams which overflow their banks, or on those which do not. In each case it is alluvium.

County of St. Clair v. Livingston, 23 Wall. (U. S.) 46.
2. Land formed by alluvium in a river is in general to be divided among the several riparian owners entitled to it, according to the following rule: Measure the whole extent of their ancient line on the river, and ascertain how many feet each proprietor owned on this line. Divide the newly formed river line into an equal number of parts, and appropriate to each owner as many of these parts as he owned feet on the old line; and then draw lines from the points at which the proprietors respectively bounded on the old, to the points thus determined as points of division on the newly formed shore. This rule is to be modified under particular circumstances; for instance, if the ancient margin has deep indentations or sharp projections, the general available line of the river ought to be taken, and not the actual length of the margin as thus changed by the indentations or projections.

> Deerfield v. Arms, 17 Pick. Mass. 41 . (U. S.) 100.
> Jones, et. cal. v. Johnston, 18 How. (U.
3. Alluvium deposited against an island in a lake and a neighboring lot, so as to connect them, must be equally divided between the owners of both.

Bigelow v. Hoover (Iowa) 52 N. W. 124.
4. Flats situate in a tidal river at a point in its course above the line of low tide, are to be divided among the adjoining properties, by drawing lines from the terminal of the latter on the banks at the ordinary stage of water to and at right angles with the centre line of the river.
Tappan v. Boston Water Power Co. (Mass.) 31 N. E. 703; Browne v. Same Id.
5. Under Rev. Stat. U. S. §2396. Held, that in surveying a lot bordering on a river the water-course becomes the boundary, and continues so, no matter
how much it shifts by accretion, and conveyances of the lot pass all, including such accretion to that line.

East Omaha Land Co. v. Jeffries, 40 F. 386.
6. The facts that rapid changes in the banks of the Missouri River are constantly going on, and that 40 acres have been added to adjoining land, do not overthrow an averment of a bill to quiet title to such addition, on the ground of accretion, that it was by an imperceptible increase, where it was nearly 20 years in forming.
East Omaha Land Co. v. Jeffries, 40 F. 386.
7. The rule that owners of land bounded by streams are entitled to additions to their land formed by accretion is applicable to the Missouri river, notwithstanding the peculiar character of that stream, and of the soil through which it flows, whereby changes in its banks are great and rapid.
Jeffries v. East Omaha Land Co., 10 S . Ct. 518.
8. Where the official plat of the survey of government lands shows a river as one boundary of a certain lot, in accordance with Rev. St. U. S. §2395, et seq., a subsequent patent for the lot, describing it by number, and referring to the plat, on which it is marked as containing a certain amount, and deeds, describing the lot by number, pass all accretion to the lot up to their respective dates.
Jeffries v. East Omaha Land Co., $10 \mathrm{~S} . \mathrm{Ct}_{\mathrm{t}} 518$.

5. Rules Applicable to the United States Surveys.

-" All the corners marked in the surveys returned by the surveyor-general shall be established as the proper corners of the sections or subdivisions of sections which they were intended to designate."
"The boundary lines actually run and marked in the surveys returned by the surveyor-general shall be established as the proper boundary lines of the sections
or subdivisions for which they were intended; and the length of such lines as returned shall be held and considered as the true length thereof."

The preceding quotation from section 2396 of the Revised Statutes of the United States, settles all questions in regard to any change in the corners, lines or measures of the government survey. They are thereby made unchangeable, the statute thus emphasizing the common law, which holds the same doctrine to be true of all original surveys after the land has been conveyed in accordance with them. Hence, in making resurveys, the surveyor must find, if possible, the original corners, and make his courses and distances agree with those of the United States survey.

The following points have been decided by the courts with reference to these surveys:

Rule 1.-The original surveys by which the government sold its land and conveyed it to the purchaser establish the rights of the parties as to the boundaries. No line which will vary the rights thus acquired can afterwards be established without the consent of all parties.
May v. Baskins, 12 S. and M. (Miss.) 428.
2. All disputes as to the boundaries of land are to be governed by the United States surveys, unless there is some statute to the contrary.
Taylor v. Fomby (Ala. 1897) 22 So 910.
3. Government corners, fixed by a United States surveyor, will control the field notes of the survey taken at the time the corners were erected, and also the field notes of any subsequent survey.

In the absence of a government corner, or of satisfactory proof of its location, the field notes of a government survey will govern, and are prima facie evidence of the true location of the true line of the survey.

Knoll v. Randolph, 92 N. W. 195 (Neb. 1902).
4. Land sold under the United States surveys pass according to the description of the legal subdivisions, whether those subdivisions contain the legal quantity or not, more or less.
Fulton v. Doe, 6 Miss. 751.
5. Each section or a subdivision of a section is independent of any other section in the township and must be governed by its marked and established boundaries. Should they be obliterated, a last recourse must be had to the best evidence that can be obtained showing their former situation and place.

Lewen v. Smith, 7 Port (Ala.) 428.
6. Field notes must yield to actual monuments erected by the original surveyor. They are only to be relied on as evidence to assist in finding the exact situation of the monuments.

McClintock v Rogers, 11 Ill. 279.
7. The rule that monuments control courses and distances applies to discrepancies in government surveys between the courses and distances and the witness trees called for in the field notes.
England v. Vandermark (III. Sup.) 35 N. E.
8. Monuments found at the two extremes of a township line are entitled to no more controlling influence in determining the actual location of an intermediate line than the section corners established along the line. All original monuments established in connection with the field notes and plats must be referred to in order to define the locality of the line.
McClintock v. Rogers, 11 IIl. 279.
9. The corners established by the original surveyors of public lands by authority of the United States are conclusive as to the boundaries of sections and divisions thereof; and no error in placing them
can be corrected by any survey made by individuals or a state surveyor.

Arnier v. Wallace, 28 Miss. 556.
10. In ascertaining the lost corner of a section, recourse must be had to the unobliterated marks of the original survey, the field notes and plats and subsequent surveys made under their guidance. If only a portion of one of the boundary lines leading to the lost corner on a township line has been obliterated, the remaining portion must be considered established as marked, and the corner must be presumed, in the absence of evidence to the contrary, to be at the point where the marked line if continued would intersect the township line. But if the lost corner is proved to have been at another point, the lost portion of the boundary must be ascertained by running a straight line from the point where the marks disappear to that corner.
Billingley v. Bates, 30 Ala. 378.
11. In determining the line between the quarters of a section, the quarter post established by the government surveyors must govern in all cases where its locatiôn can be ascertained.

Vromán v. Dewey, 23 Wis. 530.

- Britton v. Ferry, 14 Mich. 53.

12. In re-establishing a lost quarter post on a section line, any difference in the length of such line by actual measure as compared with that indicated by the government survey should be divided between the parts in proportion to their respective lengths as shown by that survey.
Jones v. Kimble, 19 Wis. 429.
13. Where a government corner is lost or obliterated, so that resort must be had to the government field notes for the purpose of determining its location,
but these field notes are inconsistent, and can not be reconciled, there is no universal rule that certain ones shall be preferred to the others, but, as in a case where living witnesses contradict each other, those should be accepted as correct which, under all the circumstances, are most entitled to credit, and most likely to be in accordance with the actual facts.

A witness or bearing tree is not an established corner, but merely a designated object from which in connection with the field notes, the location of the corner may be ascertained.
Stadin v_{d} Helin (Minn. 1899) $79 \mathrm{~N} . \mathrm{W} .557$.
14. The unvarying rule to be followed in establishing a lost corner, is to start at the nearest known point on one side of the lost corner, on the line on which it was originally established; to then measure to the nearest known corner on the other side, on the same line; then, if the length of the line is in excess of that called for by the original survey, to divide it between the tracts connecting such two known points, in proportion to the length of the boundaries of such tracts on such line, as given in such survey.
Lewis v. Prien (Wis. 1897) 73 N. W. 654.
15. Where the original survey and field-notes of a township show all the sections full, but, after all the natural monuments in the two northern tiers of sections have been lost, it appears that there is a shortage somewhere within those two tiers, such shortage will be apportioned between the two tiers, and not imposed wholly on, the northern tier, though the survey was made by beginning at the southeast corner of the township, and working north.

James v. Drew (Miss.) 9 So. 293.
16. If the distance between recognized government corners as originally established overruns or underruns that given in the field notes, it should be divided
pro rata between the intervening sections. The original field notes should be the main guide. Section lines being frequently deflected, the true corners must be tested by east and west distances from the recognized government comers yet standing in the same township as well as by north and south distances.
Martz v. Williams, 67 Ill. 306.
17. Unknown corners must be found by the corroborative testimony of all known corners with as little departure as may be from the system adopted on the original survey, without giving preponderance to the testimony of any one monument above another.
In re-establishing lost corners between remote corners of the same survey, when the whole length of the line is found to vary from the length called for; we are not permitted to presume that the variance arose from the defective survey of any part, but must conclude in the absence of circumstances showing the contrary that it arose from the imperfect measurement of the whole line, and distribute such variance between the several subdivisions of the whole line in proportion to their respective lengths.
Moreland v. Page, 2 Clarkes, Iowa, 139.
18. Quarter posts of the government survey are to be as much respected as the corners of townships or sections however distant from the center line.
Campbell v. Clark, 8 Mo. 558.
19. There was a mistake in the government survey of a section by which the quarter section line and the meander line of a river were shown on the official plat to be one and the same line, being the boundary line of the fractional lots. As a matter of fact they were a considerable distance apart. There was no question as to the location of the quarter section corners. In a suit to determine the ownership of the land between
the quarter section line and the river, it was held that the quarter section line should be adhered to as the more certain call, and that where the lines of a survey can be run from well ascertained and established monuments, they are to control and govern a description delineated on a plat, although the quantity in the fraction fell short of the amount laid down in the plat about as much as there, was land contained between the quarter line and the river.
Martin v. Carlin, 19 Wis. 454.
20. When a deed designates the land conveyed as one of the subdivisions known in the United States survey, as, for instance, a quarter, half-quarter or quarter-quarter section, the presumption is that the parties intend that the tract shall be ascertained in the same manner as is done in the government surveys. Not so, where the deed conveys a tract of land not known in that system of surveys, as, for instance, the east half of a lot, or of a quarter-quarter section.
Cogan v. Cook, 22 Minn. 142.
21. The line between the northeast and northwest quarters of a quarter section is to be extended south from a point midway between the northeast and northwest corners, rather than from a point on such line 1,320 feet from one of the corners.
Packscher v. Fuller (Wash.) 33 P. 875.
22. The defendant sold the north half of a lot which is bounded on the west side by the Au Gres river. But the river is not straight at this point, and the north line of the lot is longer than the south line.
The bill demands the north half of the lot, and the north half must mean the north half in quantity divided from the remainder by an east and west line.
Au Gres Boom Co. v. Whitney, 26 Mich. 44.
15. It is a question of fact to be determined by all the surrounding circumstances whether the land between the
meander line and the shore of the lake or water course is included in the survey.

Shoemaker v. Hatch, 13 Nev. 267.
23. The lines run to divide sections into halves and quarters, if erroneous, may be corrected, for they are subdivided by law; and if the officer in running the subdivision line makes a mistake, it can be corrected by running the line according to law.

Nolin v. Palmer, 21 Ala. 66.
24. An original township was divided into sections " by running through the same, each way, parallel lines at the end of every two miles, and making a corner at the end of every mile," and afterward a supplemental survey was made under a subsequent statute, which directed that these two mile blocks should be subdivided by running straight lines from the corners thus marked to the opposite corresponding corners. Held, that where the original mile corners in a certain block can be clearly identified, the courses of lines of subdivision within the block cannot be determined by proof of monuments, blazes, or other witness marks found in other blocks in the township.

Ginn v. Brandon, 29 Ohio St. 656.
25. When a navigable stream intervenes in running the lines of a section, the surveyor stops at that point, and does not continue across the river. The fraction thus made is complete, and its contents can be ascertained.

Therefore, when there is a discrepancy between the corners of the section as established by the United States, and the lines as run and marked, the latter do not yield to the former.

Lewen v. Smith, 7 Port. (Ala.) 428.
26. In government surveys, the line actually run by the government surveyors is the true line.

Goodman v. Myrick, 5 Oregon, 65.
27. In a case where the township lines had been run and marked by the United States survey, but the field
notes of the subdivision lines were fraudulent and rejected by the surveyor-general, because incorrect, no proper survey of them having been made, it was held that the line between sections one and two must be ascertained by running a straight line from the corner of the sections established on the exterior line of the township to the corresponding corner on the opposite side of the township.

Hamil v. Carr, 21 Ohio St. 258.
28. Where the initial point in the description of premises in a deed is the southeast corner of the north half of the southeast quarter, fractional, of a section, and the quarter-section is made fractional by a meandered lake so situated as to cover the eastern and central portions thereof; and the parcel described was carved out of the north half within a year after the same was patented, the southeast corner in question is construed to be the point which constituted the southeast corner of the land as it was surveyed out and platted by the government, which located it on the meandered line of the lake. The fact that the waters of the lake have since receded cannot change the boundaries as previously located.

Verplanck v. Hall, 27 Mich. 79.
29. Extending fractional lots beyond quarter lines: Etheridge and Stone were the original settlers, pre-emptors, and purchasers of fractional section 22. Etheridge's patent called for "the S. W. $1 / 4$ of Sec. 22 , containing 92.67 acres." Stone's patent called for "S. E. subdiv. Qr. Sec. 22, containing 110.50 acres." These two descriptions were in controversy in

Brown's lessees v. Clements, 3d How. 650 .
In the figure (page348) the full lines show the fractional section as it was returned on the official plat. The dotted lines show the quarter lines as they would have been if the section had been full.

On the part of the grantees of Etheridge two claims

Fig. 71 were set up. One was that under the pre-emption laws Etheridge was entitled to a full quarter section of land. The other was that, as his deed called for the S. W. 1/4 and the fractional section was of such size and shape that a regular southwest quarter could be laid out from it, he was entitled to it, and that the action of the Surveyor General in returning irregular subdivisions of the section, when he could have made one regular quarter section out of it, was contrary to law, and therefore void. The Supreme Court by a bare majority upheld these claims and decided the case on those grounds.

The case of Brown's lessees v. Clements was decided in 1845 , several of the judges strongly dissenting from the decision. In 1858 the same tract of land came in question again.

Gazzam v. Phillips' lessee and others, 20th Howard 372.
Speaking of the sales to Stone and Etheridge, the Court says:
"The sales in each case were made in conformity with the plat of the survey then on file in his office," etc.
"We deny altogether the right of the court in this action to go beyond these terms thus explicit and specific and under a supposed equity in favor of Etheridge, arising out of the pre-emption laws, to the whole of the southwest quarter-enlarge the description in the grant, or more accurately speaking, determine the tract and quantity of the land granted by this supposed equity instead of by the description of the patent.
"We are not satisfied that there was any want of power in the surveyor general in making subdivisions of this
section according to the plat and in conformity with which the sales of the lands in dispute were made.
"The Act of 1820 provides that fractional sections containing 160 acres and upwards shall in like manner, as nearly as practicable, be snbdivided into half quarter sections under such rules and regulations as may be prescribed by the secretary of the treasury.
"The secretary of the treasury, on the 10th of June following the passage of the act, issued regulations through the commissioner of the land office, directing fractional sections containing more than 160 acres to be divided by north and south or east and west lines, so as to preserve the most compact and convenient form. This section was divided by a north and south line according to these instructions. The question came before the secretary of the treasury and before us in 1837, and the construction first given and the practice of the surveyor general under it confirmed. Attorney General Butler in a well considered opinion observed: 'If congress had intended that fractional sections should at all events be divided into half quarter sections when their shape permitted the formation of such a subdivision, I think they would have said so in explicit terms, and that the discretionary power entrusted to the secretary would have been plainly confined to the residuary parts of the section. And further that the clause in the first section of the act of 1820 , concerning fractional sections containing less than 160 acres (which are not to be divided at all) is decisive to show that congress * * did not deem it indispensable that regular half quarter sections should in all practicable cases be formed by the surveyors. On the contrary, it shows that they preferred a single tract though containing more than 80 acres to small inconvenient fractions.'"

The court adds: "We entirely concur in this construction of the act," and further goes on to say: "The only difficulty we have had in this case arises from the circumstance that a different opinion was expressed oy a
majority of this court in the case of Brown's lessees v. Clement, 3 How. 650.
"It is possible some rights may be disturbed by refusing to follow the opinion expressed in that case, but we are satisfied that far less inconvenience will result from this dissent than by adhering to a principle which we think unsound and which in its practical operation will unsettle the surveys and subdivisions of fractional sections of the public land running through a period of some 38 years. We cannot adopt that decision or apply its principles in rendering the judgment in this case."
30. Quarter posts on section lines where there are double sets of section corners: "Quarter section corners are not required to be established on the west boundary of the western tier of sections in a township, nor on the north boundary of the north tier of sections in a township south of and bordering on a standard parallel. The resurvey of township, standard, or base lines, by the deputy surveyor for the purpose of establishing such quarter-posts, is unnecessary and will not be paid for."

Instructions to surveyors-general by Commissioner Edmunds, p. 9.
31. "Range lines are run north or south from the base line, and corners for sections and quarter sections are established thereon at every mile and half mile for the sections and quarter sections on the west side of the line, but not for those on the east side." On to wnship lines "the corners of sections and quarter sections are established at every 80 and 40 chains for the sections and quarter sections on the north side of the line, but not for those on the south side."

Instructions to Deputy Surveyors of the United States for the district of Illinois and Missouri, 1856, p. 50.
6. Decisions of the General Land Office with reference to Mineral Surveys.-Plats and field notes: Of surveys of mining claims, required to disclose all conflicts with prior surveys, giving areas of all conflicts.

In future, surveyor-general will use no coloring on plats.

Com'r. (N.) Nov, 16, 1882. Circular.
Location (of mine): Must be marked on the ground so that its boundaries can be readily traced.
N. Noonday M'g Co. v. Orient M'g Co., G Saw., C. C., 299; Myers et al. v. Spooner et al., 55 Cal. R. 257; Gleason v. N. White M'g Co., 13 Nev . R., 443; Southern Cross G. and S. M'g Co. v. Europa M'g Co., 15 id., 383.

Surface line : Agreement by adjoining claimants, fixing surface boundary line between them, must be construed as extending such line downward, through the dips of the vein or lode, to the earth's centre.

Richmond M'g Co. v. Eureka M'g Co., 103 S. C., 389.
Bearings and distances must be given in a survey, from the respective survey corners to the location corners, and the same must be shown on the plat.

Survey: Of a mining claim should show location of all improvements of a municipal nature, as blocks, alleys, etc.

Sec'y Dec. 18, 1880, and Feb. 3, 1881. Little Nettie Lode.
7. Descriptions in Deeds. - Surveyors are frequently required to make surveys for the purpose of furnishing a description of the land to be conveyed. Every surveyor of experience is familiar with the many difficulties encountered in correctly locating boundary lines, caused by defective, false or impossible descriptions in the deeds. The description is the controlling guide to the surveyor in locating a man's possessions on the ground, hence it is important that it should be clear, distinct and harmonious in its terms.

Where land is conveyed in the regular subdivisions of the United States survey, little difficulty will be met in writing a correct description. The main caution to be observed is to avoid the common elerical error of using the wrong letter or word, such as north instead of south, or east instead of west, thereby locating the deed in a different place from which it was intended. Scrutinize
the description closely to see that no such error is made, and write plainly, so that no one need make a mistake in reading or copying the description. A great many of these mistakes are caused by bad penmanship.

Similar remarks apply to the description of land by plat, where only clerical errors are likely to be made.

It is in the description "by metes and bounds" and by courses and distances, that greatest care should be taken.

Do not use two descriptions if one will clearly describe the land. Avoid surplusage and conflicting descriptions. If after writing a description it is found necessary to explain it, lay it aside and if possible write a description that does not need explanation.

Let the starting point be well defined and permanent, so that there need be no difficulty in locating it at any time in the future. A striking example of a disregard of this principle was brought to the attention of the writer when he was called to locate the boundary lines of several lots in a village. The descriptions all referred back to a small cherry tree as a starting point. The lines had never been marked on the ground even by fences, and the cherry tree had been gone so long that no one could be found who could remember that there ever was such a tree.

Not only the starting point but as many of the angles in the boundary as possible should be described by something permanent and definite on the ground. This is of prime importance. Let it be the plainest and most permanent that the nature of the case permits.

If the courses are given by compass bearings, state whether they refer to the magnetic or some other meridian. This is put in the form of a statement of the declination of the needle, written for example, Var. $4^{\circ} 20^{\prime} \mathrm{E}$. By this it is understood that the magnetic meridian makes an angle of $4^{\circ} 20^{\prime}$ to the east of the meridian of the survey. It was formerly a custom to refer all lines to the magnetic meridian. Since the adoption of the system of the United States Land Surveys it has become a.
custom, especially in that part of the country surveyed under that system, to refer all surveys to the true meridian, or what was supposed to be so. As time has passed and old descriptions have been retained in the deeds conveying the land from owner to owner, it has become impossible in thousands of cases to tell what meridian controls the description. Hence we see the prime importance of permanent monuments describing the boundaries, and of describing the meridian of the survey. If we must needs figure out courses from the change in direction of the needle, let us have something definite io start from.

Do not describe a boundary solely by reference to the boundary of the adjoining tract, if it can be avoided without error. Such a description requires the finding of the description of the adjoining tract whenever a survey is made, and may cause great delay and trouble before the correct definite description can be found. The writer knows of a case where the only description of the boundary line between two village lots in either deed is by a reference to the other: A.'s land is bounded on the east by B.'s land, and B.'s land is bounded on the west by A.'s land-nothing more.

If a boundary line is not intended to be a straight line, but to follow a fence, a wall, a hedge or a stream, say so in the description. Make everything clear, definite, concise and consistent throughout, so that a surveyor having the description in the deed can locate the boundaries on the ground, without having to hunt up descriptions from other deeds.
8. Illustrations.-1. "The east half of the northeast quarter of Section 16, Township 2 south, Range 10 west."

The United States land department in selling land in regular subdivisions of non-fractional sections does not state the quantity in the patent. It is quite customary in later conveyances to add something like the following: "containing 80 acres, more or less, according to the United States survey." Nothing is gained by the addi-
tion. There is a good deal of useless verbiage and repetition in deeds, the only effect of which is to add to the expense of making out and recording them.
2. "The north fractional half of the northeast fractional quarter of Section 3, Township 3 south, Range 9 west, containing 98.72 acres, according to the official plat of the United States Survey."
The area of fractional lots is stated in the United States patents. The word fractional is used and the area given to show that the land is conveyed according to the system of the United States survey. Without them the description would convey the aliquot part of the entire area of the section in the same manner as Description No. 1.
3. "The south fraction of the southeast quarter of Section 28, Township 6 north, Range 3 west, containing 117.85 acres."

Sections are made fractional by streams, lakes and reservations, making fractional lots of all manner of sizes and shapes. The land department attaches small outlying fractions to the adjacent larger ones, and sells the whole under one description, which takes its name from the larger lot. The above description might contain land attached from the southwest quarter. Such descriptions do sometimes contain land attached from other sections, and even from other townships. The official plat of the section shows precisely what land is included in the description.
4. "A piece of land twenty feet wide off from the east side of Lot 99 of the lithographed plat of the village of Kalamazoo."

A description like the above sometimes leads to controversy. Suppose the original survey by which the lots were laid out, was made with a long chain, as it was in Kalamazoo, and that there was a surplus in the lot. The purchaser might claim that he was entitled under the common law to his proportional share of the surplus, while the seller, if he owned the balance of the lot, might claim it all as his own. Such questions do fre-
quently arise, and it is better to settle them at the outset, by putting it definitely in the description what is meant. In the above case suppose the recorded width of the lot to be sixty feet; then a description calling for the "east one-third of Lot 99 " would show clearly that any surplus or shortage in the lot was to be divided, while a description reading " 20 feet off the east side of Lot 99 , etc., as surveyed by F. IH., May 22nd, 1883," would show that the later surveyor's measure was to govern. The care and accuracy of measurement of land in cities keeps pace with its increase in value, and as a careful, accurate measure cannot be expected to agree with a careless, inaccurate one, it is best to settle such questions in advance, as far as possible.
5. "Commencing at a stone with a hole drilled in it, set in the east and west quarter line of Section 18, Tovonship 4 south, Range 10 west, 22 chains east of the range line, from which stone a

White oak 16 inches diameter, bears $\$.28^{\circ}$ W., 62 links distant, and running thence (Var. $2^{\circ} 40^{\prime}$ E., at 10 A. M., June 12th, 1880), north 22° east 12.00 chains to a stone marked with a cross, set in an angle of a hedge;

Thence east along the hedge 8.00 chains to an iron stake of $11 / 2$ inch gas pipe, driven on west bank of a ditch;

Thence south along the bank of the ditch 5.00 chains to an iron stake of gas pipe driven in the bank where the ditch turns east;

Thence south 22° west 6.61 chains to a stake set in the quarter line, from which a

Burr Oak 12 in. di. bears N. 16° E., 26 lks. distant,
Burr Oak 18 in. di. bears S. 46° E., 51 lks. distant;
Thence west along the quarter line 10.21 chains to the place of beginning."

This is given as a sample of a description by metes and bounds such as a surveyor may furnish under the ordinary circumstances when called on to make a survey for that purpose, and such as he or any other surveyor would have no trouble in locating on the ground at any future time so long as any of the monuments or bearing trees could be found.

CHAPTER XI.

RE-LOCATION OF LOST CORNERS.

The general principles to be observed in re-locating lost corners are laid down in the Supreme Court decisions which have already been quoted.
A corner is not lost so long as its position can be determined by evidence of any kind without resorting to surveys from distant corners of the same or other surveys. Often after making a survey from a distant corner, the surveyor will come upon some traces or evidence which will enable him to determine the true position of the corner he is seeking. It is an uncertain way at the best to locate corners by running lines and measuring from distant corners, and should only be resorted to in absence of better proof of the original location of the corner sought.
It will sometimes happen that the exact spot where a lost corner stood cannot be found or shown by evidence, but it can be proved that it stood within certain limits. In these cases, which are not rare, there is no question but that the corner should be placed at that point within the known limits which best agrees with all the evidence in the case.
Failing of better evidence by which to determine the location of a lost corner, we may next resort to the following methods:

- General Rule.-Retrace the known lines of the description and find how the lengths and directions of these lines by your survey agree with those of the same lines as laid down in the original description. Then run the
unknown lines and place the lost corners so that they will bear the same relation to the known lines and corners as they are required to do by the description of the original survey.
Example.-The four lines of a description are as follows:

1. North 7° east 12.00 chains.
2. South 83° east 6.00
3. South 7° west 12.00
4. North 83° west 6.00

The first line and its termini are known. We retrace that line and find by our survey that it runs north $7^{\circ} 30^{\prime}$ east and 12.24 chains.
We would then run the remaining lines, making them as follows:
2. South $82^{\circ} 30^{\prime}$ east 6.12 chains.
3. South $7^{\circ} 30^{\prime}$ west 12.24 "
4. North $82^{\circ} 30^{\prime}$ west 6.12 "

Or the compass may be set on the known line and the vernier so adjusted that the reading of the needle shall be the same as that given in the original description and the remaining lines run accordingly.
2. Re-location of Lost Corners of the United States Survey.

Rule 1.-On base lines, correction parallels, township and range lines. Restore the lost corner in line between the nearest known corners on the same line and at distances from them proportional to those laid down in the field notes of the government survey.
This rule supposes the original line to have been a straight line. As a matter of fact this is frequently not the case. If there is reason to suspect the line to have angles in its course, measures from known corners to the right and left of the line will aid in determining its true position.
Rule 2.-Lost closing section corners upon a township or range line, where the closing distance from the
adjacent corners is not given in the field notes should be restored by prolonging the known portion of the line to its intersection with the township. or range line.
Rule 3. Lost interior section corners should be restored at distances from the nearest known corners, north, south, east and west, proportional to those laid down in the field notes of the original survey.
This rule supposes that the measurements of the original survey were uniform on the several adjacent sections. This is frequently not the case, and it will be well for the surveyor to compare his chaining on each section with the original measure between known corners of the same sections, choosing by preference those lines which on the government survey were measured next previous to the portion of the line closing on the lost corner.
Rule 4.-Lost township corners, when common to four townships, are to be restored in a similar manner to interior section corners, Rule 3. When common to only two townships, they are to be restored according to Rule 1.
Rule 5.-Lost quarter section corners are to be restored in line between the section corners which stand on the same line and at distances between them proportional to those returned in the field notes of the government survey.
Rule 6.-Lost meander corners are to be restored by running the line from the nearest known corner the direction and distance called for by the notes of the original survey. When a portion of the line leading to the meander corner is known, it should be prolonged in the same direction. When no portion of the line is known' the surveyor will have to use his own judgment as to what method under the circumstances of the case will most nearly retrace the original line to the corner.

There is no rule which will rigidly and inflexibly apply to all cases for restoring lost corners and boundary lines except this-that the aim of the surveyor should always
be to find the exact spot where the original corner or line was located. The thing to find out is not where the corner or line ought to have been, but where it actually was.
There are many cases in which other methods for restoring any of the corners mentioned will prove more satisfactory than the rules heretofore given.
For instance, a half-quarter post properly planted at a time when both the section and quarter-section corners adjacent were known, may be used in restoring either of these corners when lost, by prolonging the line over the known corners and doubling the distance. Any other intermediate corner whose location is definitely known may be used in a similar manner. On a similar principle, the Supreme Court of Illinois decided in the case of Noble v, Chrisman (88 Ill. 186) that the north west corner of section 19 could, in that instance, be better determined by tracing the section lines from known corners east and west of the range line to their intersection with that line, and measuring the jog between the corners, than it could by prorating six miles of the range line.
Most of the difficulties which the surveyor has to contend with in restoring lost corners arise from errors made in the original sarvey, or in the field notes thereof. He should bear in mind that errors in the original survey cannot be corrected by him. In any case of a lost corner, find as many of the adjacent corners of the original survey as possible, according to the best evidence that can be had to prove their exact location. Having done this, the others may be found according to the rules already ${ }^{1}$ aid down. But do not give up a corner as lost while any means of finding its exact location are left untried. There is great virtue in a pick and shovel intelligently applied to the finding of corner posts and monuments. This is very important, as it is very difficult, if not impossible, in many cases, to re-locate a lost corner in the exact position it originally occupied, by surveys from distant corners. The following extracts from a paper read by the author
before the Michigan Association of Surveyors and Engineers, treat more fully of the application of the foregoing principles to finding corners of the United States survey in those regions where wooden posts were planted for corner monuments:
"It often happens that one surveyor will fail utterly in finding the marks of an origina. corner, while another, more apt in discovering the evidences, will strike upon it readily. These evidences are of various kinds, some of which it is the principal aim of this paper to discuss.

I take it that the best possible evidence of the location of an original corner is the monument fixed at that corner when the survey was made. (Vide McClintock v. Rogers, 11 III. 279; also Gratz v. Hoover, 16 Penn. State Rep. 232; 16 Ga .141 .) After this come witness trees, fences, distant corners of the same survey, and the testimony of persons.

All these latter kinds of evidence only go to corroborate the first, and may take the place of the first only so far as they may any of them seem to have weight in any particular case.

Many of the corners of the United States survey were marked by planting a post or stake in the ground. These stakes had notches cut in them, were squared at the top, and set in certain regular positions fn the ground. These marks tended to distinguish them from other stakes that might chance to be driven in the ground for any purpose. When trees stood conveniently near, two of them were marked, and their directions and distances from the corner were given in the field notes. When no trees were near, a mound was sometimes raised about the post.

Some of the posts have been entirely destroyed, but the bottoms of a great many of them still remain, much decayed, but plainly visible when the surface earth is removed from about them.

To find them, careful manipulation is required. The surveyor first determines as nearly as he can, from extrinsic evidence, the point where the corner post should be looked for. He then, with a shovel, spade or hoe, carefully removes the surface earth, a little at a time, being particnlar not to strike deep at first into the earth at the level as it was when the stake was set. The best and sometimes the sole evidence of a corner has ofter been destroyed by an lgnorant person striking deep into the ground, expecting to find a sound stake, and casting away the decayed wood and filling up the hole of a rotten one without observing it. If the surveyor is looking in the right place, and the earth has not been previously removed, he will soon come upon the object of his search; but he must be careful lest he mistake it. If the soil is a stiff clay, packed hard, as in a road, or covered with a sward. he will presently find a hole of the size and shape of the stake which
made it. This hole will contain the decayed wood of the stake, and a marking pin may be readily thrust to the bottom. By carefully scraping or cutting away the earth from the top, or cutting down at one side of the hole, its size, shape and direction may be readily discovered. Thus it often happens that the position of a corner is as well and satisfactorily marked by the decayed stake as it was by the sound one. It sometimes happens that new stakes have been driven beside the original stake, so that several different ones will be found by the surveyor. He will seldom have any diffículty in deciding which is the true corner by its appearance, for the first stake will be more completely decayed and of a darker color.

As a rule, it will be driven deeper and straighter down than the newer stakes. Then, too, the original stakes were generally round, being cut from whole timber, while the later ones were often cut from rails or other split timber, the sharp corners of which can be readily seen in the holes made by them.

There is thus in the appearance of the stakes of the United States survey such peculiarities and such likeness to each other, even when far gone in decay, that the experienced surveyor will be impressed with the appearance of truthfulness pervading them, and will seldom be deceived. This appearance of truthfulness about a stake, which to a surveyor is one of the most valuable parts of the testimony of these silent witnesses, is something that courts and juries can seldom take cognizance of, because, first, they speak in a language that courts and juries do not understand, and secondly, the evidence is itself destroyed by the surveyor in the taking, and does not come before court or jury in all its freshness, truth and purity. These decayed stakes may be best observed in the light-colored subsoil after the black surface mould has been removed. In sandy soil, the cavity niade by the stake is gradually filled by the falling sand as the wood decays, but rotten wood discolors the sand so that where it has not been disturbed the position, size and shape of the stake may be readily traced. In the black muck of our marshes and river bottoms it is more difficult to distinguish the stake near the surface, but as the ground is soft and wet the stakes were driven deep, and we may sometimes find in the wet, peaty subsoil the bottom of the stake so perfectly preserved that even the scratches made in the wood by nicks in the axe are plainly to be seen. When the stakes are constantly wet, they do not decay.

Next we consider the bearing or witness trees. These are marked and their directions and distances noted, in order to assist in finding the corner posts set on the survey. These bearing trees are marked with a blaze and a notch near the ground on the side facing the corner. The measures were taken from this notch. At this time most of the living witness trees have grown to such an extent that only a scar remains in sight, to indicate the point where the notch was cut. In order
to get at the notch, the superincumbent wood, which is in some cases a foot in thickness, will have to be cut away. It will not often be necessary to do this, as we can come sufficiently near the correct point to find the stake without it. But if the stake has been destroyed, or there are several stakes near, we shall need to be exact, and measure from the notch. If the tree has been cut down, and a sound stump remains, the marks will be easily exposed. Sometimes the mark is gone, but a part of the stump is left. At others the stump is gone, but a dish-like cavity remains in the earth to show where the tree once stood. We can almost always find under and around these cavities places where the large roots have penetrated the subsoil, and thus be able to locate within a foot or so the position of the bole of the tree when standing. In looking for a corner post, we may frequently assume for the time being that a certain stump or a cavity where a tree had stood was the stump of or the place occupied by a bearing tree. If we then measure the required direction and distance, and find a stake, we may reasonably conclude that our assumption was correct. Such assumptions are frequently of great assistance in finding corners. There may be, and I know there are cases, where the original corner stakes have been destroyed, and can be more nearly restored to their original position by measurements from old stump bottoms or holes in the ground than in any other way. But bearing trees, however good their condition, are by no means infalible witnesses as to the location of a corner. Mistakes in laying down their direction or distance, or both, are not rare. (See McClintock v. Rogers, 11 Ills, 279.) A direction may be given as north instead of south, east instead of west, or vice versa. The limb may have been wrongly read 64° for 56°. The figures denoting the bearing may have been transposed in setting down, as 53 for 35 . So, too, the chain may have been wrongly read, as 48 for 52 , the links having been counted from the wrong end. Or they may have counted from the wrong tag, as 48 for 38 . Mistakes of the nature of these mentioned are common, so that in working from a bearing tree to find a corner, and not finding the stake at the place indicated in the notes, it will be well to test all these sources of error before giving up the search, for as I have said before, the post planted at the time of the orignal survey is the best evidence of the corner it was intended to indicate.

I next consider fences in their relations to corners. (Potts v Everhart, 26 Penn. St. Rep., 493.) Whether any particular fence may be depended on to indicate the true line will depend on the particular circumstances attending that case. In a general and rough way, a fence will indicate to the surveyor where to begin looking for his corner. But the practice has been, and still is common, for the first settlers on a section to clear and fence beyond the line in order to have a clear place on which to set their permanent fence when they get ready to
build it. Afterward they forget where the line is and set the new fence where the old one stood. Many fences, too, were set without any survey or any accurate knowledge where the line was and left there to await a convenient time to have the line established. So, too, where the land has been long settled and occupied, it is a common custom for adjoining land owners by consent to set the fence on one side of the true line, there to remain until they are ready to rebuild, the one party to have the use of the land for that time in consideration of clearing out and subduing the old fence row. The original parties frequently sell out or die, and the new owners have no knowledge of the agreement and suppose the fence to be on the true line. For these reasons, fences should be looked on with suspicion, unless corroborated by other evidence, and the surveyor should enquire pretty closely into the history of a fence before placing any great reliance on it to determine the position of a corner. It may be the best of evidence, or it may be utterly worthless.

It not unfrequently happens that there are no trustworthy marks near a corner to direct the surveyor in his search for the post or from which to replace it if it be destroyed. In these cases, he must visit the nearest corners he can find in each direction (varying with the circumstances whether it be section coruer or quarter post he wishes to find or restore), go through the process of identification with each of them, and then make his point so that it will bear the same relation to these corners as did the original corner post. Many very intelligent gentlemen suppose that if the surveyor can but find one of the corners of the original United States survey he can readily determine the position of all the rest from it. They were never more mistaken in their lives. The continual change in the direction of the magnetic needle, the uncertainty as to what its direction was when any particular line was run, the difference in the lengths of chains, and the difference in the men who use them, introduce so many elements of uncertainty into the operation as to render it one of little value, and not to be resorted to except in the absence of trustworthy evidence nearer at hand.

If it be a section corner you desire to find or replace, and have adjacent quarter posts in each direction to work from, you will not be likely on the one hand to fall more than a rod or two out of the way, and on the other hand will not be likely to come within a foot or two of the right place. Thls method will assist you in seaching for the original stake, and if that be destroyed, and no better evidence presents itself, may be used to determine the point where the corner stake shall be placed. The chief difficulty in applying this method to determine corners arises from the fact that the measurements made on the original surveys were not uniform in length on different sections, and frequently not on different parts of the same section. I have measured sections 22 and 23 on a level prairie, along the line of high-
ways, where no obstacles of any kind interfered to prevent accurate work. I took the greatest possible care in the chaining to have it as accurate as chain work can be done. On the north llne of section 22 my chaining tallied exactly with that of the United States survey, viz., 79.60. On the north line of section 23 , my measure was 80.96 , that of the United States survey, 80.40 -a difference of 56 links. Fortunately, all the corners of the original survey on this two miles of line were well preserved, and the distance between quarter post and section corners was uniform on the same section in both sectlons. But suppose that a part of them had been lost, and it was required to restore the middle section corner (n . e. of 22) from the remaining ones. Omit all consideration of corners, north or south, and there remain four different solutions of the problem, depending on which corners were lost and which preserved. Of these different solutions, one would place the corner $91 / 3$ links, one 14 links, one $18 \% / 3$ links, and one 28 links, all east of the true corner. This is not by any means an extreme instance, as I have observed discrepancies twice as great. It is given simply to show how unreliable is the evidence drawn from distant corners of the United States survey.

Lastly, I shall consider the evidence of living persons. [Weaver v. Robinett, 17 Mo., 459; Chapman v. Twitchell, 37 Maine, 59; Dagget v. Wiley, 6 Florida, 482 : Lewen v. Smith, 7 Port. (Ala.), 428; McCoy v. Galloway, 3 Han. (Ohio), 283; and Stover v. Freeman, 6 Mass., 441.] Conceding all men to be equally honest in their evidence, there is a vast deal of difference among them with regard to their habits of observation and their ability to determine localities. Some have an exceedingly acute sense of locality, if we may so call it. and can determine very accurately the position of any object which they have been accustomed to see; while others seem to have little or no capacity of that sort. I have found many men who would describe accurately the sort of monument used to perpetuate a corner, and who would tell you that they could put their foot on the very spot to look for it; but when the trial came I have found but few of them who could locate the point within several feet, unless they had some object near at hand to assist the memory, and even then they would frequently fail.

It may happen where a corner post has been destroyed, that its location can be more nearly determined by the testimony of persons who were familiar with it when standing and can testify to its relations to other objects in its vicinity, than in any other way. But the surveyor in receiving this testimony should ascertain as far as possible what are the habits of accurate observation and the memory of localities possessed by thè person testifying, in order to know how much weight to give his testimony."

CHAPTER XII.

MISCELLANEOUS.

1. Questions of Practice.-Answers to most if not all questions which arise in the surveyor's practice will be found in the Supreme Court decisions which have been quoted. The following questions which have been raised in several surveyors' associations, are given with the answers adopted in each case, or a reference to the law decision or principle which governs it.
2. An interior section has its quarter posts out of line and not at equidistant points between the section corners. How shall the centre be determined?

Ans. At the intersection of straight lines from each quarter section corner to its opposite corresponding corner.

See page 200, Sec. 100, Second.
2. How shall the quarter posts on the north and west lines of the township which were not established by the U. S. survey be located?

Ans. The corners of half and quarter sections, not marked on the surveys, shall be placed as nearly as possible equidistant from those two corners which stand on the same line.

See page 200, Sec. 100, First.
Section 6 is an exception to this rule.
See page 271.
3. Posts for lines closing on the north and west boundaries of townships are often off the boundary line to one side or the other. Shall the boundary line be deflected to pass through these posts?

Ans. No. The posts serve to show the position of the section line, but the line itself stops at the township boundary.*

Mich. Surv. Rep., 1881.
4. Are the station or line trees marked on the government surveys and returned in the field notes, monuments of the lines?
Ans. Yes.
See page 200, Sec. 100, Second.
Billingsiey v. Bates, 30 Ala. 378.
5. How shall the east and west quarter line of section 30 be located, there having been no quarter post set on the east side of the section by the U.S. survey, because of a lake?
Ans. Locate the west quarter post as directed in the answer to question 2. Then run the quarter line east on a course which is intermediate between the courses of the north and the south lines of the section.

See page 268.
6. A closing corner on the north or west boundary of the township is lost. The field notes do not give the distance between the closing corner and the adjacent corner on the boundary. How shall it be restored?
Ans. Prolong the known portion of the line to its intersection with the boundary and there set the corner.
See Billingsley v. Bates, 30 Ala. 378; see p. 200 .

[^11]7. Should section lines running north and south be run in a straight line between known corners to locate lost corners on interior sections?
Ans. Not unless the original lines were actually straight lines between the known points, which they seldom are. See Moreland v. Page, 2 Clarkes, Iowa, 139.
Martz v. Williams, 67 II., 306.
8. How shall the half-quarter corner on the quarter line be located on those quarter sections which. adjoin the north and west lines of the township?
Ans. Measure the distance from the centre of the section to the quarter post on the township line.

Then place the corner on the quarter line at a distance of twenty chains proportionate measurement from the centre of the section. In order to prorate the distance, your own measure should be compared with a distance which is a mean between the distances given in the field notes as the length of the corresponding lines of the section on either side. For example, on section 3 the distance by U.S. survey from the east $\frac{1}{4}$ post to township line is 42.18 ; from the west $\frac{1}{4}$ post to township line is 43.20 ; which gives a mean distance of 42.69 .

Commissioner McFarland gives the following reply to a similar question.

$$
\left.\begin{array}{l}
\text { DEPARTMENT OF THE INTERIOR, } \\
\text { GENERAL LAND OFFICE, } \\
\text { Washington, D. C., February 11, 1882. }
\end{array}\right\}
$$

Isaac Teller, Esq., Webberville, Ingham County, Michigan:
SIR-I am in receipt of your letter of the 5 th instant requesting information in regard to the proper method of locating the quarter-quarter corners north of the legal centres of the northern tier of sections in a township when the present measurement of the east and west boundaries of the section differs from the original measurement.

In reply, I have to state that the length of the quarter line from the south quarter corner to the township line is to be considered as the mean of the east and west boundaries of the section as given in the field notes, and where the present measurement of the section lines differs from the original measurement, the rule of proportionate measurement applies to the quarter line as well as to the section lines in the establishment of quarter-quarter corners on the half mile closing
on the township boundary. See enclosed circular dated November 1, 1879.

The mean width of the north half of the section in the case stated by you is 40.18 chains, whlle by your chaining it is 42.42 chains (calling the distance to the east and west quarter line 40.00 chains), therefore the proportion will be as $40.18: 42.42:: 20.00: 21.11$ chains, the distance north of the centre of the section at which by your chaining the quar-cer-quarter corner should be located.

Very respectfully,
N. C. McFARLAND, Commissioner.
9. In surveying sections fractional on the township line to restore lost quarter section corners, should the lines be divided pro rata according to the U. S. field notes, or should the south or east quarters be made full and the entire excess or deficiency be thrown into the fraction?

Ans. Any difference between your measure and the government measure must be distributed proportionally between the different parts of the section.

See p. 200, Sec. 100, Second.
Moreland v. Page, 2 Clarkes, Iowa 139.
Jones v. Kimble, 19 Wis. 429.
Martz v. Williams, 67 Ill. 306,
In Missouri, the Supreme Court holds (Knight v. Elliott, 57 Mo. 317) a different view, viz., that the difference in measure is all to be thrown into the fraction.

It is difficult to see upon what grounds this decislon can be upheld in view of the fact that all rights to the land were acquired and held under the law of Congress, which expressly states that the length of such lines as returned by the surveyor-general shall be held and considered as the true length thereof.

Northwest Quarter, Sec. 18.

25.72	20.00
A.103.08	A80.

Fig. 72.
10. The accompanying figure is a copy of the plat of the U.S. survey of this quarter section.
A owns the whole quarter. He sells to B the W. $\frac{1}{2}$ of the N. W. $\frac{1}{4}$ of section 18, containing 91_{154}^{500} acres. At about the same time he sells to C the E. $\frac{1}{2}$ of the N. W. $\frac{1}{4}$ of section 18, containing $91 \frac{54}{100}$ acres.

Where shall the surveyor run the dividing line between B and C?

Ans. The language of the deed clearly shows the intention of A to sell and of B and C to purchase each the half of the area of the quarter section. The surveyor should so locate the line as to carry out the evident intent of the parties. See rule 2, p. 244 and rule 14, p. 284 . The fact that the quarter is differently subdivided on the government plat has no bearing on this case.
11. Certain early surveyed townships had three sets of corners on the range lines. (1) Those set when the range lines were run; (2) Those set as closing corners running east; (3) Those set as closing corners running west. What use is made of each set of corners?

Ans. The first corners set determine the location of the range line. The second and third sets of corners determine the location of their respective section lines which close on and terminate at the range line.

12. This figure shows a fractional township on the Ohio River. The figures show the dimensions of section 1, as shown by the field notes of the United States survey. By a subsequent measure, $A B=82.25$ chains, and $A D=79.50$ chains.

How shall the northeast quarter of section 1 be laid off, no quarter-posts having been planted?
Ans. Place the quarter-section corners on the north and east sides of the section in line with and mid way between their respective section corners. Make the east and west quarter-line parallel with the south line of the section, placing the west quarter-post at the point where the quarter-line thus run intersects the section line. From the north quarter-post run the quarter-line south on a course which is a mean between the courses of the east and the west lines of the section, placing the south quarter post at the intersection of the section and quartersection lines.
The exceptional features of this case are that no quar-ter-posts were set on the United States survey, and that the east line of the section is just 80 chains in length, having been run from the north to the south.

Fig. 74.
13. The description in the deed runs: "Beginning at a stone (A), at the N.W. corner of lot 401 ; thence east 112 ft . to a stone (B); thence $\mathrm{S} .36 \frac{1}{2}^{\circ} \mathrm{W} .100 \mathrm{ft}$.; thence west parallel with $A B$ to the west line of said lot 401 ; thence north on west line of said lot, 66 ft ., to the place of beginning." The points A and B, and angle $A B C$, are fixed. C, by
construction and in fact, is $80{ }_{10} \frac{13}{} \mathrm{ft}$. distant, at right angles from the line $A B$.

1. Shall I locate $C D$ parallel with $A B$, or locate $D 66 \mathrm{ft}$. from A ?
2. Have I any right to consider any apparent intention to locate 66 ft . or $80_{100}^{13} \mathrm{ft}$. from A ?
3. Have I, if I know it, any authority to consider the actual intention of the grantor to locate $C D$?
4. If the distance $A B$ should actually measure 114 ft . am I to use it, or shall I make $B 112 \mathrm{ft}$. from A ?
Ans. 1. The answer to this question will depend upon the state of facts brought out in answer to questions 2 and 3. If there be evidence showing what the intention and understanding of the parties to the conveyance was as to which of the two lines should be taken, that evidence would settle the question. If not, that construction may be given to the deed which will operate most strongly against the grantor and give the grantee the greater amount of land. So far as anything is shown in the question, the deeds to the adjacent land might furnish the necessary evidence.
2 and 3. Yes. Judge Cooley says, (see "Judicial Functions of Surveyors"): "The surveyor must inquire into all the facts, giving due prominence to the acts of partues concerned, and always keeping in mind **** that courts and juries may be required to follow after the surveyor over the same ground, and that it is exceedingly desirable that he govern his action by the same lights and the same rules that will govern theirs."
5. The monument controls the distance.
6. A piece of land is sold, and described as commencing at the north quarter-post of section 15, and running thence east 100 rads ; thence south 160 rods; thence west 100 rods; thence north 160 rods, to the place of beginning; containing 100 acres, according to the United States survey.

Ques. How shall it be set off?
Ans. The deed clearly indicates the understanding of the parties to the conveyance to be that the land should pass according to the rules that govern the United States survey. One of these rules is, that "the length of the boundary lines as returned by the surveyor-general shall be held and considered as the true length thereof." Hence in this case, measure east from the quarter-post along the section line 25 chains of just such measure as the United States surveyors gave; or in other words, of pro rata measurement. Suppose the distance by the field notes to be 40.32 chains from quarter-post to section corner. Then 25.00
lay off of that distance. Proceed in a similar man40.32
ner, running east on the quarter-line from the center of the section, and the two points thus located will be the corners of the 100 acres. To get the length of the south line of the N. E. $\frac{1}{4}$ of the section by the United States survey, take the half sum of the measure given on the north and the south lines of the section. Supposing it to be 40.32 on the north, and 40.18 on the south, then the distance on the quarter-line would be equal to

$$
\frac{40.32+40.18}{2}
$$

and you should measure off $\frac{25.00}{40.25}$ of this distance for the corner.
15. A man buys a tract of land described as the north 40 acres of the northeast quarter of Section 3. This section overruns the government measure when measured with a standard chain.

Should this land be measured as 40 acres standard measure or should the division be made so as to include the proper proportion of the overplus?

Ans. In the absence of evidence to prove a different intention on the part of the parties to the conveyance, it should be measured according to the U. S. Government measure thereof, as explained in the answer to the previous question.
16. "Section 3 is fractional on Grand Traverse Bay, the center being a few rods out in the bay. How shall the quarter lines be run?" See Figure 75.

Fig. 75.
Ans. As Section 3 is fractional in the north half, run the east and west quarter-line parallel with the south line of the section. Run the north and south quarter-line parallel with the west line of the section. The field notes were not given with the question. A full knowledge of what they contain might show reason for modifying the answer.
17. A sells land to B, described as 30 acres off the west side of Lot 1 of the section. Figure 76 represents Lot 1 as shown on the official plat. A's intention was to sell 30 acres, and have a strip left. Does the surveyor take the government returns for it, or does he have to run it out following the meander lines, and then part off all but the 30 acres, be it more or less?

If the land actually measured only 30 acres, would B be entitled to the whole of it or only his proportion of 33.60 acres?

Fig. 76.
Ans. A's intention cuts no figure in the case, unless it was understood and shared in by B. If there was a mutual understanding and agreement between the parties, it would guide the surveyor in locating the line. In the absence of evidence as to the mutual intent of the parties, B is entitled to his proportion of the lot, as shown by the official plat. It has been decided by the supreme court of Michigan that in such cases the government meander line is to be used in making the computation.
18. "How much variation shall I allow for a period of, say 24 years, in the notes of the survey of an angling road of many courses, which are as follows," etc.?
Ans. I cannot tell. The annual change of declination approximates 4^{\prime} in Michigan. If you can definitely locate any two points of the original survey of the road, you can run a random line between them, and find the exact variation to allow. For methods of doing this where more than one course has to be run, see page 79, and the paper entitled, "That Problem in Land Surveying," in the Michigan Engineers' Annual for 1891, page 36. If there are not two known points of the original survey of the road, you had better not
try to relocate the original line by surveys. It cannot be done with any certainty, because you have no means of comparing your compass and chain, or transit and tape, with that used on the original survey. Better make a relocation of the road in accordance with actual occupation, or such other location as may be asked for by the parties interested.
19. Since the original survey of Section 9, the Mississippi River has changed its course, adding by accretion nearly an entire section in Section 16 and large amounts in other sections. How shall I survey the accretion in Section 16? The field notes show that the line between Sections 9 and 16 was run, and meander posts and quarter post established.

Fig. 77.

Ans. The official plat does not show any Section 16, but it does show that the outlying fractions, which would otherwise have constituted a fractional Section 16, were attached to the lots in Section 9. Any accretions which have formed against those lots belong to the owners of the lots.

To locate the boundaries of the lots on the accretion, relocate the old river line as far as the accretion extends, and mark the points where it is intersected by the lot lines as shown on the official plat. Measure the amount of the old shore line which each lot has. Then measure the new shore line and assign to each lot the same proportion of the new shore line that it has of the old, and connect the corresponding points on the two shore lines by straight lines.

A strict carrying out of the principles involved would call for curved lines to correspond with the changing contours as the river receded, but this is hardly practicable, and is not required by the courts.
20. How shall I run the east and west quarter line of Section 6, where the east quarter post has not been and can not be fixed, but the west quarter post and the exterior lines of the section are known?

Ans. The rules and regulations prescribed by the Secretary of the Interior, as provided by Section 2397 of the Revised Statutes of the United States, provide that all the east and west subdivision lines of these fractional sections adjoining the north boundary of the township shall be made parallel with the south line of the section, and that in those fractional sections adjoining the west boundary of the township, the north and south subdivision lines shall be made parallel with the east line of the section. Hence in this case run the quarter line east from the west quarter post on a line parallel with the south line of the section. The rule for running lines on mean courses does not apply in these cases.
21. What is the penalty for destroying or removing a "government corner?"

Ans. An act of Congress approved June 10, 1896, contains the following:-

Provided further, That hereafter it shall be unlawful for any person to destroy, deface, change, or remove to another place, any section corner, quarter-section corner, or meander post, on any government line of survey, or to cut down any witness tree or any tree blazed to mark the line of the government survey, or to deface or remove any monument or bench mark of any government survey. That any person who shall offend against any of the provisions of this paragraph shall be deemed guilty of a misdemeanor, and upon conviction thereof in any court shall be fined not exceeding two hundred and fifty dollars, or be imprisoned not more than one hundred days. All the fines accruing under this paragraph shall be paid into the treasury, and the informer, in each case of conviction, shall be paid the sum of twenty-five dollars. (29 Stat. L., 343.)
2. The Rights, Duties and Responsibilities of Surveyors.-Surveyors, by the consent and acquiescence of the parties concerned, are usually the arbiters of disputed boundaries, and their decisions, when thus acquiesced in by the parties, become in time as binding, and as much respected by the authorities, as the decisions of juries and courts of law. It is probable that at least ninety-nine per cent. of all questions of disputed boundaries are thus settled by the interested parties themselves, in accordance with the decision of the surveyor.
Surveyors, from constantly exercising this seeming authority, come at last in many cases to believe it to be absolute and final, something which must be respected, overlooking the fact that the only force their decisions have comes from the consent of the parties. When that
consent is withheld, the case goes to the courts for settlement; and thus the courts have in some cases felt called upon to define the surveyor's standing before the law. They say:

1. "Surveyors have no more authority than other men to determine boundaries, of their own motion. All bounds and starting points are questions of fact to be determined by testimony. Surveyors may or may not have in certain cases means of judgment not possessed by others, but the law can not and does not make them arbiters of private rights.

Cronin v. Gore, 38 Mich. 381.
2. The law recognizes surveyors as useful assistants in doing the mechanical work of measurement, and calculation, and also allows such credit to their judgment as belongs to any experience which may give it value in cases where better means of information do not exist. But the determination of facts belongs exclusively to courts and juries. Where a section line or other starting point actually exists, is always a question of fact, and cannot be left to the opinion of an expert for final decision. And where, as is generally the case in an old community, boundaries have been fixed by long use and acquiescence, it would be contrary to all reason to have them interfered with on any abstract notion of science.

Stewart v. Carleton, 31 Mich. 273.
Gregory v. Knight, 50 Mich. 61.
3. New surveys disturbing old boundaries are not to be encouraged.

Toby v. Secor, Wisconsin. N. W. Reporter, Vol. 19, p. 79.
4. Lines long unquestioned ought not to be disturbed upon a mere disagreement among surveyors, especially when the last survey is made under the unfavorable circumstances of corner posts and witness trees being gone, which it is probable to suppose were in existence at the time of the first survey.

Case v. Trapp, 49 Mich. 59.
5. County surveyors' certificate are not admissible in evidence unless they contain all the particulars required by the statute to be entered in the surveyor's record.

Smith v. Rich, 37 Mich. 549.
The statute of Michigan required the length of all lines run, the area of lands surveyed, and other particulars, to be entered in the county surveyor's record. In the above case the survey was solely to find the location of a corner post. As the surveyor's certificate did not show any area of land surveyed, it was not admitted in evidence.
6. A surveyor was called on to survey the line of a highway. He performed the work so unskillfully as to render a new survey necessary. A large amount of road constructed at great expense, on the line designated by the surveyor before the mistake was discovered, had to be abandoned. Action was brought to recover damages. Held, that whether the defendant was a professional or official surveyor, or represented himself as such, his undertaking was that he should bring to the work the necessary knowledge and skill to perform the same properly and correctly; and if he failed to do so, and the plaintiff suffered damage in consequence of such failure, the plaintiff will be entitled to recover.
Commissioner of Highways v. Beebe, Mich. Sup. Court.
N. W. Rep., Vol. 20, No. 16.

The following paper, by Chief Justice Cooley, of the Supreme Court of Michigan, discusses more fully the surveyor's functions:
3 The Judicial Functions of Surveyors.When a man has had a training in one of the exact sciences, where every problem within its purview is supposed to be susceptible of accurate solution, he is likely to be not a little impatient when he is told that, under some circumstances, he must recognize inaccuracies, and govern his action by facts which lead him away from the
results which theoretically he ought to reach. Observation warrants us in saying that this remark may frequently be made of surveyors.

In the State of Michigan, all our lands are supposed to have been surveyed once or more, and permanent monuments fixed to determine the boundaries of those who should become proprietors. The United States, as original owner, caused them all to be surveyed once by sworn officers, and as the plan of subdivision was simple, and was uniform over a large extent of territory, there should have been, with due care, few or no mistakes; and long rows of monuments should have been perfect guides to the place of any one that chanced to be missing. The truth unfortunately is, that the lines were very carelessly run, the monuments inaccurately placed; and, as the recorded witnesses to these were many times wanting in permanency, it is often the case that when the monument was not correctly placed, it is impossible to determine by the record, by the aid of anything on the ground, where it was located. The incorrect record of course becomes worse than useless when the witnesses it refers to have disappeared.

It is, perhaps, generally supposed that our town plats were more accurately surveyed, as indeed they should have been, for in general there can have been no difficulty in making them sufficiently perfect for all practical purposes. Many of them, however, were laid out in the woods; some of them by proprietors themselves, without either chain or compass, and some by imperfectly trained surveyors, who, when land was cheap, did not appreciate the importance of having correct lines to determine boundaries when land should become dear. The fact probably is, that town surveys are quite as inaccurate as those made under authority of the general government.

It is now upwards of fifty years since a major part of the public surveys in what is now the State of Michigan
were made under authority of the United States. Of the lands south of Lansing, it is now forty years since the major part were sold, and the work of improvement began. A generation has passed away since they were converted into cultivated farms, and few if any of the original corner and quarter stakes now remain.
The corner and quarter stakes were often nothing but green sticks driven into the ground. Stones might be put around or over these if they were handy, but often they were not, and the witness trees must be relied upon after the stake was gone. Too often the first settlers were careless in fixing their lines with accuracy while monuments remained, and an irregular brush fence, or something equally untrustworthy, may have been relied upon to keep in mind where the blazed line once was. A fire running through this might sweep it away, and if nothing was substituted in its place, the adjoining proprietors might in a few years be found disputing over their lines, and perhaps rushing into litigation, as soon as they had occasion to cultivate the land along the boundary.
If now the disputing parties call in a surveyor, it is not likely that any one summoned would doubt or question that his duty was to find, if possible, the place of the original stakes which determined the boundary line vetween the proprietors. However erroneous may have been the original survey, the monuments that were set must nevertheless govern, even though the effect be to make one half-quarter section ninety acres and the one adjoining seventy; for parties buy, or are supposed to buy, in reference to these monuraents, and are entitled to what is within their lines, and no more, be it more or less. While the witness trees remain, there can generally be no difficulty in determining the locality of the stakes.

When the witness-trees are gone, so that there is no longer record evidence of the monuments, it is remarkable how many there are who mistake altogether the duty
that now devolves upon the surveyor. It is by no means uncommon that we find men, whose theoretical education is thought to make them experts, who think that when the monuments are gone, the only thing to be done is to place new monuments where the old ones should have been, and would have been, if placed correctly. This is a serious mistake. The problem is now the same that 10 was before: To ascertain by the best lights of which the case admits, where the original lines were. The mistake above alluded to, is supposed to have found expression in our legislation; though it is possible that the real intent of the act to which we shall refer is not what is commonly supposed.

An act passed in 1869, (Compiled Laws, § 593), amending the laws respecting the duties and powers of county surveyors, after providing for the case of corners which can be identified by the original field notes or other unquestionable testimony, directs as follows:

[^12]gained or lost according as the mistake did or did not favor him.

It will probably be admitted that no man loses title to his land or any part thereof merely because the evidences become lost or uncertain. It may become more difficult for him to establish it as against an adverse claimant, but theoretically the right remains; and it remains as a potential fact so long as he can present better evidence than any other person. And it may often happen that notwithstanding the loss of all trace of a section corner or quarter stake, there will still be evidence from which any surveyor will be able to determine with almost absolute certainty where the original boundary was between the government subdivisions.

There are two senses in which the word extinct may be used in this connection: One, the sense of physical disappearance; the other, the sense of loss of all reliable evidence. If the statute speaks of extinct corners in the former sense, it is plain that a serious mistake was made in supposing that surveyors could be clothed with authority to establish new corners by an arbitrary rule in such cases. As well might the statute declare that if a man loses his deed, he shall lose his land altogether.

But if by extinct corner is meant one in respect to the actual location of which all reliable evidence is lost, then the following remarks are pertinent :

1. There would undoubtedly be a presumption in such a case that the corner was correctly fixed by the government surveyor where the field notes indicated it to be.
2. But this is only a presumption, and may be overcome by any satisfactory evidence showing that in fact it was placed elsewhere.
3. No statute can confer upon a county surveyor the power to "establish" corners, and thereby bind the parties concerned. Nor is this a question merely of conflict between State and'federal law; it is a question of prop-
erty right. The original surveys must govern, and the laws under which they were made must govern, because the Jand was bought in reference to them; and any legislation, whether State or federal, that should have the effect to change these, would be inoperative, because disturbing vested rights.
4. In any case of disputed lines, unless the parties concerned settle the controversy by agreement, the determination of it is necessarily a judicial act, and it must proceed upon evidence, and give full opportunity for a hearing. No arbitrary rules of survey or of evidence can be laid down whereby it can be adjudged.

The general duty of a surveyor in such a case is plain enough. He is not to assume that a monument is lost until after he has thoroughly sifted the evidence and found himself unable to trace it. Even then he should hesitate long before doing anything to the disturbance of settled possessions. Occupation, especially if long continued, often affords very satisfactory evidence of the original boundary when no other is attainable; and the surveyor should inquire when it originated, how, and why the lines were then located as they were, and whether a claim of title has always accompanied the possession, and give all the facts due force as evidence. Unfortunately, it is known that surveyors sometimes, in supposed obedience to the State statute, disregard all evidences of occupation and claim of title, and plunge whole neighborhoods into quarrels and litigation by assuming to "establish" corners at points with which the previous occupation cannot harmonize. It is often the case that where one or more corners are found to be extinct, all parties concerned have acquiesced in lines which were traced by the guidance of some other corner or landmark, which may or may not have been trustworthy; but to bring these lines into discredit when the people concerned do not question them, not only breeds trouble in the neighborhood, but it must often subject the surveyor
himself to annoyance and perhaps discredit, since in a legal controversy the law as well as common sense must declare that a supposed boundary line long acquiesced in is better evidence of where the real line should be than any survey made after the original monuments have disappeared. (Stewart v. Carleton, 31 Mich. Reports, 270; Diehl v. Zanger, 39 Mich. Reports, 601.) And county surveyors, no more than any others, can conclude parties by their surveys.
The mischiefs of overlooking the facts of possession most often appear in cities and villages. In towns the block and lot stakes soon disappear; there are no witness trees, and no monuments to govern except such as have been put in their places, or where their places were supposed to be. The streets are likely to be soon marked off by fences, and the lots in a block will be measured off from these, without looking farther. Now it may perhaps be known in a particular case that a certain monument still remaining was the starting point in the original survey of the town plat; or a surveyor settling in the town may take some central point as the point of departure in his surveys, and assuming the original plat to be accurate, he will then undertake to find all streets and all lots by course and distance according to the plat, measuring and estimating from his point of departure. This procedure might unsettle every line and every monument existing by acquiescence in the town; it rould be very likely to change the lines of streets, and raise controversies everywhere. Yet this is what is sometimes done; the surveyor himself being the first person to raise the disturbing questions.
Suppose, for example, a particular village street has been located by acquiescence and used for many years. and the proprietors in a certain block have laid off their lots in reference to this practical location. Two lot owners quarrel, and one of them calls in a surveyor, that he
may make sure his neighbor shall not get an inch of land from him. This surveyor undertakes to make his survey accurate, whether the original was so or not, and the first result is, he notifies the lot owners that there is error in the street line, and that all fences should be moved, say one foot to the east. Perhaps he goes on to drive stakes through the block according to this conclusion. Of course, if he is right in doing this, all lines in the village will be unsettled; but we will limit our attention to the single block. It is not likely that the lot owners generally will allow the new survey to unsettle their possessions, but there is always a probability of finding some one disposed to do so. We shall then have a lawsuit; and with what result?
It is a common error that lines do not become fixed by acquiescence in a less time than twenty years. In fact, by statute, road lines may become conclusively fixed in ten years; and there is no particular time that shall be required to conclude private owners, where it appears that they have accepted a particular line as their boundary, and all concerned have cultivated and claimed up to it. Public policy requires that such lines be not lightly disturbed, or disturbed at all after the lapse of any considerable time. The litigant, theretore, who in such a case pins his faith on the surveyor, is likely to suffer for his reliance, and the surveyor himself to be mortified by a result that seems to impeach his judgment.
Of course nothing in what has been said can require a surveyor to conceal his own judgment, or to report the facts one way when he believes them to be another. He has no right to mislead, and he may rightfully express his opinion that an original monument was at one place, when at the same time he is satisfied that acquiescence has fixed the rights of parties as if it were at another. But he would do mischief if he were to attempt to "establish" monuments which he knew would tend to disturb settled rights; the farthest he has a right to
go, as an officer of the law, is to express his opinion where the monument should be, at the same time that he imparts the information to those who employ him, and who mignt otherwise be misled, that the same authority that makes him an officer and entrusts him to make surveys, also allows parties to settle their own boundary lines, and considers acquiescence in a particular line or monument, for any considerable period, as strong if not conclusive evidence of such settlement. The peace of the community absolutely requires this rule. It is not long since, that in one of the leading cities of the State an attempt was made to move houses two or three rods into a street, on the ground that a survey under wnich the street had been located for many years, had been found on a more recent survey to be erroneous.
From the foregoing, it will appear that the duty of the surveyor where boundaries are in dispute must be varied by the circumstances. 1. He is to search for original monuments, or for the places where they were originally located, and allow these to control if he finds them, unless he has reason to believe that agreements of the parties, express or implied, have rendered them unimportant. By monuments in the case of government surveys we mean of course the corner and quarter-stakes; blazed lines or marked trees on the lines are not monuments: they are merely guides or finger posts, if we may use the expression, to inform us with more or less accuracy where the monuments may be found. 2. If the original monuments are no longer discoverable, the question of location becomes one of evidence merely. It is merely idle for any State statute to direct a surveyor to locate or "establish" a corner, as the place of the original monument, according to some inflexible rule. The surveyor, on the other hand, must inquire into all the facts: giving due prominence to the acts of parties concerned, and always keeping in mind, first, that neither his opinion nor his survey
can be conclusive upon parties concerned; and, second, that courts and juries may be required to follow after the surveyor over the same ground, and that it is exceedingly desirable that he govern his action by the same lights and the same rules that will govern theirs.
It is always possible, when corners are extinct, that the surveyor may usefully act as a mediator between parties, and assist in preventing legal controversies by settling doubtful lines. Unless he is made for this purpose an arbitrator by legal submission, the parties, of course, even if they consent to follow his judgment, cannot on the basis of mere consent, be compelled to do so; but if he brings about an agreement, and they carry it into effect by actually conforming their occupation to his lines, the action will conclude them. Of course, it is desirable that all such agreements be reduced to writing; but this is not absolutely indispensable if they are carried into effect without.
Meander Lines.-The subject to which allusion will now be made, is taken up with some reluctance, because it is believed the general rules are familiar. Nevertheless, it is often found that surveyors misapprehend them, or err in their application; and as other interesting topics are somewhat connected with this, a little time devoted to it will probably not be altogether lost. The subject is that of meander lines. These are lines traced along the shores of lakes, ponds, and considerable rivers, as the measures of quantity when sections are made fractional by such waters. These have determined the price to be paid when government lands were bought, and perhaps the impression still lingers in some minds that the meander lines are boundary lines, and that all in front of them remains unsold. Of course this is erroneous. There was never any doubt that, except on the large navigable rivers, the boundary of the owners of the banks is the middle line of the river; and while some courts have held that this was the rule on all fresh-water streams, large
and small, others have held to the doctrine that the title to the bed of the stream below low-water mark is in the State, while conceding to the owners of the banks all riparian rights. The practical difference is not very important. In this State, the rule that the center line is the boundary line, is applied to all our great rivers, including the Detroit, varied somewhat by the circumstance of there being a distinct channel for navigation, in some cases, with the stream in the main shallow, and also sometimes by the existence of islands.
The troublesome questions for surveyors present themselves when the boundary line between two contiguous estates is to be continued from the meander line to the center line of the river. Of course, the original surver supposes that each purchaser of land on the stream has a water front of the length shown by the field notes; and it is presumable that he bought this particular land because of that fact. In many cases it now happens that the meander line is left some distance from the shore by the gradual change of course of the stream, or diminution of the flow of water. Now the dividing line between two government subdivisions might strike the meander line at right angles, or obliquely; and, in some cases, if it were continued in the same direction to the center line of the river, might cut off from the water one of the subdivisions entirely, or at least cut it off from any privilege of navigation, or other valuable use of the water, while the other might have a water front much greater than the length of a line crossing it at right angles to its side lines. The effect might be that, of two government subdivisions of equal size and cost, one would be of very great value as water-front property, and the other comparatively valueless. A rule which would produce this result would not be just, and it has not been recognized in the law.
Nevertheless it is not easy to determine what ought to
be the correct rule for every case. If the river has a straight course, or one nearly so, every man's equities will be preserved by this rule: Extend the line of division between the two parcels from the meander line to the center line of the river, as nearly as possible at right angles to the general course of the river at that point. This will preserve to each man the water front which the field nctes indicated, except as changes in the water may have affected it, and the only inconvenience will be that the division line between different subdivisions is likely to be more or less deflected where it strikes the meander line.

This is the legal rule, and is not limited to government surveys, but applies as well to water lots which appear as such on town plats. •(Bay City Gas Light Co. v. The Industrial Works, 28 Mich. Reports, 182.) It often happens, therefore, that the lines of city lots bounded on navigable streams are deflected as they strike the bank, or the line where the bank was when the town was first laid out.

When the stream is very crooked, and especially if there are short bends, so that the foregoing rule is incapable of strict application, it is sometimes very difficult to determine what shall be done; and in many cases the surveyor may be under the necessity of working out a rule for himself. Of course his àction cannot be conclusive; but if he adopts one that follows as nearly as the circumstances will admit, the general rule above indicated, so as to divide as near as may be the bed of the stream among the adjoining owners in proportion to their lines upon the shore, his division, being that of an expert, made upon the ground and with all available lights, is likely to be adopted as law for the case. Judicial decisions, into which the surveyor would find it prudent to look under such circumstances, will throw light upon his duties and may constitute a sufficient guide when peculiar cases arise. Each riparian lot owner ought to have a line on
the legal boundary, namely, the center line of the stream proportioned to the length of his line on the shore and the problem in each case is, how this is to be given him. Alluvion, when a river imperceptibly changes its course, will be apportioned by the same rules.
The existence of islands in a stream when the middle line constitutes a boundary, will not affect the apportionment unless the islands were surveyed out as government subdivisions in the original admeasurement. Wherever that was the case, the purchaser of the island divides the bed of the stream on each side with the owner of the bank, and his rights also extend above and below the solid ground, and are limited by the peculiarities of the bed and the channel. If an island was fot surveyed as a government subdivision previous to the sale of the bank, it is of course impossible to do this for the purposes of government sale afterward, for the reason that the rights of the bank owners are fixed by their purchase; when making that they have a right to understand that all land between the meander lines, not separately surveyed and sold, will pass with the shore in the government sale: and having this right, anything which their purchase would include under it cannot afterward be taken from them. It is believed, however that the federal courts would not recognize the applicability of this rule to large navigable rivers, such as those uniting the great lakes.
On all the little lakes of the state which are mere expansions near their mouths of the rivers passing through them-such as the Muskegon Pere Marquette and Manis-tee-the same rule of bed ownership has been judicially applied that is applied to the rivers themselves; and the division lines are extended under the water in the same way. '(Rice v. Ruddiman, 10 Mich., 125.) If such a lake were circular, the lines would converge to the center; if oblong or irregular, there might be a line in the middle on which they would terminate, whose course would bear
some relation to that of the shore. But it can seldom be important to follow the division line very far under the water, since all private rights are subject to the public rights of navigation and other use, and any private use of the lands inconsistent with these would be a nuisance, and punishable as such. It is sometimes important, however, to run the lines out for considerable distance, in order to determine where one may lawfully moor vessels or rafts, for the winter, or cut ice. The ice crop that forms over a man's land of course belongs to him. (Lorman v. Benson, 8 Mich., 18; People's Ice Co. v. Steamer Excelsior, recently decided.)
What is said above will show how unfounded is the notion, which is sometimes advanced, that a riparian proprietor on a meandered river may lawfully raise the water in the stream without liability to the proprietors above, provided he does not raise it so that it overflows the meander line. The real fact is that the meander line has nothing to do with such a case, and an action will lie whenever he sets back the water upon the proprietor above, whether the overflow be below the meander lines or above them.

As regards the lakes and ponds of the state, one may easily raise questions that it would be impossible for him to settle. Let us suggest a few questions, some of which are easily answered, and some not:

1. To whom belongs the land under these bodies of water, where they are not mere expansions of a stream flowing through them?
2. What public rights exist in them?
3. If there are islands in them which were not surveyed out and sold by the United States, can this be done now?
Others wis we suggested by the answers give. to these. It seems obvious that the rules of private ownership which are applied to rivers cannot be applied to the great
lakes. Perhaps it should be held that the boundary is at low water mark, but improvements beyond this would only becoife unlawful when they became nuisances Islands in the great lakes would belong to the United States until sold, and might be surveyed and measured for sale at any time. The right to take fish in the lakes, or to cut ice, is public like the right of navigation, but is to be exercised in such manner as not to interfere with the rights of shore owners. But so far as these public rights can be the subject of ownership, they belong to the state, not to the United States; and so, it is believed, does the bed of a lake also. (Pollord v. Hagan, 3 Howard's U. S. Reports.) But such rights are not generally considered proper subjects of sale, but like the right to make use of the public highways, they are held by the state in trust for all the people.
What is said of the large lakes may perhaps be said also of many of the interior lakes of the state; such, for example, as Houghton, Higgins, Cheboygan, Burt's, Mullet. Whitmore, and many others. But there are many little lakes or ponds which are gradually disappearing, and the shore proprietorship advances pari passu as the waters recede. If these are of any considerable size-say, evem a mile across-there may be questions of conflicting rights which no adjudication hitherto made could settle Let any surveyor, for example, take the case of a pond of irregular form, occupying a mile square or more of territory, and undertake to determine the rights of the shore proprietors to its bed when it shall totally disappear, and he will find he is in the midst of problems such as probably he has never grappled with, or reflected upon before. But the general rules for the extension of shore lines, which have already been laid down, should govern sucb cases, or at least should serve as guides in their settlement.
Where a pond is so small as to be included within the lines of a private purchase from the government, it is not
believed the public have have any rights in it whatever. Where it is not so included, it is believed they have rights cf fishery, rights to take ice and water, and rights of nav. ugation for business or pleasure. This is the common belief, and probably the just one. Shore rights must not be so exercised as to disturb these, and the states may pass all proper laws for their protection. It would be easy with suitable legislation to preserve these little bodies of water as permanent places of resort for the pleasure and recreation of the people, and there ought to be such legislation.
If the state should be recognized as owner of the beds of these small lakes and ponds, it would not be owner for the purpose of selling. It would be owner only as trustee for the public use; and a sale would be inconsistent with the right of the bank owners to make use of the water in its natural condition in connection with their estates. Some of them might be made salable lands by draining; but the state could not drain, even for this purpose, against the will of the shore owners, unless their rights were appropriated and paid for.

Upon many questions that might arise between the state as owner of the bed of a little lake and the shore owners, it would be presumptuous to express an opinion now, and fortunately the occasion does not require it.
I have thus indicated a few of the questions with which surveyors may now and then have occasion to deal, and to which they should bring good sense and sound judgment. Surveyors are not and cannot be judicial officers, but in a great many cases they act in a quasi judicial capacity with the acquiescence of parties concerned; and it is important for them to know by what rules they are to be guided in the discharge of their judicial functions. What I have said cannot contribute much to their enlightenment, but I trust will not be wholly without value.

CHAPTER XIII.

LEVELING AND DRAINAGE SURVEYING.

I. Leveling is the operation of measuring the difference in height of two or more points.

The surface of water at rest is an example of a level surface.

If the earth was a perfect sphere, a line of true level would be an are or a circle having its centre at the centre of gravity of the earth. So far as common leveling is concerned it may be so considered, as the error arising therefrom is so small as to be of no practical consequence.

The line of apparent level is a straight horizontal line passing through the point of observation, tangent to the line of true level.

In precise leveling the difference between true and apparent level is measured, the instruments used are of the best, and all the operations are performed so as to reduce the error to the smallest possible amount. In common leveling for streets, railroads, drains, water powers and the like operations, a lower degree of accuracy is required and the refinements of precise leveling are dispensed with. No attention is paid to the difference between true and apparent level, it being ton small to affect the practical result.
2. The deviation of the true from the apparent level between two points is equal to the square of the distance between the points, divided by the diameter of the earth.

Also, The deviations for different distances are proportional to the squares of the distances.

Calling the diameter of the earth 7920 miles and taking points one mile apart, we find the deviation = 0.000126 miles $=0.665 \mathrm{ft} .=7.98$ inches. For m miles, deviation $=7.98 \mathrm{~m}^{2}$ inches.

The effect of the refraction of light is to apparently increase the difference between true and apparent level.
For considerable distances the correction for curvature as above found is sometimes diminished by about onesixth of itself.

If the instrument is placed midway between the points whose difference in height is required, the errors are balanced and eliminate each other, giving a correct result.
3. In leveling, two instruments are required, one to find a horizontal line, and the other to measure vertical distances. These instruments are called a Level and a Leveling rod.
Level lines, for many common purposes, on a limited area, when no instruments are at hand, can be obtained by the following method: -

Suspend from some fixed point of support P by stout cords as indicated, a pole of any shape $A B$, having the

Fig. 75 longer end sharpened to a fine point. From this pole hang a heavy weight R as shown. Set two stakes $S S^{\prime}$ so that the point of the pole when swung around will just touch them. Smooth a place on each stake to receive marks. After taking the twist out of the supporting cord, carefully swing the pole around and mark the exact place where the point of the pole touches each stake. Repeat this, and take the most satisfactory points. They will determine a level line of sight.

A cheap instrument which almost any one can make, having a more extended range, is made as follows: Take two pieces of glass tubing three or four inches long and connect them with a rubber tube two or three feet long, so as to make a continuous water tight tube, with glass ends. Pass the ends of the tube through holes in a cross bar
Fig. 76. made of a piece of board of suitable
size, as shown in the cut, and fasten them with the tops projecting an inch or more above the bar. The cross bar may be fastened with a bolt and nut to a staff so that it may be set up and adjusted to a level line. Colored fluid is poured into the tube. The surface of the fluid in the glass tubes determines the level line. Sights of horse hair or fine wire may be attached close to the glass tubes and the cross bar adjusted to bring them into a level line.

An instrument can thus be made at the expense of a few cents in money and a few minutes' labor that will do very satisfactory work.
4. If a tube be nearly filled with any liquid, as water, alcohol or ether, and closed, the liquid will seek the lowest part, and the vacant space or bubble, as it is called, will be found at the highest part of the tube. If the tube is of glass, and very truly ground on the inside to a segment of a circle, it furnishes the best known means for determining a level line. Such tubes are made and nearly filled with ether or alcohol, leaving a small space or bubble. When such a tube is placed convex side uppermost, the bubble seeks the highest point. Then a vertical line passing through the center of the bubble will coincide with the radius of the are to which the tube is ground. A perpendicular to this vertical line is a line of apparent level. Such a tube is the most essential part of the level. It is encased in a brass tube, having an opening so that the bubble and as much of the glass tube as necessary can be seen. A graduated scale is attached to it, or marked on the tube, by means of which the bubble is measured and its position with relation to other parts of the instrument is determined. The tube thus prepared is attached to a telescope in such a manner that it can be adjusted so as to bring the radius of the ground glass perpendicular to the line of sight in the telescope.-

The telescope is mounted in such a manner as to permit it to revolve freely in a horizontal plane and to be readily adjusted to the line of apparent level.

Fig. 77.
The plan of mounting the telescope most in favor in the United States is by a horizontal bar with forked arms called wyes. The telescope rests upon the wyes and is held in place by clips which may be loosened, permitting the telescope to be rolled over in the wyes. The bar is connected by a spindle to the tripod socket and leveling head similar to that used upon the transit. By permission of Messrs. Buff \& Berger, of Boston, the following quotation is taken from their catalogue:
5. "The Adjustments. - In a theoretically perfect level the following points are established:

1. The object and eye-glasses are perpendicular to the optical axis at all distances apart.
2. The optical axis coincides with the axis of rotation in the wyes.
3. The axis of collimation coincides with the optical axis.
4. The axis of collimation is parallel to the telescope level.
5. The collars resting in the wyes are circles of the same diameter and concentric with the line of collimation of the telescope.
6. The wyes are exactly similar, and similarly placed with reference to the line of collimation of the telescope.
7. The level bubble moves over equal spaces for equal displacements of the telescope in altitude.
8. The level bubble expands or contracts equally from the centre in both directions, during changes of temperature.
9. The vertical axis of revolution is perpendicular to the line of collimation of the telescope.

Of the above, the maker establishes points numbered 1 , $2,5,6,7$ and 8 . The remaining points, 3,4 and 9 , are established when the instrument leaves the shop, but being liable to derangement from rough usage, they are made adjustable in the field.

Adjusting. After the engineer has set up the instrument and adjusted the eye-piece for parallax, the horizontal cross-line had better be made to lie in the plane of the azimuthal rotation of the instrument. This may be accomplished by rotating the reticule, after loosening the capstan-headed screws, until a point remains bisected throughout the length of the line when the telescope is moved in azimuth. In making this adjustment, the level tube is to be kept directly beneath the telescope tube. When made, the small set screw attached to one of the wyes may be set so that by simply bringing the projecting pin from the telescope against it, the cross-lines will be respectively parallel and perpendicular to the motion of the telescope in azimuth.

The first collimating of the instrument may be made, using an edge of some building, or any profile which is vertical. Make the vertical cross-line tangent to any such profile, and then turn the telescope half-way round in its wyes. If the vertical cross-line is still tangent to the edge selected, the vertical cross-line is collimated.

Select some horizontal line, and cause the horizontal cross-line to be brought tangent to it. Again rotate the telescope half way round in its wyes, and if the horizontal cross-line is still tangent to the edge selected, the horizontal cross-line is collimated.

Having adjusted the two wires separately in this manner, select some well defined point which the cross-lines are made to bi-sect. Now rotate the telescope half way
round in its wyes. If the point is still bi-sected, the telescope is collimated. A very excellent mark to use is the intersection of the cross-lines of a transit instrument.

Centre the eye-piece by the four capstan-headed screws nearest the eye end. This is done by moving the opposite screws in the same direction until a distant object under observation is without the appearance of a raise or fall throughout an entire rotation of the telescope in its wyes. The telescope is now adjusted.

Next, bring the level bar over two of the leveling screws, focus the telescope upon some object about 300 feet distant, and put on the sun-shade. These precautions are necessary to a nice adjustment of the level tube. Throw open the two arms which hold the telescope down in its wyes, and carefully level the instrument over the two level screws parallel to the telescope. Lift the telescope out of its wyes, turn it end for end and carefully replace it. If the level tube is adjusted, the level will indicate the same reading as before. If it does not, correct half the deviation by the two leveling screws and the remainder by moving the level tube vertically by means of the two cylinder nuts which secure the level tube to the telescope tube at its eye-piece end. Loosen the upper nut with an adjusting pin, and then raise or lower the lower nut as the case requires, and finally clamp that end of the level tube by bringing home the upper nut. This adjustment may require several repetitions before it is perfect.

The level is now to be adjusted so that its axis may be parallel to the axis of the telescope. Rotate the telescope about 20° in its wyes, and note whether the level bubble has the same reading as when the bubble was under the telescope. If it has, this adjustment is made. If it has not the same reading, move the end of the level tube mearest the object-glass in a horizontal direction, when the telescope is in its proper position, by means of the two small capstan-headed screws which secure that end of the level to the telescope tube. If the level bubble goes
to the object-glass end when that end is to the engineer's right hand, upon rotating the telescope level toward him, then these screws are to be turned in the direction of a left-handed screw, as the engineer sees them, and vice versa. Having completed this adjustment, the level bar itself must now be made parallel to the axis of the level.

To do this, level the instrument carefully over two of its leveling screws, the other two being set as nearly level as may be; turn the instrument 180° in azimuth, and if the level indicates the same inclination, the level bar is adjusted. If the level bubble indicates a change of inclination of the telescope in turning 180°, correct half the amount of the change by the two level screws, and the remainder by the two capstan-headed nuts at the end of the level bar, which is to the engineer's left hand when he can read the firm's name. Turn both nuts in the same direction, an equal part of a revolution, starting that nut first which is in the direction of the desired movement of the level bar. Many engineers consider this adjustment of little importance, preferring to bring the level bubble in the middle of its tube at each sight by means of the leveling screws alone, rather than to give any consideration to this adjustment, should it require to be made."
6. Leveling rods are made in a variety of styles and are of two principal classes, viz.: target rods and speaking or self reading rods.

Target rods are made of hard wood in two or more parts, which are grooved and tongued to slide upon each other, by which means they are lengthened out to 12 or more feet. They are graduated to feet, tenths and hundredths, the decimal notation being more convenient for computation than the division into inches and fractions of an inch. The target is a dise of brass made to slide up and down on the rod and to be clamped fast to the rod at any desired place. It is divided into quadrants painted alternately white and red. When used in leveling the target is moved up and down on the rod until the horizontal line between these divisions is brought to coincide with the line of sight in the level. The target has a
vernier attached by which the distance on the rod is read to the nearest $\frac{1}{1000}$ part of a foot. In common leveling it is a useless refinement to carry the reading to thousandths of a foot, as it is out of harmony with the other conditions of the rod and the work to be done. The target on the rod, as a rule, is not capable of being set as closely and accurately to the level line as the vernier will read, nor will the rod be held so truly plumb as to justify so close a reading. Generally the line between the quadrants of the target is not perpendicular to the rod and does not coincide with the zero of the vernier within several thousandths.

Speaking rods are plain,

Fig. 78. straight rods, having the graduations marked on them so boldly and distinctly that they can be read from the instrument. No targets are used with them, although some rods, like the Philadelphia rod, are made so as to be used either as target or speaking rods. There are many devices for marking the speaking rod, all of which are intended to facilitate accurate reading by the observer. A simple form of graduation and lettering which gives excellent results in actual service is shown on a reduced scale in the cut. The graduations are to tenths and half tenths of a foot. Distances less than half a tenth are estimated by the eye. This is facilitated by having the figures for tenths made either .04 or .06 feet in length and accurately spaced on the rod.

The student having a level and a rod for use in practice may now solve the following problems in the field:
7. Prob. 1. To find the difference of level of two points.

Case 1.-When the difference of level may be found by one setting of the instrument.

Suppose A and B to be the points. Set up the level at a point about equidistant from A and B, though not necessarily in a line between them. Plant it firmly on the ground, placing the legs so as to bring the instrument nearly level, leaving as little as possible to be done with the leveling screws. If set up on yielding ground constant care will be required to be sure that the instrument is level at the instant the observation is taken. When the level is set up on ice or frozen ground, the legs will settle into the frost. It is well to set the instrument in the shade whenever convenient, as the rays of the sun, a passing cloud or a sudden breeze will throw the instrument out of level by causing unequal expansion and contraction of the metal. In precise leveling the instrument must be shaded. Having the instrument firmly planted, bring the telescope in line with one pair of the leveling screws and turn them in or out till the bubble is brought to the middle. Then bring the level in line with the other pair and again level it. Repeat until the bubble will remain in the middle of the tube through an entire revolution of the telescope around the spindle.

The rod-man holds the rod at A, and its reading, $A a$ is taken. This is called a Back Sight. All observations on other points taken at the same setting of the instrument are termed Fore Sights. The distance $A a$ shows how much the line of collimation of the level is above the point A and is called the height of instrument. The rod-man now holds the rod on the point B and its reading is taken. The difference between the
back sight and the fore sight is the difference in height of the points A and B. If the back sight is 9.20 and the fore sight 6.40 , then B is 2.80 higher than A. If the fore sight were 11.45 instead of 6.40 , then B is 2.25 lower than A. The rod-man should stand square behind his rod and hold it plumb. Sometimes small levels are attached to the rod to plumb it by. If they are not used the leveler when necessary directs the rod-man to move the top of the rod to the right or left to plumb it that way, and the rod-man also moves it gently back and forth towards the level, until the smallest reading of the rod is obtained. It is manifest that as many points may be taken as can be reached from the instrument and that their relative heights will be shown by the distances they are below the horizontal plane of the instrument, which is told by the readings on the rod.

Case 2.-When the difference of level can not be found by one setting of the instrument.

Suppose A and E to be the points, and that it is necessary to set the instrument four times to find the difference between them. We find by the first setting the difference between the points A and B, as already described. We then go forward and find successively the differences between the points B and C, C and D, and D and E. The algebraic sum of these differences is the difference in height of the points A and E.

A convenient form of field notes in cases like the above. consists of three columns as shown in the following

Example.- Required the difference of level between the points A and E from the accompanying notes:

Sta.	Back Sights.	Fore Sights.
A	3.28	
B	2.14	7.15
C	3.25	8.50
D	4.70	3.45
E		2.75

Which point is the higher, and how much?

A Bench Mark or Bench is-a fixed point used for reference in finding the heights of other points. It is indicated in the notes by the letters $B . M$. It is customary to establish bench marks at convenient distances along a line of levels by which the work may be reviewed, or at which it may be resumed after temporary cessation. The most convenient permanent objects are selected for the location of these bench marks, such as foundation stones in buildings, rocks or large boulders, or shoulders cut in the roots of large trees, so situated that the rod can be set up on them and the level readily taken.
Where a line of levels is run taking a number of points it is customary to refer the heights to an assumed level plane called a datum. This is generaily assumed to be far enough below the first or principal bench mark so that it shall be below the lowest station likely to be found in any part of the survey for which it is used. Negative heights are thus avoided.

A line of levels is usually marked by stakes set at uniform distances apart, marked and numbered consecutively from zero upwards. 100 feet is the distance most usually adopted between stations, although in levels for country drains it is sometimes found more convenient to space the stations by chains to correspond with the measures of the land surveys. Intermediate stakes are usually referred to as plus stations, and are so marked on the stakes and in the notes. For instance, a stake set between stakes No. 6 and 7 at 40 feet from No. 6, is marked $6+40$ or simply +40 .
8. Prob. 2. To find the heights above a datum plane, of several stations on a given line.
-Suggestions. - Let $A B$ (Fig. 80, page 406) be the given line and $D P$ the datum plane assumed at any convenient distance, say 10 ft ., below a bench near A.

Set up the level at some convenient point, for example between stations 2 and 3 .

Take the reading of the rod upon the bench and add it

Fig. 80.
to the assumed height of the bench above the datum. The sum is the height of the instrument.

Take the readings upon stations $0,1,2,3,4$ and 5 in succession, and subtract each from the height of the instrument. The remainders are the heights, respectively, of those stations above the datum.

Carry the instrument forward to another position, as between stations 6 and 7.

Take the reading of the rod a second time on station 5, and add it to the height of station 5 as before found. The sum is the new height of instrument, with which proceed as before.

A point used as station 5, as above indicated, is called a Turning Point. In practice, a bench is often adopted as a turning point.

The reading of the rod upon a turning point or benchmark is usually taken with somewhat greater precision than upon other points.

A reading upon a bench or turning point is added to the height of the point above the datum in finding height of instrument; and a reading upon any point is subtracted from the height of instrument in finding the height of the point.

Accordingly, an observation for the former is called a Plus Sight, denoted by +S , and for the latter, a Minus Sight, denoted by - S.

The height of instrument is denoted by H. In., and the height of any point above the datum, by H . or elev.

The following is an example of the notes made in solving the above problem:

Sta.	+S.	H. In.	-S.	H.	Remarks.
B.M.	3.426	13.426		10.000	A stone 20 ft. S. E.of 0.
0			5.45	7.976	
1			7.30	6.126	
2			5.35	8.08	
3			5.40	8.03	
4			6.23	7.20	
5	8.274		3.76	9.666	
6		17.940	5.25	12.69	
7			5.10	12.84	
8			5.00	12.94	

9. Prob. 3. To find the cut or fill, to grade, at points between two given points.

Suggestions. - Let A and B (Fig. 80) denote the given points. Beginning at A, for example, measure the distance $A B$, at the same time marking it off into convenient divisions of equal length, as 33 ft ., 50 ft ., 66 ft ., or 100 ft ., for example, by driving pegs down to the surface of the ground. The last division will usually be fractional. Number the divisions, $0,1,2,3$, ete., beginning at A.

Find now (Prob. 2) the heights of the points, $0,1,2$, 3 , etc., above some convenient datum.

For illustration, suppose the heights to be as given in the above Table (Prob. 2). Also suppose the height of the grade line at A to be 5 ft ., and at $B, 9 \mathrm{ft}$.

The distance from A to B consisting of 8 equal parts, say of 50 ft ., we should then have

$$
(9 \mathrm{ft} .-5 \mathrm{ft} .) \div 8=0.5 \mathrm{ft} .=\text { rise per station. }
$$

Beginning at A or station 0, we have -
$7.98-5 .=2.98=$ cut at 0
$6.13-5.50=$
$8.08-6.00=\quad 2.08=$ cut at 1
$8.03-6.50=$
$6.20-7.00=-0.80=$ cut at 2
$9.67-7.50=$
fill at 4
etc.
etc.
etc.

Observe that we take the difference in height between the grade line and the station at each station; and since we have here proceeded from lower to higher points of the grade, we have added the rise of the grade per station to the height of the grade at the last preceding station.

Let the student find the cut at each station, beginning at B, all other things being as above.

Again, supposing the heights of the stations to be as above, let the student find the depths of cut and fill under the supposition that the height of the grade at A is 6 ft ., and at $B, 8.4 \mathrm{ft}$.
10. Drawing Profile. Fig. 80 represents a section formed by a vertical plane passing through the points A and B, and meeting the datum plane in the line $D P$. The irregular line $A B$ represents the intersection of the vertical plane with the surface of the ground, and is called the Profile.

The manner of drawing the profile is as follows:
Draw a horizontal line to represent the datum line, on which lay off to a convenient scale the distance between the stations.

At the points of division of the datum line, erect perpendiculars, on which lay off the surface heights of the several stations, in their order, but to a scale usually ten times greater than that used for the horizontal distances.

A line drawn through the points thus located forms the profile.

The use of a larger scale in drawing the vertical distances serves to render the irregularities of the surface
more apparent to the eye than they would be if drawn to the same scale with the horizontal measurements.
The grade line is drawn through any two points at the proper distances from the datum line. The position and inclination of the grade line depend upon certain conditions required to be fulfilled by the work, such as the flowage of water, ease of travel, economy of construction, etc.

In road work the grade is often adopted with reference to an equalization of "cut" and " fill," so that the material furnished by excavations shall make the embankments. The required position of the grade line, in order to fulfill this condition most advantageously, is conveniently got by stretching a thread across the profile, varying the position of the thread until the areas intercepted by it and the profile on opposite sides appear to be equal.

EXERCISES.

II. 1. Find depths of cut or fill, and draw profile and grade line from the following notes:

Sta.	+S.	H. In.	-S.	H.	H. Gr.	Cut.	Fill.
0	4.26	14.26	$6.31)$	10.00	8.00		
2			8.45				
${ }_{3}^{3+0}$	4.12		3.23				
${ }^{3+0}$		15.15	8.63				
J^{25}			5.53		9.575		

Distance between stations, 100 ft .
2-5. Examples made by the student in the "Field."

II. DRAINAGE SURVEYING.

12. Of the many applications of leveling, the most common, perhaps, in the province of the ordinary surveyor, is that relating to drainage. Almost every neighborhood offers occasions for work of this kind.
13. Drains are of two forms: the Open Drain or Ditch, and the Under Drain.

The former is adapted to the case of water lying upon
the surface of the ground, and the latter to water underlying the surface. Under drains are usually discharged into open drains, which are thus rendered an essential auxiliary to thorough drainage.
14. Making the Survey.-This will be, in the first place, a careful reconnoissance of the locality respecting the general " lay of the land," natural water courses, etc. In this will be determined the proper commencement, route and terminus of the drain. The term commencement will be here understood to mean the upper end of the drain, and terminus the outlet. The word commencement in connection with open drains will also be taken as significant of the proper place to begin the survey.

Preliminaries having been settled, a stake marked 0 is driven at the point of commencement, and the survey, proper, begins by setting the transit over the stake and taking the bearings and distances of two convenient objects near by as witnesses of the point of commencement. The location of the commencement should be described also by distances and direction from some neighboring monument or line of original survey. Thus, $10 \mathrm{ch} . \mathrm{E}$. and 7.15 ch . N. of $1 / 4$ post bet. Secs. 11 and 14, T. 2 N. R. 5 E.

These items are to be entered in the column of remarks in the Transit book, opposite the station 0 .

The instrument is then turned upon the first angle in the line of the drain and its bearing entered in the column of bearings opposite station 0 .

Ax-men are required in clearing away bushes, making and driving stakes, etc. Two chain-men, the forward one carrying a transit-rod, now begin to measure at 0 in the direction of the first angle, and stakes marked $1,2,3$, etc., are driven at uniform distances from each other.

A $100-\mathrm{ft}$. tape is a convenient measure, and locates the stations at ordinarily suitable distances.

A stake should be set also at each angle of the drain, and its distance from the last preceding station entered in the notes. The points of meeting of any land-lines, roads, ete., should be noted by distances in a similar manner.

The number of acres in farms whose lines are met may, very properly, be made a matter of memorandum.

The following is a specimen of the form of notes which are taken, in accordance with the above suggestions:

TRANSIT NOTES.

Sta.	Bearing	Distance. of Course	Remarks.
0	S. $70^{\circ} \mathrm{E}$.		0 . A point 10 ch . E. and 7.15 ch .
1	"		11 and $44, \mathrm{~T} 2 \mathrm{~N} ., \mathrm{R} 5 . \mathrm{E}$.
2	"		W. Olickory 12, S. 40^{2} E., $34{ }^{\text {ft. }}$.
3	"		Land owned by John Doe, 80 A. ;
4	"		
5	"		
$5{ }^{23}$	S. $281 / 2{ }^{\circ} \mathrm{E}$.	528 ft .	528. 1st Angle.
6	"		
7	"		
8	"		
8^{40}	"		8^{+0}. Line bet. Secs. 13 and 24.
9	" .		B. Oak 10, S. $35_{1 / 4}^{1 / 2}$ W., 10 ft .; W. Oak 18, N. 63° W., 28 ft .
10 11	"		Richard Rowe, 160 A. on south, 30 A. swamp.
11^{80}	East.	652 ft .	1150. 2d Angie.
12	"		
13	"		
-	"		
-	\because		
-			
23	*		
23^{43}	"	1163 ft .	23³. Terminus in drain by road side on Township line.
			Marked Boulder, N. 20° E., 15 ft. Ash 14, S. 27° W., 10 ft .

15. Taking the Levels.-The line of the drain having been established, the next thing is to take the levels. This is done in the manner previously described. Beside the engineer or principal surveyor, two men are required - a rod-man, and an ax-man to make and drive pegs.

The pegs should be driven down even with the surface of the ground and at such a distance from the stakes marking the stations that they may be used without disturbance in excavating. Some practice driving them, say six inches, in front of the stakes; other set them opposite and at such a uniform distance from the record stakes as not to be disturbed by the digging.

Bench marks should be made at convenient distances, for example, at every tenth station, and far enough from the line not to be disturbed.
16. Platting.-The field work having been completed, the next thing is to make a plat of the line and also of the sections or tracts of land which will be affected by the drain, writing the owner's name and number of acres on each. On some convenient part of the plat, the courses and their corresponding distances should be noted, also the number of linear feet of drain on each separate tract.

Next comes the drawing of the profile. This is most conveniently done by use of paper, called Profile paper, prepared specially for the purpose. Taking a piece of the proper width and of sufficient length to contain also the title and necessary explanatory notes, at the left hand, we begin on the edge next to us and write the numbers of all the stations in their order toward the right, upon the vertical lines. We then mark with the point of a sharp pencil the point of elevation of each station as taken from the column of elevations in the level notes. Connecting the points thus marked, by an ink line, we have the profile of the surface of the ground on the line
of the drain. We then take a black thread and stretch it on the profile between the points assumed as grade, at the first and the last station. From this inspection, it will be seen whether it is necessary or desirable to introduce one or more changes of grade between the extreme points in order to avoid objectionable cuts.

Having determined the situation of the grade lines, we then draw them in their places, preferably with red ink.

Under the grade lines and upon the vertical lines of the several stations should be written in red ink the elevations of the grade, and below that, in black ink, the elevations of the surface. In a similar manner, above the profile may be written first, in red ink, the depths of the cuts, and, second, the widths of the ditch at bottom and top.

The names of the land owners through whose land the ditch passes, with the number of linear feet on each, may be conveniently written upon the datum line.
17. The writer has saved himself and assistants a great many miles of tramping and wading through swamps and morasses in drainage surveys by running the transit and level lines for the drains both at one operation. It was found by repeated tests on long lines that the level on the transit gave very nearly if not quite as accurate results in leveling as the wye level. Hence the wye level was left at home and the transit line and levels were both run at the same time with the transit. A condensed form of keeping the notes was used. All the rod readings are kept in one column. The back or plus sights, to be added to the elevation for height of instrument, are marked "B. S." The others are all to be subtracted from "Ht. Inst." for elevation of stations. The following is a sample extract:

Commencing at a point in the Section line 4.53 chains east of the quarter post between Sections 11 and 14, and running thence $\mathrm{S} .16^{\circ} \mathrm{W}$. Stations 2.00 chains apart.

Sta.	Obs.	$\underset{\text { Inst. }}{\substack{\mathrm{Ht} \\ \text { In }}}$	Elev.	Grade Ht .	Cut	Remarks.
$\underset{\text { B.M. }}{\substack{\text { B.S.on }}}$	4.96	104.96	100.00			On Elm 40^{\prime} to rt. of Sta. 1.
0	5.21		99.75	96.00	3.75	Elm and Black
1	5.30		90.66	95.90	3.76	
2	5.28		99.68	95.80	3.88	+50, enter thick
3	5.46		00.50	05.70	3.80	
4	5.72		99.24	95.60	3.64	
5	5.83		99.13	95.50	3.63	
$+60$	Angle rt. $12^{\circ} 24^{\prime}=$ S. $28^{\circ} 24^{\prime} \mathrm{w}$. Cross line fence between Smith and Jones.					
B. ${ }_{\text {c }}^{\text {C }}$	5.84 2.91	102.03	99.12			
6	2.95		99.08	95.40	3.68	Open marsh. Saw
7	3.06		98.97	05.30	3.67	

18. Depth and Width. -The depth of a drain obviously depends upon the situation of the grade line with respect to the surface. In adjusting the grade line it is more important to guard against the drain being too shallow rather than too deep; most open drains are too shallow.

Again, it should be taken into account, if the drain is to run through soft marshes and hard ridges, that the saft ground, on the withdrawal of the water, will settle; and so the drain may need to be dug deeper in some places than would otherwise be necessary.

The necessary width of a drain of given depth and grade depends upon the quantity of water it is required to discharge in a given time.

The width at the top is determined from the width at the bottom and the slope or inclination given the sides,
which is usually from one to one and one-half feet on the horizontal to each foot in depth.
19. Quantity of Discharge.-The amount of water which a drain may discharge in a given time obviously depends upon the area of the water-way or cross-section of the drain and the velocity of the stream.

Thus, denoting by Q the quantity of discharge, by a the area of the water-way, and by v the mean velocity of discharge, we should have

$$
Q=a v(1)
$$

As an approximate formula for computing the mean velocity of water flowing in an open canal of uniform cross-section and fall, Trautwine gives the formula

$$
\begin{equation*}
V=\left\{\frac{a f \times 8975}{p}\right\}^{1 / 2}-.1089 \tag{2}
\end{equation*}
$$

in which $V=$ mean velocity in feet per second, $a=$ area of water-way in square feet, $f=$ fall in feet per foot, and $p=$ wet perimeter or the water border of the channel.

Remark. - In applying the above formula, it is customary to use 9000 for 8975 and .11 for $\mathbf{. 1 0 8 9 .}$

Example.- Required the velocity and the capacity of a drain 5 ft . wide at the bottom, the sides having a slope of 1 to 1 , depth of water 3 ft ., and the fall 2 ft . to $1,000 \mathrm{ft}$.

Solution. -Width at top $=5 \mathrm{ft} .+2 \times 3 \mathrm{ft} .=11 \mathrm{ft}$.
Area of water-way $=11 / 2(11 \mathrm{ft} .+5 \mathrm{ft})=.24 \mathrm{sq} . \mathrm{ft}$.
Wet perimeter $=5 \mathrm{ft} .+6 \sqrt{ } 2 \mathrm{ft} .=13.5 \mathrm{ft}$.
Fall per foot $=0.002 \mathrm{ft}$.
Substituting in (2), $V=\left\{\frac{24 \times 0.002 \times 9000}{13.5}\right\}^{1 / 2}-0.11$
$=5.55$.
Substituting in (1), $Q=24 \times 5.55=133.2 \mathrm{cu} . \mathrm{ft}$. per second, or $11,508,480 \mathrm{cu}$. ft. per day.

Trautwine gives also the following formula, with the remark that it is applicable also to sewers:

$$
\begin{equation*}
\nabla=\left\{\frac{a}{p} \times 2 F\right\}^{1 / 2} \tag{3}
\end{equation*}
$$

in which a and p are as above described, and F is the fall in feet per mile.

Remark. - In connection with the above formulas, as well as with others of similar import, Trautwine repeats again and agaln the caution that they are to be regarded only as approxlmately true.

Table XII shows approximately the number of acres served by drains having bottom widths of 1 to 10 ft ., with side slopes of 1 to 1 , and various rates of fall per station, on the supposition of 1 inch rainfall in 24 hours, onehalf of which reaches the drain.
20. Amount of Rainfall.-All calculations of requisite capacity of drains must be based upon the probable amount or number of inches of rainfall in a given time. The soil, however, acts as a reservoir up to the point of saturation, depending upon its texture, keeping from the drains altogether a portion of the rainfall, which passes off by evaporation or is absorbed by plants.

The average annual rainfall in Michigan, Indiana, Illinois and Missouri is about 35 inches. In Ohio, for a period of ten years, it was reported to be 37.86 inches.

In the matter of rainfall in Michigan, we are indebted to Prof. Carpenter for the following data:

[^13]column but one shows the total percentage of the number of showers compared with the whole number. Although this table is not extended sufficiently far back to give very accurate results, it is thought (since one year's rainfall does not differ greatiy from that of another year) to be sufficiently reliable to produce data for any ordinary case of farm drainage in this part of the United States.

TABLE OF SHOWERS FROM MARCH TO DECEMBER.

	Number of Showers.						Percentage of Total.	
	1872	1873	18.4	1875	1876	Total	No. of Showers.	Am't of Kiainfall.
.00 to . 25.	19	40	23.	35	43	165	54.2	17
.25 to .50.....-	20	14	13	9	11	67	22.0	21
. 50 to . $75 \ldots$	6	8	6	10	5	35	11.5	21
. 75 to 1.00 _-m-	2	6	5	2	3	18	06.0	13
1.00 to 1.25					2	2	00.7	2
1.25 to 1.50_-.--	3	2			3	8	02.6	9
1.50 to 1.75--..-	1		1	1	----	3	01.0	4
1.75 to 2.00 \ldots		1		1	-----	2	00.7	3
2.00 to 2.25		1						
2.25 to 2.50_...--	1	1	---			1	00.3 00.3	2
2.75 to $3.00 \ldots$								
3.00 to 3.25				1	1	2	00.7	6
Totals						304	100.00	100

"The amount of discharge of drains as compared with the rainfall is usually estimated at about 50 per cent. So that in order to produce thorough drainage it is necessary to assume that the capacity of the drains shall be sufficient to carry off during twenty-four hours one-half the water that fell the previous twenty-four hours. The probability of the rainfall in any day exceeding one inch is so slight that we shall be safe in assuming as the necessary carrying capacity of drains one-half of $3,630 \mathrm{cu} . \mathrm{ft}$., or $1,815 \mathrm{cu} . \mathrm{ft}$. of water for each acre drained."
21. Under Drains are formed in various ways; sometimes of brush, rails or loose stone trenched in, sometimes of tubes made of logs or of iron, sometimes of plank or of brick or stone laid in cement, and again of earthen tubes, of which there are various forms, called Tiles.

The prevailing method of under-drainage for agricultural purposes consists in the use of cylindrical tiles, which are made of different sizes and usually about a foot in length.

It is of this form of under drain, only, that we propose to write briefly.
22. Surveying for Under Drains.-Very much of what has been said upon surveying for the ditch or open drain applies also to the tile drain. The same preliminary inspection is required to determine the best location of the outlet and the proper directions of trunk and branch lines. Indications as to source of water, whether from springs on the premises or on lands situated above, whether from rainfall, merely, upon the particular tract or also as flowing off from neighboring areas; the directions of slopes, whether of surface or of underlying strata; the character of the soil, etc., all have to be carefully observed and their bearing duly considered.
23. Location of Drains.-As above intimated, any well-conducted survey for under drains contemplates the execution of a system of drains working together and depending upon each other. This will include usually a principal drain, called a Main, and lateral drains, called Minors, which discharge into the main. In an extended system, auxiliary mains called Sub-Mains are also introduced.

Since it is the direct office of the minors to remove the surplus water from the ground, it is of the first importance that they be so located as successfully to perform their functions. To do this requires the exercise of careful judgment on the part of the engineer, respecting the proper directions of the minors and also their distances from each other. Equal care is requisite also in regard to the location of the main, so as properly to receive the water from the minors and discharge it at the principal outlet.

As a rule, the main should be located at the foot of the regular slopes, or along the valleys of the field; and, in
general, the minors should run directly down the slopes, discharging themselves obliquely into the main.

Cases, however, will sometimes occur that require departure from the above rules, but these are to be regarded as "exceptions which prove the rule."

The distances of the minors from each other will be governed largely by the character of the soil as to permeability, and to some extent by the depth of the drains. In a porous soil, as a general rule, the deeper the drain the further it will draw.

Circumstances are infinitely varied. Every situation is a new one and must be treated on its own merits. None but the most general instruction on this point can be given in any treatise. About as practical a suggestion as may be afforded the student is, Go into the field and there mix plenty of brains with your work.
24. Running the Lines.-Having settled the question of the proper system of drains to be adopted, the next thing to be done is to lay out and measure the lines. This is perhaps most conveniently done in the case of under drains, by beginning at the outlet, measuring and staking out, first, the main lines of the system and then the branches.

A distance of 50 ft . between stations is a convenient one in tille draining. In some instances, as where the fall is very slight, a less distance may be desirable; in others a greater one may give equally good results. In addition to the stakes driven at the uniform distances of the stations, a stake should mark the entrance of each minor, and the distance to it should be entered in the notes, in the usual manner. Such stakes mark the points of beginning in running out the minors.

To facilitate examinations for "faults," the points of entrance of the branches in the main drain should be established by witnesses.
25. Taking the Levels.-This is done in the same manner as in the case of open drains, but, perhaps, with a somewhat greater degree of care and precision. The point assumed for the outlet must, of course, be sufficiently low to receive all the water of the field; and at the same time the outlet ought to be high enough to be at all times above the back water of the stream into which the drain empties. A drain is of little more use under a violation of the latter condition than under a disregard of the former.

In assuming the grade, due consideration must be had for proper depth consistently with required fall.

The depth of an under drain should be, at the least, two feet; all the better if three or four feet in most soils.
Henry F. French, author of "Farm Drainage," says: "We cannot, however, against the overwhelming weight of authority, and against the reasons for deeper drainage, which to us seem so satisfactory, conclude that even three feet is, in general, deep enough for under drains. Three-foot drains will produce striking results on almost any wet lands, but four-foot drains will be more secure and durable, will give wider feeding-ground to the roots, better filter percolating water, warm and dry the land earlier in Spring, furnish a larger reservoir for heavy rains, and, indeed, more effectually perform every office of drains."

Accordingly, the rule should be to approximate as closely as possible to what are thus regarded as desirable depths, admitting depths very much below the standard only when we must, in order to have any drains at all.
Upon the question of necessary amount of fall, with which the surveyor is so often confronted in connection with the requirement of desirable depths, it is to be ob. served in the first place that large, deep streams require less fall than small ones; and, again, the form and the
condition of the channel have much to do with the movement of water.
" It has been found in practice that a water-course thirty feet wide and six feet deep will flow at the rate of one mile per hour, with a fall of no more than six inches per mile."

Examples are cited of successful operation of drains with three inches or even two and one-half inches fall to one hundred feet, or even on a dead level.

The contour of the ground will determine the grade of the drain, which will be given all the fall there is. A level drain will work successfully provided it is laid to a true line and kept free from obstructions. The writer successfully lowered two lakes, covering about 120 acres, by an open ditch two feet wide on the bottom, a mile long, and laid perfectly level. The less fall there is, the larger should be the tile used and the greater should be the care taken in laying them to a true grade line and keeping out leaves or other obstructions.
Changes of grade, though undesirable, are admissible when not easily avoided. If possible, the heaviest grades should be in the direction of the outlet. When this can not be, it may be desirable to introduce silt wells at points of any considerable change of grade.

The heights of the outlets of minor drains into the main are usually the heights of grade in the main drain for the same points.
26. Constructing the Drain.-The principal point is the method of opening the trench and laying the tiles on the grade line.

To do this systematically requires a measuring rod six or eight feet in length divided into feet, tenths, and hundredths of feet, the larger divisions being numbered upward, as in the ordinary leveling rod. A cord or wire.
also is needed, which is to be stretehed above the line of the drain and adjusted to a position parallel to the grade line. This is done by inverting the measuring rod on the grade peg and bringing the cord or wire to the division of the rod indicating the cut at that point. The cord is thus placed at the full length of the measuring rod from the grade line or intended bottom of the trench.

The cord may be held each fifty or one hundred feet by two slats, each about seven feet long, and movable about a bolt passing through a little distance from the upper end. These are called Shears. The cord or wire is prevented from slipping by a couple of turns, and is tied to a stake eight or ten feet from the shears.

Another device consists in the use of stakes or posts driven on opposite sides of the ditch, and connected with a cross-bar arranged so that either end may be raised or lowered to a level, and fastened to the posts by a clamp and thumb-screw. The cross-bars being adjusted to the proper height, as above described, the cord or wire is drawn tightly across them, directly over the center line of the drain.

Again, single stakes or posts, driven on one side of the ditch, each having attached at right angles an arm which may be raised or lowered, and secured in place by a clamp and screw, are sometimes employed.

By such means as the above, the ditch is readily dug to just the proper depth, and the tile laid to grade with exceeding accuracy and with great rapidity. The proper distance from the top of the tile to the cord may be indicated by an arm attached to the measuring rod.
27. Size of Tile.-The size of tile required in a given case will depend upon the quantity of water to be removed and the fall available to remove it. Formulas are given in works upon hydraulies, to express the velocity and discharge of water flowing in pipes, but the condi-
tions are so different in case of tiles that such formulas, at best, give only the most roughly approximate results.

Thus, for example, the following, which is Poncelet's formula:

$$
V=48\left\{\frac{D \times H}{L+54 D}\right\}^{1 / 2}
$$

in which, $V=$ approximate velocity in feet per second, $D=$ diameter of pipe in feet, $H=$ total head in feet, and $L=$ total length of pipe in feet.

Having found the velocity, we have Discharge in cu. ft. $=$ vel. \times cross-section of pipe.
Tables XII and XIII are used for the above purpose, the latter quite extensively by drainage engineers and has been found to give good results.

As regards size of tile for main and sub-main drains a good authority says, "that can be regulated only by the person in charge of the drainage at any particular place, after seeing the land opened up and the minor drains discharging. As a rule, a circular pipe of three inches internal diameter will discharge the ordinary drainage of six statute acres, and give sufficient space for the circulation of the air."
This estimate is based upon an amount of annual rainfall of from twenty-six to thirty inches, which differs but slightly from that of Michigan and adjoining States.

In addition to the above, it may be remarked that if the fall in the main is slight, a larger size of tile would be required than if the fall was considerable.

And, again in order to provide suitably for the accumulation of water which occurs toward the outlet, a larger size may be there required than that used in the upper part of the main.
28. Protection at Outlets.-The outlets of underdrains should be protected by some construction to prevent the earth from falling down in front of the drain. A retaining wall of masonry laid in hydraulic cement is the best provision for the purpose. The outlets should be protected also by a coarse grating of some sort in front of the tile to prevent muskrats and other creatures from getting in.

A common practice is to introduce at the outlet a box made of plank a few feet in length, into which the tile is made to discharge.
29. Silt Well.-This is a well sunk below the level of the tile for catching the silt gathered by the drains above it. It serves also the purpose of affording a means of inspecting the working of the drains. Silt wells may be constructed with a view, chiefly, to facilitating the movement of the water at an abrupt bend in the drain. And again, they may be constructed somewhat with reference to convenience of obtaining a pail of water for any purpose, in the field.

SURVEYORS' TABLES.

TABLES.

suggestions to young surveyors on the uses of

THE TABLES.

Traverse Table. -The table calculated to quarter degrees is adapted to the slmplest work of compass surveying, where great accuracy is neither required nor expected. When the transit is used, and the angles are taken to minutes or less, the author prefers the tables of logarithms and logarithmic sines and cosines to any traverse table yet made. They are capable of any required degree of accuracy, and require the use of no more figures than the ordinary traverse table. In transit work, where latitudes and departures are to be calculated, it is well to refer the angles of all lines to a common base, just as in compass surveying all lines are referred to the meridian as a base. Then, in any course,
Latitude $=$ co-sine of angle \times length of the course.
Departure $=$ sine of angle \times length of the course. Using the logarithmic tables, this is a short and simple computation.
Example 1.-Angle, $36^{\circ} 22^{\prime}$. Distance, 47.63. Required the latitude and departure.
Log. of $47.63=1.677881$ to which add \log. sine, $36^{\circ} 22^{\prime}=9.773018$
11.450899 the log of $28.24+=$ departure.

Log. of $47.63=1.677881$ to which add
\log. cos., $36^{\circ} 22^{\prime}=9.905925$
11.583806 the log. of $38.35+=$ latitude.
2. Course N. $57^{\circ} 21^{\prime} 20^{\prime \prime}$ E. $34.361 / 2$ chains. Required the latitude and departure.

1. The Table of Tangents is convenient in estimating courses of lines to be run.
Example 1.-From the quarter post on the east side of Section 2 I wish to run a line for a road straight to a point 80 rods north of the southwest corner of Section 30. What course shall I run?
Solution.-Distance west, 5 miles; distance south, 4.25 miles, which divided by 5 equals the natural tangent of the angle which the course makes with an east and west line, $=.850$. Find this number in the table of natural tangents and take out the corresponding angle, $=40^{\circ} 22^{\prime}$, which is the same as $\mathrm{S} .49^{\circ} 38^{\prime} \mathrm{W}$.
2. What is the course from the village of Climax, at the east quarter post of Section 3, Township 3 south, Range 9 west, to the village of Richland, at the southwest corner of Section 14, Township 1 south, Range 10 west? To the village of Schoolcraft, at the southeast corner of Section 19, T. 4 S., R. 11 W., from Climax? What to Schoolcraft from Richland?
3. The Table of Secants is convenient for finding the hypothenuse of a triangle, thus simplifying many computations in the field. Secants not given in the table may be found by interpolation or by the formula:

$$
\text { Secant }=\frac{1}{\operatorname{cosin} \theta}
$$

The following example indicates one of the practical applications in the field:

Example.-Lots in a

Fig. 81. city are laid out with their lines perpendicular to N Street and running through to M Street. Required the width (x) of the lots on M Street.
Call the width of the lots on N Street r. Measure the angle A.

Then $x=r$, sec. A. If $r=100$, as is common, x may be taken directly from the table. If $r=100, A=21^{\circ} 40^{\circ}$, then $x=107.6$. In laying. out such lots it is generally easier and quicker to measure this distance on the street line than it is to set up the transit for each lot line and run it in.
3. Table of Departures. - This table has many convenient uses, of which a few examples are given.

Examples.-1. I wish to stake out a line along an old hedge row from quarter-post to section corner. On one side is a clear field. I go to the section corner, and make an offset of 25 links and set up a flag. I then go to the quarter-post, and, making an equal offset, find that 1 cannot see the flag; so I offset until I can see it-say 37 links more. I sight to the flag, find from the table of lepartures the angle corresponding to 37 links at a distance of 40 chains $=32^{\prime}$, turn off the angle on the transit, and run the line back parallel with the section line, setting stakes on the true line, by 62 link offsets, as often as required.
2. To run a true half-quarter-line when one end is inaccessible.

Fig. 82.

Fig. 82 represents the whole section, and $a b$ the line to be run.

Bisect $c g$, setting stake at a. Measure the angle $a c d$, which we will call $89^{\circ} 24^{\prime}$. By the field notes the north line of the section measures 80.22, hence $a c=$ $20.05 \frac{1}{2}$. The south line measures
79.63, one-fourth of which is 19.90 . Hence the section line and half-quarter-line converge at the rate of 20.055 $19.9075=.1475$ chains per mile. From the table of departures we find the corresponding angle to be a little more than 6^{\prime}. Hence we make the angle $g a b 6^{\prime}$ greater than $a c d=89^{\circ} 30+^{\prime}$, and run the line accordingly.
The foregoing are given as samples of many laborsaving uses of the tables, which the young surveyor should study out and be prompt to avail himself of when the occasion requires.

TRIGONOMETRIC FUNCTIONS AND FORMUL \mathbb{E}.

Fig. 83.

Then $\sin A=B C \quad \cos A \quad=A C$
$\tan A=D F \quad \cot A=H G$
$\sec A=A D \quad \operatorname{cosec} A=A G$
versin $A=C F \quad$ coversin $A=B K$
exsec $A=B D \quad$ coexsec $A=B G$
chord $A=B F \quad$ chord $2 A=2 B C$.
Tables of these functions are calculated with radius $A H=1$.
$\begin{array}{lll}\operatorname{Sin} A=\frac{a}{c}=\cos B & \cos A & =\frac{b}{c}=\sin B \\ \operatorname{Tan} A=\frac{a}{b}=\cot B & \cot A & =\frac{b}{a}=\tan B\end{array}$
$\operatorname{Sec} A=\frac{c}{b}=\operatorname{cosec} B \quad \operatorname{cosec} A=\frac{c}{a}=\sec B$
Vers $A=\frac{c-b}{c}-\operatorname{covers} B \quad$ coversin $A=\frac{c-a}{c}=\operatorname{vers} B$ $\operatorname{Exsec} A=\frac{c-b}{b}=\operatorname{cocxsec} B \quad$ coexsec $A=\frac{c-a}{a}=\operatorname{exsec} B$

$$
a=\left\{\begin{array}{l}
c \sin A=b \tan A \\
c \cos B=b \cot B \\
\sqrt{(c+b)(c-b)}
\end{array} \quad b=\left\{\begin{array}{l}
c \cos A=a \cot A \\
c \sin B=a \tan B \\
\sqrt{(c+a)(c-a)}
\end{array}\right.\right.
$$

$$
c= \begin{cases}\frac{a}{\sin A}=\frac{b}{\cos A} & C=90^{\circ}=A+B \\ \frac{a}{\cos B}=\frac{b}{\sin B} & \text { Area }=\frac{a b}{2} \\ \sqrt{a^{2}+b^{2}} & \end{cases}
$$

$b=\frac{c}{\cot A-\cot B}$
Useful in measuring heights of objects or passing obstacles in line.
Fig. 84.

A MANUAL OF LAND SURVEYING.
SOLUTION OF OBLIQUE TRIANGLES.
Let $A B C$ represent the angles, and $a b c$ the opposite sides, of any oblique triangle.:

	LO G		TA \qquad HMS 1 тO	OH M 00	NUM	E	
N.	Log.	N.	Log.	N.	Log.	N.	Log.
1	0000000	26	1414973	51	1707570	76	1880814
2	0301030	27	1431364	52	1716003	77	1886491
3	0477121	28	1447158	53	1724276	78	1892095
4	0602060	29	1462398	54	1732394	79	1897627
5	0698970	30	1477121	55	1740363	80	1903090
7	0778151	31	1491362	56	1748188	81	1908485
7	0845098	32	1505150	57	1755875	82	1913814
8	- 0903090	33	1518514	58	1763428	83	1919078
9	0954243	34	1531479	59	1770852	84	1924279
10	1000000	35	1544068	60	1778151	85	1929419
11	1041393	36	1556303	61	1785330	86	1934498
12	1079181	37	1568202	62	1792392	87	1939519
13	1113943	38	1579784	63	1799341	88	1944483
14	1146128	39	1591065	64	1806180	89	1949390
15	1176091	40	1602060	65	1812913	90	1954243
16	1204120	41	1612784	66	1819544	91	1959041
17	1230449	42	${ }_{1}^{1} 623249$	67	1826075	92	1963788
18	${ }_{1}^{1} 235278$	43	${ }_{1}^{1} 633468$	68	1882509 1838849	93	1968483
19	$\begin{array}{ll}1278754 \\ 13 & 301030\end{array}$	44	1643453 1653213	69 70	1838849 1845098	94 95	1973128 1977724
21	1322219	46	1662758	71	1851258	98	1982271
22	1842423	47	1672098	72	1857332	97	1986772
23	1361728	48	1681241	73	1863323	98	1991228
24	1380211	49	1690196	74	1869232	99	1995685
25	1397940	50	1698970	75	1875061	100	2.000000

No.	O	1	2	3				7	\bigcirc	9	Diff.
100	000000	000434	000868	001301	00173	02166	00259	229	003461		
1	4321	4751	5181	5609	6038	6466	6894	7321	7748	8174	428
2	8600	9026	9451	9876	010300	010724	011147	011570	011993	012415	424
3	012837	013259	013680	014100	4521	4940	5360	5779	6197	6616	419
4	7033	7451	7868	8284	8700	9116	9532	9947	020361	020775	416
	021189	021603	022016	022428	022841	023252	023664	024075	4486	4896	412
6	5306	5715	6125	6533	6942	7350	7757	8164	8571	8978	408
	9384	9789	030195	030600	031004	031408	031812	032216	032619	033021	404
8	033124	033826	4227	4628	5029	5430	5830	6230	6629	7028	400
9	7426	7825	8223	8620	9017	9414	9811	04C207	040602	040998	396
110	041393	041787	042182	042	042969	043362	0		044540	32	93
1	5323	5714	6105	6495	6885	7275	7664	8053	8442		89
	9218	9606	9993	050380	050766	51153	051538	051924	052309	052694	386
	053078	053463	053846	4230	4613	4996	5378	5760	6142	6524	382
4	6905	7286	7666	8016	8426	8805	9185	9563	9942	060320	379
5	060698	061075	061452	061829	062206	062582	06295	063333	063709	4083	376
6	4458	4832	5206	5580	5953	6326	6699	7071	7443	7815	373
7	8186	8557	8928	9298	9668	070038	070407	070776	071145	071514	369
8	071882	072250	072617	72985	073352	3718	4085	4451	4816	5182	366
9	5547	5912	6276	6640	7004	7368	7731	8094	8457	8819	363
120	079181	0795	079904	080266	080626	080987	08134	081707	082067	082426	360
1	082785	083144	083503	3861	4219	4576	4934	5291	5647	6004	357.
2	6360	6716	7071	7426	7781	8136	8490	8845	9198	9552	355
3	9905	090258	090611	090963	091315	091667	092018	092370	092721	093071	351
4	093422	3772	4122	4471	4820	5169	5018	5866	6215	6562	349
5	6910	7257	7604	7951	8298	8644	8990	9335	9681	100026	346
	100371	100715	101059	101403	101747	102091	102434	102777	103119	3462	343
8	3804	4146	4487	4828	5169	5510	5851	6191	6531	6871	341
8	7210	7549	7888	8227	8565	8903	9241	9579	9916	110253	338
9	110590	110926	111263	111599	111934	112270	112605	112940	113275	3609	335
130	113943	114277	114611	114944	115278	115611	115943	116276	116608	1169	333
1	7271	7603	7934	8265	8595	8926	9256	9586	9915	12024	330
2	120574	120903	121231	121560	121888	122216	122544	122871	123198	3525	328
3	3852	4178	4504	4830	5156	5481	5806	6131	6456	6781	325
4	7105	7429	7753	8076	8399	8722	9045	9368	9690	130012	323
	130334	130655	130977	131298	131619	131939	132260	132580	132900	3219	321
6	3539.	3858	4177	4496	4814	5133	5451	5769	6086	6403	318
7	6721	7037	7354	7671	7987	8303	8618	8934	9249	9564	315
8	9879	140194	140508	140822	141136	141450	141763	142076	142389	142702	314
	143015	3327	36	3951	4263	4574	4885	5196	5507	5818	311
140	146128	146438	146748	147058	147367	147676	147985	148294	148603	148911	S09
1	9219	9527	9835	150142	150449	150756	151063	151370	151676	151982	307
2	152288	152594	152900	3205	3510	3815	4120	4424	4728	5032	305.
3	5336	5640	5943	6246	6549	6852	7154	7457	7759	8061	303
4	8362	8664	8965	9266	9567	9868	160168	160469	160769	161068	301
	161368	161667	161967	162266	162564	162863	3161	3460	3758	4055	299
6	4353	4650	4947	5244	5541	5838	6134	6430	6726	7022	297
7	7317	7613	7908	8203	8497	8792	9086	9380	9674	996	295
8	170262	170555	170848	17141	171434	171726	172019	172311	172603	172895	293
9	3186	3478	3769	4060	4351	4641	4932	5222	5512	5802	291
150	176091	176381	176670	176959	177248	177536	177825	178113	178401	178689	289
1.	8977	9264	9552	9839	180126	1804131	180699	180986	181272	181558	287
2	181844	182129	182415	182700	2985	3270	3555	3839	4123	4407	285
3	4691	4975	5259	5542	5825	6108	6391	6674	6956	7239	283
4	7521	7803	8084	8366	8647	8928	9209	9490	9771	190051	281
5	190312	190612	190892	191171	191451	191730	192010	192289	192567	2846	279
6	3125	3403	${ }_{6} 3681$	3959	4237	4514	4792	5069	5346	5623	278
8	5900 8657	6176 8932	6453	6729	7005	7281	7556	7832	8107	8382	276
8	8657	-8932	9206	9481	9755	200029	200303	200577	200850	201124	274
9	201397	201670	20194	202216	202488	2761	3033	3305	3577	3848	272
No.	0	1	2	3	4	5	6	7	8	9	Diff.

No.	.	1	2	E	4	5	6	7	8	9	Diff.
160	204120	204391	204663	204934	205204	205475	205746	206016	206286	206556	271
1	6826	7096	7365	+ 7634	7904	8173	- 8441	8710	- 8979	9247	269
2	9515	9783	210051	210319	210586	210853	211121	211388	211654	211921	267
	212188	212454	2720	2986	3252	3518	3783	4049	4314	4579	266
	4844	5109	5373	5638	5902	6166	6430	6694	6957	7221	264
5	7484	7747	8010	8273	8536	8798	9060	9323	9585	9846	262
	220108	220370	220631	220892	221153	221414	21675	221936	222196	222456	261
	2716	2976	3236	3496	3755	4015	- 4274	4533	4792	5051	259
8	5309	5568	5836	6084	6342	6600	6858	7115	7372	7630	258
9	7887	8144	8400	8657	8913	9170	9426	9682	9938	230193	256
170	2304	2307	3096	2312	31470	231724	231979	232234	232488	232742	254
1	12996	3250	3504	3757	4011	4264	- 4517	4770	5023	5276	253
2	5528	5781	6033	6285	6537	6789	7041	7292	7544	7795	252
	8046	8297	8548	8799	9049	9299	9550	9800	240050	240300	250
	240549	240799	241048	241297	241546	241795	242044	242293	- 2541	2790	249
5	-208	3286	3534	3782	4030	4277	4525	4772	5019	5266	248
6	5513	5759	6006	6252	6499	6745	6991	7237	7482	7728	246
7	7973	8219	8464	8709	8954	9198	9443	9687	9932	250176	245
	250420	250664	250908	251151	251395	251638	251881	252125	252368	2610	243
9	2853	3096	3338	3580	3822	4064	4306	4548	4790	5031	242
180	255	25	257755	255996	256237	256	256	256958	257198	257439	241
1	7679	7918	8158	8398	8637	8077	9116	9355	9594	9833	239
	260071	260310	260548	260787	261025	261263	261501	261739	261976	262214	238
3	2451	2688	2925	3162	3399	3636	3873	4109	4346	4582	237
4	4818	5054	5290	5525	5761	5996	6232	6467	6702	6937	235
5	7172	7406	7641	7875	811.	8344	8578	8812	9046	9279	234
6	9513	9746	9980	270213	270146	270679	270912	271144	271377	271609	233
	271842	272074	272306	2538	2770	3001	3233	3464	3696	3927	232
8	4158	4389	4620	4850	5081	5311	5542	5772	6002	6232	230
9	6462	6652	69	715	738		7838		829	8525	229
	278	278982	279211	27	27	279895	280123	280351	280578	280806	228
1	281033	281261	281488	281715	281942	282169	2396	2622	2849	3075	227
2	3301	3527	3753	3979	4205	4431	4656	4882	5107	5332	226
3	5557	5782	6007	6232	6456	6581	6905	7130	7354	7578	225
4	7802	8026	8249	8473	8696	8920	9143	9366	9589	9812	223
	290035	290257	290480	290702	290925	291147	291369	291591	291813	292034	222
6	2256	2478	2699	2920	3141	3363	3584	3804	4025	4240	221
7	4466	4687	4907	5127	5347	5567	5787	6007	6226	6446	220
8	6665	6884	7104	7323	7542	7761	7979	8198	8416	8635	219
9.	8853	9071		9507	972		300161	300378	300595	300813	218
2 CO	301030	301247	301464	301681	301898	302114	302331	302547	302764	302980	
1	3196	3412	3628	3844	4059	4275	4491	4706	4921	5136	216
2	5351	5566	5781	5996	6211	6425	6639	6854	7068	7282	214
3	7496	7710	7924	8137	8351	8564	8778	8991	9204	9417	213
5	9630	9843	310056	310268	310481	310693	310906	311118	311330	311542	212
5	31754	311966	2177	2389	2600	2812	3023	3234	3445	3656	211
6	3867	4078	4289	4499	4710	4920	5130	5340	5551	5760	210
7	5970	6180	6390	6599	6809	7018	7227	7436	7646	7854	209
8	8063	8272 320354	8481 320562	8689	8898	9106	9314	9522	9730	9938	208
10		320354					2139	1098	3218	322012	207
						531	323458	323665	323871	324077	206
1	4282	4488	4694	4899	5105	5310	5516	5721	5926	6131	205
2	6336	6541	6745	6950	7155	7359	7563	7767	7972	8176	204
3	8380	8583	8787	8991	9194	9398	9601	9805	330008	330211	203
4	330414	330617	330819	331022	331225	331427	331630	331832	2034	2236	202
5	2438	2640	2842	3044	3246	3447	3649	3850	4051	4253	202
6	44.54	4655	4856	5057	5257	5458	5658	5859	6059	6260	201
7	6460	6660	6860	7060	7260	7459.	7659	7858	8058	8257	200
8	8456	8656	8855	9054	9253	9451	9650	9849	340047	340246	199
9	34044	340642	340841	341039	341237	341435	341632	341830	2028	2225	198
No.	10	1	2	3	4	5	6	7	8	9	DIf.

.	0	1	2	3	4	5	6	7	8		Iff.
0	342423	3426203	$34 \sim 817$	3430143	343212	3434093	343606	3438023	343999	6	197
1	4592	4589	4785	4981	5178	5374	5570	5766	5962	61	96
2	6353	0549	674	6939	7135	7330	7525	7720	7915	8110	195
3	8305	8500	8694	8889	9083	9278	9472	9666	9860	350054	194
4	350248	3504423	360636	3508293	3510233	351216	351410	3516033	351796	1	193
5	2183	2375	2568	2761	2954	3147	3339	3532	3724	3916	193
6	4108	4301	4493	4685	4876	5068	5260	5452	5643	4	192
7	6026	6217	408	599	6790	981	172	3	7554		191
8	7935	8125	316	506	8696	8886	9076	266	56	6	190
9	98353	360025	360215	360404	360593	360783	360972		361350		89
	361728	361917	362105	362294	3624823	362671	362859	363048	363236	63424	188
	3612	3800	3988	4176	4363	4551	4739	4926	5113	5301	188
2	5488	5675	5862	6049	6236	6423	6610	7796	83	7169	7
3	7356	75	7729	7915	8101	8287	8473	8659	5	$\begin{array}{r}9030 \\ \hline 70883\end{array}$	186
	9216	9401	9587	9772	9958	370143	370328	370513	370698	708	
5	371068	371253	371437	371622	371806	1991	175	236	2544		
6	2912	3096	3280	3464	3647	3831	15	4198	4382	4565	184
7	4748	4932	5115	5298	5481	64	6	6029 7852			
8	6577	759	6942	7124	7306						181
	8398										
240	380211	380392	380573	380754	38093	381115 2917	381296 3097	381476 3277	381656	38	180
1	2017	2197	2377	2557 4353	27	2917 4712	48991	5070	5249	54	179
3	5606	6780	8964	142	6321	499	6677	6856	7034	2	178
4	7390	7568	746	7923	8101	8279	8456	8634	811	8989	178
5	9166	9343	9520	9698	9875	390051	390228	390405	390582	3907	7
6	390935	391112	391288	391464	391641	1817	1993	2169	23	2521	6
7	2697	2873	3048	3224	3400	3575	3751	3926	1101	77	6
8	4452	4627	4802	4977	5152	5326	5501	5676	5850	6025	175
9	6199	6374	6548	6722	6896	7071	7245	7419	7592		174
260	397940	398114	398287	398461	398634	398808	398981	399154	399328	399	173
1	9674	9847	400020	400192	400365	400538	400711	400883	401056	401	173
2	401401	401573	1745	1917	. 2089	2261	2433	2605	2777	2949	172
3	3121	- 3292	3464	3635	3807	3978	4149	4320	4492		1
4	4834	5005	6176	5346	5517	5688	5858	6029	99	6370	171
5	6540	6710	6881	7051	17221	7391	7561	7731	7901	307	0
6	8240	8410	8579	8749	8918	9087	9257				169
7	9933	410102	410271	410440	410609	410777	410946	411114	411283	4114	169
8	411620	1788	1956	2124	4	2461	43	4472	46		
9	3300	346	3635	3803	3970	4137		44			167
260	414973	415140	415307	415474	415641	415808	415974	416141	416308	416474	7
1	6641	-6807	6973	7139	7306	7472	7638	7804	7970	8135	6
2	8301	8467	8633	8798	8964	9129	9295				
3	9956	420121	420286	420451	1420616	420781	420945	421110	421275	42143	4
4	421604	1768	1933	2097	72261	242	2928	4392	4555		
5	3246	3410	- 3574	3737	73901	14065	4228	4392	4555	4718	164
6	4882	5045	5208	537	1.5534	${ }^{4} 5697$	86	6023	7811	1973	163
7	6511	6674	6836	6999	7161	1	86	7648	811	1973	162
8	8135	8297	-8459	8621	1 8783	8944 43059	9106 430720				
9	9752	- 9914	430075	430236	6430398	430559	430720	430881	1431042	4312	
270	431364	431525	43168	431846	6432007	432167	432328	432488	8432649	32	161
	2969	3130	- 3290	3450	03610	- 377	3930	4090	249	0	60
	4569	4729	4888	5048	85207	7 6367	526	5685	58	600	159
3	6163	- 6322	26481	6640	06799	96957	116	17275	7433	759	9
	-7751	7909	9 8067	8226	68384	48542	8701	18859	$9 \quad 90$	9175	158
	9333	9491	19648	9806	69964	44012	440279	440437	44059	075	158
6	440909	441066	641224	441381	1441538	81695	1852	2009	21	2323	157
7	/ 248	2637	72793	2950	03106	6 326	3419	1 3576	$6 \quad 373$	3889	5
8	84045	5201	14357	4513	34669	94825	4981	5137	7	3449	156
θ	95604	45760	05915	6071	16226	66382	6537	76692	26848	7003	150
	0	1	2	3	4	5	6	7	8	9	

No	-	1						7	8	9	
280											
	8706	8861	9015	9170	9324	9478	9633	978	994	4500	154
	50249	504	50557	4507	508	510	51	451326			54
				22							153
	331	3471	${ }^{3624}$	3777	3930	408	423	438	454	469	53
	4845	4997	5150	530	545			591		6214	152
	6366	${ }^{6518}$,	682	697	712	727	742	7579	7731	52
	7882	${ }^{8033}$	8184		8487	86	878	894	9091		151
		543				16014		6049			151
	4608	1048	461198	461348	99	1649	1799	194	209	224	150
0	4623	62548	462697	62847	462997	463146	163296		50		
		4042	4191	4340	4490		4788	493		5234	149
	${ }_{68}^{53}$		5680	582	${ }_{7460} 597$	61	627	620	6571	6719	
								790			${ }_{148}^{148}$
			70116		70410	7055	70704	7085		47114	47
	712	1438	1585	17	187	2025	2171	231	24		47
	121	仡	359	31	3341	34				4011	146
	4216	436	450			430				bse	146
	5671	581									

 $248000748015148029448043848058248072548086948101248115648129 n 144$ $\begin{array}{lllllllllllll}3 & 1443 & 1586 & 1729 & 1872 & 2016 & 2159 & 2302 & 2445 & 2588 & 2731 & 143\end{array}$

4	2874	3016	3159	3302	3445	3587	3730	3872	4015	4157	143
5	4300	4442	4585	4727	4869	5011	5153	5295	5437	5579	142
6	5721	5863	6005	6147	6289	6430	6572	6714	6855	6997	142
7	7138	7280	7421	7563	7804	7845	7986	8127	8269	8410	141

1	2760	2900	3040	3179	3319	3458	3597	3737	3876	4015	139
2	4155	4294	4433	4572	4711	4850	4989	5128	5267	5406	139
3	5544	5683	5822	5960	6099	6238	6376	6515	6653	6791	139
4	6930	7068	7206	7344	7483	7621	7759	7897	8035	8173	138
	8311	8448	8586	8724	8862	8999	9137	9275	9412	9550	138
	9687	9824	9962	500099	500236	500374	500511	500648	500785	500922	137
7	501059	501196	501333	1470	1607	1744	1880	2017	2154	2291	137
8	2427	2564	2700	2837	2973	3109	3246	3382	3518	3655	136
9	3791	3927	4063	4199	4335	4471	4607	4743	4878	5014	136
320	505150	505286	505421	505557	505693	505828	505964	506099	506234	506370	136
1	6505	6640	6776	6911	7046	7181	7316	7451	7586	7721	135
2	7856	7991	8126	8260	8395	8530	8664	8799	8934	9068	135
3	9203	9337	9471	9606	9740	9874	510009	510143	510277	510411	134
	510545	510679	510813	510947	511081	511215	1349	1482	1616	1750	134
5	1883	2017	2151	2284	2418	2551	2684	2818	2951	3084	133
6	3218	3351	3484	3617	3750	3883	4016	4149	4282	4415	133
	4548	4681	4813	4946	5079	5211	5344	5476	5609	5741	133
8	5874	6006	6139	6271	6403	6535	6668	6800	6932	7064	132
9	7196	7328	7460	7592	7724	7855	7987	8119	8251	8382	132
330	518514	518646	518777	518909	519040	519171	519303	519434	519566	519697	131
1	9828	9959	520090	520221	520353	520484	520615	520745	520876	521007	131
2	521138	521269	1400	1530	1661	1792	1922	2053	2183	2314	131
3	2444	2575	2705	2835	2966	3096	3226	3356	3486	3616	130
-	3746	3876	4006	4136	4266	4396	4526	4656	4785	4915	130
5	5045	5174	5304	5434	5563	5693	5822	5951	6081	6210	129
6	6339	6469	6598	6727	6856	6985	7114	7243	7372	7501	129
7	7630	7759	7888	8016	8145	8274	8402	8531	8660	8788	129
8	8917	9045	9174	9302	9430	9559	9687	9815	9943	530072	128
9	530200	530328	530456	530584	530712	530840	530968	531096	531223	1351	128
No,	0	1	3	3	4	5	6	7	8	9	17.

No.	0	1	2	3	4	5	6	7	8	9	DIff.
340	531479	531607	531734	531862	531990	32117	532245	3237	532500	532627	8
1	2754	2882	3009.	3136	3264	3391	3518	3645	3772	3899	127
2	4026	4153	4280	4407	4534	4661	4787	4914	5041	5167	127
3	5294	5421	5547	5674	5800	5927	6053	6180	6306	6432	126
4	6558	6685	6811	6937	7063	7189	7315	7441	7567	7693	126
5	7819	7945	8071	8197	8322	8448	8574	8699	8825	8951	126
6	9076	9202	9327	9452	9578	9703	9829	9954	540079	540204	125
	540329	540455	540580	540705	540830	540955	541080	541205	1330	1454	125
8	1579	1704	1829	1953	2078	2203	2327	2452 3696	2576 3820	2701	124
9	2825	2950	3074	3199	3323	3447	3571	3696	3820	3944	124
50	544068	544192	544316	544440	544564	544688	544812	544936	545060	545183	124
1	5307	5431	5555	5678	5802	5925	6049	6172	6296	6419	124
2	6543	6666	6789	6913	7036	7159	7282	7405	7529	7652	123
3	7775	7898	8021	8144	8267	8389	8512	8635	8758	8881	123
4	9003	9126	9249	9371	9494	9616	9739	9861	9984	550106	123
5	50228	550351	550473	550595	550717	550840	550962	2303	551206 2425	1328 2547	122
6	1450	1572	1694	1816	1938	2060	2181	3519	2425	37762	121
8	2668	2790	412911	42033	3155	3276 4489	43910	4731	4852	4973	121
9	5094	5215	5336	5457	5578	5699	5820	5940	6061	6182	121
360	356303	556423	55654	55666	556785	556905	557026	57146	557267	57387	120
1	7507	7627	7748	7868	7988	8108	8228	8349	8469	8589	120.
2	8709	8829	8948	9068	9188	9308	9428	9548	96	9787	120
3	9907	560026	560146	560265	560385	560504	560624	5607	560	009	120
	61101	1221	1340	1459	1578	1698	1817	1936	2055	21	119
5	2293	2412	2531	2650	2769	2887	3006	3125	3244	3362	119
6	3481	3600	3718	3837	3955	4074	4192	4311	4429	4548	119
7	4666	4784	4903	5021	5139	5257	5376	5497	5612	5730	118
8	5848	5966	6084	6202 7379	6320 7497	6437 7614	6555 7732	6673 7849	7967	6909 8084	118
370	568202	568319	568436	568554	568671	568788	568905	569023	569140	569257	117
1	9374	9491.	9608	9725	9842	9959	570076	570193	570309	570426	117
	570543	570660	570776	57c893	571010	571126	1243	1359	1476	1592	117
3	1709	1825	1942	2058	2174	2291	24071	2523	2639	2755	116
4	2872	2988	3104	3220	3336	3452	3568	3684	3800	3915	116
5	4031	4147	4263	4379	4494 5650	4610	4726 5880	4841 5996	4957	5072	116
6	5188 6341	5303 6457	5419 6572	6534	5650	5765	7880	7147	7262	${ }_{7326} 7$	115
8	7492	7607	7722	7836	7951	8066	8181	8295	8410	8525	115
9	8639	8754	8868	8983	90	9212	9326	1		9669	114
380	579784	579898	580012	580126	580241	580355	580469	580583	5806	580811	114
1	580925	581039	1153	1267	1381	1495	1608	1722	1836	1950	114
2	2063	2177	2291	2404	2518	2631	2745	2858	2972	3085	114
3	3199	3312	3426	3539	3652	3765	3879	3992	410	4218	113
	4331	4444	4557	4670	4783	4896	6137	6250	5	5348	113
6	5461	5574.	5686 6812	6925	7037	7149	7262	7374	7486	7599	113
7	7711	7823	7935	8047	8160	8272	8384	8496	8608	8720	112
8	8832	8944	9056	9167	9279	9391	9503	9615	9726	9838	112
9	995	590061	590173	590284	590396	590507	590619	590730	5908	59095	112
390	591065	591176	591287	59139	591510	591621	591732	591843	591955	592066	111
1	2177	2288	2399	2510	2621	2732	2843	2954	3064	3175	111
2	3286	3397	3508	3618	3729	3840	3950	4061	4171	4282	111
3	4393	4503	4614	4724	4834	4945	5055	5165	527	5386	110
4	5496	5606	5717	5827	5937	6047	6157	6267	637	648	110
5	6597	6707	6817	6927	7037	7146	7256	7366	7476	7586	110
6	7695	7805	7914	8024	8134	${ }_{9337}^{8243}$	8353	8462 956	8572	8681 9774	1109
7	8791 9883	8900 9992	9009 600101	9119 600210	9228 600319	9337 600428	9446 600537	9556 600646	600755	9774 600864	109
9	600973	601082	1191	1299	1408	1517	1625	1734	18	1951	109
No.	O	1	2	3	4	5	6	7	8	9	Diff.

TABLE I. LOGARITHMS OF NUMBERS.

No.	0	1	2	3	4	5	6	7	8	9	Diff.
400	602060	602169	602277	602386	602494	602603	602711	602819	602928	603036	108
1	3144	3253	3361	3469	3577	3686	3794	3902	4010	4118	108
2	4226	4334	4442	4550	4658	4766	4874	4982	5089	5197	108
3	5305	5413	6521	5628	5736	5844	5951	6059	6166	6274	108
4	6381	6489	6596	6704	6811	6919	7026	7133	7241	7348	107
5	7455	7562	7669	7777	7884	7991	8098	8205	8312	8419	107
6	8526	8633	8740	8847	8954	9061	9167	9274	9381	9488	107
$\begin{aligned} & 7 \\ & 8 \end{aligned}$	${ }_{610660}^{9594}$	9701 610767	9808 610873	9914 610979	610021 1086	610128	610234 1298	610341 1405	610147 1511	610554 1617	106
9	1723	1829	1936	2042	2148	22.54	2360	2466	2572	2678	106
410	612784	612890	612996	613102	613207	613313	613419	613525	613630	613736	106
1	3842	3947	4053	4159	4264	4370	4475	4581	4686	4792	106
2	4897	5003	5108	5213	5319	5424	5529	5634	5740	5845	105
3	5950	6055	6160	6265	6370	6476	6581	6686	6790	6895	105
4	7000	7105	7210	7315	7420	7525	7629	7734	7839	7943	105
5	8018	8153	8257	8362	8466	8571	8676	8780	8884	8989	105
6	9093	9198	9302	9106	9511	9615	9719	9824	9928	620032	104
	620136	620240	620344	620448	620552	620656	620760	620864	620968	1072	104
8	1176	1280	1384	1488	1592	1695	1799	1903	2007	2110	104
9	2214	2318	2421	2525	2628	2732	2835	2939	3042	3146	104
420	623	623353	623456	6235	6236	623766	623869	623973	624076	624179	103
1	4282	4385	4488	4591	4695	4798	4901	5004	5107	5210	103
2	5312	5415	5518	5621	5724	5827	5929	6032	6135	6238	103
3	6340	6443	6546	6648	6751	6853	6956	7058	7161	7263	103
4	7366	7468	7571	7673	7775	7878	7980	8082	8185	8287	102
5	8389	8491	8593	8695	8797	8900	9002 630021	9104	9206	9308	102
	9410 630428	${ }_{630530}^{9512}$	${ }_{630631}^{9613}$	630733	630835	630936	1038	1139	1241	630326	102
8	144	1545	1647	1748	1849	1951	2052	2153	2255	2356	101
9	2457	2559	2660	2761	2862	2963	3064	3165	3266	3367	101
430	63346	633569	633670	633771	633872	633973	6340	634175	634276	634376	101
1	4477	4578	4679	4779	4880	4981	5081	5182	5283	5383	101
2	5481	5584	5685	5785	5886	5986	6087	6187	6287	6388	100
3	6488	6588	6688	6789	6889	6989	7089	7189	7290	7390	100
4	7490	7590	7690	7790	7890	7990	8090	8190	8290	8389	100
5	8489	8589	8639	8789	8888	8988	9088	9188	9287	9387	99
6	9486	9586	9686	9785	9885	9984	640084	640183	640283	640382	99
	640481	640581	640680	640779	640879	640978	1077	1177	1276	1375	99
8	1474	1573	1672	1771	1871	1970	2069	2168	2367	2366	99
9	2465	2563	2662	2761	2860	2959	3058	3156	3255	3354	99
440	643453	643551	643650	643749	643847	643946	644044	644143	644242	644340	98
1	4439	4537	4636	4734	4832	4931	5029	5127	5226	5324	98
2	5422	5521	5619	5717	5815	5913	6011	6110	6208	6306	98
3	6404	6502	6600	6698	6796	6894	6992	7089	7187	7285	98
4	7383	7481	7579	7676	7774	7872	7969	8067	8165	8262	98
5	8360	8458	8555	8653	8750	8848	8945	9043	9140	9237	97
6	9335	9432	9530	9627	9724	9821	9919	650016	650113	650210	97
	650308	650405	650502	650599	650696	650793	650890	0987	1084	1181	97
8	1278	1375	1772	1569	1665	1762	1859	1956	2053	2150	97
9	2246	2343	2440	2536	26	27	28	29	3019	3116	97
450	653213	653309	653105	653502	653598	653695	653791	653888	653984	654080	96
1	4177	4273	4369	4465	4562	4658	4754	4850	4946	5042	96
2	5138	5235	5331	5427	5523	5619	5715	5810	5906	6002	96
3	6098	6194	6290	6386	6182	6577	6673	6769	6864	6960	96
4	7056	7152	7247	7343	7438	7534	7629	7725	7820	7916	96
5	8011	8107	8202	8298	8393	8488.	8584	8679	8774	8870	95
6	8965	9060	9155	9250	9316	9441	9536	9631.	9726	9821	95
7	9916	660011	660106	660201	660296	660391	660486	660581	660676	660771	95
86	660865	0960	1055	1150	1245	1339	1434	1529	1623	1718	95
9	1813	1907	2002	2096	2101	2286	2380	2475	2569	2663	95
No.	0	1	2	3	4	5	6	7	8	9	Diff.

No.	0	1	2	3	4	5	6	γ	8	9	Dif.
46066	66275866	6628526	662947	6630416	6631356	6632306	6633246	663418	663512	663607	4
4606	3701	3795	3889	3983	4078	41	4266	4360	3	5487	94 94
2	4642	4736	4830	4924	5018	6112	6143	6237	6331	6424	94
3	5581	${ }_{6} 6675$	6769	6799	6892	6986	7079	7173	7266	7360	94
4	7453	7546	7640	733	7826	7920	8013	8106	8199	8293	93
6	8386	8479	8572	8665	8759	8852	8945	9038	9131	9224	93
7	9317	9410	9503	9596	9689	82	9875	9967	670060	670153	93
6	67024667	6703396	6704316	6705246	670617	0710		08		2005	93
9	1173	1265	1358	1451	1543	1636	1728	1821	19	2005	93
4706	6720986	6721906	6722836	672375	672467	672560	672652	366	6728	6729	2
1	3021	3113	3205	3297	3390	3482	3574	3666	37		92
2	3942	4034	4126	4218	4310	4402	5494	4585	4595	5687	92
3	4861	4953	5045	5137	6228	${ }_{6} 5236$	5412	6419	6511	6602	92
4	5778	5870	5362	6053	7059	7151	7242	7333	7424	7516	91
5	6694	6785	6876	7981	7972	1063	8154	8245	8336	8427	91
7	7607	7698	7789	8791	8882	8973	9064	9155	9246	9337	91
7	9428	9519	9610	9700	9791	9882	9973	680063	680154	680245	91
6	680336	680426	680517	6806076	80698	680789	6808	0970	1060	1151	91
806	68124168	681332	681422	681513	581603	6816936	681784	681	681	6820	90
1	2145	2235	2326	2416	2506	2596	2686	27	286		
2	3017	3137	3227	3317	3407	3497	358	3677	466		
3	3947	4037	4127	4217	4307	39		5476		565	
4	4845	4935	5025	5114	20	5294	538	5473	6458	6547	
5	5742	5831	5921	010	6109	78189	7172	72	7351	7440	89
6	6636	672	815			7975	8064	8153	8242	8331	89
8	88420	509	8598	8687	8776	8865	8953	9042	9131	9220	89
9	9309	9398	9486	9575	9664	9753	9841	993	90019	690107	89
490	690196	690285	690373	690462	690550	690639	690728	690816	690905	690993	89
,	1.1081	1170	1258	1347	1435	1524	1612	1700	1789	1877	
2	1965	2053	2142	2230	2318	2406	2494	2583	2671		88
3	32847	2935	3023	3111	3199 4078	3287 4166	3375 4254	3463 4342	3551 440	4517	88
4	 5 3727 5005	3815 4693	3903 4781	3991 4888	4956	5044	5131	5219	5307	5394	88
6	6. 5482	5569	5657	5744	5832	5919	6007	6094	6182	62	
7	76356	6444	6531	6618	6706	79		6968	70		
8	87229	7317	7404	74	7578	55	7752				
9	98101	81	8275	8362	8449	8535				${ }^{8883}$	
500	0698970	699057	699144	699231	699317	699404	699491	69957	6996		
1	1.9838	9924	700011	70009	700184	700271	700358	70044			86
	2700704	700790	0877	096	1050	1136	12282	130		2344	86
	31568	-1654	1741	1827	1913	19991	$1 \begin{aligned} & 2086 \\ & 2947\end{aligned}$	30	3119	93205	86
	$\begin{array}{lll}4 & 2431 \\ 5 & 3291\end{array}$	12517	2603	3549	27635	3721	3807	3893	3979	9065	86
	64151	12236	6 4322	4408	84494	4579	4665	4751	14837	$7{ }^{7} 4922$	86
	$7 \quad 5008$	5094	45179	5265	5335	5436	6522	5607	5693		86
	85864	45949	6035	6120	06206	6291	6376				85
	96718	86803	36888	69	705						
	10707570	0707655	707740	707826	6707911	707996	670808	708	70825	19185	85
	188421	18506	6591 5440	8676 9524	68761 9609	8846 9694	$4{ }_{4}^{6981}$	$9{ }^{9863}$	3948	8710033	85
	3 710117	7710202	710287	7710371	1710456	6710540	0710625	5710710	71079	4887	85
	40963	31048	81132	21217	71301	11385	51470	0155	1639	1723	${ }^{84}$
	Б 1807	71892	21976	6-2060	02144	42229	9.23	3239	7 248	3407	7
	$6 \quad 2650$	027	2818	2902	229	3070		$4{ }^{4} 4$	416	4246	84
	7 8 3491	45714	$4{ }^{4} 4497$	4581	$1{ }^{4665}$	54749	94833	491	500	0	484
	5167	5251	15335	5418	85002	2586	6-5669	975	53583	5620	84
	0. 0	1	2	3	4	5	6	7	8	9	Diff.

No.	0	1	2	3	4	5	6	7	8	9	Diff.
520	716003	716087	716170	716254	716337	716421	716504	716588	716671	716754	83
1	6838	6921	7004	7088	7171	7254	7338	7421	7504	7587	83
2	7671	7754	7837	7920	8003	8086	8169	8253	8336	8419	83
3	8502	8585	8668	8751	8834	8917	9000	9083	9165	9248	83
4	9331	9414	9497	9580	9663	9745	9828	9911	${ }_{720821}$	720077 0903	83 83
5	720159	720242	720325	720407 1233	720490 1316	${ }^{720573} 1398$	720655	720738 1563	720821 1646	0903 1728	83
7	1811	1893	1975	2058	12140	12228	2305	2387	2469	2552	82
8	2634	2716	2798	881	2963	3045	3127	3209	3291	3374	82
9	3456	3538	3620	3702	3784	3866	3948	4030	4112	4194	82
530	724276	724358	724440	724522	724604	724685	724767	724849	724931	7250	82
1	5095	5176	5258	5340	5422	5503	5585	5667	5748	5830	82
2	5912	5993	6075	6156	6238	6320	6401	648	6564	66	82
3	6727	6809	6890	6972	7053	7134	7216	7297	7379	7460	81
4	7541	7623	7704	7785	7866	7948	8029	8110	8191	8273	81
5	8354	8435	8516	8597	8678	8759	8841	8922	9003	9084	81
6	9165	9246	9327	9408	9489	9570	${ }^{9651}$	9732	${ }_{7} 9813$	98893	81
7	9974	730055	730136	730217	730298	730378	730459	730540	730621	${ }^{730702}$	81
	730782	1669	0944 1750	1024	1105	11891	1266	1347 2152	1428	1508	81
				7326	732	73	732876	73295	733037	7331	80
1	3197	3278	3358	3438	3518	3598	3679	3759	3839	3919	80
	3999	4079	4160	4240	4320	4400	4480	4560	4640	4720	80
3	4800	4880	4960	5040	5120	5200	5279	5359	5439	5519	80
4	5599	5679	5759	5838	5918	5998	6078	6157	6237	6317	80
5	6397	6476	6556	6635	6715	6795	6874	695	7034	7113	80
6	7193	7272	7352	7431	7511	7590	7670	7749 8543	7829	7908	79
7	7987	8067	8146	8225	8305	8384	8463	8543	8622	8701	79
8	8781	8860	8939	9018	9097	9177	9256	9335	9414	949	79
9	9572	9651	9731	10	9		40047	7401		7402	79
550	740363	740442	740521	740600	740678	740757	740836	740915	740994	741073	79
1	1152	1230	1309	1388	1467	1546	1624	1703	1782	1860	79
2	1939	2018	2096	2175	2254	2332	2411	248	2568	2647	79
3	2725	2804	28867	2961		3902	3980	4058	4136	-4215	78
5	4293	4371	4449	4528	4606	4684	4762	4840	4919	4997	78
6	5075	5153	5231	309	6387	5465	5543	5621	5699	5777	78
7	5855	5933	6011	6089	6167	6245	6323	6401	6479	655	78
8	6634	6712	6790	868	6945	7023	7101	7179	7256	7334	78
9	7412	7489	67	7645	7722	78	78	7955	8033	8110	78
5607	748188	7482667	748343	748421	748498	748576	748653	748731	748808	748885	77
1	8963	9040	9118	9195	9272	9350	9427	9504	9582	9659	77
2	9736	9814	9891	998	750045	50123	750200	750277	750354	750431	77
,	750508	750586	750663	750740	0817	0894	0971	1048	1125	1202	77
4.	1279	1356	1453	1510	1587	1664	1741	1818	1895	1972	77
5	2048	2125	2202	2279	2356	2433	2509	2586	2663	274	77
6	2816	2893	2970	3047	3123	3200	3277	3353	3430	3506	77
7	3583	3660	3736	3813	3889	3966	4042	4119	4195	4272	77
8	4348	442	4501	4578	4654	4730	4807	4883	4960	5036	76
9	5112	5189	5265	5341	6417	54	5570	5646	5722	5799	76
570	755875	755951	756027	756103	756180	756256	756332	756408	756484	756560	76
1	6636	6712	6788	6864	6940	7016	7092	7168	7244	7320	76
2	7396	7472	7548	7624	7700	7775	7851	7927	8003	8079	76
3	8155	8230	${ }^{8306}$	8382	8458	8533	8609	8685	8761	883	76
5	8912	8988	9063	9139	9214	9290	9366	9441 760196	[9517	9592 760347	76
5	9668	9743	9819	989	99	760045 0799	76012	7601950	760272	760347 1101	75
7	1176	1251	1326	1402	1477	1552	1627	170	1778	1853	75
	1928	2003	2078	2153	2228	2303	2378	245	2529	2604	75
9	2679	2754	2829	2904	2978	3053	312	320	3278	335	75
No.	10	1	2	3	4	5	6	7	8	9	Diff.

No.	0	1	2	3	4	¢	6.	7	8	9	Diff.
580	763428	763503	763578	763653	763727	763802	763877	763952	764027	764101.	75
1	4176	4251	4326	4400	4475	4550	4624	4699	4774	4848	75
1	4923	4998	5072	5147	5221	5296	5370	5445	5520	5594	75
3	5669	5743	5818	5892	$50 \%{ }^{5} 6$	6041	6115	6190	6264	6338	74
4	6413	6487	6562	6636	6710	6785	6859	6933	7007	7082	74
5	715	7230	7304	7379	7453	7527	7601	7675	7749	7823	74
6	789	7972	8046	8120	8194	8268	8342	8416	8490	8564	74
7	8638	8712	8786	8860	8934	9008	9082	9156	9230	9303	74
9	770115	770189	770263	770336	70410	9746	9820 70557	9894 70631	9968 770705	770042 0778	74
590	770852	770926	770999	771073	771146	771220	771293	771367	771440	771514	74
1	1587	1661	1734	1808	1881	1955	2028	2102	2175	2248	73
2	2322	2395	2468	2542	2615	2688	2762	2835	2908	2981	73
3	3055	3128	3201	3274	3348	3421	3494	3567	3640	3713	73
4	3786	3860	3933	4006	4079	4152	4225	4298	4371	4444	73
5	4517	4590	4663	4736	4809	4882	4955	5028	5100	5173	73
6	5246	5319	5392	5465	5538	5610	5683	5756	5829	5902	73
7	5974	6047	6120	6193	6265	6338	6411	6483	6556	6629	73
8	6701	6774	6846	6919	6992	7064	7137	7209	7282	7354	73
9	7427	499	7572	4	7717	7789	7862	7934	8006	8079	72
600	778151	778224	778296	778368	778441	778513	778585	778658	778730	778802	72
1.	8874	8947	9019	9091	9163	9236	9308	9380	9452	9524	72
2	9596	9669	9741	9813	9885	9957	780029	780101	780173	780245	72
3	780317	780389	780461	780533	780605	780677	0749	0821	0893	0965	72
4	1037	1109	1181	1253	1324	1396	1468	1540	1612	1684	72
5	1755	1827	1899	1971	2042	2114	2186	2258	2329	2401	72
6	2473	2544	2616	2688	2759	2831	2902	2974	3046	3117	72
8	3189	3260	3332	3403	3475	3546	3618	3689	3761	3832	71
8	3904	3975	4046	4118	4189	4261	4332	4403	4475	4546	71
	4617 785330	785401	785472	831	902	78568			5187	5259	71.
1	6041	6112	6183	6254	6325	6396	6467	6538	6609	6680	71
2	6751	6822	6893	6964	7035.	7106	7177	7248	7319	7390	71
3	7460	7531	7602	7673	7744	7815	7885	7956	8027	8098	71
4	8168	8239	8310	8381	8451	8522	8593	8663	8734	8804	71
5	8875	8946	9016	-9087	${ }_{9}^{9157}$	9228	9299	9369	9440	9510	71
7	9581	9651 700356	9722	9792	9863	-9933	790004	790074	790144	790215	70
8	750285	790356 1059	790426 1129	790496 1199	790567	790637 1340	0707 1410	0778 1480	0848 1550	0918	70
9	1691	1761	1831	1901	1971	2041	2111	2181	2252	2322	70
620	792392	792462	792532	792602	792672	792742	792812	792882	792952	793022	70°
1	3098	3162	3231	3301	3371	3441	3511	3581	3651	3721	70
2	3790	3860	3930	4000	4070	4139	4209	4279	4349	4418	70
3	4488	4558	4627	4697	4767	4836	4906	4976	5045	5115	70
4	5185	5254	5324	5393	5463	5532	5602	5672	5741	5811	70
5	5880.	5949	6019	6088	6158	6227	6297	6366	6436	6505	69
6	6574	6644	6713	6782	6852	6921	6990	7060	7129	7198	69
-	7268	7337	7406	7475	7545	7614	7683	7752	7821	7890.	69
8	7960	8029	8098	8167	8236	8305	8374	8443	8513	8582	69
9	8651	8720	878	8858	8927	8996	9065	9134.	9203	9272	69
630	79934		T9	99547	199616	799685	799754	799823	799892	799961	69
18	800029	800098	800167	800236	800305	800373	800442	800511	800580	800648	69
	0717	0786	0854	0923	0992	1061	1129	1198	1266	1335	69
3	1404	1472	1541	1609	1678	1747	1815	1884	1952	2021	69
4	2089	2158	2226	2295	2363	2432	2500	2568	2637	2705	69
5	2774	2842	2910	2979	3047	3116	3184	3252	3321	3389	68
6	3457	3525	3594	3662	3730	3798	3867	3935	4003	4071	68
7	4139	4208	4276	4344	4412	4480	4548	4616	468	4753	68
8	4821.	4889	4957	5025	5093	5161	5229	5297	5365	5433	68
9	5501	5569	5637	5705	5773	5841	5908	5976	6044	6112	68
No.	0	1	2	3	4	5	6	7	8	9	Dif.

50.	1	1	2	3	4	5	6	7	8	9	Difl.
640	806180	806248	806316	806384	806451	806519	806587	806655	806723	806790	68
1	6858	6926	- 6994	7061	7129	7197	7264	7332	7400	7467	68
2	7535	7603	7670	7738	7806	7873	7941	8008	8076	8143	68
3	8211	8279	8346	8414	8481	8549	8616	8684	8751	8818	07
4	8886	8953	9021	9088	9156	9223	2290	9358	9425	9492	67
5	9560	9627	9694	9762	9829	9896	9964	810031	810098	810165	67
6	810233	810300	810367	810434	810501	810569	810636	0703	0770	0837	67
7	0901	0971	1039	1106	1173	1240	1307	1374	1441	1508	67
8	1575	1642	1709	1776	1843	1910	1977	2044	2111	2178	67
9	2245	2312	2379	2445	2512	2579	2646	2713	2780	2847	67
650	812913	812980	813047	813114	813181	813247	81.314	813381	813448	813514	67
1	3581	3648	3714	3781	3848	3914	3981	4048	4114	4181	67
2	4248	4314	4381	4447	4514	4581	4647	4714	4780	4847	67
3	4913	4980	5046	5113	5179	5246	5312	5378	5445	5511	66
4	5578	5644	5711	5777	5843	5910	5976	6042	6109	6175	66
5	6241	6308	6374	6440	6506	6573	6639	6705	6771	6838	66
6	6904	6970	7036	7102	7169	7235	7301	7367	7433	7499	66
7	7565	7631	7698	7764	7830	7896	7962	8028	8094	8160	66
8	8226	8292	8358	8424	8490	8556	8622	8688	8754	8820	66
9	8885	8951	9017	9083	9149	9215	9281	9346	9412	9478	66
660	819544	819610	819676	819741	819807	819873	819939	820004	820070	820136	66
1	820201	820267	820333	820399	820464	820530	820595	0661	0727	0792	66
2	0858	0924	0989	1055	1120	1186	1251	1317	1382	1448	66
3	1514	1579	1645	1710	1775	1841	1906	1972	2037	2103	66
4	2168	2233	2299	2364	2430	2495	2560	2626	2691	2756	65
5	2822	2887	2952	3018	3083	3148	3213	3279	3344	3409	65
6	3474	3539	3605	3670	3735	3800	3865	3930	3996	4061	65
7	4126	4191	4256	4321	4386	4451	4516	4581	4646	4711	65
8	4776	4841	4906	4971	5036	5101	5166	5231	5296	5361	65
9	5426	5491	5556	5621	5686	5751	5815	5880	5945	6010	65
670	826075	826140	826204	826269	26334	826399	826464	826528	826593	826658	65
1	6723	6787	6852	6917	6981	7046	7111	7175	7240	7305	65
2	7369	7434	7499	7563	7628	7692	7757	7821	7886	7951	65
3	8015	8080	8144	8209	8273	8338	8402	8467	8531	8595	64
4	8660	8724	8789	8853	8918	8982	9046	9111	9175	9239	64
5	9304	9368	9432	9497	9561	9625	9690	9754	9818	9882 830525	64
6	9947	830011	830075	830139	830204	830268	830332	830396	830460	830525	64
7	830589	0653	0717	0781	0845	0909	0973	1037	1102	1166	64
8	1230	1294	- 1358	1422	1486	1550	1614	1678	1742	1806	64
9	1870	1934	1998	2062	2126	2189	2253	2317	2381	2445	64
680	832509	832573	832637	832700	832764	832828	832892	832956	833020	833083	64
1.	3147	3211	3275	3338	3402	3466	3530	. 3593	3657	3721	64
2	3784	3848	3912	3975	4039	4103	4166	4230	4294	4357	64
3	4421	4484	4548	4611	4675	4739	4802	4866	4929	4993	64
4	5056	5120	5183	5247	5310	5373	5437	5500	5564	5627	63
5	5691	5754	5817	5881	5944	6007	6071	6134	6197	6261	63
6	6324	6387	6451	6514	6577	6641	6704	6767	6830	6894	63
7	6957	7020	7083	7146	7210	7273	7336	7399	7462	7525	63
8	7588	7652	7715	7778	7811	7904	7967	8030	8093	8156	63
9	8219	8282	8345	8408	8471	8534	8597	8660	8723	8786	63
690	838849	838912	838975	839038	839101	839164	839227	839289	839352	839415	63
1	9478	9541	9604	9667	9729	9792	9855	9918	9981	840043	63
2	840106	840169	840232	840294	840357	840420	840482	840545	840608	0671	63
3	0733	0796	0859	0921	0984	1046	1109	1172	1234	1297	63
	1359	1422	1485	1547	1610	1672	1735	1797	1860	1922	63
5	1985	2047	2110	2172	2235	2297	2360	2422	2484	2547	62
0	2609	2672	2734	2796	2859	2921	2983	3046	3108	3170	62
7	3233	3295	3357	3420	3482	3544	3606	3669	3731	3793	62
8	3855	3918	3980	4042	4104	4166	4229	4291	4353	4415	62
9	4477	4539	4601	4664	4726	4788	4850	4912	4974	5036	62
80.	0	1	2	3	4	5	6	7	8	9	Difill

No.	0	1	2	3	4	5	6	7	8	9	Diff.
700	845098	845160	845222	845284	845346	845408	845470	845532	845594	845656	62
1	5718	5780	5842	5904	5966	6028	6090	6151	6213	6275	62
2	6337	6399	6461	6523	6585	6646	6708	6770	6832	6894	62
3	6955	7017	7079	7141	7202	7264	7326	7388	7449	7511	62
4	7573	7634	7696	7758	7819	7881	7943	8004	8066	8128	62
5	8189	8251	8312	8374	8435	8497	8559	8620	8682	8743	62
6	8805	8866	8928	8989	9051	9112	9174	9235	9297	9358	61
7	9419	9481	9542	9604	9665	9726	9788	9849	9911	9972	61
	850033	850095	850156	850217	850279	850340	850401	850462	850524	850585	61
9	0646	0707	0769	0830	0891	0952	1014	1075	1136	1197	61
710	851258	851320	851381	851442	851503	851564	851625	851686	851747	851809	61
1	1870	1931	1992	2053	2114	2175	2236	2297	2358	2419	61
2	2480	2541	2602	2663	2724	2785	2846	2907	2968	3029	61
3	3090	3150	3211	3272	3333	3394	3455	3516	3577	3637	61
4	3698	3759	3820	3881	3941	4002	4063	4124	4185	4245	61
5	4306	4367	4428	4488	4549	4610	4670	4731	4792	4852	61
6	4913	4974	5034	5095	5156	5216	5277	5337	5398	5459	61
7	5519	5580	5640	5701	5761	5822	5882	5943	6003	6064	61
8	6124	6185	6245	6306	6366	6427	6487	6548	6608	6668	60
9	6729	6789	6850	6910	6970	7031	7091	7152	7212	7272	0
20	857332	857393	857453	857513	857574	857634	857694	857755	857815	857875	60
1	7935	7995	8056	8116	8176	8236	8297	8357	8417	8477	60
2	8537	8597	8657	8718	8778	8838	8898	8958	9018	9078	60
3	9138	9198	9258	9318	9379	9439	9499	9559	9619	9679	60
4	9733	9799	9859	9918	9978	860038	860098	860158	860218	860278	60
5	860338	860398	860458	860518	860578	0637	0697	0757	0817	08	0
6	0937	0996	1056	1116	1176	1236	1295	1355	1415	1475	60
7	1534	1594	1654	1714	1773	1833	1893	1952	2012	2072	0
8	2131	2191	2251	2310	2370	2430	2489	2548	2608	2668	60
9	2728	2787	2847	2906	2966	3025	3085	3144	3204	3263	60
730	863323	863382	863442	863501	863561	863620	863680	863739	863799	863858	59
1	3917	3977	4036	4096	4155	4214	4274	4333	4392	4452	59
	4511	4570	4630	4689	4748	4808	4867	4926	4985	5045	59
3	5104	5163	5222	5282	5341	5400	5459	5519	5578	5637	59
	5696	5755	5814	5874	5933	5992	6051	6110	6169	6228	59
	6287	6346	6405	6465	6524	6583	6642	6701	6760	6819	59
6	6878	6937	6996	7055	7114	7173	7232	7291	7350	7409	59
7	7467	7526	7585	7644	7703	7762	7821	7880	7939	7998	59
8	8056	8115	8174	8233	8292	8350	8409	8468	8527	8586	59
9	8614	8703	8762	8821	8879	8938	8997	9056	9114	9173	59
740	869232	869290	869349	869408	869466	869525	869584	869642	869701	869760	59
	9818	9877	9935	9994	870053	870111	870170	870228	870287	870345	59
2	870404	870462	870521	870579	0638	0696	0755	0813	0872	0930	58
3	0989	1047	1106	1164	1223	1281	1339	1398	1456	1515	58
4	1573	1631	1690	1748	1806	1865	1923	1981	2040	2098	58
5	2156	2215	2273	2331	2389	2448	2506	2564	2622	2681	58
6	2739	2797	2855	2913	2972	3030	3088	3146	3204	3262	58
7	3321	3379	3437	3495	3553	3611	3669	3727	3785	3844	8
8	3902	3960	4018	4076	4134	4192	4250	4308	4366	4424	58
9	4482	4540	4598	4656	4714	4772	4830	4888	4945	5003	58
750	875061	875119	875177	875235	875293	875351	875409	875466	875524	875582	58
	5640	5698	5756	5813	5871	5929	5987	6045	6102	6160	58
2	6218	6276	6333	6391	6449	6507	6564	6622	6680	6737	58
3	6795	6853	6910	6968	7026	7083	7141	7199	7256	7314	58
4	7371	7429	7487	7544	7602	7659	7717	7774	7832	7889	58
5	7947	8004	8062	8119	8177	8234	8292	8349	8407	8464	57
7	8522	8579	8637	8694	8752	8809	8866	8924	8981	9039	57
7	9096	9153	9211	9268	9325	9383	9440	9497	9555	9612	57
8	9669	9726	9784	9841	9898	9956 880528	880013	880070	880127	880185	57 57
9	880242	880299	880356	880413	880471	880528	0585	0642	0699	0756	57
15	0	1	2	3	4	5	6	7	8	9	Difir

TABLE I. LOGARITHMS OF NUMBERS.

210.	0	1	2	3	4	5	6	7	8	9	DIf.
760	880814	880871	880928	88098	881042	381099	81156	881213	881271	813	57
1	1385	1442	1499	1556	1613	1670	1727	1784	1841	1898	57.
2	1955	2012	2069	2126	2183	2240	2297	2354	2411	2468	57
3	2525	2581	2638	2695	2752	2809	2866	2923	2980	3037	57
4	3093	3150	3207	3264	3321	3377	3434	3491	3548	3605.	57
E	3661	3718	3775	3832	3888	3945	4002	4059	4115	4172	57
6	4229	4285	4342	4399	4455	4512	4569	4625	4682	4739	57
7	4795	4852	4909	4965	5022	5078	5135	5192	5248	5305	57
8	5361	5418	5474	5531	5587	5644	5700	5757	5813	5870	57
9	5926	5983	6039	6096	6152	6209	6265	6321	6378	6434	56
770	88649	886547	886604	886660	886716	886773	886829	886885	886942	886998	56
1	7054	7111	7167	7223	7280	7336	7392	7449	7505	7561	56
2	7617	7674	7730	7786	7842	7898	7955	8011	8067	8123	56
3	8179	8236	8292	8348	8404	8460	8516	8573	8629	8685	56
4	8741	8797	8853	8909	8965	9021	9077	9134	9190	9246	56
5	9302	9358	9414	9470	9526	9582	9638	9694	9750	9806	56
6	9862	9918	9974	890030	890086	890141	890137	890253	890309	890365	56
7	890421	890477	890533	0589	0645	0700	0756	0812	0868	0924	56
8	0980	1035	1091	1147	1203	1259	1314	1370	1426	1482	56
9	1537	1593	1649	1705	1760	1816	1872	1928	1983	2039	56
780	892095	892150	892206	892262	892317	892373	89242	892484	892540	892595	56
1	2651	2707	2762	2818	2873	2929	2985	3040	3096	3151	56
2	3207	3262	3318	3373	3429	3484	3540	3595	3651	3706	56
3	3762	3817	3873	3928	3984	4039	4094	4150	4205	4261	55
4	4316	4371	4427	4482	4538	4593	4648	4704	4759	4814	55
5	4870	4925	4980	5036	5091	5146	5201	5257	5312	5367	55
6	5423	5478	${ }^{5} 533$	5588	5644	5699	5754	5809	5864	5920	55
7	5975	6030	6085	6140	6195	6251	6306	6361	6416	6471	55
8	6526	6581	6636	6692	6747	6802	6857	6912	6967	7022	55
9	7077	7132	7187	7242	7297	7352	7407	7462	7517	7572	55
790	897627	897682	897737	897792	897847	897902	897957	898012	898067	898122	55
1	8176	8231	8286	8341	8396	8451	8506	8561	8615	8670	55
2	8725	8780	8835	8890	8944	8999	9054	9109	9164	9218	55
3	9273	9328	9383	9437	9492	9547	9602	9656	9711	9766	55
4	9821	9875	9930	9985	900039	900094	900149	900203	900258	900312	55
5	900367	900422	900476	900531	0586	0640	0695	0749	0804	0859	55
6	0913	0968	1022	1077	1131	1186	1240	1295	1349	1404	65
7	1458	1513	1567	1622	1676	1731	1785	1840	1894	1948	54
8	2003	2057	2112	2166	2221	2275	2329	2384	2438	2492	5
9	2547	2601	2655	2710	2764	2818	287	2927	2981	303	54
800	903090	903144	903199	903253	903307	903361	903416	903470	903524	903578	54
1	3633	3687	3741	3795	3849	3904	3958	4012	4066	4120	54
2	4174	4229	4283	4337	4391	4445	4499	4553	4607	4661	54
3	4716	4770	4824	4878	4932	4986	5040	5094	5148	5202	64
4	5256	5310	5364	5418	5472	5526	5580	5634	5688	5742	54
5	5796	5850	5904	5958	6012	6066	6119	6173	6227	6281	5
6	6335	6389	6443	6497	6551	6604	6658	6712	6766	6820	04
7	6874	6927	6981	7035	7089	7143	7196	7250	7304	7358	54
8	7411	7465	7519	7573	7626	7680	7734	7787	7841	7895	54
9	7949	8002	8056	8110	8163	8217	8270	8324	8378	8431	54
810	908485	908539	908592	908646	908699	908753	908807	908860	908914	908967	64
1	9021	9074	9128	9181	8235	9289	9342	9396	9449	9503	54
2	9556	9610	9663	9716	9770	9823	9877	9930	998	910037	53
3	910091	910144	910197	910251	910304	910358	910411	910464	910518	0571	53
4	0624	0678	0731	0784	0838	0891	0944	0998	1051	1104	53
5	1158	1211	1264	1317	1371	1424	1477	1530	1584	1637	53
6	1690	1743	1797	1850	1903	1956	2009	2063	2116	2169	53
7	2222	2275	2328	2381	2435	2488	2541	2594	2647	2700	63
8	2753	2806	2859	2913	2966	3019	3072	3125	3178	323	53
9	3284	3337	3390	3443	3496	3549	3602	3655	3708	376	53
No. 1	©	1	2	3	4	5	6	7	8	9	Dis.

No.	0	1	2	3	4	5	6	7	8	9	Lifl.
820	913814	913867	913920	913973	914026	914079	914132	914184	914237	914290	,
1	4343	4396	4449	4502	4555	4608	4660	4713	4766	4819	53
2	4872	4925	4977	5030	5083	5136	5189	5241	5294	5347	53
3	5400	5453	5505	5558	5611	5664	5716	5769	5822	5875	53
4	5927	5980	6033	6085	6138	6191	6243	6296	6349	6401	53
5	6454	6507	6559	6612	6664	6717	6770	6822	6875	6927	53
6	6980	7033	7085	7138	7190	7243	7295	7348	7400	7453	53
7	7506	7558	7611	7663	7716	7768	7820	7873	7925	7978	52
8	8030	8083	8135	8188	8240	8293	8345	8397	8450	8502	52
-	8555	8607	8659	8712	8764	8816	8869	8921	8973	9026	52
830	919078	919130	919183	919235	919287	919340	919392	919444	919496	919549	52
1	9601	9653	9706	9758	9810	9862	9914	9967	920019	920071	52
	920123	920176	920228	920280	920332	920384	920436	920489	0541	0593	52
3	0645	0697	0749	0801	0853	0906	0958	1010	1062	1114	52
4	1166	1218	1270	1322	1374	1426	1478	1530	1582	1634	52
5	1686	1738	1790	1842	1894	1946	1998	2050	2102	2154	52
6	2206	2258	2310	2362	2414	2466	2518	2570	2622	2674	52
7	2725	2777	2829	2881	2933	2985	3037	3089	3140	3192	52
8	3244	3296	3348	3399	3451	3503	3555	3607	3658	3710	52
9	3762	3814	3865	3917	3969	4021	4072	4124	4176	4228	52
840	924279	924331	924383	924434	924486	924538	924589	924641	924693	924744	52
1	4796	4848	4899	4951	5003	5054	5106	5157	5209	5261	52
2	5312	5364	5415	5467	5518	5570	5621	5673	5725	5776	52
3	5828	5879	5931	5982	6034	6085	6137	6188	6240	6291	51
4	6342	6394	6445	6497	6548	6600	6651	6702	6754	6805	51
5	6857	6908	6959	7011	7062	7114	7165	7216	7268	7319	51
6	7370	7422	7473	7524	7576	7627	7678	7730	7781	7832	51
7	7883	7935	7986	8037	8088	8140	8191	8242	8293	8345	51
8	8396	8447	8498	8549	8601	8652	8703	8754	8805	8857	51
9	8908	8959	9010	9061	9112	9163			9317	9368	51
850	929419	929470	929521	929572	929623	929674	929725	929776	929827	929879	51
1	9930	9981	930032	930083	930134	930185	930236	930287	930338	930389	51
2	930440	930491	0542	0592	0643	0694	0745	0796	0847	0898	51
	0949	1000	1051	1102	1153	1204	1254	1305	1356	1407	51
4	1458	1509	1560	1610	1661	1712	1763	1814	1865	1915	51
5	1966	2017	2068	2118	2169	2220	2271	2322	2372	2423	51
6	2474	2524	2575	2626	2677	2727	2778	2829	2879	2930	51
7	2981	3031	3082	3133	3183	3234	3285	3335	3386	3437	51
8	3487	3538	3589	3639	3690	3740	3791	3841	3892	3943	51
9	3993	4044	4094	4145	419	4246	4296	4347	4391	4448	51
860	934498	934549	934599	934650	934700	934751	934801	934852	934902	934953	50
1	5003	5054	5104	5154	5205	5255	5306	5356	5406	5457	50
2	5507	5558	5608	5658	5709	5759	5809	5860	5910	5960	50
3	6011	6061	6111	6162	6212	6262	6313	6363	6413	6463	50
4	6514	6564	6614	6665	6715	6765	6815	6865	6916	6966	50
5	7016	7066	7117	7167	7217	7267	7317	7367	7418	7468	50
6	7518	7568	7618	7668	7718	7769	7819	7869	7919	7969	50
7	8019	8069	8119	8169	8219	8269	8320	8370	8420	8470	50
8	8520	8570	8620	8670	8720	8770	8820	8870	8920	8970	50
9	9020	9070	9120	9170	9220	9270	9320	9369	9419	9469	50
870	939519	939569	939619	939669	939719	939769	939819	939869	939918	939968	50
1	940018	940068	940118	940168	940218	940267	940317	940367	940417	940467	50
2	0516	0566	0616	0666	0716	0765	0815	0865	0915	0964	50
3	1014	1064	1114	1163	1213	1263	1313	1362	1412	1462	50
4	1511	1561	1611	1660	1710	1760	1809	1859	1909	1958	50
5	2008	2058	2107	2157	2207	2256	2306	2355	2405	2455	50
6	2504	2554	2603	2653	2702	2752	2801	2851	2901	2950	50
8	3000	3049	3099	3148	3198	3247	3297	3346	3396	3445	49
8	3495 3989	3544	3593	31343 413	3692 4186	3742	3791	3841	3890 4384	$\begin{array}{r}3939 \\ 443 \\ \hline\end{array}$	49
W0.	I. 0	1	2	3	4	5	6	7	8	9	D17.

No.	0	1	2	3 :		5	6	7	- 8	9	Diff.
880	944483	944532	944581	944631	944680	944729	944779	944828	944877	944927	9
1	4976	5025	5074	5124	5173	5222	5272	5321	5370	5419	49
2	5469	5518	5567	5616	5665	5715	5764	5813	5862	5912	49
3	5961	6010	6059	6108	6157	62078	6256	6305	6354	6403	49
4	6452	6501	6551	6600	6649	6698	6747	6796	6845	6898	49
5	6943	6992	7041	7090	7140	7189	7238	7287	7336	7385	49
6	7434	7483	7532	7581	7630 8119	88168	8217	8266	8815	88864	49
7	7924	7973	8022	8056 850	8609	8865	8706	8755	8804	8853	49
8	8413 8902	84621	88991	9048	9097	9146	9195	9244	9292	9341	49
890	949390	949439	949488	949536	949585	949	949683	949731	949780	949829	49
1	9878	9926	9975	950024	950073	950121	950170	950219	950267	950316	49
2	950365	50414	50462	0511	0560	0608	0657	0706	0754	0803	49
3	0851	0900	0949	0997	1046	1095	1143	1192	1240	1289	49
4	1338	1386	1435	1483	1532	1580	1629	1677	1726	1775	49
5	1823	1872	1920	1969	2017	2066	2114	2163	2211	2260	48
6	2308	2356	2405	2453	2502	2550	2599	2647	2696	2744	48
7	2792	2841	2889	2938	2986	3034	3083	3131	3180	3228	48
8	3276	3325	3373	3421	3470	3518	3566 4049	3615 4098	3663 4146	3711 4194	48
9	3760	3808	38	3905	39	4001	4049 954532	9545	954628	954677	48
1	4725 5207	4773	${ }_{5303}^{4821}$	5351	5399	5447	5495	5543	5592	5640	48
3	568	736	5784	5832	5880	5928	5976	6024	6072	6120	48
,	6168	6216	6265	6313	6361	6409	6457	6505	6553	6601	48
5	6649	6697	6745	6793	6840	6888	6936	6984	7032	7080	48
6	7128	7176	7224	7272	7320	7368	7416	7464	7512	7559	48
7	7607	7655	7703	7751	7799	7847	7897	7942	7990	8038	48
8	8086	8134	8181	8229	8277	8325	8373	8421	8468	8516	48
,	8564	8612	8659	8707	8755	8803	885	8898		8994	48
910	959041	959089	959137	959185	959232	959280	959328	959375	959423	959471	48
1	9518	9566	9614	9661	9709	9757	9804	9852	9900	9947	48
2	9995	960042	960090	960138	960185	960233	960280	960328	960376	96042	48
3	960471	0518	0566	0613	0661	0709	0756	0804	0851	0899	48
4	0946	0994	1041	1089	1136	1184	1231	1279	1326	1374	47
5	1421	1469	1516	1563	1611	1658	1706	1753	1801	184	47
6	1895	1943	1990	2038	2085	2132	2180	2226	2275	2322	47
7	2369	2417	2464	2511	2559	2606	2653	2701	2748	2795	47
8	2843	2890	2937	2985	3032	3079	3126	3174	3221	3268	47
9	3316	3363	3410	3457	3504	3552	3599	36	3693	3741	47
920	963788	963835	963882	963929	963977	964024	964071	964118	964165	964212	47
1.	4260	4307	4354	4401	4448	4495	4542	4590	4637	4684	47
2	4731	4778	4825	4872	4919	4966	5013	5061	5108	5155	47
3	5202	5249	5296	5343	5390	5437	5484	5531	5578	5625	47
4	5672	5719	5766	5813	5860	5907	5954	6001	6048	6095	47
5	6142	6189	6236	6283	6329	6376	6423	6470	6517	6564	47
6	6611	6658	6705	6752	6799	6845	6892	6939	6986	7033	47
7	7080	7127	7173	7220	7267	7314	7361	7408	7454	7501	47
8	7548	7595	7642	7688	7735	7782	7829	7875	7922	7969	47
9	8016	8062	81	8156	82	8249	8296	83	8390	8436	47
930	968483	968530	968576	968623	968670	968716	968763	968810	9688	968903	47
1	8950	8996	9043	9090	9136	9183	9229	9276	9323	9369	47
2	9416	9463	9509	9556	9602	9649	9695	9742	9789	9835	47
3	9882	9928	9975	970021	970068	970114	970161	970207	970254	970300	47
	970347	970393	970440	0486	0533	0579	0626	0672	0719	0765	46
5	0812	0858	0904	0951	0997	1044	1090	1137	1183	1229	46
6	1276	1322	1369	1415	1461	1508	1554	1601	1647	1693	46
7	1740	1786	1832	1879	192	1971	2018	2064	2110	2619	46
9	2666	2712	2758	2804	2381	2897	2481	2989	3035	3082	46
No.	0	1.	2	3	4	5	6	g	8	9	Diff.

NO.	0	1	2	3	4	5	6	7	8	9	Difil.
9409	973128	973174	973220	973266	973313	973359	9734059	973451	973497	973543	46
1	3590	3636	3682	3728	3774	3820	3866	3913	3959	4005	46
2	4051	4097	4143	4189	4235	4281	4327	4374	4420	4466	46
3	4512	4558	4604	4650	4696	4742	4788	4834	4880	4926	46
4	4972	5018	5064	5110	5156	5202	5248	5294	5340	5386	46
5	5432	5478	5524	5570.	5616	5662	5707	5753	5799	5845	46
6	5891	5937	5983	6029	6075	6121	6167	6212	6258	6304	46
7	6350	6396	6442	6488	6533	6579	6625	6671	6717	6763	46
8	6808	6854	6900	6946	6992	7037	7083	7129	7175	7220	46
9	7266	7312	7358	7403	7449	7495	7541	7586	7632	7678	46
950	977724	977769	977815	977861	977906	977952	977998	978043	978089	978135	46
1	8181	8226	8272	8317	8363	8409	8454	8500	8546	8591	46
2	8637	8683	8728	8774	8819	8865	8911	8956	9002	9047	46
3	9093	9138	9184	9230	9275	9321	9366	9412	9457	9503	46
4	9548	9594	9639	9685	9730	9776	9821	9867	9912	9958	46
5	980003	980049	980094	980140	980185	980231	980276	980322	980367	980412	45
6	0458	0503	0549	0594	0640	0685	0730	0776	0821	0867	45
7	0912	0957	1003	1048	1093	1139	1184	1229	1275	1320	45 45
8	1366	1411	1456	1501	1547	1592	1637	1683	1728	1773	45
9	1819	1864	1909	1954	2000	2045	2090	2135	2181	2226	45
960	982271	982316	982362	982407	982452	982497	982543	982588	982633	982678	45
1	2723	2769	2814	2859	2904	2949	2994	3040	3085	3130	45
2	3175	3220	3265	3310	3356	3401	3446	3491	3536	3581	45
3	3626	3671	3716	3762	3807	3852	3897	3942	3987	4032	45
4	4077	4122	4167	4212	4257	4302	4347	4392	4437	2	45
5	4527	4572	4617	4662	4707	4752	4797	5292	5837	5382	45
6	4977	5022	5067 5516	5112	5157	5202	5247 5696	5292	5786	5830	45
8	5426	5471	5516	6561	6606	6100	6144	6189	6234	6279	45
9	6324	6369	6413	6458	6503	-6548	6593	6637	6682	6727	45
970	986772	986817	986861	986906	986951	986996	987040	987085	987130	987175	45
1	7219	7264	7309	7353	7398	7443	7488	7532	7577	7622	45
2	7666	7711	7756	7800	7845	7890	7934	7979	8024	8068	45
3	8113	8157	8202	8247	8291	8336	8381	8425	8470	8514	45
4	8559	8604	8648	8693	8737	8782	8826	8871	8916	8960	45
5	9005	9049	9094	9138	9183	9227	9272	9316	9361	9405	45
6	9450	9494	9539	9583	9628	9672	9717	9761	990250	990294	44
7	9895	9939	9983	990028	990072	990117	990161 0605	990206 0650	990250	97328	44
8	990339 0783	990383 0827	990428 0871	0472	0516	0561 1004	1049	1093	1137	1182	44
980	991226	991270	99131	991359	991403	991448	991492	991536	991580	991625	44
1	1669	1713	1758	- 1802	1846	- 1890	1935	1979	2023	2067	44
2	2111	2156	2200	2244	2288	2333	2377	2421	2465	2509	44
3	2554	2598	2642	2686	2730	2774	2819	2863	2907	2951	44
4	2995	3039	3083	- 3127	3172	- 3216	3260	3304	3348	3392	44
5	3436	3480	3524	3568	3613	3657	3701	3745	3789	3833	44
6	3877	3921	3965	4009	4053	4097	4141	4185	4229	4273	44
7	4317	4361	4405	4449	4493	- 4537	4581	4625	4669	4713	44
8	4757	4801	4845	4889	4933	- 4977	5021	5065	5108	5152	
9	5196	5240	5284	- 5328	5372	5416	5460	5504	5547	5591	44
990	995635	995679	995723	995767	995811	995854	995898	995942	995986	996030	44
1	6074	6117	6161	6205	6249	6293	6337	6380	6424	6468	44
2	6512	, 6555	6599	6643	6687.	7. 6731	6774	6818	6862	6906	- 44
3	6949	- 6993	7037	7080	7124	4168	7212	7255	7299	7343	44
4	7386	- 7430	7474	- 7517	7561	17605	7648	7692	7736	7779	44
5	7823	7867	7910	7954	7998	8041	8085	- 8129	-8172	8216	- 44
6	8259	. 8303	- 8347	78390	8434	48477	8521	18564	8608	- 8652	274
7	8695	-8739	8782	8826	- 8869	- 8913	8956	6 9000	9043	9087 9522	$2 \begin{aligned} & 44 \\ & 44\end{aligned}$
8	9131	19174	-9218	8 9261	98305 9739	9348 9783	9392 9826	6 94370	9479 9913	9957	74
9	9565	- 9609	9652	29696	- 9739	9783	9826	6870	9913	935	-
210.	10	1	2	3	4	5	6	7	8	9	Dif.

- TABLE II.

NATURAL SINES AND COSINES.

18 TABLE II. NATURAL SINES AND COSINES.

	0°			$1{ }^{\circ}$				3°		$4{ }^{\circ}$		M.
	I.	Sine.	Cos.	Sine.	Cos.	Sine.	Cos. s	Sine.	Cos. S	Sine.	M	
		. 00000	One. . 0	. 01745	99985.	. 03490	739.0	. 05234	${ }^{99863}{ }^{\text {a }}$	6976	5	
		. 00029	One. 0	. 01774	${ }_{99984}^{9984}$. 03519				.07005		
		. 000058	One. 0	${ }^{.01803}$. 01832	${ }_{99983}^{9984}$. 035578 .9 9	${ }_{99936}^{9937}$. 055322	${ }_{99858}^{99860}$. 07063		
		. 000087	One. 0	. 01832	${ }_{99983} 9998$. 03606.9	${ }_{99935}$. 05350	99857	07092	99748	56
$\begin{aligned} & 3 \\ & 4 \\ & E \end{aligned}$. 00145	One. 0	. 01891	. 99938	.	-			. 07121	. 99746	55
$\begin{aligned} & 6 \\ & 7 \end{aligned}$		175	One. 0	. 01929	${ }_{09981}^{9982}$. 03664	${ }_{99932}^{99933}$. 0	. 054488	${ }_{99852}^{9984}$	${ }^{07179}$	${ }^{.999744}$	53
		. 0002043	One. 0	. 01979	99980	${ }^{036723}$	${ }_{99931}^{9932}$. 05466	${ }_{99851}^{9985}$	07208	99740	52
		262	One. 0	. 02007	99980							51
910		. 002921	One. 0	. 02036	${ }_{99979}^{9979}$	${ }_{0}^{038181}$.	${ }_{99927}^{99929}$. 0	. 055553	${ }_{99846}^{99847}$	${ }_{0}^{07265}$.	. 997	
12		. 003320	${ }_{99999}{ }^{\text {9999 }}$. 0	. 2009	${ }^{99978}$. 03839	9992	. 05582	99844	07324	. 99	48
		. 00378	99999 0	. 02123	. 99977	. 03868	999	. 05611				
$\begin{aligned} & 13 \\ & 14 \end{aligned}$.999	. 038927	${ }_{99923}^{99924}$	05669.	. 998841	${ }^{0} 7411$. 999725	
$\begin{aligned} & 14 \\ & 15 \end{aligned}$. 00436	. 9999	. 02181	. 999976		99923					
		. 00165	. 999999.0	. 022	.999	03955	${ }_{99921}^{9992}$	${ }_{0}^{05698}$.9983	${ }^{07440}$.99721	${ }_{43}$
$\begin{aligned} & 16 \\ & 17 \\ & 18 \end{aligned}$. 000595	${ }^{.999999}$. 0	. 0222269	.99974	. 04013	. 99919	${ }_{0} 05756$.99834	07498		42
		. 00553	. 99998	. 02228	.99974	. 04042	99918	05785	998	07527		41
$\begin{aligned} & 18 \\ & 19 \end{aligned}$. 005582	.999	237	999		${ }^{999}$	05814.	. 998	.075565.		39
$\begin{aligned} & 21 \\ & 22 \\ & 22 \end{aligned}$. 006611				04100	991	${ }_{0}^{05873}$.	${ }_{9} 98827$	07585	${ }_{99710}^{99712}$	38
		. 00	. 99	02414	. 99971	. 04159	. 99913	05902	. 998	07643		37
$\left.\begin{aligned} & 24 \\ & 24 \\ & 25 \end{aligned} \right\rvert\,$. 006698	. 999	0243		01188		5931.	998	07672.		${ }_{3} 36$
		. 00727	${ }^{.99997}$	02501 .	99969	04246	.999	${ }_{0}^{05989}$ 0590.	. ${ }^{.99882}$	07730	997	34
$\begin{array}{\|l} 25 \\ 26 \end{array}$. 99997	0253	.9996	04275	. 999909	06018	. 99819	07759		33
$\begin{aligned} & 27 \\ & 27 \\ & 27 \end{aligned}$. 00814	.999	02		O4304	9990	${ }_{0}^{06047}{ }^{0}$	${ }_{99815}^{99815}$	${ }^{0} 07888$		31
$\begin{aligned} & 28 \\ & 29 \\ & 99 \end{aligned}$		884		0261	${ }_{99966}^{99966}$.	.04332		${ }_{0}^{061056}$	${ }_{99813}^{9981}$	07846	99692	30
		. 00902	. 99996	02647	. 99965	. 04391	99904	06134	. 99812	. 07875	996	29
3132		. 0				04420	99902	06163	998	07904		
33		. 00960	.9999	27205		0449	${ }^{999}$	061922		07933		27
$\begin{aligned} & 34 \\ & 35 \end{aligned}$. 009989		${ }_{02763}^{02734}$		04478		06250	. 99	4 ${ }^{6} .07991$. 999680	25
3536373		. 01047		02792	999	04536	998	06279	998	08020		24
		. 01076	. 999999	028		04565		06308	${ }_{99799} 9801$	1.08049		
		${ }^{.01105}$	99994	${ }_{0}^{02850}$	999			${ }_{063}^{063}$		$7{ }^{\text {a }}$. 081078	${ }_{99671}$	21
$\begin{aligned} & 30 \\ & 39 \\ & 40 \end{aligned}$.01164	.99993	02908	${ }_{99958}$	04653	${ }^{9} 9892$	2.06395	${ }^{99795}$	5.08136		20
$\begin{aligned} & 39 \\ & 40 \\ & 41 \end{aligned}$.01193	${ }_{99993}$	029	9095	04682		06424				19
$\begin{aligned} & 41 \\ & 42 \end{aligned}$		${ }_{0}^{012221}$	${ }_{99992}^{9993}$	${ }_{0}^{02996}$. 999956	. 04711					. 99	17
$\begin{array}{\|l\|} 43 \\ 44 \\ 45 \end{array}$. 01280	99992	03025	99954	04769	9988	6.06511	99788	8.08252		16
		. 01309	. 99991	. 03054	99953	. 04798	. 99885	06	,	6.08281		15
		. 01338	99991	. 03083	. 99952	. 04827	. 99883	3.06569	${ }_{9}^{99784}$	4.08310	. .99654	14
$\begin{aligned} & 46 \\ & 47 \end{aligned}$		${ }^{01367}$	${ }_{9999} 9$		${ }^{999}$					82.0833	99649	12
$\begin{aligned} & 48 \\ & 49 \end{aligned}$.0142	${ }_{9999}$	031	${ }_{999} 99$	04914	${ }_{998}^{998}$	06656	. 99778	.		11
		. 01454	. 99989	03199	. 99949	. 04943	. 99	06685		.845		
	50	. 01483	999	03228	${ }_{99}^{999}$. 06714		.885		
$\begin{aligned} & 52 \\ & 52 \\ & 53 \end{aligned}$. 0151542	${ }_{9998}$	${ }_{0}^{03286}$	99	05	9987	.	. 99770	0.08513		7
$\begin{aligned} & 53 \\ & 54 \end{aligned}$. 01571	99988	03316	99945	. 050	998					
$\begin{aligned} & 54 \\ & 55 \end{aligned}$. 01600		03345	999	05					${ }_{996}$	
$\begin{aligned} & 56 \\ & 57 \\ & 57 \end{aligned}$. 01629		$6{ }^{6} .03344$	99942	051	${ }_{998}^{998}$	06889	99762	2		
		. 01687	986	03432	99941	1 .05175		06918	997			
$\begin{aligned} & 58 \\ & 59 \end{aligned}$. 01716	. 999985	5 ${ }^{\text {. } 03461}$		$\begin{aligned} & 10.05205 \\ & 39.05234 \end{aligned}$		44.06947				0
		. 01745	. 99985				9863					
M.		.	ine.	e.	ne.	e. Cos.	ine.	Cos	Sine.	Cos	Sine	M.
			89		88°		7°		$8{ }^{\circ}$		85°	

M.	5				$7{ }^{\circ}$		8°		9°		M.
											60
1		. 99617	. 10482	. 99	. 12216	. 99	139	. 99			59
2	. 0877	. 99614	10511		1294	. 992	1397	. 990	15701	60	8
3	. 088	996	. 10540		. 12274	. 99	14004.	. 99	730	5	57
4	. 08	99609	. 10569	. 994	12302	. 992	140	. 990	. 15758	98751	56
5	. 08	. 996	. 10597					. 99006	15787	${ }_{98741}^{9874}$	55
7	. 089	. 996				. 992	1411	. 98998	15845	987	5
8		99		. 9942	12418.	. 992	14148	. 98994	15	98	52
9		995	071	. 99424	124	. 99222	14177				51
10	. 0900	. 9959	. 10742	. 99421	124	. 99219	1420	. 989	15931	. 987	0
11	. 09034	. 9959	. 10771	. 9941	125	. 992	. 1423	. 98982	15959	. 987	49
12	. 09063	. 995		. 994	12533	. 992	14	. 98978	15988	. 98714	8
13	. 09092	995		. 9941		. 992	142	. 9897	16017	. 98709	47
14		99								9	A
15	. 09150	995									45
16	. 09	. 99				. 99197		. 989	16	. 98695	4
17	. 0922	. 99575	109	. 993	126	. 99		. 989	16132		43
18	. 09	. 995				. 991	. 14436	. 989	16		2
19	. 0	. 995	1100	. 993	127	991			. 16189		
20	. 0922	. 9956	. 11103	. 9939	127	. 9918	144	. 989	16		
21	. 09324	. 995	1106	. 993	12	. 9917	14		16	. 98671	39
22	. 09353	. 99	1108	. 993	12822	. 991	1	. 989	16	. 98667	38
23	. 09382	995	118	. 9938	12851	. 99171	S08	. 989	16		37
21	. 09111	. 995	. 11147	. 9937	12880	9916	1460	. 9892			
25	. 09440		1117	. 9937		9916	146	. 989			
			23	. 993							
28	. 095	. 9954	. 11263	. 9930	1299	99152	147	. 98			
29	. 0955	. 99542	. 1129	. 993		99148	14752	989			
30	. 09	. 995						. 989			
31	. 0	. 99				99	. 1				
32	. 09	995	. 11378	. 993	13110	991	. 14838				
	. 096	. 9953	. 1140	. 9934	13139	991	148				
34	. 09700	. 9952		. 9934		. 991	148	. 98	166		
35	. 09729	. 995		993		. 991		. 988	166		
36	. 0975	. 9952		. 993		99		. 98	,		
	. 09787	995	11523	993		9911			. 167		
38 39	. 0981	.9951	. 11552	. 99331		. 991	15011		16734		
39 40	. 098	995				991	15		16763		
		995									
	. 09	.9950	166	. 99317	9		1512				
43	. 09961	. 9950	1169	. 9931		990	1515	. 988	168		
44	. 09990	. 995		. 99310		. 99	15184	. 988	16906		
45											
		9949	11812						16992		
48	. 1010	9918	11840	992		990	1529	. 988	17021		
	. 1013	9948	11869	. 992	. 13600	990	. 15927	. 988	17050	-	
	. 10	994	1189	. 992	36	. 990	. 15356	. 98	170		
	. 10192	. 99477	11927		136	. 990	15385	. 98	. 17107		
	. 1		1195	. 9928	13687	. 99	15414	. 988	. 17136		
	. 10									985	
	. 1		43	. 99		990			172		
	. 1033	9	12011			990		. 987		. 98501	
	. 1036		1			9		9878			
	. 1039	. 994	. 12129	. 9926	. 13860	9903	. 15586	. 9877	,	. 98	
			. 1215	. 9925	. 13889	. 9903	. 1	. 987			
60			. 12187	. 99		. 9902		. 98		. 98481	
M.			C		Cos.		os. Sine.		Cos. Sine.		II
	84°		83°		82°		81°		80°		

	10^{*}		11°		12°		13°		14°		M.
M.	Sine.	Cos.									
0	. 17365	. 98481	. 19081	. 98163	. 20791	. 97815	. 22495	. 97437	. 24192	. 97030	60
1	. 17393	. 98476	. 19109	. 98157	. 20820	. 97809	. 22523	. 97430	. 24220	. 97023	59
2	. 17422	. 98471	. 10138	. 98152	. 20848	. 97803	. 22552	. 97424	. 24249	. 97015	58
3	. 17451	. 98466	. 12167	. 98146	. 20877	. 97797.	. 22580	. 97417	. 24277	. 97008	57
4	. 17479	. 98461.	. 19195	. 98140	. 20905	. 97791	. 22608	. 97411	. 24305	. 97001	56
5	. 17508	. 98455.	. 19224	. 98135	. 20933	. 97784	. 22637.	. 97404	. 24333	. 96994	55
6	. 17537	${ }_{98445} 98450$. 19252	. 93129	. 20962	${ }^{.} 97778$. 222665	. 973738	.24362 .2490	. 969887	54
7	. 17565	. 988445	. 19281	. 93124	. 20990	. 97772	. 222693 .	. 97391	. 24390	. 96989	53 52
9	. 17623	. 98435	. 19338	. 98112	. 21047	. 97760	. 22750	. 97378	. 24446	. 96966	51
10	. 17651	. 98430	. 19366	. 98107	21076	. 97754	. 22778	. 97371	24474	. 96959	50
11	. 17680	. 98425	. 19395	. 98101	. 21104	. 97748	. 22807	. 97365	24503	. 96952	49
12	. 17708	. 98420	. 19423	. 98096	21132	. 97742	. 22835	. 97358	24531	. 96945	48
13	. 17737	. 98414	. 19452	. 98090	. 21161	. 97735	. 22863	. 97351	24559	. 96937	47
14	. 17766	. 98409	. 19481	. 98084.	. 21139	. 97729	. 22892	. 97345	. 24587	. 96930	46
15	. 17794	. 98404	. 19509	. 98079	21218	. 97723	. 22920	. 97338	24615	. 96923	45
16	. 17823	. 98399.	. 19538	. 98073	. 21246	. 97717	. 22948	. 97331	. 24644	. 96916	44
17	. 17852	. 98394	19566	. 98067	. 21275	. 97711	. 22977	. 97325	. 24672	. 96909	43
18	. 17880	. 98389	. 19595	. 98061	. 21303	. 97705	. 23005	. 97318	. 24700	. 96902	42
19	. 17909	. 98383	. 19623	. 98056	. 21331	. 97698	. 23033	. 97311	. 24728	. 96894	41
20	. 17937	. 98378	. 19652	. 98050	. 21360	. 97692	. 23062	. 97304	. 24756	.96887	40
21	. 17966	. 98373	. 19680	. 98044	. 21388	. 97686	. 23090	. 97298	. 24784	. 96880	39
22	. 17995	. 98368	. 19709	. 98039	. 21417	. 97680	. 23118	. 97291	. 24813	. 96873	38.
23	. 18023	. 98362	. 19737	. 98033	. 21445	. 97673	. 23146	. 97284	. 24841	. 96866	37
24	. 18052	. 98357	. 19766	. 98027	. 21474	. 97667	. 23175	. 97278	24869	. 96858	36
25	. 18081	. 98352	. 19794	. 98021	. 21502	. 97661	. 23203	97271	. 24897	96851	35
26	. 18109	. 98347	. 19823	. 98016	21530	. 97655	. 23231	. 97264	. 24925	96844	34
27	. 18138	. 98341	. 19851	. 98010	. 21559	. 97648	. 23260	97257	. 24953	96837	33
28	. 18166	. 98336	. 19880	. 98004	. 21587	. 97642	. 23288	97251	. 24982	96829	32
29	. 18195	. 98331	. 19908	. 97998	. 21616	. 97636	. 23316	97244	. 25010	96822	31
30	. 18224	. 98325	. 19937	. 97992	. 21644	. 97630	. 23345	97237	. 25038	. 96815	30
31	. 18252	. 98320	. 19965	. 97987	. 21672	. 97623	. 23373	. 97230	. 25066	. 96807	29
32	. 18281	. 98315	19994	. 97981	. 21701	. 97617	. 23401	97223	25094	. 968	28
33	. 18309	. 98310	. 20022	. 97975	21729	. 97611	. 23429	97217	25122	. 96793	27
34	. 18338	. 98304	. 20051	. 97969	. 21758	. 97604	. 23458	. 97210	25151	. 96786	26
35	. 18367	. 98299	. 20079	. 97963	. 21786	. 97598	. 23486	. 97203	. 25179	. 9677	25
36	. 18395	. 98294	20108	. 97958	. 21814	. 97592	. 23514	. 97196	. 25207	. 96771	24
37	. 18424	. 98288	. 20136	. 97952	. 21843	. 97585	. 23542	. 97189	. 25235	. 96764	23
38	. 18452	. 98283	. 20165	. 97946	. 21871	. 97579	. 23571	. 97182	. 25263	. 96756	22
39	. 18481	. 98277	. 20193	. 97940	. 21899	. 97573		. 97176	. 25291	. 96749	21
40	. 18509	. 98272	. 20222	. 97934	. 21928	. 97566	. 23627	. 97169	. 25320	. 96742	20
41	. 18538	. 98267	. 20250	. 97928	21956	. 97560	. 23656	. 97162	. 25348	. 96734	19
42	. 18567	. 98261	. 20279	97922	21985	. 97553	. 23684	. 97155	. 25376	. 96727	18
43	. 18595	. 98256	. 20307	. 97916	22013	. 97547	. 23712	. 97148	. 25404	. 96719	17
44	. 18624	. 98250	. 20336	. 97910	22041	. 97541	. 23740	. 97141	. 25432	. 96712	16
45	. 18652	. 98245	. 20364	. 97905	22070	. 97534	. 23769	. 97134	. 25460	. 96705	15
46	. 18681	. 98240	20393	. 97899	22098	. 97528	. 23797	. 97127	25488	. 96697	14
47	. 18710	. 98234	. 20421	. 97893	22126	. 97521	. 23825	. 97120	. 25516	96690	13
48	. 18738	. 98229	. 20450	. 97887	22155	. 97515	. 23853	. 97113	. 25545	96682	12
49	. 18767	. 98223	. 20478	. 97881	22183	. 97508	. 23882	. 97106	. 25573	. 96675	11
50	. 18795	. 98218	. 20507	. 97875	. 22212	. 97502	. 23910	. 97100	. 25601	96667	10
51	. 18824	. 98212	. 20535	. 97869	22240	. 97496	. 23938	. 97093	. 25629	. 9666	9
52	. 18852	. 98207	20563	. 97863	22268	. 97489	23966	97086	. 25657	. 96653	8
53	. 18881	. 98201	. 20592	. 97857	22297	. 97483	. 23995	97079	. 25685	. 96645	7
54	. 18910	. 98196	. 20620	. 97851	. 22325	. 97476	. 24023	. 97072	. 25713	96638	6
55	. 18938	. 98190	. 20649	. 97845	. 22353	. 97470	. 24051	. 97065	. 25741	. 96630	5
56	. 18967	. 98185	. 20677	. 97839	. 22382	. 97463	. 24079	. 97058	. 25769	. 9662	4
57	. 18995	. 98179	20706	. 97833	. 22410	. 97457	. 24108	. 97051	. 25798	. 96615	3
58	. 19024	. 98174	. 20734	. 97827	. 22438	. 97450	. 24136	. 97044	. 25826	. 96608	2
59	. 19052	. 98168	. 20763	. 97821	. 22467	. 97444	. 24164	. 97037	. 25854	. 96600	
60	. 19081	. 98163	. 20791	. 97815	. 22495	. 97437	. 24192	. 97030	25882	. 96593	0
M.	Cos.	Sine.	Cos.	Sine.	Cos	Sine.	Cos.	Sine:	Cos.	Sine.	M.
	78°		78°		77°		76°		75°		

I.	15°		16°		17°		18°		19°		M.
0											0
1	. 25910	. 965	. 27592		. 29265	. 95	29	. 95097	4		59
2	. 25938	. 965			3	. 956	. 30957	95	. 32612		58
3	. 25	96			29321	. 95	. 30985	. 95079	32639		57
4	. 25994	. 965			. 29348		. 31012 .	. 95070	32667		
5	. 26022	. 965			. 29376	. 955	. 31040 .		32694	94504	5
6	. 26050	965	731	9607	. 29404	. 95	. 31068	. 95052	. 32722	94495	54
7	. 26079	965	2	96070	29	95	. 31095	. 95	32749	. 94485	53
8	. 26107		. 2	96062	29460		.31123.	. 950	32777		52
9	. 26						. 311178	. 950	32		51
11	26	. 96			. 29543		. 31206	. 950			9
12	. 262				. 29571		. 12				48
			. 27927	96021	. 29599	. 95519	. 3126	. 949	32914		7
14	. 26275	9648	. 2795	6013	. 2962	. 95511	. 31289	. 949	32942		46
15	. 26303	0	. 27983	9600	29634				32969		5
16	. 26331	9		. 959							4
17	. 26				29710			. 949			43
18				59	297	. 95		94			2
19	. 2641	964	.	959	. 297	. 954	. 31	94	33079		11
20	. 2644	964	. 28123	,	. 297	. 95	31	. 94	3106		40
1	. 26	96	28150	9595	. 29821	. 95		. 949			39
22	. 265	. 964		-	181	. 95			33161		38
	. 265	9641	. 282006	9594	-29810	. 954	31	. 94	. 33189		37
24	. 26556	. 9641	. 28234	9593	. 29904	. 954			. 33216		
25	. 26584	. 9640	22	959	2	95		. 94878	33244	. 943	5
26	. 2661	. 963	28290	959		95	. 31620	. 94869	. 33271		34
		963	18	,		. 53					3
	. 2666	. 96379			. 30015	. 953					32
29	. 2669	. 9637	374	95		. 053		9			31
30						. 95					30
			. 28429	958	30098	. 953					29
	. 26	. 9634	. 28103	988	. 30126	. 953	. 31786	948	. 33		28
33	. 268	. 9631		958							27
	. 268	. 963		958	. 30182	95	.	. 94795			26
		¢	28541	. 958	3020	. 95		. 94786	33		
				. 958		. 953		. 94777			
	. 2	963	597	958		. 953					
38	. 2694	. 963	28625	95816	30292	953	31951	. 94	. 33600		22
		.9623		. 9580	,	. 95	.31279	479			21
40		9628				952					
		962	28	.9579	. 30376	. 952	. 32034		20		19
	. 2706	. 9626	28	. 9578		. 952	. 32061	. 94	337		18
43	. 2708	. 962		. 95774	. 30431	5	. 32089		. 33		17
	. 2711	. 9625		. 95766		. 95248	. 32116	. 94702	33164		16
45				. 957		. 95240	. 32144				15
46		. 9623		. 957		. 952	. 32171		. 33819		14
47	. 27200	. 9623	. 288	. 9574	. 30542	. 95222	. 32199	946	. 33846		13
	. 2722	962	28903	. 95	. 30570	. 95	. 3222		338		12
	. 2	,02	2831	. 9572	,	.9520	32254	94			
							. 32282		30		
51	. 27312	. 9619	. 28987	. 9570	. 30653	. 9518	. 32309	946	339		
	. 2734	. 9619	29015	. 956	680	. 951		94	339		
	. 2	. 961	. 29042	95		. 95			,		
	. 27396		. 29010			.	, 21				
	. 27424	. 9616	. 29098	. 956	. 30763	. 9515	. 32419	94	,	.	
	. 27452	. 9615	. 29126	. 956	. 30791	. 95142	. 32447	94	34093	. 9400	
	. 27	. 9611	2	. 956	0819	. 951		94	. 3412		
		961	. 29182	. 95647	. 30846	. 95124	2	. 94571	. 3414		
			. 29238				. 32529				
60		. 96	. 29237			. 951	32557	. 94	. 342	. 93969	
				Sine.	Cos.	Sine.	Cos.	Sin			M
				3							

M.	20°		21°		22°		23°		24°		
	Sine.	Cos.	Sine.	S	Sine.	s.	Sine.	Cos.		Cos.	
.	. 34				. 3740	92	. 3	92050.			60
	228		. 35864	93348		927	391				59
	. 31257	. 93949.3	. 35891	93337	. 37515	92697	39127	92	40727	. 91331	58
2 3	. 34281		. 35918	9332	.37542 37569	$.92686$	$\begin{array}{r} 39153 \\ .39180 \end{array}$		40780	. 91313	57
$\begin{aligned} & 3 \\ & 4 \end{aligned}$.34311	. 93919 .	.35945 .3573	9330	${ }_{37595}^{3759}$	${ }_{92664}^{92675}$	${ }_{39207}^{39180}$	${ }_{91994}^{92005}$	40806		
$\begin{aligned} & 5 \\ & \mathbf{6} \end{aligned}$	${ }_{.} 4366$. 36000			${ }^{926}$	3923	91982.	408		
6					649	. 926	39260	. 919	40860		
	. 31421	.93887	. 36054 . 9	0327							
9	. 34148	${ }^{.93879}$. 3	. 36081	${ }_{9325}^{9326}$. 377	${ }_{926}$	${ }_{393} 39$	${ }^{91}$	40913.		
10		${ }^{.9386999 .3}$. 36108	$.93253$. 37730 . 37757	.9260	${ }_{3936}$.919	${ }_{40966}^{40939}$		50
	.34503 .3453	. 9384				. 925		. 91			
$\begin{aligned} & 11 \\ & 12 \\ & 13 \end{aligned}$. 3155	. 9383	36190.	93222	378	. 92	39		41019		47
14	. 3458			93211.	${ }^{378388}$.	. 92			41045		45
14	. 31612	. 9381	44		865	. 92	. 39474.		. 107		45
.	. 34639	. 93809.3	. 36271	. 93190.	. 37892	92543	. 3	91868.	410		44
	. 346	. 93			3719						,
17.	. 31694										41
	. 3172						395		. 411204		41
$\left\|\begin{array}{l} 19 \\ 20 \\ 21 \end{array}\right\|$	$\stackrel{37775}{ }$		36	. 931	${ }^{38026}$.	. 924	39	918	${ }_{41231}$		39
$\left\lvert\, \begin{aligned} & 21 \\ & 22 \\ & 23 \end{aligned}\right.$. 3180	. 93748 . 3	36434	退		24	39	. 917	. 412		38
				11					41284		37
23	. 318						397	,			36
	. 348	. 93718	. 36515		381	. 924	. 397	. 91			
	. 34912		542								
$\begin{aligned} & 20 \\ & 27 \\ & 26 \end{aligned}$. 31939					92421		. 917	${ }_{41416}^{4139}$		
	$\stackrel{3}{84993}$.93			3824	22	. 398	917	1144		
29 30	. 35021	-	366	${ }_{93042}$	38268	92388	. 3987	. 9170	414		
31	. 35048	9365	. 3667	031	. 3829	923	. 3990	. 91694	41496		29
	. 3010		. 36704.					91			
$\begin{aligned} & 33 \\ & 34 \end{aligned}$. 3510		.					916	41549		7
	. 31315					923		. 91			
	. 35157	. 93616			38403	${ }^{923}$	400	91	.1602		
	. 35184		. 36812		38130	${ }^{923}$	400	91	${ }_{41655}^{41628}$		
$\begin{aligned} & 36 \\ & 36 \\ & 37 \end{aligned}$. 352					. 922		916	4163		
38 39 39	.	.935			88	922	4011	. 91601	41707		
39 40	.			929	. 385	922	401	.91	1734		
40	. 353		. 36913	. 229	. 3856	. 922			41		
42	35337	${ }_{935}$. 37675 .		38591	922	401	. 91			
43	. 35375	. ${ }^{935354}$				92	402	.91	41813		
	. 35102	252	37029		8844	922	402	9154	3. 41840		
$\begin{aligned} & 44 \\ & 45 \\ & 45 \end{aligned}$. 35429	. 93514	37056	. 928	. 38671	. 92220	402	. 915	. 18		
15	. 35456	. 93503	37083	. 92870	. 38698	. 92209	4030	. 91	41892	2.908	
	. 35581	93	110				403				
4849	. 35511	. 93483	. 37137	928		921	403	. 914	41945		
	. 35	9347	. 37164	. 928		92	403	. 91	72		
495051	. 355	${ }^{334}$	37191	928	. 38	92	404	. 91	2.41998		
	. 35592	. 93452	37218	928		921	4043				
51 52 51	5619	93441	37245	. 92805	388	921	404	91	42051		
	. 35647	934	37272	927	388		404	${ }^{914}$	${ }_{42104} 420$		
55		. 934	37	${ }^{92}$	3891	${ }^{92}$	4051				
	. 35	. 933110	0. 37326	${ }^{92}$		92	405				
	35755	933		927			405	91	21		
5859	,	. 933	. 37407	9274							
	. 35810		7434	72	390	. 920	${ }_{4}^{40647}$				
60	583	. 9335	761	. 92718	$.390$	920	40674	9.91355			
M.	.	Sine.	Co	Stne.	Co	in	Co	Sin		Sin	
		68°		8°		7°		6°			

	25°		26°		27°		28°		29°		M.
M.	Sine.	Cos.	Sine.	Cos.	Sine.	Cos.	Sine.	Cos.		s.	
0	. 42262	. 90631	43837	. 89879	. 45399	. 89101	. 46947	. 88295	. 48481	62	60
1	. 42288	. 20618	43863	. 89867	45425	. 89087	.46973	. 88281	. 48506		59
2	. 42315	. 00606	. 43889	. 89854	45451	. 89074	. 46999	. 88267	. 48532	4	58
3	. 42341	. 0059	. 43916	. 89891	45477	89061	. 47024	. 88825	. 48557	87420	57
4	. 4232381	. 00582	. 439968	. 898828	45503 45529	. 890048	.47050 .47076	. 888240	48583	87406 87391	56
6	- 42420	. 90557	. 43994	. 89803	45554	89021	. 47101	. 88213	48634		54
7	. 42446	. 90545	44020	. 89790	45580	89008	. 47127	. 88199	48659		53
8	. 42473	9053	44046	. 89777	45606	889	. 47153	88185	. 48684		2
9	. 42499	. 9052	44072	. 89764	45632	8898	47178	88172	. 48710	87335	51
10	. 42525	،90507	. 44098	. 89752	. 45658	. 88968	. 47204	88158	. 48735	87321	50
11	. 42552	. 90495	. 44124	. 89739	45684	. 889	. 47229	. 88144	. 48761		49
12	. 42578	. 90483	. 44151	. 89726	45710	88942	47255	88130	48786		8
13	. 42604	. 90470	44177	. 89713	45736	88928	47281	88117	48811	87	77
14	. 42531	. 90458	. 44203	.89700	45762	. 8891	47306	88103	. 48837		46
15	. 42657	. 90446	. 41229		45787	. 8890	47332	. 8808	. 48862		45
16	. 43683	. 90433	44255	. 89674	. 45813	. 88888	. 47358	. 88075	. 48888	. 87235	4
17	. 42709	. 90421	. 41281	. 89662	. 45839	88875	47383	88062	48913	87221	43
18	. 42736	. 90408	. 44307	. 89649	45865	88	47409	88048	. 48938	87207	42
19	. 42762	. 90396	. 44333	. 89636	. 45891	. 88848	. 47434	88034	. 48964	87	41
20	. 42788	. 90383	. 44359	. 89623	. 45917	. 8883	47460	88020	48989	. 871	40
21	. 42815	. 90371	. 44385	. 89610	45942	. 8882	47486	. 88006	49014		39
22	. 42841	. 90358	. 44411	. 89597	. 45968	8880	47511	. 8799	49040	87	38
23	. 42867	. 90346	. 44437	. 89584	45994	8879	47537	. 87979	49065	. 8713	37
24	. 42894	. 90334	44464	. 89571	. 46020	.88782	47562	. 8796	49090	. 87	36
25	. 42920	. 90321	. 44490	. 89558	. 46046	. 8876	47588	.8795	. 49116	87	35
26	. 42946	. 90309	. 44516	. 89545	46072	. 8875	47614	. 8793	49141	810	34
27	. 42972	. 90296	44542	. 89532	46097	88741	47639	8792	49156	. 870	33
28	. 42999	. 90284	. 44568	. 89519	46123	. 88728	47665	. 8790	49192		32
29	. 43025	. 90271	. 44594	. 89506	46149	. 8871	47690	. 878	49217	87	31
30	. 430	. 9025	. 44620	. 89493	175				49242		30
31	. 43077	. 90246	44646	. 89480	. 46201	. 88688	. 47741	. 87868	. 49268	. 87021	29
32	. 43104	. 90233	. 44672	. 89467	. 46226	88674	47767	87854	. 49293		28
33	. 43130	. 90221	. 44698	. 89454	. 46252	. 886	47793	. 87840	. 49318		27
34	. 43156	. 9020	. 44724	. 89441	. 46278	. 88647	. 47818	. 87826	. 49344	86	26
	. 43182	. 90196	. 44750	. 89428	. 4.6304	. 88634	. 47844	. 87812	. 49369	869	25
36	. 43209	. 9018	. 44776	. 89415	. 46330	. 88620	. 47869	. 87798	. 49394	86949	24
37	. 43235	. 90171	. 44802	. 89402	. 46355	. 88607	. 47895	87784	. 49419		23
38	. 43261	. 0015	. 44828	. 89389	. 46381	. 885	. 47920	. 87770	. 49445	869	22
39	. 43287	. 9014	44854	. 89376	46407	. 88	47946	. 87756	. 49470		21
40	. 43313	90133	44880	. 89363	433		47971	. 87743	. 49495	86892	20
41	. 43340	. 90120	44906	. 89350	. 46458	8855	. 47997	. 87729	. 49521	.86878	19
42	. 43366	. 90108	44932	. 89337	. 46484	. 88539	. 48022	87715	. 49546		18
43	. 43392	9009	4458	. 89324	. 46510	. 8852	. 48048	. 87701	. 49571	8081	17
44	. 43418	90082	44984	. 89311	. 46036	. 88512	48073	. 8168	.4303	. 86831	
45	. 43445	. 9007	45010	. 89	. 46561	. 884	4009	87073		868	15
46	. 43471	. 90057	45036	. 89285	46587	. 88485	. 48124	87659	. 49647	. 86805	14
47	. 43497	. 9004	45062	. 89272	. 46613	. 8847	. 48150	876	49672	. 86781	13
48	.43523	. 90032	45088	. 89259	. 46639	. 88458	48175	87631	49697	. 8676	12
49	. 43549	退	45114	89245	46664	88445	48201	87617	.4972	dor	
50	. 43575	. 90007	45140	. 89232	. 46690	88431	48226	87603	. 49748	86748	10
51	. 43602	. 89994	45166	. 89219	46716	88417	. 48252	87589	49773	867	
52	. 43628	. 8998	45192	. 89200	. 46742	. 8840	48277	. 87575	49798	86719	
53	. 43654	. 8999	45218	. 89193	46767	. 8839	. 48303	87561	. 49824	86704	
54	. 43680	89956	45243	89180	46793	. 8837	48328	. 87546	. 49849	866	
55	. 43706	. 89943	45269	89167	46819	88363	$48 ? 54$	87532	49874	866	
56	. 43733	. 89930	. 45295	. 89153	. 46844	. 88349	48379	.87518	49899	86	
5	. 43759	. 8991	. 45321	. 89140	46870	. 8833	48105	. 87504	49924	866	3
58	. 43785	. 8990	45347	89127	46896	8832	48430	8749	49950	. 86632	
59.	. 43811	8982	. 4537	. 89114	. 40921	8808	48481	. 874	4291	. 86617	
60	. 43837	879	45399	. 89101	. 46947	88295	48481	. 8746	50000	.	0
M.	C	ine	Cos.	Sine.	C	Sin	Cos	Fin	Cos	Sine.	M.
	64°		63°		62°		61		60°		

	30°		$31{ }^{\circ}$		32°		33°		$34{ }^{\circ}$		M.
M	Sin	Cos.	Sine.	os.	Sine.	Cos.	Sine.	Cos.	Sine.	S.	
0	. 50000										0
1	. 5002	. 86588	. 51529	. 85702	. 53017	. 84789	. 54488	. 83	55943	. 82887	59
2	. 50050	. 86573	. 51554	. 85687	. 53041	. 84774	. 54513	. 83835	. 55968	. 82871	58
3	. 50076	. 86559	. 51579	. 85672	. 53066	. 84759	. 54537	. 838	. 55992	82818	57
	. 50101	. 86544	. 51604	. 8565	. 53091	. 8474	. 54561	. 83804	. 56016	82	56
5	. 50126	. 86530	51628	. 85642	. 53115	. 84728		83788	. 56040	8281	55
6	. 50151	. 86515	. 51653	. 85627	. 53140	. 84712	. 54610	. 83772	. 56064	. 82806	54
	. 50176	. 86501	. 51678	. 85512	. 53164	. 84697	. 54635		. 56088	. 82790	53
8	. 50201	. 8648471	.51703 .51728	. 855	. 53189	. 846	. 546	. 83740	. 56112	. 82773	52
10	. 50227	. 86471	. 517	. 8555	. 53214	. 8466	546	83724	. 56136	. 82757	51
11	. 50277	. 86442	51778	. 85551	. 53263	. 84635	. 54732	83692	. 56184	. 82724	49
12	. 50302	. 86427	. 51803	. 85536	. 53288	. 84619	. 54756	83	. 56208	82708	48
13	. 50327	. 86413	. 5182	. 85551	. 53312	. 84604	. 54781	. 83660	. 56232	. 82692	47
14	. 50352	. 86398	. 51852	. 85506	. 53337	. 8458	. 54805	. 83645	. 56256	8267	46
15	. 50377	. 86384	. 51877	. 85491	. 53361	. 84573	. 54829	83629	. 56280	8265	45
16	. 50403	. 86369	. 51902	. 85	. 53386	. 84557	. 54854	. 83613	. 56305	82	44
17	. 50428	. 86354	. 51927		. 53411	. 845	. 54	83597	. 56329	82	43
18	. 50453	. 86340	. 51952	. 854	. 53435	. 84526	. 54902	83581	. 56353	826	42
19	. 50178	. 86325	. 51977	85431	. 53460	84511	. 54927	835	. 56377	825	41
20.	. 50503	. 86310	. 52002	85416	. 53484	84495	. 54951	. 83549	56401	82577	40
21	. 50528	. 86295	. 52026	854	. 53509	844	. 54975	8353	. 56425	82561	39
22	. 50553	. 86281	. 52051	. 85385	. 535	84	. 54999	83517	. 56449		38
23	. 50578	. 86266	. 52076	. 85370	. 53558	. 84448	. 55024	. 83501	. 56473	825	37
21	. 50603	. 86251	. 52101	8535		. 844	. 55048	. 83485	. 56	82511	36
25	. 50628	. 86237	. 52126	85340	. 53607	84417	. 55072	83469	. 5652		35
26	. 50654	. 86222	. 52151	8532	. 53632	84402	. 55097	834	. 56545		34
27	. 50679	. 86207	. 52175	85310	. 53656	. 8438	. 55121	8343	. 56569	82	
28	. 50704	86192	. 52200	85294	. 53681	. 8437	. 55145	83421	. 565	824	2
29	. 50729	. 86178	. 52225	85279	. 53705	8435	55169	83405	. 5661	824	31
30	. 50754	. 86	. 52250	64	53730	. 84339	. 5519	833	. 5664	. 82	30
31	. 50779	. 86148	. 52275	. 85249	. 53754	. 84324	55218	83373	. 56	823	29
32	. 5080	. 86133	. 52299	. 85234	. 53779	. 8430	55242	833	. 566	823	28
33	. 50829	. 86119	. 52324	85218	. 53804	. 8429	552	83340	. 5671	823	27
34	. 50854	. 86104	. 52349	85203	. 53828	. 84277	. 55291	83324	. 5673	8234	26
35	. 50879	. 86089	. 52374	. 85188	. 53853	. 84261	. 55315	83308	. 56760	. 82330	25
36	. 50904	. 86074	. 52399	. 85173	. 53877	. 8424		83292	. 56784		24
37	. 50929	. 86059	. 52423	85157	. 53902	84230		83276	. 568	8229	23
38	. 50954	. 86045	. 52448	. 85142	. 53926	84214	. 5538	83260		. 82281	22
39	. 50979	. 86030	. 52473	85127	. 53951	. 84198	. 55412	. 83244	. 5685	. 82264	21
40	. 51004	. 86015	. 52498	85112	. 53975	. 8418	. 55136	. 8322	. 56880	. 8224	20
41	. 51029	. 86000	. 52522	. 8509	. 54000	.8416	. 55460	. 8321	. 56904	221	19
42	. 51054	. 85985	. 52547	85081	54024	84151	. 55484	83195	. 5692	822	18
43	. 51079	. 85970	. 52572	85066	. 54049	. 84135	. 55509	. 83179	. 56952	8219	17
44	. 51104	. 85959	. 52597	. 85051	. 54073	. 84120	55533	. 8316	. 56976	. 82181	16
45	. 51129	. 8594	. 52621	. 85035	. 54097	. 84	. 55557	. 8314	. 57000	. 82165	15
46	. 51154	. 85926	. 52646	. 85020	. 54122	. 84088	. 55581	. 83131	. 57024	. 8214	14
	. 51179	. 85911	52671	. 85005	. 54146	. 84072	. 55605	. 8311	5704	. 8213	13
49	. 51204	. 8589	52696	. 84989	54171	. 84057	55630	. 8300	57071	. 8211	12
50	. 51229	. 85888	. 52745	84974	. 54220	. 8404	. 556678	. 83082	. 57095	82098	10
	. 51279	. 8585	. 52770	. 84943	4244	. 8400	55702	. 8305	. 57143	8206	
52	. 51304	. 8583	. 52794	. 84928	4269	. 83994	. 55720	. 83034	57167	. 8204	
	. 51329	. 85821	. 52819	84913	54293	. 8397	55750	83017	57191	. 8203	
	. 51354	. 85806	. 52844	. 84897	54317	. 8396	. 55775	. 83001	. 57215	. 8201	6
	. 51379	. 85792	. 52869	. 8488	. 54342	. 839	. 55799	. 8298	. 57238	. 8199	
	. 51404	8577	. 52893	. 8486	36	. 839	55823	. 8296	. 57262	8198	
	. 51429	. 8076	. 52918	. 8485		. 839	. 5887	. 8295	5728	. 8196	3
	. 51454	. 8574	. 52943	8483	1	. 838	55871	. 8293	57310	. 8194	
60	. 51479	. 8573					889	. 8292	. 5733	. 8193	
									. 5735	. 819	0
M.	Cos.	Sine	Cos.	Sine	S.	Sine	Cos	Sine	Cos	in	
		9°	58°		57°		56°		55°		

TABLE II. NATURAL SINES AND COSINES.

M.	35°		36°		37*		38		39°		M.
	Sine.	Cos.	Sine.	Cos.	Sine.	Cos.	Sine.		Sine.	Cos.	
0	. 57358	. 81915	. 58779 .	. 80902		78864		78801	. 62932	77715	60
1	. 57381	. 81899	. 58802	$.80885$. 60205	. 79846	. 61589	. 78783	. 62955	77696	59
2	. 57405	. 81882	. 58826 .	. 80867	. 60228	. 79829	. 61612	. 78765	. 62977	77578	58
3	. 57429	. 81865	. 58849	. 80850	. 60251	. 79811	. 61635	. 78747	. 63000	77660	57
4	. 57453	. 81848	. 58873 .	. 80833	. 60274	. 79793	. 61658	. 78729	. 63022	77641	56
5	. 57477	. 81832	. 58896	. 80816	. 60298	. 79776	. 61681	. 78711	$.63045$	77623	55
6	. 57501	. 81815	. 58920	80799	. 60321	. 79758	. 61704	. 78694	. 63068	77605	54
7	. 57524	. 81798	. 58943	. 30782	. 60344	. 79741	. 61726	. 78676	. 63090	77586	53
8	. 57548	. 81782	. 58967	. 80765	. 60367	.79723	. 61749	. 78658	. 63113	77568	52
9	. 57572	. 81765	. 58990	. 80748	. 60390	. 79706	. 61772	. 78640	. 63135	77550	51
10	. 57596	. 81748	. 59014.	. 80730	. 60414	. 79688	. 61795	. 78622	$.63158$	$.77531$	50
11	. 57619	. 81731	. 59037.	. 80713	. 60437	. 79671	. 61818	. 78604	. 63180	77513	49
12	. 57613	. 81714	. 59061.	. 80696	. 60460	. 79653	. 61841	. 78586	. 63203	77494	48
13	. 57667	. 81698	. 59084.	. 80679	. 60483	. 79635	$.61864$. 78568	. 63225	. 77476	47
14	. 57691	. 81681	. 59108.	. 80662	. 60506	. 79618	. 61887		. 63248	. 77458	46
15	. 57715	. 81664	.59131.	. 80644	. 60529	. 79600	. 61909	. 78532	. 63271	. 77439	45
16	. 57738	. 81647	. 59154	. 80627	. 60553	. 79583	. 61932	. 78514		77421	44
17	. 57762	. 81631	. 59178	. 80610	. $6057{ }^{1}$. 79565	. 61955	. 78496	. 63316	$.77402$	43
18	. 57786	. 81614	. 59201	. 80593	. 60599	79547	. 61978	. 78478	$.63338$	77384	42
19	. 57810	. 81597	. 59225	. 80576	. 60622	. 79530	. 62001	. 78460		77366	41
20	. 57833	. 81580	. 59248	. 80558	. 60645	. 79512	. 62024	. 78442	$.63383$	$.77347$	40
21	. 57857	. 81563	. 59272	.80541	. 60668	. 79494	$.62046$	$.78124$	$.63406$	$.77329$	39
22	. 57881	. 81546	. 59295	. 80524	$.60691$. 79477	. 62069	$.78405$	$.63428$	$.77310$	38
23	. 57904	. 81530	. 59318	. 80507	. 60714	$.79459$. 62092	$.78387$	$.63451$	$.77292$	37
24	. 57928	. 81513	. 59342	. 80489	. 60738	$.79441$. 62115	$.78369$	63473	$.77273$	36
23	. 57952	. 81496	. 59365	. 80472	. 60761	. 79424	$.62138$	$.78351$	196	$.77255$	35
23	. 57976	. 81479	. 59389	. 80455	. 60784	. 79406	. 62160	$.78333$			34
27	. 57999	. 81462	. 59412	. 80438	. 60807	. 79388	. 62183	$.78315$		218	33
28	$.58023$	$.81445$	$.59436$. 80420	. 60830	.79371	. 62206	$.78297$		199	32
29	$\|.58047\|$	$.81428$	$.59459$. 80403	. 60853	.79353	. 62229	$.78279$		77181	31
30	. 58	. 81412	. 59482	. 80386	. 60876	. 79335	. 62251	. 78261		$.77162$	30
31	. 58094	. 81395	. 59506	. 80368	. 60899	. 79318	. 62274	. 78243			29
32	. 58118	. 81378	. 59529	. 80351	. 60922	. 79300	. 62297	. 78225	. 63653	77125	28
33	. 58141	. 81361	. 59552	. 803334	. 60945	. 79282	. 62320	. 78206	. 63675	. 77107	27
34	$.58165]^{\circ}$. 81344	. 59576	. 80316	. 60968	. 79264	$.62342$	$.78188$	$.63698$	$.77088$	26
35	$\text { . } 58189$. 81327	$.59599$. 80299	. 60991	. 79247	. 62365	$.78170$		070	25
36	$.58212$	$.81310$. 59622	. 80282	. 61015	$\mid .79229$. 62388	$.78152$	$.63742$		24
37	$.58236$	$.81293$. 59646	. 80264	. 61038	. 79211	. 62411		3765	$.77033$	23
38	$.58260$	$.81276$. 59669	. 80247	. 61061	. 79193	. 62433	$.78116$	$.63787$		22
39	. 58283	$.81259$	$.59693$. 80230	. 61084	. 79176	. 62456	$.78038$. 63810	$.76996$	21
49	. 58307	$.81242$	$.59716$. 80212	. 61107	$.79158$	-62479	$.78079$	$.63832$	$.76977$	20
41	$.58330$	$.81225$. 59739	. 80195	. 61130	$.79140$. 62502	$.78061$. 63854	$.76959$	19
42	$.58354$	$.81208$. 59763	. 80178	. 61153	$.79122$	$.62524$	$.78043$	$.63877$	76940	18
43	$.58378$	$.81191$. 59786	. 80160	. 61176	. 79105	. 62547	$.78025$. 63899	76921	17
44	$.58401$	$.81174$. 59809	. 80143	. 61199	$.79087$	$.62570$	$.78007$	$.63922$	76903	16
45	. 58425	. 81157	. 59832			. 79069	. 62592	. 77988	. 63944	76884	15
46	1.58449	. 81140	. 59856	. 80108	. 61	79051		0	. 63966		14
47	$.58172$. 81123	. 59879	. 80091	$.61268$	$.79033$	$.62638$	77952	. 63989	$.76847$	13
48	$\begin{aligned} & .58496 \\ & : 58510 \end{aligned}$	$.81106$. 59902	. 80073	$.61291$	$.79015$	$.62660$	$.77934$	$.64011$	76828	12
49	$\left\lvert\, \begin{array}{r} -58519 \\ 58543 \end{array}\right.$	$.81089$. 59926	. 80056	$.61314$	$.78998$	$.62683$	$.77916$	$.64033$	$.76810$	11
50 51	. 58543	. 81072	. 59949	. 80038	.61337	1.78980	. 62706	. 77897	. 64056	76791	10
51 52	.58567 .58590	. 81055	.59972 59995	. 80021	. 61360	. 78962	. 62728	. 77879	. 64078	76772	9
52	. 58590	. 81038	. 59995	. 80003	. 61383	. 78944	. 62751	. 77861	. 64100	. 76754	8 7
54	$\mid .58611$. 81004	, 60019	. 79968	. 61406	. 789	. 6279	77843 77824	. 641		6
55	. 58661	. 80987	. 60065	. 79951	. 61451	. 78891	. 62819	77806	. 64167	. 76698	5
56	. 58684	. 80970	. 60089	. 79934	. 61474	. 78873	. 62842	. 77788	. 64190	76679	
57	. 58708	. 80953	. 60112	.79916	. 61497	. 78855	. 62864	$.77769$. 64212	76661	3
58	. 58731	. 80936	. 60135	. 79899	. 61520	. 78837	. 62887	. 77751	. 64234	76642	2
59	. 58755	. 80919	. 60158	. 79881	.61543	. 78819	. 62909	. 77733	. 64256	. 76623	1
60	. 58779	. 80902	. 60182	. 79864	. 61566	. 78801	. 62932	. 77715	. 64279	. 76604	0
M	Cos.	Sine.	M.								
		4		,		2		,		0°	

M.	40°		41°		42°		43°		44°		M.
	Sine.	Cos.	Sine.	os.	ne.	Cos.	Sine.	cos.	Sine.	Cos.	
	. 64279	. 76604	. 65606	75471	. 66913	74314.6	. 68200	73135	. 69466	71934	60
1	. 64301	. 76586	. 65628	75452	. 66935	74295.6	. 68221	73116	. 69487		69
	. 64323	. 76567	. 65650	75433	. 66956	74276.	. 68242	73096			8
3	. 64346	. 76548	. 65672	75414	. 66978	74256					7
4	. 64368	. 76530	. 65694	75395	. 67699						56
5	. 643912	. 76511	. 65716	. 753356	. 67021	$.74217$. 68327	73016	. 69591	71813	54
$\begin{aligned} & 6 \\ & 7 \end{aligned}$. 644435	. 76473	. 65759	75337	. 67064	74178	68349	72996	. 69612	71792	53
8	. 64457	. 76455	. 65781	75318	. 67086	74159	. 68370	72976	. 69633	71772	52
	. 64479	. 76436	. 65803	75299	. 67107	74139	. 68391	72957	. 69654	71752	51
9 10	. 64501	. 76417	. 65825	75280	.67129 $6 \sim 151$	74120 74100	. 688112	. 72937	$\begin{array}{r} .69675 \\ .69696 \end{array}$	71732	50 49
11	. 64524	. 763988	. 658478	. 75261	.67151 .6112 18	$.74100$. 684455	. 722897	. 6996971	71711	48
12	. 64546	. 763861	. 658891	. 75222	. 67194	74061	. 68476	72877	. 69737	. 71671	47
13	. 64590	. 76342	. 65913	73203	67215	${ }^{1} 4041$. 684971	${ }_{72337}$. 69758	. 71650	46
15	. 64612	. 76323	. 64935	. 75184	. 61237	$7 \leq 022$. 68518	337	. 69779	. 1630	45
16	. 61635	. 76304	. 65956	75165	. 67258	75002	. 688539	. 72797	. 698800	. 715	
17	. 64657	. $\quad 62886$. 65978	. 75126	. 67230	73983 $.73963$. 68561	. 727277	. 698821	. 71569	43
18	. 64679	.76238	. 66000	. 75126	. 67323	739634	. 68588	. 72757	. 69862	. 71549	41
20	. 64723	. 76229.	. 66044	. 75088	. 67344	T3924	. 68624	. 72737	. 69883	. 71529	40
21	. 64746	. 76210	-66066	. 75069	. 67366	73904	. 688645	. 72717	. 699904	. 714	39
22	. 64768	. 76192	. 66088	. 75050	. 673887	7388 7380	. 6866688	. 726977	. 699925	. 7148	38
$\begin{aligned} & 23 \\ & 24 \end{aligned}$. 64790	. 56173	. 66109	. 7503011	. 674309	. 73868	. 68709	. 72657	. 69966	. 71447	36
25	. 61834	76135	. 66153	. 74992	. 67452	. 73826	. 68730	. 7263	. 69987	. 71427	35
26	. 64856	. 76116	. 66175	. 74973	. 67473	. 73888	. 68751	. 72617	. 70008		
	. 64878	. 76097	. 66197	. 749933	. 67495	. 7378	$\begin{array}{\|l\|} \hline .68772 \\ .68793 \end{array}$. 725257	. 70029	${ }_{71366}$	33
$\begin{aligned} & 28 \\ & 29 \end{aligned}$. 64901	. 76078	. 66218	. 7493915	. 675168	. 73747	. 68814	. 72555	. 70070	. 71345	31
30	. 64945	. 76041	. 66262	. 78896	. 67559	. 73728	. 68835	. 7253	. 70091	. 71	30
31	. 64967	. 76022	. 66284	. 74876	. 67580	. 73708	. 68857	. 72517	701	. 71305	29
32	. 64989	. 76003	. 663327	. 748857	. 67602	.7368	68878	72497	70153		28
$\begin{aligned} & 33 \\ & 34 \end{aligned}$. 65011	. 759898	. 666349	. 748818	. 67645	. 736649	. 688929	. 72457	70174	. 71243	26
35	. 65055	. 75946	. 66371	. 78799	67666	. 73629	68941	. 72437	. 70195	71223	25
36 37	. 65077	7592?	. 66393	. 74780	${ }^{67688}$.	. 73610	. 689	72417			24
38	. 65100	$.75!08$	$.6414$	$\left\|\begin{array}{\|c\|} .74760 \\ .74741 \end{array}\right\|$	${ }^{67709}$.	. 7357	. 689004	. 72377	. 70258	71162	23
	. 65122	. 758889	. 664368	. 74722	67752	73551	. 69025	. 72357	. 70277	71	21
40	. 65166	. 75851	. 66480	. 74703	${ }_{6} 6773$	73531	. 69046	. 723337			${ }_{9}$
$\begin{aligned} & 40 \\ & 41 \end{aligned}$	- 65183	. 75832	. 66501	$\left\lvert\, \begin{array}{\|c\|} \hline 74683 \\ 74664 \\ \hline \end{array}\right.$.67795 67816	. 733511	. 690087	. 72317	. 73339	71080	[19 18
42	. 655232	${ }_{-}^{75813}$. 666545	. 746644	. 67837	. 73472	. 69109	. 72277	. 70360	.'1059	17
44	. 65254	. 75775	. 66566	74625	. 67859	. 73452	. 69130	77257	. 70381	710	16
45	. 6527	. 75156	. 66588	. 7600	. 61880	. 73432	. 69151	72236	. 70401		15
4647	. 65298	. 75738	. 66610	74586	. 67901	. 73413	. 69172	. 72216	. 70422	'0998	14
	. 65320	75719	. 66632	74567	. 67923	. 73393	. 69193	721	70443	70978	13
48	. 65342	$\therefore 5700$. 66653	74548	. 67944	73373	${ }^{.} 69214$. 70463	70957	12 11
	. 65364	. 75680	. 666675	74528	. 67965	${ }_{7}^{73353}$. 692355	. 7215136	- 70484	. 70916	7 11 10
50	. 635886	. 7566612	. 66669718	74509	. 6898008	73314	. 692277	. 72116	70525	70896	6
51	. 65430	. 75623	. 66740	74470	. 68029	. 73294	. 69298	72095	70546	70875	5
53	. 65452	. 75604	. 66762	74451	. 68051	73274	. 69319	. 72075	. 70567	70855	4
	. 65474	. 75585	. 66783	. 74431	. 688072	73254	. 6933401	.72055 .72035	.70587 .70608	. 70834	4
55	. 65496	. 75556	. 6688827	74412	. 68093	$\begin{aligned} & .73234 \\ & .73215 \end{aligned}$. 6933818	. 72035	70608	. 70793	$3{ }^{4}$
$\begin{aligned} & 56 \\ & 57 \end{aligned}$. 65540	. 75528	. 66848	. 74373	. 68136	. 73195	. 69403	. 71995	70649	70772	
58	. 65562	. 75509	. 66870	. 74353	. 68157	. 73175	. 69424	. 71974	. 70670	7075	2
5960	. 65584	. 75490	. 66891	. 74334	. 68820	. 73155	. 694445	. 71954	.70690 .70711		1
	. 65606	. 75471	. 66913	. 74314	00	. 73135	6	,			
M.	Cos.	Sin	Cos	Sine.	Co	Sin	Cos.	Sine.	Cos.	Sine.	.
		9°		8°						45°	

TABLE III.

NATURAL TANGENTS
 AND

COTANGENTS.

			$1{ }^{\circ}$		2°		$3{ }^{\circ}$		
M	Tang.	Ot	Tang.	Cotang.	g.	Cotang.	Tang.	Cotang.	
					. 03492		41	19.0811	60
				56	. 03521	28.3994			59
		1145.92				${ }_{27}^{28.19872}$		18.7678 18	${ }^{\text {E7 }}$
	. 0011	859.436	. 018	53.7086				18.6656	5^{56}
	. 0014		. 01	52.8821		27.4899			${ }^{\text {b }}$
${ }_{7}^{0}$		5791.95	. 01949	51.3		27.		18	63
		429.		50.54				18.2677	5
		381	. 02	49	03	26.6367	. 05503	18.1708	51
		${ }_{312}^{343}$	$.02036$	48.		${ }_{26} 26$		17	${ }_{4}$
		${ }_{286.4}$. 020	47.7395		26.0		17.8863	48
		264.451	. 02	47.0853		25.83		17.7934	47
	. 00	24	. 022182	46 488	. 03	25.4517	. 055648	17.6	45
			211	45.2261	. 03958	25.2	. 05	17	44
		202	. 02240	44.6386				17.4	
	. 0	190.		44					42
19				43		${ }_{24}^{24.7}$		${ }_{17}^{17.1693}$	
		163	.02357	42.43	. 0	24.3	. 058	17	
		156.2		41.9		24.19		16.9990	
		149	0	41.410		24.			
			. 0244	40.91				16	36
		${ }_{132}^{137}$. 022502	${ }_{39} 30$. 04	${ }_{23}^{23}$. 059599	16	34
		127.3	. 025	39.50	. 042	23.3			
		122.77	. 025	39.	. 043	${ }_{23}^{23.218}$		16.	
		11	. 02619	${ }_{38}^{38.6185}$. 043	22.90	. 06116	16.	30
	. 0	110.892	. 026	37.7686		22.	. 06145		29
				37.	. 044	22.6	. 06175		
		104.171		36.95	. 044	22.	. 06		27
		101.1	. 0273	36.56					5
	. 0101	98.	. 02764	${ }_{35.8}^{36.1}$		22.0210			
			. 02	35.		21.881	. 06321		
	. 0110		. 02851			21.742			
				34.7151		21.605			
	. 0		. 02910	34.		21.4704	. 066408		
						${ }_{21.2}^{21.3}$. 06	15.	
		${ }_{79}{ }^{19434}$		${ }_{33.3}$.4745	21.0		15.	
	. 012	78.122	.	33.0452	,	20.	. 06525	15.32	
45	. 013	76	0	32.7	. 04803	20	. 06554	15.2571	15
	. 0133	74.7292	. 03084	32.42	. 04833	20.			14
		73.	. 031	32.		20	. 066643		13
		70.		${ }_{31}{ }^{2}$. 04	20.325	. 066	14	11
	.	68.75		31:2416		20.2			10
	. 0	67	. 03	30	. 04979	${ }^{20.087}$	-		9
				30.683 30.411				14.	
	. 0157	63.65	. 03317	30.1446		19.740			
	. 01	62.49	. 03346	29.	. 050	19.6			
			. 03	${ }_{29}^{29.6}$. 05	19.5	. 0668		${ }_{3}^{4}$
		60		${ }_{29.1}^{29.3}$				14	
		200		28.8771	. 05212	19.1879			
60	. 01	57.290	. 03492	28.636	. 05241	19.0811	. 06993	14.3007	
M.	Cotang.	Tang.	Cotang	Tang.	Cotang	Tang.	Cotang.	Tang.	M.
		89°		88		$7{ }^{\circ}$		86°	

TABLE III. NATURAL TANGENTS, ETC. 29

TABLE III. NATURAL TANGENTS, ETC.

	12°		13°		14.		15°		M.
M.	Tang.	Cotang.	Tang.	Cotang	Tang.	Cotang	Tang.	Cotang.	
0	. 21256	4.70463	. 23087	4.33148	. 24933	4.01078	. 26795	3.73205	60
1	. 21286	4.69791	. 23117	4.32573	. 24964	4.00582	. 26826	3.72771	59
2	. 21316	4.69121	. 23148	4.32001	24995	4.00086	. 26857	3.72338	58
3	. 21347	4.68452	. 23179	4.31430	. 25026	3.99592	. 26888	3.71907	${ }^{57}$
5	. 21377	4.67786	. 23209	4.30860	. 25056	3.99095	. 26320	3.71476	56
5	. 21408	4.67121	. 23240	4.30291	. 25087	3.98607	26951	3. 71046	55
6	. 21438	4.66458	. 23271	4.29724	. 25118	3.98117	. 26888	3.70616	54
7	. 21469	4.65797	. 23301	4.29159	. 25149	3.97627	.27013	3.70188	53 52
8	. 21499	4.65138	. 23332	4.28595	. 25180	3.97139	. 27044	3.69761 3.69335	52
10	. 2151569	4.64480 4.63825	.23363 .23393	4.28032 4.27471	. 25211	3.96651 3.96165	.27076 .27107	3.69335 3.68909	51
11	. 21590	4.63171	. 23424	4.26911	. 25273	3.95680	. 27138	3.68485	49
12	. 21621	4.62518	. 23455	4.26352	. 25304	3.95196	. 27169	3.68061	48
13	. 21651	4.61868	. 23485	4.25795	. 25335	3.94713	. 27201	3.67638	47
14	. 21682	4.61219	. 23516	4.25239	. 25366	3.94232	. 27232	3.67217	46
15	. 21712	4.60572	. 23547	4.24685	. 25397	3.93751	. 27263	3.66796	45
16	. 21743	4.599	23578	4.24132	. 25428	3.93271	. 27294	3.66376	44
17	. 21773	4.59283	. 23608	4.23580	. 25459	392793	. 27326	3.65957	43
18	. 21804	4.58641	. 23639	4.23030	. 25490	3.92316	. 27357	3.65538	42
19	. 21834	4.58001	. 23670	4.22481	. 25521	3.91839	. 27388	3.65121	41
20	. 21864	4.57363	. 23700	4.21933	. 25552	3.91364	. 27419	3.64705	40
21	. 21895	4.56726	. 23731	4.21387	. 25583	3.50890	. 27451	3.64289	39
22	. 21925	4.56091	. 23762	4.20842	. 25614	3.90417	. 27482	3.63874	38
23	. 21956	4.55458	. 23793	4.20298	. 25645	3.89945	. 27513	3.63461	37
24	. 21986	4.54826	. 23823	4.19756	. 25676	3.89474	. 27545	3.63048	36
	. 22017	4.54196	. 23854	4.19215	. 25707	3.89004	. 27576	3.62636	35
26	. 22047	4.53568	. 23885	4.18675	. 25738	3.88536	. 27607	3.62224	34
27	. 22078	4.52941	. 23916	4.18137	. 25769	3.88068	. 27638	3.61814	33
	. 22108	4.52316	. 23946	4.17600	. 25800	3.87601	. 27670	3.61405	2
29	. 22139	4.51693	. 23977	4.17064	. 25831	S.87136	. 27701	3.60996	1
30	. 22169	4.51071	. 24008	4.16530	. 25862	3.86671	. 27732	60588	0
31	.22200	4.50451	. 24039	4.15997	. 25893	3.86208	. 27764	3.60181	29
	. 22231	4.49832	. 24069	4.15465	. 25924	3.85745	. 27795	3. 69775	28
33	. 22261	4.49215	. 24100	4.14934	. 25955	3.85284	. 27826	3.59370	27
34	. 22292	4.48600	. 24131	4.14405	. 25986	3.84824	. 27858	3.58966^{\prime}	6
	. 22322	4.47986	. 24162	4.13877	. 26017	3.84364	. 27889	3.58562	5
	. 22353	4.47374	. 24193	4.13350	. 26048	3.83906	. 27921	3.58160	4
	. 22383	4.46764	. 24223	4.12825	. 26079	3.83449	. 27952	3.57758	23
	. 22414	4.46155	. 24254	4.12301	. 26110	3.82992	. 27983	3.57357	22
39	. 22444	4.45548	. 24285	4.11778	. 26141	3.82537	. 28015	3.56957	21
1	. 22475	4.44942	. 24316	4.11256	. 26172	3.82083	. 28046	3.56557	0
41	. 22505	4.44338	. 24347	4.10736	. 26203	3.81630	. 28077	3.56159	19
42	. 22536	4.43735	. 24377	4.10216	. 26235	3.81177	. 28109	3.55761	8
43	. 22567	4.43134	. 24408	4.09699	. 26266	3.80726	. 28140	3.55364	17
44	. 22597	4.42534	. 24439	4.09182	. 26297	3.80276	. 28172	3.54968	16
45	. 22	4.41936	. 24470	4.08666	. 26328	3.79827	. 28203	3	5
46	. 22658	4.41340	. 24501	4.08152	. 26359	3.79378	. 28234	3.54179	14
	. 222689	4.40745	. 24532	4.07639	. 26390	3.78931	. 28266	3.53785	13
4	. 22719	4.40152	. 24562	4.0712^{-}	. 26421	3.78485	. 28297	3.53393	12
49	. 22750	4.39560	. 24593	4.06616	. 26452	3.78040	. 28329	3.53001	11
	. 22781	4.38969	. 24624	4.06107	. 26483	3.78595	. 28360	3.52609	10
	. 22811	4.38381	. 24655	4.05599	. 26515	3.77152	. 28391	3.52219	-
	. 22842	4.37793	. 24686	4.05092	. 26546	3.76709	. 28423	3.51829	8
	. 22872	4.37207	. 24717	4.04586	. 26577	3.76268	. 28454	3.51441	7
	. 22903	4.36623	. 24747	4.04081	. 26608	3.75828	. 28486	3.51053	6
	. 22934	4.36040	. 24778	4.03578	-26639	3.75388	. 28517	3.50666	5
	. 22964	4.35459	. 24809	4.03076	. 26670	3.74950	. 28549	3.50279	4
	. 22995	4.34879	. 24840	4.02574	. 26701	3.74512	. 28580	3.49894	3
	. 23026	4.34300	. 24871	4.02074	. 26733	3.74075	. 28612	3.49509	2
60	. 23056	4.33723 4.33148	. 244902	4.01576 4.01078	. 26764	3.73640 3.73205	. 288643	3.49125 $\mathbf{3 . 4 8 7 4 1}$	1
M.	Cotang	Tang.	Cotang. Tang,		Cotang. Tang.		Cotang. Tang.		M.
	77°		76°		75°		74°		

	16°		17°		18°		19°		M.
M.	Tang.	Cotang.	Tang.	Cotang.	Tang.	Cotang.	Tang.	Cotang.	
0	0 . 28675	3.48741	. 30573	3.27085	. 32492	3.07768	. 34433	2.90421	60
	$1 . .28706$	3.48359	. 30605	3.26745	. 32524	3.07464	. 34465	2.90147	59
	2.28738	3. 17977	. 30637	3.26406	. 32556	3.07160	. 34498	2.89873	58
	3.28769	9 3.47596	. 30669	3.26067	. 32588	3.06857	. 34530	2.8960	57
	4.28800	3.17216	. 30700	3.25729	. 32621	3.06554	. 34563	2.89327	56
	$5 . .28832$	2.46837	. 30732	3.25392	. 32653	3.06252	. 34596	2.89055	55
7	6 7 .288894	(3.46458 3.46080	. 30764	3.25055	. 32685	3.05950	. 34628	2.88783	54
8	8 . 28927	3.45703	. 30828	3.24719 3.2433	. 32749	3.05649 3.05349	- 34661	2.88511 2.88040	53
9	9 . 28958	3.45327	. 30860	3.24049	. 32782	3.05049	. 34726	2.8797	52
10	. 28990	3.44951	. 30891	3.23714	. 32814	3.04749	. 34758	2.8770	50
11	. 29021	3.44576	. 30923	3.23381	. 32846	3.04450	. 34791	2.874	49
12	. 29053	3.44202	. 30955	3.23048	. 32878	3.04152	. 34824	2.87161	48
13	3 . 29084	3.43829	. 30987	3.22715	. 32911	3.03854	. 34856	2.86892	47
14	- 29116	3.43456	. 31019	3.22384	. 32943	3.03556	. 34889	2.86624	46
15	5.29147	3.43084	. 31051	3.22053	. 32975	3.03260	. 34922	2.86356	45
16	. 29179	3.42713	. 31083	3.21722	. 33007	3.02963	. 34954	2.86089	44
17	7.29210	3.42343	. 31115	3.21392	. 33040	3.02667	. 34987	2.85822	43
18	. 29242	3.41973	. 31147	3.21063	. 33072	3.02372	. 35020	2.8555	42
19	. 29274	3.41604	. 31178	3.20734	. 33104	3.02077	. 35052	2.8528	41
20	. 29305	3.41236	. 31210	3.20406	. 33136	3.01783	. 35085	2.85023	40
21	. 29337	3.40869	. 31242	3.20079	. 33169	3.01489	. 35118	2.84758	39
22	. 29368	3.40502	. 31274	3.19752	. 33201	3.01196	. 35150	2.84494	38
23	. 29400	3.40136	. 31306	3.19426	. 33233	3.00903	. 35183	2.84229	37
24	. 29432	3.39771	. 31338	3.19100	. 33266	3.00611	. 35216	2.8396	36
25	. 29463	3.39406	. 31370	3.18775	. 33298	3.00319	. 35248	2.83702	35
26	. 29495	3.39042	. 31402	3.18451	. 33330	3.00028	. 35281	2.83439	34
27	. 29526	3.38679	. 31434	3.18127	. 33363	-2.99738	. 35314	2.83176	33
28	. 29558	3.38317	. 31466	3.17804	. 33395	2.99447	. 35346	2.82914	32
30	. 2962	3.37594	. 31530	3.17481 3.17159	. 33427	2.988868	. 35379	2.82653	31
31	. 2	3.37	. 3	3.16838	. 33492	2.98580	. 35445	2.821	29
32	. 29685	3.36875	. 31594	3.16517	. 33524	2.98292	. 35477	2.81870	28
33	. 29716	3.36516	. 31626	3.16197	. 33557	2.98004	. 35510	2.81610	27
	. 29748	3.36158	. 31658	3.15877	. 33589	2.97717	. 35543	2.81350	26^{\prime}
	. 29780	3.35800	. 31690	3.15558	. 33621	2.97430	. 35576	2.81091	25
36	. 29811	3.35443	. 31722	3.15240	. 33654	2.97144	. 35608	2.80833	24
37	. 29843	3.35087	. 31754	3.14922	. 33686	2.96858	. 35641	2.80574	23
38	. 29875	3.34732	. 31786	3.14605	. 33718	2.96573	. 35674	2.80316	22
39	. 29906	3.34377	. 31818	3.14288	. 33751	2.96288	. 35707	2.80059	21
41	. 299938	3.34023	. 31850	3.13972	. 33783	2.96004	. 35740.	2.79802	20
42	. 290001	3.33	. 31882	3. 13656	. 33816	2.95721	. 35772	2.79545	19
43	. 30033	3.32965	. 31			2.95437	. 35805	2.79289	18
45	. 30065	3.32614	. 31978	3.12713	. 33913	2.94872	. 358871	2.79033 2.78778	17
45	. 30097	3.32264	. 32010	3.12400	. 33945	2.94591	. 35904	2.7852	15
46	. 30128	3.31914	. 32042	3.12087	. 33978	2.94309	. 35937	2.78269	14
47	. 30160	3.31565	. 32074	3.11775	. 34010	2.94028	. 35969	2.78014	13
8	. 30192	3.31216	. 32106	3.11464	. 34043	2.93748	. 36002	2.77761	12
49	. 30224	3.30868	. 32139	3.11153	. 34075	2.93468	. 36035	2.77507	11
5	. 30255	3.30521	. 32171	3.10842	. 34108	2.93189	. 36068	2.77254	10
51	. 30287	3.30174	. 32203	3.10532	. 34140	2.92910	. 36101	2.77002	9
52	. 30319	3.29829	. 32235	3.10223	. 34173	2.92632	. 36134	2.76750	8
54	. 30351	${ }_{3.29483}$. 322267	3.09914	. 34205	2.92354	. 36167	2.76498	7
	. 30414	3.28795	. 323231	3.09606 3.09298	. 342388	${ }_{2}^{2.92076}$. 36199	2.76247	6
	. 30446	3.28452	. 32363	3.08991	. 34303	2.91523	. 36265	2.75746	4
	. 30478	3.28109	. 32396	3.08685	. 34335	2.91246	. 36298	2.75496	3
58	. 30509	3.27767	. 32428	3.08379	. 34368	2.90971	. 36331	2.75246	2
59	. 30541	3.27426	. 32460	8.08073	. 34400	2.90696	. 36364	2.74997	1
60	. 30573	3.27085	. 32492	3.07768	. 3443	2.90421	. 36397	2.74748	0
M.	Cotang.	Tang.	Cotang	Tang.	Cotang.	Tang.	Cotang	Tang.	
		3°	2		7		70		

TABLE III. NATURAL TANGENTS, ETC. 33

M.	24°		25°		26°		27°		
	Tang.	Cotang.	Tang.	Cotang.	Tang.	Cotang.	Tang.	Cotang.	M.
	. 44523	2.24604	. 46631	2.14451	. 48773	2.05030	. 50953	1.96261	60
1	. 44558	2.24428	. 46666	2.14288	. 48809	2.04879	. 50989	1.96120	59
2	.44593	2.24252	. 46702	2.14125	. 48845	2.04728	. 51026	1.95979	58
3	. 44627	2.24077	.46737	2.13963	. 48881	2.04577	. 51063	1.95838	57
4	.44662	2.23902	.46772	2.13801	.48917	2.04426	. 51099	1.95698	56
5	. 44697	2.23727	. 46808	2.13639	.48953	2.04276	.51136	1.95557	55
6	. 44732	2.23553	.46843	$2.1347{ }^{\circ}$. 48989	2.04125	. 51173	1.95417	54
7	. 44767	2.23378	. 46879	2.13316	49026	2.03975	. 51209	1.95277	53
8	.44802	2.23204	. 46914	2.13154	. 49062	2.03825	. 51246	1.95137	52
9	. 44837	2.23030	.46950	2.12993	. 49098	2.03675	. 51283	1.94997	51
10	. 44872	2.22857	.46985	2.12832	. 49134	2.03526	.51319	1.94858	50
11	.44907	2.22683	.47021	2.12671	. 49170	2.03376	. 51356	1.94718	49
12	.44942	2.22510	.47056	2.12511	. 49206	2.03227	. 51393	1.94579	48
13	.44977	2.22337	. 47092	2.12350	. 49242	2.03078	. 51430	1.94440	47
14	.45012	2.22164	. 47128	2.12190	. 49278	2.02929	. 51467	1.94301	46
15	.45047	2.21992	.47163	2.12030	.49315	2.02780	. 51503	1.94162	45
16	. 45082	2.21819	.47199	2.11871	. 49351	2.02631	. 51540	1.94023	44
17	. 45117	2.21647	.47234	2.11711	. 49387	2.02483	. 51577	1.93885	43
18	.45152	2.21475	.47270	2.11552	.49423	2.02335	. 51614	1.93746	42
19	.45187	2.21304	.47305	2.11392	.49459	2.02187	. 51651	1.93608	41
20	. 45222	2.21132	. 47341	2.11233	.49495	2.02039	. 51688	1.93470	40
21	. 45257	2.20961	.47377	2.11075	. 49532	2.01891	. 51724	1.93332	39
22	.45292	2.20790	.47412	2.10916	.49568	2.01743	. 51761	-1.93195	38.
23	.45327	2.20619	. 47448	2.10758	. 49604	2.01596	. 51798	1.93057	37
24	. 45362	2.20449	. 47483	2.10600	.49640	2.01449	.51835	1.92920	36
25	. 45397	2.20278	.47519	2.10442	. 49677	2.01302	.51872	1.92 , 22	35
26	. 45432	2.20108	.47555	2.10284	.49713	2.01155	. 51909	1.92645	34
27	. 45467	2.19938	.47590	2.10126	. 49749	2.01008	.51946	1.92508	33
28	.45502	2.19769	47626	2.09969	.49786	2.00862	. 51983	1.92371	32
28	.45E38	2.19599	.47662	2.09811	.49822	2.00715	. 52020	1.92235	31
30	15573	2.19430	47698	2.09654	49858	2.00569	. 52057	1.92098	30
31	. 45608	2.19261	.47733	2.09498	.49894	2.00423	. 52094	1.91962	29
32	. 45643	2.19092	. 47769	2.09341	.49931	2.00277	. 52131	1.91826	28
33	. 45678	2.18923	. 47805	2.09184	.49967	2.00131	. 52168	1.91690	27
34	45713	2.18755	.47840	2.09028	. 50004	1.99986	. 52205	1.91554	26
35	. 45748	2.18587	. 47876	2.08872	. 50040	1.99841	. 52242	1.91418	25
36	. 45784	2.18419	.47912	2.08716	.50076	1.99695	.52279	1.91282	24
37	. 45819	2.18251	. 47948	2.08560	. 50113	1.99550	. 52316	1.91147	23
38	. 45854	2.18084	. 47984	2.08405	.50149	1.99406	. 52353	1.91012	22
39	. 45889	2.17916	. 48019	2.08250	. 50185	1.99261	. 52390	1.90876	21
40	. 45924	2.17749	. 48055	2.08094	. 50222	1.99116	.52427	1.90741	20
41	. 45960	2.17582	. 48091	2.07939	. 50258	1.98972	. 52464	1.90607	19
42	. 45995	2.17416	. 48127	2.07785	. 50295	1.98828	. 52501	1.90472	18
43	. 46030	2.17249	. 48163	2.07630	. 50331	1.98684	. 52538	1.90337	17
44	. 46065	2.17083	. 48198	2.07476	. 50368	1.98540	. 52575	1.90203	16
45	. 46101	2.16917	48234	2.07321	. 50404	1.98396	. 52613	1.90069	15
46	.46136	2.16751	. 48270	2.07167	. 50441	1.98253	. 52650	1.89935	14
47	.46171	2.16585	. 48306	2.07014	. 50477	1.98110	. 52687	1.89801	13
48	. 46206	2.16420	. 48342	2.06860	. 50514	1.97966	. 52724	1.89667	12
49	. 46242	2.16255	. 48378	2.06706	. 50550	1.97823	. 52761	1.89533	11
50	. 46277	2.16090	. 48414	2.06553	. 50587	1.97681	. 52798	1.89400	10
51	. 46312	2.15925	. 48450	2.06400	. 50623	1.97538	. 52836	1.89266	9
52	. 46348	2.15760	. 48486	2.06247	. 50660	1.97395	. 52873	1.89133	8
53	. 46383	2.15596	. 48521	2.06094	. 50696	1.97253	. 52910	1.89000	7
54	. 46418	2.15432	. 48557	2.05942	. 50733	1.97111	. 52947	1.88867	6
55	. 46454	2.15268	. 48593	2.05790	. 50769	1.96969	. 52985	1.88734	5
56	. 46489	2.15104	. 48629	2.05637	. 50806	1.96827	. 53022	1.88602	4
57	.46525	2.14940	. 48665	2.05485	. 50843	1.96685	. 53059	1.88469	3
58	. 46560	2.14777	. 48701	2.05333	. 50879	1.96544	. 53096	1.88337	2
59	. 46595	2.14614	48737	2.05182	. 80916	1.96402	. 53134	1.88205	1
60	. 46631	2.14451	. 48773	2.05030	.50953	1.96261	. 53171	1.88073	0
M.	Cotang.	Tang.	Cotang	Tang.	Cotang.	Tang.	Cotang	Tang.	M.
	65°		64°		63°		62°		

TABLE III. NATURAL TANGENTS, ETC.

M.	28.		29°		30°		$3{ }^{\text {• }}$		
	Tang.	Cotang.	Tang.	Cotang.	Tang.	Cotang.	Tang.	Cotang.	M.
0	. 53171	1.88073	. 55431	1.80405	. 57735	1.73205	. 60086	1.66428	60
1	. 53208	1.87941	. 55469	1.80281	. 57774	1.73089	. 60126	1.66318	59
2	. 53246	1.87809	. 55507	1.80158	. 57813	1.72973	. 60165	1.66209	58
3	. 53283	1.87677	. 55545	1.80034	. 57851	1.72857	. 60205	1.66099	57
4	. 53320	1.87546	. 55583	1.79911	. 57890	1.72741	. 60245	1.65990	56
5	. 53358	1.87415	. 55621	1.79788	. 57929	1.72625	. 60284	1.65881	55
6	. 53395	1.87283	. 55659	1.79665	. 57968	1.72509 .	. 60324	1.65772	54
7	. 53432	1.87152	. 55697	1.79542	. 58007	1.72393	. 60364	1.65663	53
8	. 53470	1.87021	. 55736	1.79419	. 58046	1.72278	. 60403	1.65554	52
9	. 53507	1.86891	. 55774	1.79296	. 58885	1.72163	. 60443	1.65445	51
10	. 53545	1.86760	. 55812	1.79174	. 58124	1.72047	. 60483	1.65337	50
11	. 53582	1.86630	. 55850	1.79051	. 58162	1.71932	. 60522	1.65228	49
12	. 53620	1.86499	. 55888	1.78929	. 58201	1.71817	. 60562	1.65120	48
13	. 53657	1.86369	. 55926	1.78807	. 58240	1.71702	. 60602	1.65011	47
14	. 53694	1.86239	. 55964	1.78685	. 58279	1.71588	. 60642	1.64903	46
15	. 53732	1.86109	. 56003	1. 78563	. 58318	1.71473	. 60681	1.64795	45
16	. 53769	1.85979	. 56041	1.78441	. 58357	1.71358	. 60721	1.64687	44
17	. 53807	1.85850	. 56079	1.78319	. 58396	1.71244	. 60761	1.64579	43
18	. 53844	1.85720	. 56117	1.78198	. 58435	1.71129	. 60801	1.64471	42
19	. 53882	1.85591	. 56156	1.78077	. 58474	1.71015	. 60841	1.64363	1
20	. 53920	1.85462	. 56194	1.77955	. 58513	1.70901	. 60881	1.64256	9
21	. 53957	1.85333	. 56232	1.77834	. 58552	1.70787	. 60921	1:64148	39
22	. 53995	1.85204	. 56270	1.77713	. 58591	1.70673	. 60960	1.64041	33
23	. 54032	1. 85075	. 56309	1.77592	. 58631	1.70560	. 61000	1.63934	37
24	. 54070	1.84946	. 56347	1.77471	. 58670	1.70446	. 61040	1.63826	36
25	. 54107	1.84818	. 56385	1.77351	. 58709	1.70332	. 61080	1. 63719	
26	. 54145	1.84689	. 56424	1.77230	. 58748	1.70219	. 61120	1.63612	34
27	. 54183	1.84561	. 56462	1.77110	. 58787	1.70106	. 61160	1.63505	33
28	. 54220	1.84433	. 56501	1.76990	. 58826	1.69992	. 61200	1.63398	
29	. 54258	1.84305	. 56539	1.76869	. 58865	1.69879	. 61240	1.63292	31
30	. 54296	1.84177	. 56577	1.76749	. 58905	1.69766	. 61280	1.63185	30
31	. 54333	1.84049	. 56616	1.76629	. 58944	1.69653	. 61320	1.63079	29
32	. 54371	1.83922	. 56654	1.76510	. 58983	1.69541	. 61360	1.62972	28
33	. 54409	1.83794	. 56693	1.76390	. 59022	1.69428	. 61400	1.62866	27
34	. 54446	1.83667	. 56731	1.76271	. 59061	1.69316	. 61440	1.627	26
35	. 54484	1.83540	. 56769	1.76151	. 59101	1.69203	. 61480	1.62654	25
36	. 54522	1.83413	. 56808	1.76032	. 59140	1.69091	. 61520	1.62548	24
38	. 54560	1.83286	. 56846	1.75913	. 59179	1.68979	. 61561	1.62442	23
38	. 54597	1.83159	. 56885	1.75794	. 59218	1.68866	. 61601	1.6233	22
39	. 54635	1.83033	. 56923	1.75675	. 59258	1.68754	. 61641	1.6223	21
40	. 54673	1.82906	. 56962	1.75556	. 59297	1.68643	. 61681	1.62125	20
41	. 54711	1.82780	. 57000	1.75437	. 59336	1.68531	. 61721	1.62019	19
42	. 54748	1.82654	. 57039	1.75319	. 59376	1.68419	. 61761	1.61914	8
43	. 54786	1.82528	. 57078	1.75200	. 59415	1.68308	. 61801	1.61808	7
44	. 54824	1.82402	. 57116	1.75082	. 59454	1.68196	. 61842	1.61703	16
45	. 54862	1.82276	. 57155	1.74964	. 59494	1.68085	. 61882	1.6159	15
46	. 54900	1.82150	. 57193	1.74846	. 59533	1.67974	. 61922	1.61493	14
48	. 54938	1.82025	. 57232	1.74728	. 59573	1.67863	. 61962	1.61388	
48	. 54975	1.81899	. 57271	1.74610	. 59612	1.67752	. 62003	1.61283	12
49	. 55013	1.81774	. 57309	1.74492	. 59651	1.67641	. 62043	1.61179	11
50	. 55051	1.81649	. 57348	1.74375	. 59691	1.67530	. 62083	1.61074	10
51	. 55089	1.81524	. 57386	1.74257	. 59730	1.67419	. 62124	1.60970	9
5	. 55127	1.81399	. 57425	1.74140	. 59770	1.67309	. 62164	1.60865	
5	. 55165	1.81274	. 57464	1.74022	. 59809	1.67198	. 62204	1.60761	
51	. 55203	1.81150	. 57503	1.73905	. 59849	1.67088	. 62245	1.60657	6
55	. 55241	1.81025	. 57541	1.73788	. 59888	1.66978	. 62285	1.60553	5
56	. 55279	1.80901	. 57580	1.73671	. 59928	1.66867	. 62325	1.60449	4
57	. 55317	1.80777	. 57619	1.73555	. 59967	1.66757	. 62366	1.60345	8
59	. 55355	1.80653	. 57657	1.73438	. 60007	1.66647	. 62406	1.60241	2
59 60	. 55393	1.80529	. 57696	1.73321	. 60046	1.66538	. 62446	1.6013	1
60.	. 55431	1.80405	735	73205	008	1.66428	2487	i. 60033	0
M.	Cotang.	Tang.	Cotang.	Tang.	Cotang.	Tang.	Cotang.	Tang.	M
		61°	60	${ }^{\text {- }}$	59	9°	8		

$\mathbf{M} \cdot$	32°		33°		34°		35°		M.
	Tang.	Cotang	Tang.	Cotang.	Tang.	Cotang.	Tang.	Cotang.	
0	. 62487	1.60033	. 64941	1.53986	67451	1.48256	70021	1.42815	60
1	. 62527	1.59930	. 64982	1.53888	.67493	1.48163	. 70064	1.42726	59
2	. 62568	1.59826	. 65024	1.53791	. 67536	1.48070	. 70107	1.42638	58
3	. 62608	1.59723	. 65065	1.53693	. 67578	1.47977	. 70151	1.42550	57
4	. 62649	1.59620	. 65106	1.53595	. 67620	1.47885	. 70194	1.42462	56
5	. 62689	1.59517	. 65148	1.53497	. 67663	1.47792	. 70238	1.42374	55
6	. 62730	1.59414	. 65189	1.53400	. 67705	1.47699	. 70281	1.42286	54
7	. 62770	1.59311	. 65231	1.53302	. 67748	1.47607	. 70325	1.42198	53
	.62811	1.59208	. 65272	1.53205	. 67790	1.47514	. 70368	1.42110	52
,	. 62852	1.59105	. 65314	1.53107	. 67832	1.47422	. 70412	1.42022	51
10	.62892	1.59002	. 65355	1.53010	. 67875	1.47330	. 70455	1.41934	50
11	. 62933	1.58900	. 65397	1.52913	. 67917	1.47238	. 70499	1.4184	49
12	. 62973	1.58797	. 65438	1.52816	. 67960	1.47146	. 70542	1.41759	48
13	. 63014	1.58695	. 65480	1.52719	. 68002	1.47053	. 70586	1.4167	47
14	. 63055	1.58593	. 65521	1.52622	. 68045	1.46962	. 70629	1.41584	46
15	. 63095	1.58490	. 65563	1.52525	. 68088	1.46870	. 70673	1.41497	45
16	. 63136	1.58388	. 65604	1.52429	. 68130	1.46778	. 70717	1.41409	,
17	. 63177	1.58286	. 65646	1.52332	. 68173	1.46686	. 70760	1.41322	43
18	. 63217	1.58184	. 65688	1.52235	. 68215	1.46595	. 70804	1.41235	42
19	. 63258	1.58083	. 65729	1.52139	. 68258	1.46503	. 70848	1.4114	41
20	. 63299	1.57981	. 65771	1.52043	. 68301	1.46411	. 70891	1.41061	40
21	. 63340	1.57879	. 65813	1.51946	68343	1.46320	. 70935	1.40974	39
22	. 63380	1.57778	. 65854	1.51850	. 68386	1.46229	. 70979	1.40887	38
23	. 63421	1.57676	. 65896	1.51754	. 68429	1.46137	. 71023	1.40800	37
24	. 63462	1.57575	. 65938	1.51658	. 68471	1.46046	. 71066	1.40714	36
25	. 63503	1.57474	. 65980	1.51562	. 68514	1.45955	. 71110	1.40627	35
26	. 63544	1.57372	. 66021	1.51466	. 68557	1.45864	. 71154	1.40540	34
27	. 63584	1.57271	. 66063	1.51370	68600	1.45773	. 71198	1.40454	33
28	. 63625	1.57170	. 66105	1.51275	. 68642	1.45682	. 71242	1.40367	32
29	. 63666	1.57069	. 66147	1.51179	. 68685	1.45592	. 71285	1.40281	31
30	. 63707	1.56969	. 66189	1.51084	. 68728	1.45501	. 71329	1.40195	30
31	. 63748	1.56868	66230	1.50988	. 68771	1.45410	. 71373	1.40109	29
32	. 63789	1.56767	. 66272	1.50893	. 68814	1.45320	. 71417	1.40022	28
33	. 63830	1.56667	. 66314	1.50797	. 68857	1.45229	. 71461	1.39956	27
34	. 63871	1.56566	. 66356	1.50702	. 68500	1.45139	. 71505	1.39850	26
35	. 63912	1.56466	. 66398	1.50607	. 68942	1.45049	. 71549	1.39764	25
36	. 63953	1.56366	. 66440	1.50512	. 68985	1.44958	. 71593	1.39679	24
37	. 63994	1.56265	. 66482	1.50417	. 69028	1.44868	. 71637	1.39593	23
38	. 64035	1.56165	. 66524	1.50322	. 69071	1.44778	. 71681	1.39507	22
39	. 64076	1.56065	. 66566	1.50228	. 69114	1.44688	. 71725	1.39421	21
40	. 64117	1.55966	. 66608	1.50133	. 69157	1.44598	. 71769	1.39336	20
41	. 64158	1.55866	. 66650	1.50038	. 69200	1.44508	. 71813	1.39250	19
42	. 64199	1.55766	. 66692	1.49944	. 69243	1.44418	. 71857	1.39165	18
43	. 64240	1.55666	. 66734	1.49849	. 69286	1.44329	. 71901	1.39079	17
44	64281	1.55567	. 66776	1.49755	. 69329	1.44239	.71946	1.38994	16
45	. 64322	1.55467	. 66818	1.49661	. 69372	1.44149	.71990	1.38909	15
46	. 64363	1.55368	. 66860	1.49566	. 69416	1.44060	. 72034	1.38824	14
47	. 64404	1.55269	. 66902	1.49472	. 69459	1.43970	. 72078	1.38738	13
48	64446	1.55170	. 66944	1.49378	. 69502	1.43881	. 72122	1.38653	12
49	. 64487	1.55071	. 66986	1.49284	. 69545	1.43792	.72167	1.38568	11
50	64528	1.54972	. 67028	1.49190	. 69588	1.43703	. 72211	1.38484	10
51	. 64569	1.54873	. 67071	1.49097	. 69631	1.43614	.72255	1.38399	9
52	. 64610	1.54774	. 67113	1.49003	. 69675	1.43525	.72299	1.38314	8
53	. 64652	1.54675	. 67155	1.48909	. 69718	1.43436	. 72344	1.38229	7
54	. 64693	1.54576	. 67197	1.48816	. 69761	1.43347	. 72388	1.38145	6
55	. 64734	1.54478	. 67239	1.48722	. 69804	1.43258	. 72432	1.38060	5
56	. 64775	1.54379	. 67282	1.48629	. 69847	1.43169	. 72477	1.37976	4
57	. 64817	1.54281	. 67324	1.48536	. 69891	1.43080	. 72521	1.37891	3
58	. 64858	1.54183	. 67366	1.48442	. 69934	1.42992	. 72565	1.37807	2
59	.64899	1.54085	. 67409	1.48349	. 69977	1.42903	.72610	1.37722	1
60	.64941	1.53986	.67451	1.48256	.70021	1.42815	. 72654	1.37638	0
M.	Cotang.	Tang.	Cotang.	Tang.	tang.	Tang.	tang.	Tang.	\mathbf{M}.
	67*		56°		55°		$54{ }^{\circ}$		

TABLE III. NATURAL TANGENTS, ETC.

M.	$36{ }^{\circ}$		37°		38°		39°		M.
	Tang.	Cotang.	Tang.	otang.	Tang.	Cotang.	Tang.	Cotang.	
	. 72654	1.37638	. 75355	1.32704	. 78129	1.27994	. 80978	1.23490	60
	. 72699	1.37554	. 75401	1.32624	. 78175	1.27917	. 81027	1.234	59
23	. 72743	1.37470	. 75447	1.32544	. 78222	1.27841	. 81075	1.23343	58
	. 72788	1.37386	.75492	1.32464	. 782316	1.27764	. 81123	1.23270	7
4	. 72838	1.37302	. 755588	1.32384	. 78316	11	. 81171		56
5	. 72877	1.37218		, 2304					5
67	. 72921								
				1.32144		1.27458	16	1.22977	53
8	. 73010	1.36967	. 775721	1.32064	. 78504	1.27382	. 813134	1.22904	52
9	. 73055	1.36883	. 75767	1.31984	78551	1.27306	. 81413	1.22831	51
$\left\|\begin{array}{l} 10 \\ 11 \end{array}\right\|$. 73100	1.36800	. 75812	1.31904	. 78598	1.27230	. 81461	1.22758	50
	. 73144	1.36716	. 75858	1.31825	. 78645	1.27153	. 81510	1.22685	49
12	. 73189	1:36633.	. 75904	1.31745	78692	1.27077	. 81558	1.22612	48
	. 73234	1.36549	. 75950	1.31666	. 78739	1.27001	. 81606	1.22539	47
$\left.\begin{array}{\|c\|} 10 \\ 14 \end{array} \right\rvert\,$. 73278	1.36466	. 75996	1.31586	. 78786	1.26925	. 81655	1.22467	46
$\left\|\begin{array}{l} 17 \\ 15 \end{array}\right\|$. 73323	1.36383	. 76042	1.31507	78834	1.26849	. 81703	1.22394	45
15	. 73368	1.36300	. 76088	1.31427	78881	1.26774	. 81752	1.22321	44
17	. 73413	1.36217	. 76134	1.31348	. 78928	1.26698	. 81800	1.22249	43
18	. 73457	1.36134	. 76180	1.31269	. 78975	1.26622	. 81849	1.22176	42
	. 73502	1.36051	. 76226	1.31190	. 79022	1.26546	. 81898	1.22104	41
	. 73547	1.35968	. 76272	1.31110	. 79070	1.26471	. 81946	1.22031	40
	. 73592	1.35885	. 76318	1.31031	79117	1.26395	. 81995	1.21959	39
	. 73637	1.35802	. 76364	1.30952	. 79164	1.26319	. 82044	1.21886	38
22 23	. 73681	1.35719	. 76410	1.30873	79212	1.26244	. 82092	1.21814	37
	. 73726	1.35637	. 76456	1.30795	. 79259	1.26169	. 82141	1.21742	36
	. 73771	1.35554	. 76502	1.30716	. 79306	1.26093	. 82190	1.21670	35
26	. 73816	1.35472	. 76548	1.30637	. 79354	1.26018	. 82238	1.21598	3
	. 73861	1.35389	. 76594	1.30558	79401	1.25943	. 82287	1.21526	33
	. 73906	1.35307	. 76640	1.30480	. 79449	1.25867	. 82336	1.21454	32
$\left.\begin{array}{\|l\|} 29 \\ 30 \end{array} \right\rvert\,$. 73951	1.35224	. 76686	1.30401	79496	1.25792	82385	1.21382	31
	. 73996	1.35142	. 76733	1.30323	. 79544	1.25717	. 82434	1.21310	30
30 31	. 74041	1.35060	. 76779	1.30244	. 79591	1.25642	. 82483	1.21238	29
31	. 74086	1.34978	. 76825	1.30166	. 79639	1.25567	. 82531	1.21166	8
	. 74131	1.34896	. 76871	1.30087	. 79686	1.25492	. 82580	1.21094	27
	. 74176	1.34814	. 76918	1.30009	. 79734	1.25417	. 82629	1.21023	26
	. 74221	1.34732	. 76964	1.29931	. 79781	1.25343	. 82678	1.20951	25
	. 74267	1.34650	. 77010	1.29853	. 79829	1.25268	82727	1.20879	24
$\left\|\begin{array}{\|c} 30 \\ 37 \end{array}\right\|$. 74312	1.34568	.7705?	1.29775	. 79877	1.25193	. 82776	1.20808	3
38	. 74357	1.34487	. 77103	1.29696	. 79924	1.25118	. 82825	1.20736	22
39	. 74402	1.34405	. 77149	1.29618	. 79972	1.25044	. 82874	1.20665	21
	. 74447	1.34323	. 77196	1.29541	. 80020	1.24969	. 82923	1.20593	20
	. 74492	1.34242	. 77242	1.29463	. 80067	1.24895	. 82972	1.20522	19
41 42	. 74538	1.34160	. 77289	1.29385	. 80115	1.24820	. 83022	1.20451	18
42	. 74583	1.34079	. 77335	1.29307	80163	1.24746	. 83071	1.20379	
4	. 74628	1.33998	. 77382	1.29229	80211	1.24672	. 83120	1.20308	6
45	. 74674	1.33916	. 77428	1.29152	. 80258	1.24597	. 83169	1.20237	15
46	. 74719	1.33835	. 77475	1.29074	. 80306	1.24523	. 83218	1.20166	14
47	. 74764	1.33754	. 77521	1.28997	. 80354	1.24449	. 83268	1.20095	13
	. 74810	1.33673	. 77568	1.28919	. 80402	1.24375	. 83317	1.20024	12
4950	. 74855	1.33592	. 77615	1.28842	. 80450	1.24301	. 83366	1.19953	11
	. 74900	1.33511	. 77661	1.28764	. 80498	1.24227	. 83415	1.19882	10
50 51	. 74946	1.33430	. 77708	1.28687	. 80546	1.24153	. 83465	1.19811	9
52	. 74991	1.33349	. 77754	1.28610	. 80594	1.24079	. 83514	1.19740	8
	. 75037	1.33268	. 77801	1.28533	. 80642	1.24005	. 83564	1.19669	
54	. 75082	1.33187	. 77848	1.28456	. 80690	1.23931	. 83613	1.19599	
	. 75128	1.33107	. 77895	1.28379	. 80738	1.23858	. 83662	1.19528	
56	. 75173	1.33026	. 77941	1.28302	. 80786	1.23784	. 83712	1.19457	4
	. 75219	1.32946	. 77988	1.28225	. 80834	1.23710	. 83761	1.19387	
58	. 75264	1.32865	. 78035	1.28148	. 80882	1.23637	83811	1.19316	
	. 75310	1.32785	. 78082	1.28071	. 80930	1.23563	. 83860	1.19246	
60	. 75355	1.32704	8129	1.27994	. 80978	1.23490	83910	1.19175	0
M	Cotang.	Tang.	Cotang.	Tang,	Cotang.	Tang.	Cotang	Tang.	M.
	53°		52°		51°		50°		

TABLE III. NATURAL TANGENTS, ETC.

	10°		41°		42°		43°		M
M.	Tang.	Cotang.	Tang.	tang.	Tang.	otang.	Taug.	Cotang.	
0	. 83910	1.19175	. 86929	1.15037	. 90040	1.11061	. 93252	1.07237	60
2	. 83960	1.19105	. 86980	1.14969	. 90093	1.10996	. 93306	1.07174	59
	. 84009	1.19035	. 87031	1.14902	. 90146	1.10931	. 93360	1.07112	58
$\stackrel{2}{3}$. 84059	1.18964	. 37082	1.14834	. 90199	1.16867	. 93415	1.07049	57
4	. 84108	1.18894	. 87133	1.14767	. 90251	1.10802	. 93469	1.06987	6
5	. 84158	1.18824	. 87184	1.14699	. 00304	1.10737	. 93524	1.06925	5
6	. 81208	1.18754	. 877236	1.14632	. 003510	1.10672	. 933578	1.06882	54
	. 84258	1.18684 1.18614	. 8772838	1.14565 1.14498	. 90410	1.10607 1.10543	. 93638	1.06800	53
$\left\|\begin{array}{l} 8 \\ 9 \end{array}\right\|$. 813357	1.18544	. 87389	1.14430	. 90516	1.10478	. 93742	1.06676	51
10	. 84407	1.18474	. 87441	1.14363	. 90569	1.10414	. 93797	1.06613	50
11	. 84457	1.18404	. 87492	1.14296	. 90621	1.10349	. 93852	1.06551	49
	. 81507	1.18334	. 87543	1.14229	. 90674	1.10285	. 93906	1.06489	18
12	. 81556	1.18264	. 87595	1.14162	. 90727	1.10220	. 93961	1. 06427	47
	. 81606	1.18194	. 87646	1.14095	. 90781	1.10156	. 94016	1.06365	46
$\begin{aligned} & 14 \\ & 15 \end{aligned}$. 81656	1.18125	. 87698	1.14028	. 90834	1.10091	. 94071	1.06303	45
	. 84706	1.18055	. 87749	1.13961	. 90887	1.10027	. 94125	1.06241	44
$\begin{aligned} & 16 \\ & 17 \end{aligned}$. 81756	1.17986	. 87801	1.13894	. 90940	1.09963	. 94180	1.06179	43
1819	. 81806	1.17916	. 87852	1.13828	. 90993	. 1.09899	. 94235	1. CG117	42
	. 81856	1.17846	. 87904	1.13761	. 91046	1.09834	. 94290	1.06056	41
19	. 81906	1.17777	. 87955	1.13694	. 91099	1.09770	. 94345	1.05994	40
	. 84956	1.17708	. 88007	1.13627	. 91153	1.09706	. 94400	1.05932	39
	. 85006	1.17638	. 88059	1.13561	. 91206	1.09642	. 94455	1.05870	38
23	. 85057	1.17569	. 88110	1.13494	. 91259	1.09578	. 94510	1.05809	37
24	. 85107	1.17500	. 88162	1.13428	. 91313	1.09514	. 94565	1.05747	36
	. 85157	1.17430	. 88214	1.13361	. 91366	1.09450	. 91620	1.05685	35
25	. 85207	1.17361	. 88285	1.13295	${ }^{.91419}$	1.09386	. 946767	1.05624	34
27 28 28	. 855257	1.17292 1.17223	. 888317	1.13228 1.13162	. 91473	1.09322 1.09258	. 94731	$\begin{aligned} & 1.05562 \\ & 1.05501 \end{aligned}$	33
2930	$.853081$	1.11223 1.17154	. 8888421	1.13162 1.13096	. 91580	1.09195	. 94841	1.05439	31
	. 85408	1.17085	. 88473	1.13029	. 91633	1.09131	. 91896	1.05378	30
31	. 85458	1.17016	. 88524	1.12963	. 91687	1.09067	. 94952	1.05317	29
32	. 85509	1.16947	. 88576	1.12897	. 91740	1.09003	. 95007	1.05255	28
	. 85559	1.16878	. 88628	1.12831	. 91794	1.08940	. 95062	1.05194	27
$\begin{aligned} & 33 \\ & 34 \end{aligned}$.85609	1.16809	. 88680	1.12765	. 91847	1.08876	. 95118	1.05133	26
$\left\|\begin{array}{l} 34 \\ 35 \end{array}\right\|$. 85660	i. 16741	. 88732	1.12699	. 91901	1.08813	. 95173	1.05072	25
$\begin{array}{\|l\|} 35 \\ 36 \end{array}$. 85710	1.16672	. 88784	1.12633	. 91955	1.08749	. 95229	1.05010	24
37	. 85761	1.16603	. 88836	1.12567	. 92008	1.08686	. 95284	1.04949	23
3839	. 85811	1.16535	. 88888	1.12501	. 92062	1.08622	. 95340	1.04888	22
	. 85862	1.16466	. 88940	1.12435	. 92116	1.08559	. 95395	1.04827	21
39 40	. 85912	1.16398	. 88992	1.12369	. 92170	1.08496	. 95451	1.04766	20
$\begin{aligned} & 40 \\ & 41 \end{aligned}$. 85963	1.16329	. 89045	1.12303	. 92224	1.08432	. 95506	1.04705	19
42	. 86014	1.16261	. 89097	1.12238	. 922277	1.08359	. 95562	1.04644	18
	. 86064	1.16192	. 89149	1.12172	. 92331	1.08306	. 95618	1.04583	17
44	. 86115	1.16124	. 89201	1.12106	. 92385	1.08243	. 95673	1.04522	16
	. 86166	1.16056	. 89253	1.12041	. 92439	1.08179	. 95729	1.04461	15
4647	.86216	1.15987	. 89306	1.11975	. 92493	1.08116	. 95785	1.04401	14
	. 86267	1.15919	. 89355	1.11909	. 92547	1.08053	. 95841	1.04340	3
48	. 86318	1.15851	. 89410	1.11844	. 92601	1.07990	. 95897	1.04279	11
	. 86368	1.15783	. 89463	1.11778	. 92655	1.07927	. 95952	1.04218	11
50	. 86419	1.15715	. 89515	1.11713	. 92709	1.07864	. 96008	1.04158	10
51	. 86470	1.15647	. 89567	1.11648	. 92763	1.07801	. 96064	1.04097	9
	. 86521	1.15579	. 89620	1.11582	. 92817	1.07738	. 96120	1.04036	8
53	. 86572	1.15511	. 89672	1.11517	. 92872	1.07676	. 96176	1.03976	7
54	. 86623	1.15443	. 89725	1.11452	. 92926	1.07613	. 96232	1.03915	6
	. 86674	1.15375	. 89777	1.11387	. 92980	1.07550	. 96288	1.03855	5
56	. 86725	1.15308	. 89830	1.11321	. 93034	1.07487	. 96344 .96400		4
58	. 866827	1.15240 1.15172	. 898883	1.11256 1.11191	$\begin{aligned} & .93088 \\ & .93143 \end{aligned}$	1.07425 1.07362	. 964457	1.03674	2
	. 86878	1.15104	. 89988	1.11126	. 93197	1.07299	. 65513	1.03613	1
60	8929	1.15037	. 90040	1.11061	-93252	1.07237	6569	1.03553	0
M	Cotang.	Tang.	Cotang.	Tang.	Cotang.	Tang.	Cotang.	Tang.	M.
		9°		8°		${ }^{\circ}$		6°	

	44				44°				44°		
M.	Tang.	Cotang.	M.	M.	Tang.	otang.	M.	M.	Tang.	Cotang.	M
	. 96569	1.03553	60	20	. 97700	1.02355	40	40	. 98843	1.01170	20
	. 96625	1.03493	59	21	. 97756	1.02295	39	41	. 98901	1.01112	19
2	. 96681	1.03433	58	22	. 97813	1.02236	38	42	. 98958	1.01053	18
3	. 96738	1.03372	${ }_{56}^{57}$	23	. 97870	1.02176	37	43	. 99016	1.00994	17
4	. 96784	1.03312	56	24	. 97927	1.02117	36	44	.99073	L. 00935	16
5	. 968850	1.03252	55	25	. 97984	1.02057	35	45	. 99131	1.00876	15
7	. 96963	1.03192	54 53	27	. 988098	1.01398	343	47	. 99189	1.00818	14
8	. 97020	1.03072	52	28	. 98155	1.01879	32	48	. 99304	1.00701	12
9	. 97076	1.03012	51	29	. 98213	1.01820	31	49	. 99362	1.00642	11
10	. 97133	1.02952	50	30	. 98270	1.01761	30	50	. 99420	1.00583	10
11	. 97189	1.02892	49	31	. 98327	1.01702	29	51	. 99478	1.00525	9
12	. 97246	1.02832	48	32	. 98384	1.01642	28	52	. 99536	1.00467	8
13	. 97302	1.02772	47	33	. 98441	1.01583	27	53	. 99594	1.00408	7
14	. 97359	1.02713	46	34	. 98499	1.01524	26	54	. 99652	1.00350	
15	. 97416	1.02653	45	35	. 98556	1.01465	25	55	. 99710	1.00291	5
16	. 97472	1.02593	44	36	. 98613	1.01406	24	56	. 99768	1.00233	
17	. 97529	1.02533	43	37	. 98671	1.01347	23	57	. 99826	1.00175	3
18	. 97586	1.02474	42	38	. 98728	1.01288	22	58	. 99884	1.00116	2
18	. 97643	1.02414	41	39	. 98786	1.01229	21	59	. 99942	1.00058	,
20	. 97700	1.02355	40	40	. 98843	1.01170	20	60	1.00000	1.00000	0
M.	Cotang Tang.		M.	M.	Cotang. Tang.		M.	1.	Cotang.	Tang.	M
	45°				45°				45°		

TABLE IV.

LOGARITHMIC SINES, COSINES,

TANGENTS.

AND

COTANGENTS.

M.	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. 1^{\prime}.	Tang.	D. $1^{\prime \prime}$.	Cotang.	M.
0	Inf. neg.		0.000000	. 00	Inf. neg.		Infinite.	60
1	6.463726	5017.17	. 000000	. 00	6.463726	5017.17	13.536274	59
3	. 764756	2934.85	. 000000	. 00	. 764756	2934.83	. 235244	58
3 4	7. 965084878	2082.31	. 0000000	. 00	7.940847	2082.31	12.059153	57
4	7.065786 .162696	1615.17	.000000 .000000	. 00	7.065786 .162696	1615.17	12.934214 .837304	56
6	. 241877	1319.68	9.999999	. 00	. 241878	1319.69	. 758122	54
7	. 308824	1115.75	. 9999999	. 01	. 308825	${ }^{1115.78}$. 691175	53
8	. 366816	966.53 852.54	. 9999999	. 01	. 366817	996.53 852.54	. 633183	52
9	. 417968	762.63	. 999999	. 01	. 417970	${ }_{762.63}$. 582030	51
10	7.463726	689.88	9.9999998	. 01	7.463727	689.88	12.536273	50
11	. 505118	629.81	. 99999998	. 01	.505120 .542909	629.81	. 4948880	49
12	. 542906	579.36	. 99999997	. 01	. 542909	579.33	. 45722321	-48
14.	. .609858	536.41	. 99999996	. 01	. 609857	536.42	. 390143	46
15	. 639816	499.38 467.14	. 9999996	. 01	. 639820	499.39 467.15	. 360180	45
16	. 667845	467.14	. 999995	. 01	. 667849		. 332151	44
17	. 694173	413.72	. 9999995	. 01	. 694179	413.73	. 305821	43
18	. 718997	391.35	9.999994	. 01	. 719003	391.36	. 280997	42
19	. 742477	371.27	. 949993	. 01	. 742484	371.28	. 257516	41
20	7.764754	353.15	9.999993	. 01	7.764761	351.36	12.235239	40
21	. 785943	333.72	. 9999992	. 01	. 7855951	336.73	. 214049	39
22	. 806146	${ }_{321.75}^{336}$. 99999991	. 01	. 806155	321.76	. 1733845	38
23	. 82545451	308.05	. 999999989	. 01	. 82543944	308.06	. 174540	37
24	.843934	295.47	.999989 .999988	. 02	. 8681674	295.49	. 156056	36
25	. 8878695	283.88	. 9999988	. 02	. 878708	283.90	. 121292	34
27	. 895085	273.17	. 999987	. 02	. 895099	273.18	. 104901	33
28	. 910879	253.99	. 999998	02	. 910894	254.01	. 089106	32
29	. 926119	245.38	. 999985	. 02	. 926134	245.40	. 073866	31
30	7.940842	237.33	9.999983		7.949858	237.35	12.059142	30
31	. 955082	229.80	. 9999982	. 02	. 955100	229.81	. 044900	29
32	. 968870	222.73	. 9999981	. 02	. 9688889	222.75	. 031111	28
33	. 9822233	216.08	. 99999979	. 02	. 9892253	216.10	. 0177478	${ }_{26}^{27}$
35	8.007787	209.81	. 999977	. 02	8.007809	209.83	11.992191	25
36	. 020021	203.90	. 999976	. 02	. 020045	${ }_{1}^{203.92}$. 979955	24
37	. 031919	198.02	. 999975	. 02	. 031945	193.05	. 968055	23
38	. 043501	188.01	. 999973	. 02	. 043527	188.03	. 956473	22
39	. 054781	183.25	. 999972	. 02	. 054809	183.27	5191	21
40	8.065776	178.72	9.999971	. 02	8.065806	178.74	11.934194	20
41	. 076500	174.41	. 9999969	. 02	. 0765331	174.44	. 923469	19
42	. 086965	170.31	.9999968	. 02	. 0869997	170.34	. 913003	18
43	. 097183	166.39	964	. 02	. 097217	166.42	. 902783	17
44	. 1107167	162.65	. 9999964	. 03	. 1169202	162.68	. 8823797	16
45	. 1126926	159.08	. 99999661	. 03	. 1126510	159.10	.883037	15
47	. 135810	155.66	. 9999959	. 03	. 135851	155.68	. 864149	13
48	. 144953	152.38	. 999958	. 03	. 144996	152.41	. 855004	12
49	. 153907		. 999956	. 03	. 153952		. 846048	11
50	8.162681	143.33	9.999954	. 03	8.162727	143.36	11.837273	10
51	. 171280	143.33	. 999952	. 03	. 171328	140.57	. 828672	9
52	. 179713	137.86 138	. 9999950	. 03	. 179763	137.90	. 820237	8
53	. 187985	137.86 135.29	. 9999948	. 03	. 188036	135.32	. 811964	7
54	. 196102	132.80	. 9999946	. 03	. 196156	132.84	. 803844	6
55	. 204070	130.41	.999944	. 03	. 204126	130.44	. 7958874	5
56	. 211895	128.10	. 9999942	. 04	. 2119641	128.14	. 7888047	4
57	. 2127134	125.87	. 99999930	. 04	. 2227195	125.90	. 7803505	3 2 2
59	. 234557	123.72	. 9999936	. 04	. 234621	123.76	. 765379	1
60	. 241855	121.64	. 999934	. 04	. 241921	121.68	. 758079	0
M.	Cosine.	D. $1^{\prime \prime}$.	Sine.	$1^{\prime \prime}$	Cotang.	D. $1^{\prime \prime}$.	Tang.	M.

TABLE IV. LOGARITHMIC SINES, ETC. 41

M.	Sine.	D.1".	Cosine.	D. $1^{\prime \prime}$	Tang.	D.1".	Cotang.	M.
0	8.241855	119.63	9.999934		$8.241921 .$	119.67	11.758079	60
2	. 2498033	117.68	$.999932$. 04	$.249102$	117.72	$\begin{array}{r} 750898 \\ .743835 \end{array}$	$\begin{gathered} 59 \\ 58 \end{gathered}$
2	. 2656094	115.80	. 9999929	. 04	. 25631115	115.84	. 74338835	58 57
4	. 2669881	113.98	. 99999275	. 04	. 2689956	114.02	. 730044	57 56
5	. 276614	112.21	. 999922	. 04	. 276691		. 723309	55
6	. 283243	110.50 108.83	. 999920	. 04	. 283323	1108.84	. 716677	54
7	. 289773	107.21	. 9999918	. 04	. 289855	107.26	. 710144	53
8	. 296207	105.65	. 9999915	. 04	. 296292	105.70	. 703708	52
9	. 302546	104.13	. 999913	. 04	. 302634	104.18	. 697366	51
10	8.308794	102.66	9.999910	. 04	8.308884	102.70	11.691116	50
11	. 314954	101.22	. 99999907	. 04	. 3215046	101.26	. 684954	49
12	. 321027	99.82	. 99999905	. 04	. 321122	99.87	. 67888888	48
14	. 327016	98.47	. 9998999	. 04	. 333025	98.51	. 6666975	47
15	. 338753	${ }_{95} 97.14$. 999897	. 05	. 338856	97.19	. 661144	45
16	. 344504	95.86	. 9999894	. 05	. 344610	95.90	. 655390	44
17	. 350181	93.60 93.38	${ }^{.9998981}$. 05	. 350289	94.63	. 649711	43
18	. 3557815	92.19	. 9999888	. 05	. 355895	92.24	. 644105	42
19	. 361315	91.03	. 999885	. 0	. 361430	91.08	. 638570	41
20	8.366777	89.90	9.999882	. 05	8.366895	89.95	11.633105	40
21	. 372171	88.80	. 9999879	. 05	. 372292	88.85	. 627708	39
22	. 377499	87.72	. 9999876	. 05	. 3777622	87.77	. 622378	38
23	.382762	86.67	. 9998873	. 05	. 38828899	86.72	. 617111	37
24	.387962	85.64	. 9999867	. 05	. 3983234	85.70	. 606796	${ }^{36}$
25	. 398179	84.64	. 999864	. 05	. 398315	84.70	. 6001685	35
27	. 403199	83.66	. 999861	. 05	. 403338	83.71	. 596662	. 33
28	. 408161	88.71	. 9999858	. 05	. 408304	82.76	. 591696	32
29	. 413068		. 999854	. 05	. 413213	80.91	. 586787	31
30	8.417919	79.96	9.999851		8.418068		11.581932	30
31	. 422717	79.09	. 9999848	. 06	. 422869	89.14	. 577131	29
32 33	. 4272156	78.23	. 9999844	. 06	. 427618	78.30	. 572382	28
33	. 432156	77.40	. 9999841	. 06	. 4332315	77.45	. 567685	27
34 35	. 44313894	76.57	. 9999834	. 06	. 441560	76.63	. 56538448	26
36	. 445941	75.77 74.99	. 999831	. 06	. 446110	75.83	. 553890	24
37	. 450440	74.92	. 999827	. 06	.450613	75.05	. 549387	23
38	. 454893	73.46	. 999823	. 06	.455070	74.58	. 544930	22
39	. 459301	72.73	. 999820	. 06	. 459481	72.79	. 540519	21
40	8.463665	72.00	9.999816 .999812		8.463849		11.536151	20
41	. 467985	71.29	. 99998812	. 06	. 4768172	71.35	. 531828	19
42	. 472263	70.60	. 9999805	. 06	. 47245693	70.66	. 527546	18
44	. 480693	69.91	. 999801	. 06	. 480892	69.98	${ }^{-} 519108$	17 16
45	. 484848	68.59	. 999797	. 06	. 485050	69.31	. 514950	15
46	. 488963	68.94	. 999793	. 07	. 489170	68.65	. 510830	14
47	. 493040	67.31	. 9999790	. 07	. 493250	67.38	. 506750	13
48	. 497078	66.69	. 9999786	. 07	. 497293	66.76	. 502707	12
49	. 501080	66.08	. 999782	. 07	. 501298	66.15	. 498702	11
50	8.505045	65.48	9.999778	. 07	8.505267	65.55	11.494733	10
51 52	. 508974	64.89	. 9999774	. 07	. 509200	64.96	. 4988800	9
52	. 512867	64.31	. .999769	. 07	. 51316961	64.39	. 486902	8
53	. 51625	63.75	. 9999761	. 07	. 5169790	63.82	. 483039	7
¢5	. 524343	63.19	. 9999757	. 07	. 524586	63.26	. 47921514	
56	. 528102		. 999753	. 07	. 528349	62.72	. 471651	
57	. 531828	61.58	. 999748	. 07	. 532080		. 467920	3
58	535523	61.06	. 9999744	. 07	. 535779	61.65	. 464221	2
59	. 639186	60.55	. 9999740	. 07	. 539447		. 460553	1
60	. 542819	-6.05	. 999735		. 543084		. 456916	0
M.	Cosine.	D.1'.	Sine.	D. $1^{\prime \prime}$.	Cotang.	D.1'.	Tang	M.

TABLE IV. LOGARITHMIC SINES, ETC.

M.	Sine.	D. 1 .	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	M.
0	8.542819	60.04	9.999735	. 07	8.543084	60.12	11.456916	60
	. 546422	59.55	. 999731	. 07	$.546691$	50.12	. 453309	59
${ }_{3}^{2}$. 5499995	59.06	. 9999726	. 07	. 550268	59.14	.449732	58
3	. 553539	58.58	. 9999722	. 08	. 553817	59.14	. 446183	57
4	. 557054	58.11	. 9999717	. 08	. 557336	58.19	. 442664	56
5	. 560540	57.65	. 9999713	. 08	. 560828	57.73	. 439172	55
6	. 56397439	57.19	. 9999708	. 08	. 564291	57.27	. 435709	54
8	. 570836	56.74	. 999699	. 08	. 571137	56.82	. 4288863	53
9	. 574214	56.30 55.87	. 999694	. 08	. 574520	${ }^{56.38}$. 425480	E1
10	8.577566		9.999689		8.577877		11.422123	50
11	. 580892	55.44	. 999685	. 08	. 581208	55.52 55.10	. 418792	. 49
12	. 584193	54.60	. 999680	. 08	. 584514	54.68	. 415486	48
13	. 587469	54.10	. 9999675	. 08	. 587795	54.68	. 412205	47
14	. 590721	53.79	. 9999670	. 08	. 591051	53.87	.408949	46
15	. 593948	53.39	. 9999665	. 08	. 594283	53.47	.405717	45
16	. 597152	53.00	. 9999660	. 08	. 597492	53.08	. 402508	44
18	. 6003489	52.61	. 9999655	. 08	. 6006877	52.70	. 399323	43
19	. 606623	52.23	. 999645	. 08	. 606978	52.32	. 393022	${ }_{41}$
20	8.609734		9.999640	09	8.610094		11.389906	40
21	. 612823	51.12	. 999635	09	. 613189		. 386811	ธ.
22	. 615891	50.76	. 999629	.09	. 616262	50.85	. 383738	38
23	. 618937	50.41	. 9999624	. 09	. 619313	50.50	. 380687	37
24	. 621962	50.06	. 9999619	. 03	. 6223343	50.15	.377657	36
25	. 624965	49.72	. 9999614	. 09	. 6253353	49.81	. 374648	35
26	. 627948	49.38	. 9999603	. 09	. 6281308	49.47	. 371660	${ }_{5} 1$
28	. 6333854	49.04	. 999597	. 09	. 634256	49.13	. 3685744	33
29	. 636776		. 999592	9	. 637184	48.80	. 3652816	32 31
30	8.639680		9.999586		8.640093		11.359307	3)
31	. 642563	47.75	. 999581	. 09	. 642982	48.16	. 357018	29
32	. 645428	47.43	. 999575	. 09	. 645853	47.84	. 354147	28
33	. 648274	47.12	. 099550	. 09	. 648704	47.22	. 351296	27
34	. 651102	46.82	. 9995954	. 09	. 651537	46.91	. 348163	<6
35	. 653911	46.52	. 9995558	. 10	. 654352	46.61	. 345548	25
36	. 656702	46.22	. 9999553	. 10	. 657149	46.31	. 342851	r4
37	. 6692230	45.92	. 9999541	. 10	. 662698	46.02	. 337311	23
38	. 6664968	45.63	-99954	. 10	. 66262	45.73	. 337311	22
38		45.35		. 10		45.44	. 334567	21
41	8.667689 .670393	45.06	9.999529 999524	. 10	8.6681	45.16	11.331840	20
42	. 673080	44.79	. 999518	10	. 673563	44.88	. 326437	18
43	. 675751	44.24	. 9999512	. 10	. 676229	44.34	. 323761	17
44	. 678405	43.97	. 9995056	. 10	. 678900	44.07	. 321100	16
45	. 681043	43.70	. 9999500	. 10	. 631544	43.80	. 318456	15
46	. 6836865	43.44	. 9999493	.10	. 684172	43.54	. 315858	14
47 43	. 68888863	43.18	. 9999488	.10	.686724	43.28	. 313216	13
49	. 691438	42.92	. 909475	. 10	. 691963	43.03	. 308037	12
50	8.693998		9.990:C9		8.694529	42.77	11.305471	
51	. 696543	42.42	. 993463	. 11	. 697081	42.52	. 302919	9
52	. 699073	42.17	. 999456	. 11	. 699617	42.28	. 300383	8
53	. 701589	41.68	. 999450	.11	. 702129	42.73	. 297861	7
54	. 704090	41.44	. 9999443	. 11	. 704646	41.79	. 295354	6
55	. 706577	41.21	.999437	.11	707140	41.32	. 292860	5
56	. 709049	40.97	. 999431	. 11	709618	4	. 290282	4
57	.711507	40.74	. 9999424	.11	-1:08.3	40.85	. 287917	3
b8 59	. 71316383	40.51	. 9999411	. 11	. 7145334	40.62	. 285465	2
60	. 718800	40.29	. 999404	. 11	. 719396	40.40	. 2880604	1
M.	Cosine.	D. 1 .	Sine.	D. 1	Cotang.	D. $1^{\prime \prime}$	Tang.	M.
$\mathbf{9 2}^{\circ}{ }^{\text {87 }}$								

I'ABLE IV. LUGARIIHMIC SINES, ETC.

M.	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	M.
0	8.718800		9.999404		8.719396		11.280604	60
1	. 721204		. 9993938	11	. 721806	39.95	. 278194	59
2	.723595	39.62	. 9999391	. 11	.724204	39.74	. 275796	58
3	. 725972	39.41	. 9999384	. 11	. 726588	39.52	.2731041	58 56
4	. 7283378	39.19	. 99993781	. 11	. 728959	39.30	.271041	56
6	. 733027	38.98	. 9999364	. 11	. 733663	39.09	. 2668337	54
7	. 735354	38.77	. 9993557	. 12	. 735996	38.89	. 264004	53
8	. 73766	38.57	. 999350	. 12	. 738317		. 261683	52
9	. 739969		. 999343		. 740626		. 259374	51
10	8.742259		9.999336	12	8.742922	. 7	11.257078	50
11	. 744536	37.76	. 9993329	12	. 745207	878	. 254793	49
12	. 746802		. 9999322	. 12	. 747479	37.68	. 252521	48
13	. 749055	37.37	. 9993315	. 12	.749740	37.49	. 250260	47
14	. 751297	37.17	. 9993308	. 12	. 751989	37.29	.248011	46
15	. 753528	36.98	. 9993301	.12	.754227	37.10	. 2457547	45
16	. 7557478	36.79	. 999294	.12	. 756453	36.92	241332	44
17	. 757955	36.61	. 999286	12		36.73		2
18	. 760	36.		. 12				41
19		36.24		. 12		36.36		
20	8.764511	36	9.9992	12	8.7652	8	11.234754	40
21	. 766675	35.88	. 99925	. 12	. 767417	36.00	. 232583	29
22	. 768828	35.88 35.70	. 999250	.13	. 769578	35.83	. 230422	38
23	. 770970	. 53	. 999242	. 13	. 7717	35.65	. 228273	37
24	. 773101		. 9992	. 13	. 7738	35.48	. 226134	36
25	. 775223	35.18	9992	. 13	. 775911	35.31	. 224005	35
26	. 777333	35.01	. 999220	. 13	. 778114	35.14	. 221886	34
27	. 779434	34.84	. 999212	.13	. 7802222	34.97	. 219778	33
28	. 781524	34.67	. 9999205	. 13	. 782320		. 217680	32
29	. 783605		. 9	. 13		34.64	215592	1
20	8.78567		9.9991		8.786		11.213514	30
31	. 787736		. 999181	. 1	. 788554		. 2114	29
32	. 789787		. 999174	.13	. 790613	34.31	. 209387	28
33	. 791828		. 999166	. 13	. 792662	33.99	. 207338	27
34	. 793859		. 999158	. 13	. 794701	33.83	205299	26
	. 79	33.54	. 999	. 13	. 79	33.68	. 203269	25
		33.39	-99914	. 13	. 798752	33.52	. 201248	24
37	. 7909897	33.23	. 999134	. 13	. 800763	33.37	. 1972237	23
38	. 801892	33.08	. 999126	. 13	. 802765	33.22	42	21
39	. 803876	32.93	18	. 13	. 804758	33.07	42	21
40	8.805852		9.999110		8.8067		11.193258	20
41	. 807819	32.63	. 999102	13	. 808717	32.78	. 191283	19
42	. 809777	32.49	. 999094	14	. 810683	32.62	. 1893317	18
43	. 811726	32.34	. 9999086	. 14	. 812641	32.48	. 1873511	17
44	. 81313667	32.19	. 999077	. 14	. 814589	32.33	. 185411	16
45	. 81515599	32.05	. $¢ 990069$. 14	. 81816461	32.19	. 183471	5
46	. 817522	31.91	.999061	. 14	. 818	32.05		
		31.77		. 14	. 82222	31.91		12
		31.63		. 14	8242	31.77	175795	11
43		31.49		14	,	31.63	. 173897	10
51	. 827011	31.35	. 999019	. 14	8.827992	31.50	1.172008	
52	. 828888	31.22	. 9999010	. 14	. 829874	31.36	. 170126	
53	. 830749		. 999002	14	. 831748		. 168252	
54	. 832607	30.82	. 998993	14	. 833613		166387	
\bigcirc	. 834456		. 998984	1	. 835471		164529	
56	. 836297		. 998976	. 14	. 837321		162679	
	. 83	30.43	. 9989	. 15	8	30.57	160837	
		30.30	. 9989895	. 15		30.45	22	1
60	. 8443585	30.17	. 9998941	. 15	842825 844644	30.32	. 155175	1
					ta	D.		

TABLE IV. LOGARITHMIC. SINES, ETC.

M.	Sine.	D. 1'.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	M.
0	8.843585	30.05	9.998941	15	8.844644	30.19	11.155356	60
1	. 845387	30.05 29.92	. 998932	. 15	. 846455	30.19 30.07	.153545	59
2	. 817183	29.92 29.80	. 993923	. 15	. 848260	30.07 29.95	.151740	58
3	. 848971	29.67	. 998914	. 15	.850057	29.95 29.82	149943	57
4	. 850751	29.67 29.55	. 993905	. 15	. 851846	29.82 29.70	. 148154	56
5	. 852525	29.55 29.43	. 993896	. 15	. 853628	29.70 29.58	. 146372	55
6	.854291	29.43 29.31	. 993887	. 15	. 855403	29.58 29.46	. 144597	54
7	. 856049	29.31 29.19	.998878	. 15	.857171	29.46 29.35	.142829	53
8	.857801	29.19 29.07	.993869	. 15	. 858932	29.35	. 141068	52
9	. 859546	28.96	. 993860	. 15	. 860686	29.11	. 139314	51
10	8.861283	28.84	9.938551	15	8.862433		11.137567	50
11	. 863014	28.84 28.73	.998841	. 15	. 864173	29.00 28.88	. 135827	49
12	. 861738	28.61	.998832	. 15	. 865906	28.88 28.77	. 134094	48
13	. 866155	28.61 28.50	.998823	. 16	. 867632	28.77 28.66	. 132368	47
14	. 868165	28.50 28.39	.998813	. 16	. 869351	28.66 28.54	.130649	46
15	.869868	28.39 28.28	.998801	. 16	. 871064	28.04 28.43	. 128936	45
16	.871565	28.17	.998795	. 16	. 872770	28.43	. 127230	44
17	. 873255	28.06	.998785	. 16	. 874469	28.21	. 125531	43
18	.874938	28.06 27.95	.998776	.16	. 876162	28.21 28.11	. 123839	42
19	.876615	27.96 27.86	. 998766	. 16	. 877849	28.00	. 122151	41
20	8.878285	27.73	9.938757	16	8.879529	27.89	11.120471	40
21	. 879949	27.63	. 998747	16	. 881202	27.79	.118798	39
22	.881607	27.52	. 9989738	. 16	. 882869	27.68	.117131	38
23	. 883258	27.52 27.42	.998728	. 16	.884530	27.68 27.58	. 115470	37
24	. 884903	27.31	. 998718	. 16	. 886185	27.58 27.47	. 113815	36
25	. 886542	27.21	.998708	. 16	. 887833	27.47 27.37	. 112167	35
26	. 888174	27.11	.998693	.16	. 889476	27.27	. 110524	34
27	. 8898801	27.00	.998689	.16	.891112	27.27 27.17	. 108888	33
28	. 891421	26.90	. 993679	. 16	. 892742	27.07	. 107259	32
29	. 893935	26.85	. 998669	. 17	. 894365	27.07 26.97	105631	31
30	8.891643	26.70	9.998659	17	8.895984		11.104016	30
31	. 896246	26.60	. 998649	. 17	. 897596	26.87 26.77	. 102404	29
32	. 897842	26.60	.998639	. 17	. 897203	26.77	. 100797	28
33	. 899432	26.41	. 998629	. 17	.900803	26.67	. 099197	27
34	. 901017	26.31	. 998619	. 17	. 902398	26.58 26.48	. 097602	26
35	. 902596	26.22	.998609	. 17	. 903987	26.48 26.38	. 096013	25
36	. 904169	26.22 26.12	.993599	.17	.905570	26.38 26.29	. 094430	24
37	. 905736	26.03	. 998589	. 17	.907147	26.29 26.20	. 092853	23
38	.907297	26.03 25.93	. 998578	. 17	. 908719	26.20 26.10	. 091281	22
39	. 908853	25.93 25.84	. 998568	17	. 910285	$\begin{aligned} & 26.10 \\ & 26.01 \end{aligned}$. 089715	21
40	8.910404		9.998558		8.911846		11.088154	20
41	. 911949	25.75 25.66	. 998548	. 17	. 913101	25.92	. 086599	19
42	.913488	25.66 25.56	.998537	. 17	. 914951	25.83 25.74	. 085049	18
43	.915022	25.06 25.47	.998527	. 17	. 916495	25.74 25.65	. 083505	17
44	. 916550	25.47 25.38	. 998516	. 17	. 918034	25.65	. 081966	16
45	.918073	25.38 25.29	.998506	18	. 919568	26.56 25.47	. 080432	15
46	. 919591	25.29 25.20	. 998195	.18	. 921096	25.47 25.38	. 078904	14
47	. 921103	25.20 25.12	.998485	. 18	.922619	25.38 25.30	. 077381	13
43	.922610	25.12 25.03	.999474	. 18	. 924136	25.30 25.21	. 075864	12
49	. 924112	24.94	. 998464	18	. 925649	$\begin{aligned} & 25.21 \\ & 25.12 \end{aligned}$. 074351	11
50	8.925609		9.998153		8.927156		11.072844	10
51	. 927100	24.86 24.77	. 998142	. 18	. 928658	25.03	. 11.071342	9
52	. 928587	24.69	.998431	.18	.930155	24.95 24.86	. 069845	8
53	. 930068	24.69 24.60	.998121	.18	. 931647	21.86 24.78	. 068353	7
54	. 931544	24.60 24.52	. 998110	. 18	. 933134	24.78 24.70	. 066866	6
55	. 933015	24.62 24.43	.998399	. 18	. 934616	24.70 24.61	. 065384	5
56	. 934481	24.43 24.35	.998388	. 18	. 936093	24.61 24.53	. 063907	4
57	. 935942	24.35 24.27	.998377	. 18	. 937565	24.53 24.45	. 062135	3
58	. 937398		.998366	. 18	. 939032	24.45 24.37	. 060968	2
59	. 938850	24.19 24.11	. 998355	18	. 940494	24.37 24.30	. 059506	1
60	. 940296	24.11	. 998344	18	. 911952	24.30	. 058048	0
M.	Coainn.	D. $1^{\prime \prime}$.	Sina.	n 1".	otang.	D. 1^{\prime}	Tang	M.

$94{ }^{\circ}$

TABLE IV. LOGARITHMIC SINES, ETC.

M.	Sine.	D. 1^{\prime}.	Cosine.	D. 1 :	Tang.	D.1'.	Cotang.	M.
0	8,940296	24.03	9.998344	. 19	8.941952		11.058048	60
2	. 9417338	24.03 23.94	. 9988333	. 19	. 943404	24.21	. 056596	59
2 3	. 94317606	23.87	. 9988322	. 19	. 94485295	24.05	. 055148	58 57
4	. 9446034	23.79	.998300	. 19	. 9477734	23.97	. 052266	56
5	. 947456	23.71	. 998289	. 19	. 949168	23.90	. 050832	55
6	. 948874	23.63	. 998277	19	. 950597	23.82	. 049403	54
7	. 950287	23.55 23.48	. 998266	. 19	. 952021	23.74	. 047979	53
8	. 951696	23.48	. 998255	. 19	. 953441	23.67	. 046559	52
9	. 953100	$\begin{aligned} & 23.40 \\ & 23.32 \end{aligned}$. 998243	. 19	. 954856	23.61	. 045144	51
10	8.954499		9.998232		8.956267		11.043733	50
11	. 955894	23.25	. 998220	.19	. 957674	23.44	. 042326	49
12	. 957284	23.17	. 998209	. 19	. 959075	23.37	. 040925	48
13	. 958670	23.10	. 998197	. 19	. 960473	23.29	039537	47
14	. 960052	22.95	. 998186	. 19	. 961866	23.22	. 038134	46
15	. 961429	22.98	. 998174	. 19	. 963255	23.14	. 036745	45
16	. 962801	22.80	. 998163	. 19	. 964639	23.07	. 035361	44
17	. 964170		. 998151	. 19	. 966019	22.93	. 033981	43
18	. 665534	22.66	. 9988139	. 20	. 967394	22.86	. 032606	42
19	. 66893	22.60	. 998128	. 20	8766	22.86	. 031234	41
20	8.968249		9.998116		8.970133		11.029867	40
21	. 969600		. 998104	. 20	. 971496	22.72	. 028501	39
22	. 970947	22.45	. 998092	. 20	. 972855	. 57	020145	38
23	. 972289	22.31	. 998080	. 20	. 974209	22.57	0×5791	37
24	. 973628	22.31	. 998068	. 20	. 975560	22.51	.0:4440	36
25	. 974962	22.17	. 99805	. 20	. 976906		023094	35
26	. 976	22.10	. 998044	.20	. 978248	22.37	. 021750	31
27	. 977619	22.103	. 998032	. 20	. 979586		. 020414	33
28	. 978941		. 998020	. 20	. 980921	22.17	. 019079	32
29	. 280259	21.90	. 998008	. 20	. 982251	22.10	. 017749	31
30	8.981573		9.997996		8.983577		11.016423	30
31	. 982883	21.77	. 997984	. 20	. 984899		. 015101	20
32	. 984189	21.70	. 997972	. 20	. 986217	21.97	. 013783	28
33	. 985491	21.63	. 997959	.20	. 987532	21.91	. 012468	27
34	. 986789	21.63	. 997947	. 20	. 988842	21.84	. 011158	26
35	. 988083	21.50	. 997935	. 21	. 990149	21.78	. 009851	25
36	. 989374	21.44	. 9979792	. 21	. 991451	21.71	.C08549	24
37	. 990660	21.38	. 99797897	. 21	. 992750	21.65	. 007250	23
38	. 991943		. 99787895		. 994045		. 005955	22
39	. 993222	21.25	. 997885	. 21	. 995337	21.52	. 004663	21
40	8.994497		9.997872		8.996624		11.003376	20
41	. 995768	21.12	. 997860	. 21	. 997908	21.40	. 002092	19
42	. 997036	21.06	. 997847	. 21	. 999188	21.34	. 0 C0812	18
43	. 998299	21.00	. 9978835		9.C00463	21.21	10999535	17
44	. 399560	21.04	. 997822	. 21	. 01738	21.21	(193262	16
45	9.000816	20.94 20.88	. 997809	. 21	. 033007	21.15	.996993	15
46	. 02069	20.82	. 997797	.21	. 004272	21.09	.945728	14
47	. 003318	20.76	. 997784	. 21	. 005534	21.03	. 994466	13
48	. 004563	20.76	. 997771		. $C 06792$	20.97	. 993208	12
49	. 005805	20.64	. 997758	.21	. 008047		. 991953	11
50	9.007044		9.997745		9.009298		10.990702	10
51	. 008278	20.52	. 997732	. 21	. 010546	20.80	. 989154	9
52	. 009510	20.52	. 997719	.21	. 011790	20.74	. 988210	8
53	. 010737	20.40	. 997706	. 21	. 013031	20.68	. 986969	7
54	. 011962	20.34	. 997693	. 21	. 014268	20.62	. 985732	6
55	. 013182	20.29	. 997680	. 22	. 015502	20.56	. 984498	5
ס6	. 014400	20.23	. 997667	. 22	. 016732	20.45	. 983268	4
57	. 015613	20.17	. 9976764	. 22	. 017959	20.40	. 982041	8
58	. 016824	20.12	. 997641	. 22	. 019183		. 980817	2
${ }_{60} 69$. 018031	20.06	. .997628	.22	. 020403	20.28	. 97978380	1
	. 019235						. 97	0
M.	Cosine.	D.1.	Sine.	D.1'.	Cotang.	D. $1^{\prime \prime}$.	Tang.	M.

TABLE IV. LOGARITHMIC SINES, ETC.

M	Sine.	D.1".	Cosine	D.1'	Tang.	D.1".	Cotang.	M.
	9.019235				9.02		-. 978380	6)
1	. 0202435	19.95	-997	. 22	. 02228	20.23 20.17	. 977166	5)
1 3 3	. 02228285		. 99797588	. 22	. 0225251	20.12	. 977474956	53 57
4	. 024016	19.84 19.78	. 997561	${ }_{22} 22$. 026455	${ }_{20}^{20.01}$. 9773545	53
5	. 0225203	19.78 19.73	-997547	. 22	. 027655	${ }_{19}^{20.01}$. 972345	55
	. 0263836	19.73 19.67	. 99753		. 0288	19.95	. 971148	51
7	. 0275	19.62	. 997520	23	. 0330046		. 969954	53
		19.57		. 23	. 03212	19.79	. 968763	52
		19.52	. 997493	. 23	. 032425	19.74	. 967575	51
10	9.0	19.47	9.9	. 23	9.03		10.966	50
11	. 0334	19.41	. 997	. 23	. 033	19.64	${ }_{964031} 96309$	49
	. 0345828	36	. .9974393	. 23	.035969	19.58	.96428	48
14	. 03574	19.30	. 99742	. 23	.0383	19.53	. 9616	46
15	. 036896		. 997411	. 23	. 039		. 960515	45
16	. 033018		-997397		. 0406		. 959349	44
17		19.10	. 9973738	. 23	. 0418	19.33	. 9	43
18			.9973		.04291		.957027	42
19	. 041485	19.00	55	. 23	44130	19.23	. 955870	41
20	9.04262	18.95	9.99	. 23	9.04	18	10.95	40
	.0437		. 9977	. 24	. 046			39
	. 0448	18.85	. 9972	. 24	.0473		. 952418	38
		18.80	. 9997285	. 24	.04872	19.03	. 951	37
	. 0482	18	. 999727	. 24	.0498		. 950139	36
	. 0494	18	. 997257	. 24	. 0521	18.93	.9478	${ }_{34}$
27	. 050519	18.	. 997242	. 24	.053277	18.89	. 946	33
	. 051635		. 997228	. 24	. 05440		. 9455	32
29	.052749	18	. 997214	. 24	. 055	18.74	. 944	31
30	9.05385		9.997199		9.056659		10.943341	30
		18.41	. 9971	. 24	.0577		. 9422	29
			. 9971	. 24			. 9411	${ }^{28}$
	. 05	18.31	.997141	. 24	. 060011		. 93998	27
		18.27	. 9997127		. 0662130	18.		${ }^{26}$
	. 060460	18.22	.997112	24	.0633		.937	
	. 061551		. 9970	.24	. 0644	18.42	.9355	23
	. 062639		.997083	25	. 065556		. 934444	22
39	. 063724	04	. 997068	${ }_{25}^{25}$. 066655		. 933345	21
40	9.06480	17.99	9.9970	25	9.0677		10.9322	20
							. 9311	19
	. 0668962	17.90	. 9997024	. 25	. 0679	18.15	93	18
	. 06	17.		. 25	. 071	18.10	. 92	17
	. 070176	${ }^{17.81}$. 9969	. 25	. 07	18.06	. 9228	16
46	. 071242	${ }_{17} 177$. 996	. 25	. 0742		. 9257	14
							. 924	13
48	. 07		. 99	25	. 076432		. 923	12
49	. 074424	17.59	. 9969	. 25	,		. 922495	11
50	9.075480	17.55	9.9969		9.078		10.921	10
		17.51	. 9		. 0790			
	. 0		.9988	. 25	.0807		. 91	8
	. 07	17.42		. 25	.0817833	17.	. 9118	7
	. 08071	17.	. 9966828	. 25	.083891		. 919171	5
	. 08175		. 9968	. 26	. 08		. 9150	4
	. 0882797		.99	. 26	. 888		. 914	3
		17.21	. 999678786	26	. 0870			2
60	. 0858894	17.17	.9966766	. 26	. 089	17.	. 91910856	1
M	Cosine.	D. ${ }^{\prime \prime}$	Sine	D.1"	Cotan		Tang	

TABLE IF. LOGARITHMIC SINES, ETC.

M.	Sine.	D. 1 .	Cosine.	D. $1^{\prime \prime}$	Tang.	D. $1^{\prime \prime}$.	Cotang.	
0	9.143555		9.995753		9.147803		10.852197	
1	. 144453	14.97 14.93	. 995735	. 30	. 148718		. 851282	59
	. 145349	14.93 14.93	. 995 5717	. 30	. 149632	15.20	. 850368	58
3	. 146243	14.87	. 995699	. 30	. 150544	15.17	. 8494556	57
4	. 147136	14.84	. 995681	. 30	. 151454	15.14	. 848546	56
6	. 148026	14.81	. 9955661	. 30	. 152363	15.11	. 8476737	55
6	. 1489892	14.78	. 995646	. 30	. 153269	15.08	. 8445826	4
8	. 150686	14.75	. 995610	. 30	. 155077	15.05	.8449\%3	52
9	. 151569	14.72 14.69	. 995591	. 30	. 155978	$\begin{aligned} & 15.02 \\ & 14.99 \end{aligned}$. 844022	51
10	9.152451	14.66	9.995	. 30	9.156877	14.96	. 843123	50
11	. 153330	14.60 14.63	. 99.55	. 30	. 157775	14.93	. 842225	49
12	. 154208	14.63 14.60	. 995537	. 30	. 158671	14.93 14.90	. 841329	48
13	. 155083	14.57	. 9955519	. 30	. 159565	14.87	. 840435	47
14	. 155957	14.54	.995501	. 31	. 160457	14.84 14.84	. 839543	46
15.	. 156833	14.51	. 995482	. 31	.161347	14.81	. 8388765	45
16	. 157705	14.48	. 995461	. 31	. 16223123	14.78	. 8377764	43
18	. 15850439	14.45	. 9995446	. 31	. 163123	14.75	.836877	43
19	. 160301	14.42 14.39	. 995409	. 31	. 164892	14.73 14.70	. 835108	41
20	9.161164		9.09539	31	9.165		10.834226	40
21	. 162025	14.33	. 99.53	31	. 166654		. 833346	33
22	. 163885	14.30	. 9953353	. 31	. 167532	14.61	. 832468	33
23	. 163743	14.37	. 995331	. 31	. 168409	14.58	. 831591	37
24	. 164600	14.24	. 995316	. 31	. 1692	14.56	. 830716	36
25	. 16545	14.22	. 99952978	.31	. 170157	14.53	. 829843	35
26	. 166	14.19	. 9995278	. 31		14.50	. 8288971	31
28	. 1	14.16	. 9995241	. 31	. 1718769	14.47	. 82281031	32
29	. 168856	14.13	. 995222	. 32	. 173634	14.41	. 826366	31
30	9.169702		9.99520		9.1744		10.825501	30
31	. 170547	14.05	. 995184	. 32	. 175362		. 824638	29
32	. 171389	14.02	. 995165	. 32	. 176224		. 823776	28
33	. 172230	13.99	.995146	. 32	. 177084	14.31	. 8222916	27
34 35	. 173070	13.96	. 995127	. 32	. 1779792	14.28	. 822058	26
35 36	. 1739744	13.94	. 9995108	. 32	. 1787955	14.25	. 82212015	25
37	. 175578	13.91	. 995070	. 32	. 180508	14.23	. 819492	23
38	. 176411	13.88	. 995051	. 32	. 181360	14.20	. 818640	22
39	. 177242	13	. 995032	. 32	. 182211	14.15	. 817789	21
40	9.178072	13.80	9.995013	. 32	9.183059	14.12	10.816941	20
41	. 178909	13.77	. 994993	. 32	. 183907	14.09	. 816093	19
42	. 179726	13.75	. 994974	. 32	. 184752	14.09	. 815248	18
43	. 180551	13.72	. 9949	. 32	. 1855	14.04	. 814403	17
44	. 181374	13.69	. 9949493	. 32	. 18	14.02	. 813561	16
45	.182196	13.67	. 994896	. 33	. 187280	13.99	. 8127280	15
46	. 183016	13.64	. 9994896	. 33	. 1888958	13.97	. 8111042	14
48	. 184651	13.61	. 994857	. 33	. 189794	13.94	. 810206	12
49	. 18	13.59	.	. 33	. 190629	13.91	. 809371	11
50	9.186280		9.99481		9.19146		10.8085	10
51	. 187092	13.51	. 994798	. 33	. 192294	13.86	. 807706	9
52	. 187903	13.48	. 9947779	. 33	. 193124	13.81	. 8068876	8
53	. 188712	13.46	. 9947759	. 33	. 1939595	13.79	. 806047	7
54 55	. 189519	13.43	. 9994719	. 33	. 19747806	13.76	.805220	
66	. 191130	13.41	. 994700	. 33	. 196430	13.74	. 803570	
57	. 191933	13	. 994680	. 33	. 197253	13.	. 802747	3
68	. 192734		. 994660	. 33	. 198074		801926	2
60	. 19353	13.31		. 33	1	13.64		1
60	. 19		. 994620		. 1		. 800287	
M	Cosine.	1	Sine	1^{\prime}	ta	D. $1^{\prime \prime}$	Tang	M

TABLE IV. LOGARITHMIC SINES, ETC.

M.	Sine.	D. $1^{\prime \prime}$.	Co	D.	Tang.	D. $1^{\prime \prime}$.	ng.	M-
0	9.194332		9.994620		9.1997		. 80	60
1	. 195129		. 994600	. 33	. 2005		. 799471	8
2	. 195925		. 994580	. 33	.201345	13.57	. 798655	58
3	. 196719	13.21	. 994560	.34	. 202159	13.54	. 797841	57
4	. 197511	13.18	. 994540	. 34	. 202971	13.52	. 797029	6
5	. 198302	13.16	. 994519	. 34	.203782	13.49	. 796218	
6	. 199097	13.13	. 9944479	. 34	. 2045400	13.47		
7	. 19006896	13.11	. 99	. 34	. 2064207	13.45		2
8	. 20145			. 34	. 207013		792987	E1
10	9.202		9.99		9.207		10.792183	EO
11	. 20301	13.01	. 9943	. 34	. 208619		. 791381	49
12	. 203797		. 9943		.209420		. 790580	48
13	. 20457	12.96	. 99	34	. 210220	13.31	. 789780	47
14	. 20535	12.94	. 994336	. 34	. 211018	13.28	. 788982	46
15	. 20613	12.9	淮316	. 34	. 211815	13.26	88185	45
16	. 20690	12.89	. 994295	.34	. 2121211	13.24	9	4
17	. 207679	12.87	. 994274	. 35	. 213405	13.21	95	
18	. 20845	12.85		. 35	. 21419	13.19		1
19	. 209			. 35		13.17		41
20	9.20999		9.994		9.21		. 78	
21	. 21076	12.78	. 994191	. 35	. 216		. 7834	39
22	. 21152	12.75	. 994171	. 35	. 217356	13.10	7826	38
23	. 212291	12.73	. 994150	. 35	. 218142	13.08	. 781858	87
24	. 213055		. 994129	. 35	. 218926	13.08	. 781074	6
	. 21381	12	. 994108	. 35	21	13.03	780290	35
	.	12	9940	.35	. 220492	13.01	79508	34
27	. 21533	12	106	. 35	12	9	78728	3
28	216097	12.62	. 994045	.35	. 222052	12.97	. 777948	32
29	21685	12	. 994024	. 35		12.95	. 777170	31
30	9.217609		9.994		9.223		10.7	30
31	. 218363		. 993982		. 2243		. 7756	29
	. 219116		. 993960	. 35	. 2251	12.88	. 774844	28
33	. 219868	12.50	. 9939318	. 35	. 225929	12.86	071	26
34	. 2220618	12.48	. 99393918	. 36	. 226700	12.84	29	5
	. 221313	12.46	. 993897	. 36	. 2274	12.82	29	25
	. 2	12.44		. 36	2	12.79		
		12.42		. 36		12.77		2
		12.39		. 36		12.75	. 769461	2
39	. 2243	12.		.		12.73	. 76	
40	9.225	12.35	0.993	36	9.231		10.7686	20
41	. 225833	12.33	. 9937	. 36	. 2320	12.	. 7679	19
42	. 226573	12.31	. 9937	. 36	. 232826	12.69	. 76717	18
43	. 227311	12.29	. 9933725	. 36	. 2335		. 60414	16
4	. 22804	12.26	-93081	. 36	. 234345		. 765655	6
45	. 2228784	12.24	. 993681	. 36	. 235103		. 7648971	4
46	. 229518	12.22	. 993366	. 36	. 2358859	12.58	764141	14
47	. 23025	12.20	. 9936	. 36	. 236614	12.56		
48		12.18		. 36	. 2	12.54		
49				. 36	23812	12.52		
50	9.23244		9.993		9.2388		10.76	10
51	. 23317	12.12	. 99335	37	. 239622	12.48	. 760378	
52	. 2338899	12.10	. 99335	. 37	. 240371	12.46	.759629	
5	. 234625	12.07	. 99335	. 37	.241118	12.44	. 7588882	
54	. 23534	12.05	. 9934	. 37	. 241865	12.42	35	
	. 23	12.03		. 37	. 2	12.40		
		12.01		. 37		12.38		
	. 238235	11.99	. 9933396	. 37	9	12.36	755161	
59	. 238953		. 99337		. 245579		754421	
60	. 239670		.9933	. 31	. 246319		. 753	
		D. 1	Sine.	,	Cota	. 1	Ta	

M.	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$	Tang.	D. $1^{\prime \prime}$.	Cotang.	M.
0	9.239670		9.993351		9.246319		10.753681	60
,	. 2403886	11.91	$.993329$. 37	$.247057$	12.30	752943	59
2	.241101	11.89	. 9993307	. 37	. 247794	12.26	752206	58
3	. 241814	11.87	. 9933284	. 37	. 248530	12.24	751470	57
5	. 24325237	11.85	. 9993262	. 37	. 2492964	12.22	750736	56
6	. 243947	11.83	. 9933217	. 37	. 2490730	12.20	750002	55
7	. 244656	11.81	. 993195	. 38	. 251461	12.18	. 748539	54
8	. 245363	11.79 11.77	. 993172	. 38	. 252191	12.17	. 747809	52
9	. 246069	11.75	. 993149	. 38	. 252920	12.15	. 747080	51
10	9.246775	11.73	9.993127		9.253648		10.746352	50
11	. 247478	11.71	. 993104	. 38	. 254374	12.11	. 745626	49
12	. 248181	11.69	. 9933081	. 38	. 255100	12.07	. 744900	48
13	. 248888	11.67	. 9933059	. 38	. 2558824	12.05	. 744176	47
14	. 24950283	11.65	. 9933036	. 38	.256547	12.03	. 743453	46
15 16	. 2502888	11.63	. 993929013	. 38	257269 257990	12.01	. 742731	45
17	. 251677	11.61	. 99929967	. 38	. 25879710	12.00	. 742010	44
18	. 252373	11.59	. 992944	. 38	. 259429	11.98	.741290 .740571	43
19	. 253067	11.58	. 992921	. 38	. 260146	11.96	. 739854	41
20	9.253761	11.54	9.992898		9.260863		10.739137	40
21	.254453	11.52	. 992875	. 38	. 261578	11.90	. 738422	39
22	. 255144	11.50	. 9928552	. 38	. 262292	11.89	. 737708	38
23	. 255834	11.48	. 9928289	. 39	.263005	11.87	. 736995	37.
25	. 2565211	11.46	$\begin{array}{r}.992806 \\ \times .992783 \\ \hline\end{array}$. 39	. 263717	11.85	. 736283	36
26	. 257898	11.44	.992783 .992759	. 39	. 2654138	11.83	. 7358562	35
27	. 258583	11.42	. 992736	.39	. 265847	11.81	. 734153	34
28	- . 259268	11.41	. 992713	. 39	. 266555	11.79 11.78	. 733445	32
29	259951	11.37	. 992690	. 39	. 267261		. 732739	31
30	9.260633		9.992666		9.267967		10.732033	30
31 32	. 261314	11.33	-. 992643	. 39	. 268671	11.74 11.72	. 731329	29
32 32	. 2619974	11.31	.992619	. 39	. 269375	11.70	730625	28
33 34	. 26263351	11.30	. 9922596	. 39	. 270077	11.69	. 729923	27
35	. 264027	11.28	. 9922542	. 39	. 2707149	11.67	729221	26
36	. 264703	11.26	. 992525	. 39	. 272178	11.65	728521	25
37	. 265377	11.24	. 992501	.39	. 272876	11.64	. 727124	24
38	. 266051	11.22	. 992478	. 49	. 273573	11.62	. 726427	23
39	. 266723	11.19	. 992454	. 40	. 274269	11.60	. 725731	21
40	9.267395		9.992430		9.274964		10.725036	20
41	. 268065	11.15	. 992406		. 275658	11.57	. 724342	19
42	. 268734	11.13	. 99232382	. 40	. 277351	11.53	723649	18
44	. 2769402	11.12	. 9923359	. 40	. 277043	11.51	. 722957	17
45	. 270069	11.11	. 9923311	. 40	. 277734	11.50	. 722266	16.
46	. 271400	11.08	. 99922811	.40	. 27842413	11.48	721576	15
47	. 272064	11.06	. 9922263	. 40	. 279801	11.47	. 720887	14.
48	. 272726	11.05	. 992239	. 40	. 280488	11.45	. 7120512	13
49	. 273388	11.03	. 992214	. 40	. 281174	11.43	. 718826	12
50	9.274049		9.992190		9.281858		10.718142	10
51	. 274708	10.99	. 992166	. 40	. 282542	11.40	. 717458	9
62	. 275367	10.98 10.96	. 992142	. 40	. 283225	11.38	. 716775	8
63	. 276025	10.94	. 992118	.41	. 283907	11.36 11.35	. 716093	7
64	. 27668	10.92	. 992093	. 41	. 284588	11.35	. 715412	6
5	. 277337	10.91	. 992069	. 41	. 285268	11.31	. 714732	5
57	. 2789644	10.89	. 9922	.41	. 285947	11.30	. 714053	4
58	. 279297	10.87	. 9992020	. 41	. 286624	11.28	713376	3
69	. 279948	10.86	. 9991971	. 41	. 2887977	11.26	712699	2
60	. 280599	10.84	. 991947	. 41	$.288652$	11.25	. 71120238	1
M.	Cosine.	D. $1^{\prime \prime}$.	Sine.	D. 1:1	Cotan	. 1	Tan	M

TABLE IV. LOGARITHMIC SINES, ETC.

TABLE IV. LOGARITHMIC SINES, ETC.

M.	Sine.	D. 1	Co	D. $1^{\prime \prime}$.	Tang.	D.1'.	Cotang.	
0	9.3836	8.44	9.98690	. 53	9.396771		10.603229	60
1	. 384182	8.43	. 986873	. 53	. 397309	8.96 8.96	. 602691	59
2	. 384687	8.42	. 9868441	. 53	.397846		. 602154	58
3	. 3855192	8.41	. 9868809	.53	.398383	8.94	. 601617	57
5	. 386201	8.40	. 9886746	. 53	. 398919	8.93	. 601081	56
6	. 386704	8.39	. 986714	. 53	. 3999990	8.92		55
7	. 387207	8.38	. 986683	. 53	. 400524	8.91	. 600010	54
8	. 387709	7	. 986651	. 53	. 401058	8.90	. 598942	52
9	. 388210		. 986619		. 401591	8.89	. 598409	51
10	9.388711		9.986587		9.402124		10.597876	50
11	. 389211	8.34 8.33	. 986555	. 53	. 402656	8.87	. 597344	49
12	. 389711	8.32	. 986523	. 5	.403187	8.86	. 596813	48
13	.390210	8.31	. 986491	53	.403718		. 596282	47
14	. 390708	8.30	. 986459	. 53	. 404249	8.84 8.83	. 595751	46
15	. 391206	8.28	. 986427	53	. 404778	8.88	. 595222	45
16	. 391	8.27	. 9863395	53	.405308	8.88 8.81	. 594692	44
17	95	8.26	. 9863	. 54	.405836	88.80	. 594164	43
19		8.25	. 98863381	. 54	. 406364	8.79	. 593636	42
		8.24		. 54		8.78	. 593108	41
21	9.393685 .394179	8.23		. 54	9.	8.77	10.592581	40
22	. 394673	8.22	. 986202	. 54	. 408471	8.76	. 59205	39
23	. 395166	8.21	. 986169	54	. 408997	8.75	591003	38
24	. 395658	19	. 986137	54	.409521	8.74	. 590479	3
25	. 396150	8.18	. 986101	54	. 410045	8.74	. 589955	35
26	. 396641	8.17	. 986072	54	. 410569	3	. 589431	34
27	. 397132	8.17	. 986039	. 54	. 411092	12	. 588908	33
28	. 397621	8.16	. 986007	. 54	. 411615		. 588385	32
29	. 39	8.15	859		. 412137		. 587863	31
30	9.39860	8.14	9.985		9.412658		10.5873	30
31	. 399088	8.14 8.13	. 985909		. 413179	88	. 586821	29
32	. 399575	8.12	. 985876	. 55	. 413699	8. 67	. 586301	28
33	. 400062	8.11	. 985843	. 55	.414219	88.66	. 585781	27
	. 4005	8.10	. 985811	. 55	.414738	8.65	. 585262	26
	. 40	8.09	. 985778	. 55	.415257	8.64	. 584743	25
37	. 4015005	8.08	. 9885712	. 55	. 415775	8.63	. 584272	24
38	. 402489		. 9856879	. 55	. 4162	8.62	. 583707	23
39	. 402972		85	. 55	. 4173	8.61	. 582674	21
40	9.403455		9.985613		9.417842		10.5821	20
41	. 403938	8.03	. 985580		. 418358	8.59	. 581642	19
42	. 404420	8.03 8.02	. 985547		.418873	8.58	. 581127	18
43	. 404901	8.02 8.01	. 985514	. 55	. 419387	8.57	. 580613	17
44	. 405382	88.00	. 985480	. 55	. 419901	8.56	. 580099	16
45	. 405862	7.99	. 985447	. 55	. 420415	8.56	. 579585	15
	. 40	7.98	. 985414	.56	. 420927	8.54	. 579073	14
48	. 407299	7.97	. 985380	. 56	. 421440	8.53	578560	13
49	. 407777	7.96	. 9885314	. 56	. 421952	8.52	. 578048	12
5	9.408254		9.985280	. 56	9.42297	8.51		10
51	. 408731		. .985247	. 56	9.423484	8.50	10.577626 .576516	10
52	. 409207		. 985213	. 56	. 423993	8.49	. 576007	8
53	. 409682	7.92	. 985180		. 424503	8.49 8.48	. 575497	7
54	. 410157	7.91	. 985146		. 425011	8.48	. 574989	6
${ }^{55}$. 410632	7.90	. 985113	56	. 425519		. 574481	5
56	. 411106	7.89	. 985079	56	. 426027	8.46 8.45	. 573973	4
57	. 411579	7.88	. 985045	56	. 426534	8.48	. 573466	3
	. 4	7.87	. 985011	56	. 427041	8.43	. 572959	2
60	. 412996	7.86	. 984944	56	. 428052	8.43	. 57245938	1
M.	Cosine,	D.1' ${ }^{\prime}$	Sine.	D.1'				

TABLE IV. LOGARITHMIC SINES, ETC. 55

M.	Sine.	D. ${ }^{\prime \prime}$.	Cosine.	D.1'.	Tang.	D. ${ }^{\prime \prime}$.	Cotang.	M.
0	9.412996		9.984944		9.428052	8.42	10.571948	60
1	. 413467	7.85 7.84	. 984910	. 57	. 428558	8.42	. 571442	59
2	. 413938	7.81	.984876	. 57	.429062	8.41 8.40	. 570938	58
3	. 414408	7.81 7.83	. 984842	. 57	. 429566	8.40	.570434	57
4	.414878	7.82	. 984808	. 57	. 430070	8.38	. 569930	56
- 5	. 415347	7.81	.984774	. 57	.430573	8.38	. 569427	55
6	. 415815	7.80	.984740	. 57	. 431075	8.37	. 568925	54
7	. 416283	7.79	. 984706	. 57	. 431577	8.36	. 568423	53
8	. 416751	7.78	. 984672	.57	.432079	8.36 8.35	. 567921	52
9	. 417217	7.77	. 984637	-57	. 432580	8.34	. 567420	51
10	9.417684		9.984603	57	9.433080	8.33	10.566920	50
11	.418150	5	. 984569	. 57	.433580	8.33	. 566420	49
12	.418615	7.75	. 984535	. 57	.434080	8.33	. 565920	48
13	.419079	7.75	. 984500	. 57	. 434579	8.32	. 565421	47
14	. 419544	7.74 7.73	.984466	. 57	. 435078	8.31	. 564922	46
15	. 420007	7.73	. 984432	. 58	. 435576	8.29	. 564424	45
16	. 420470	7.71	. 984397	. 58	. 436073	8.28	. 563927	44
17	. 420933	7.70	. 984363	. 58	. 436570	8.28	. 563430	43
18	. 421395	7.69	. 984328	. 58	. 437067	8.27	. 562933	42
19	. 421857	7.68	. 984294	58	. 437563	8.23	. 562137	41
20	9.422318	. 67	9.984259	. 58	9.438059	8.95	10.561941	40
21	. 422778	67	. 984224	. 58	. 438554	8.24	. 561446	39
22	. 423238	7.66	. 984190	. 08	. 439048	8.24	. 560952	38
23	. 423697	7.65	. 984155	58	.439543	8.24	. 560457	37
24	. 424156	5	. 984120	58	. 440036	8.22	. 559964	36
25	. 424615	7.64	. 984085	58	. 440529	8.21	. 559471	35
26	. 425073		. 984050	58	. 441022	8.21	. 558978	34
27	. 425530		. 984015	58	. 441514		. 558486	33
28	. 425987		. 983981	58	. 442006		. 557994	32
29	. 426443		. 983946	58	. 442497		. 557503	31
30	9.426899		9.983911	58	9.442988		10.557012	30
31	. 427354	7.59	. 983875	. 5	. 443479	8.16	. 556521	29
32	. 427809	7.58	. 983840	. 58	. 443968	8.16	. 556032	28
33	. 428263	7.57	. 983805	. 59	. 444458	8.16	. 555542	27
34	. 428717	7.55	. 983770	. 59	. 444947	8.15	. 555053	26
35	. 429170	7.55	. 983735	. 59	. 445435	8.14	. 554565	25
36	. 429623	7.54	. 983700	. 59	. 445923	8.13	. 554077	24
37	. 430075	7.53	. 983664	. 59	. 446411	8.13	. 553589	23
38	. 430527		. 983629	59	. 446898	8.12	. 553102	22
39	. 430978	7.52	. 983594	. 59	. 447384		. 552616	21
40	9.431429		9.983558		9.447870		10.552130	20
41	. 431879	7.49	. 983523	. 59	.448356	8.09	. 551644	19
42	. 432329	7.49	. 983487	-59	. 448841	8.09	. 551159	18
43	. 432778	7.49	. 983452	. 59	-449326	8.08	. 550674	17
44	. 433226	7.48	. 983416	. 59	. 449810		. 550190	16
45	. 433675	7.47	. 983381	. 59	. 450294	8.06 8.06	. 549706	15
46	. 434122	7.46	. 983345	. 59	.450777	8.06	. 549223	14
47.	. 434569	7.45 7.44	. 983309	. 59	. 451260	8.05 8.04	. 548740	13
48	. 435016	7.44	. 983273	. 69	. 451743	8.04	. 548257	12
49	. 435462	7.44	. 983238	. 60	. 452225	8.03	. 547775	11
50	9.435908		9.983202		9.452706		10.547294	10
51	. 436353	7.42	. 983166	. 60	. 453187	8.02	. 546813	9
62	. 436798	7.41	. 983130	. 60	. 453668	8.01	. 546332	8
53	. 437242	7.40	. 983094	. 60	. 454148	8.00	. 545852	7
54	. 437686	7.40	. 983058	. 60	. 454628	8.00	. 545372	6
55	. 438129	7.39	. 983022	. 60	. 455107	7.99	. 544893	5
b6	. 438572	7.38	. 982986	. 60	. 455586	7.98	. 544414	4
57	. 439014	7.36	. 982950	. 60	. 456064	7.97	. 543936	3
58	. 439456	7.36	. 982914	. 60	. 456542	7.97	. 543458	2
59	. 439897	7.36	. 982878	. 60	. 457019	7.96	. 542981	1
60	. 440338	7.35	. 982842	. 60	. 457496	7.95	. 542504	0
M.	Cosine.	D.1'。	Sine.	D. $1^{\prime \prime}$.	Cotang.	D. 1^{*}.	Tang.	M.

M.	Sine.	D.1'.	Cosine.	D $1^{\prime \prime}$	Tung.	D.1 ${ }^{\prime \prime}$.	Cotang.	M.
0	9.440338		9.982842	. 60	9.457496	7.94	10.542504	60
1	. 440778	7.34 7.33	. 982805	. 60	.457973	7.94	. 542027	59
2	. 441218	7.32	. 982769	. 61	.458449	7.94 7.93	.541551	58
3	. 441658	7.31	. 982733	. 61	.458925	7.92	. 541075	57
4	.442096	7.31	. 982696	. 61	.459400	7.91	.540600	56
5	.442535	7.30	. 982660	. 61	. 459875	7.91	.540125	55
6	. 442973	7.29	. 982624	. 61	. 460349	7.90	. 539651	54
7	. 443410	7.28	.982587	. 61	. 460823	7.89	.539177	53
8	. 443847	7.27	. 982551	. 61	. 461297	7.88	. 5338703	52
9	. 444284	7.27	. 982514	. 61	. 461770	7.88	. 538230	51
10	9.444720	7.26	9.982477	61	9.462242	7.87	10.537758	50
11	. 445155	7.25	. 982441	. 61	. 462714	7.86	. 537286	49
12	. 445590	7.24	. 982404	. 61	. 463186	7.86	. 536814	48
13	.446025	7.24	. 982367	. 61	. 463658	7.85	. 536342	47
14	. 446459	7.23	. 982331	. 61	. 464129	7.84	. 535871	46
15	. 446893	7.22	. 982294	. 61	.464599	7.83	. 535401	45
16	. 447326	7.21	.982257	. 61	. 465069	7.83	. 534931	44
17	.447759	7.20	. 982220	. 62	. 465539	7.82	. 534461	43
18	. 448191	7.20	. 982183	. 62	. 466008	7.81	. 533992	42
19	. 448623	7.19	. 982146	. 62	. 466476	7.81	. 533524	41
20	9.449054	7.18	9.982109	62	9.466945	7.80	10.533055	40
21	. 449485	7.17	. 982072	. 62	. 467413	7.79	. 532587	39
22	. 449915	7.17	. 982035	. 62	. 467880	7.78	. 532120	38
23	.450345	7.16	. 981998	. 62	.468347	7.78	. 531653	37
24	.450775	7.15	. 981961	. 62	. 468814	7.77	. 531186	36
25	. 451204	7.14	. 981924	. 62	. 469280	7.76	. 530720	35
. 26	. 451632	7.13	. 981886	. 62	. 469746	7.76	. 530254	34
27	.452060	7.13	. 981849	. 62	. 470211	7.75	. 529789	33
28	. 452488	7.12	.981812	. 62	. 470676	7.74	. 529324	32
29	. 452915	7.11	. 981774	. 62	. 471141	7.74	. 528859	31
30	9.453342		9.981737	62	9.471605	7.73	10.528395	30
31	. 453768	7.10	. 981700	. 62	. 472068	7.72	. 527932	29
32	. 454194	7.09	. 981662	. 62	. 472532	7.71	. 527468	28
33	.454619	7.08	. 981625	. 63	. 472995	7.71	. 527005	27
34	. 455044	7.07	. 981587	. 63	. 473457	7.70	. 526543	26
35	. 455469	7.07	.981549	. 63	. 473919	7.69	. 526081	25
36	. 455893	7.06	. 981512	. 63	.474381	7.69	. 525619	24
37	. 456316	7.05	. 981474	. 63	. 474842	7.68	. 525158	23
38	.456739	7.04	.981436	. 63	.475303	7.67	. 524697	22
39	. 457162	7.04	. 981399	. 63	.475763	7.67	. 524237	21
$4)$	9.457584	7.03	9.981361	63	9.476223	7.66	10.523777	20
41	. 458006	7.02	. 981323	. 63	. 476683	7.66	. 523317	19
43	. 458427	7.01	.981285	. 63	. 477142	7.65	. 522858	18
43	. 458848	7.01	.981247	. 63	.477601	7.64	. 522399	17
41	. 459268	7.00	.981209	. 63	.478059	7.63	. 521941	16
$4 ;$. 459688	6.99	. 981171	. 63	.478517	7.63	. 521483	15
46	. 460108	6.99	.981133	. 63	.478975	7.63 7.62	. 521025	14
47	. 460527	6.98 6.98	.981095	. 64	.479432	7.62	. 520568	13
43	. 460946	6.98 6.97	. 981057	. 64	. 479889	7.61	. 520111	12
49	. 461364	6.96	. 981019	. 64	. 480345	7.60	. 519655	11
50	9.461782	6.96	9.980981		9.480801		10.519199	10
51	. 462199	6.95	. 080942	. 64	.481257	7.59	. 518743	9
52	. 462616	6.94	. 980904	. 64	.481712	7.58	. 518288	8
53	. 463032	6.94	.980866	. 64	. 482167	7.58	. 517833	7
51	. 463448	6.93 6.93	.980827	. 64	. 482621	7.57	.517379	6
55	. 463864	6.92	. 980789	. 61	.483075	7.56	. 516925	5
56	. 464279	6.92 6.91	. 980750	. 64	. 483529	7.56	.516471	4
57	. 464694	6.91	. 980712	. 64	.483982	7.55	.516018	3
58	. 465108	6.90 6.90	.980673	. 64	.484435	7.54	. 515565	2
59	. 465522	6.90	. 980635	. 64	. 484887	7.53	. 515113	1
60	. 465935	6.89	. 980596	. 64	. 485339	7.03	. 514661	0
M.	Cosine.	D. $1^{\prime \prime}$.	Sine.	D. $1^{\prime \prime}$.	Cotang.	D. $1^{\prime \prime}$.	Tang.	M.

TABLE IV. LOGARITHMIC SINES, ETC.

TABLE IV. LOGARITHMIC SINES, ETC.
161°

M	Sine	D	Cosine.	D.1".	Tang	D. $1^{\prime \prime}$.	Cotang,	M.
0	9.489982		9.978206		9.511776		10.488224	60
1	. 490371	7	. 978165	. 69	. 512206		. 487794	59
2	. 490714	6.46	. 978124	. 69	. 512635	7.15	. 487365	58
3	. 491147	6.46	. 978083	. 69	. 513064	7.14	. 486936	57
5	.491535	6.45	.978042	. 69	. 513493	7.14	. 486507	56
5	. 49192322	6.45	. 9788001	. 69	. 513921	7.13	. 486079	55
6	. 4923898	6.44	. 977959	. 69	. 514349	7.13	. 485651	54
8	. 4926081	6.43	. 977877	. 69	. 515204	7.12	. 4884796	5
9	. 493466		. 977835	69	. 515631	7.12	. 484369	51
10	9.493851		9.977794		9.51605		10.483943	50
11	. 494236		. 977752	69	. 516481	7.10	. 483516	49
12	. 494621	6.40	. 977711	69	. 516910		. 483090	48
13	.495005	6.49	. 977669	69	. 517335		. 482665	47
14	. 495388	6.39	. 977628	. 69	. 517761	7.08	. 482239	46
15	. 495772	6.38	. 977586	. 69	. 518185	7.08	. 481815	45
16	. 496154	6.38	. 977544	. 70	.518610	7.07	. 481390	44
17	. 496537	6.37	. 977503	. 70	. 519034	7.07	. 480966	43
19	. 497301	6.36	. 9777419	. 70	. 5198882	7.06	. 48005118	42
20	9.497682		9.97737		9.52030		10.4796	40
21	. 498064		. 977335	. 70	. 520728	7.05	. 479272	39
22.	. 498444	6.34 6.34	. 977293	. 70	. 521151	7.04	. 478849	38
23	. 498825	. 34	. 977251	. 70	. 521573	3	478427	37
24	. 499204	6.33	. 977209	. 70	. 521995	3	. 478005	36
25	. 499584	6.32	. 977167	. 70	. 52241	2	.477583	35
26	. 499963	631	. 977125	. 70	. 522	2	. 477162	34
27	. 500342	6.31	. 977083	70	.523259	7.01	. 476741	33
28	. 500721	6.30	. 977041	. 70	. 523680	7.01	. 476320	32
29	. 50109	6.30	9	. 70	0	7.00	00	31
30	9.50147		9.976957		9.524520		10.475480	30
31	. 501854	6.28	. 976914	. 71	. 524939	6.99	475061	29
32	. 502231	6.28	. 976872	. 71	. 525359	6.99 6.98	. 474641	28
33	. 502607	6.27	. 976830	. 71	. 525778	6.98 6.98	. 474222	27
34	. 5029884	6.27	. 976787	. 71	. 526197	6.98 6.97	. 473803	26
35	. 503360	6.26	. 976745	. 71	.526615	6.97	. 473385	25
36		6.25	02	. 71	. 527038	6.96	. 472967	24
38	. 504485	6.2	. 976617	. 71	. 527868	6.96	. 472132	23
39	. 504860		. 976574	. 71	. 528285	6.95	. 471715	21
40	9.505234		9.976532		9.528702		10.471298	20
41	. 505608		. 976489		. 529119	6.94	. 470881	19
42	. 505981	6.22	. 976446	.71	. 529535	6.93	. 470465	18
43	. 506354	6.21	. 976404		. 529950		. 470050	17
44	. 506727	6.21	. 97	71	. 530366		. 469634	16
46	. 507471	6.20	6275	. 72	. 53	6.91	. 469219	15
47	. 507843	6.19	. 976232	. 72	.531191	6.91	. 468804	14
48	. 508214	6.19	. 976189	. 72	. 532025	6.90	467975	3
49	. 508585	6.18	. 976146	. 72	. 532439	6.90	. 467561	11
50	9.508956		9.976103		9.532853		10.467147	10
51	. 509326	6.17	. 976060	. 72	. 533266	6.89	. 466734	10
52	. 509696	6.16 6.16	. 976017	. 72	. 533679	6.88	. 466321	8
53	. 510065	6.15	. 975974	. 72	. 534092	6.88	. 465908	7
	. 51043	6.15	. 975930	. 72	. 534504	6.87 6.87	. 465496	6
		6.14	. 9758887	. 72	. 534916	6.87	. 465084	5
56	. 511172	6.14	. 975844	. 72	. 535328	6.86	. 464672	4
57	. 511540	6.13	. 975800	. 72	. 535739		. 464261	3
58	. 511907	6.12	. 975757	72	. 536150	6.85	463850	2
69	. 512275	6.12	. 975714	.72	. 536561	6.84	463439	1
60	. 5		. 975670		. 536972		. 463028	0
M.	Cosine.	D.1'	Sine					

108°

TABLE IV. LOGARITHMIC SINES, ETC

M.	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$	Tang.	D. $1^{\prime \prime}$.	Cotang.	M
0	9.512642	6.11	9.9756		9.5369		10.463028	60
1	. 513009	6.11	. 9756	. 73	. 53738		. 462618	59
2	. 513375	6.10	. 975583	. 73	. 537791	6.83 6.85	. 462209	58
3	. 513741	6.10	. 975539	. 73	. 538202	6.85 6.82	. 461798	57
4	. 514107	6.09	. 975496	. 73	. 538611		. 461389	56
5	. 514472	6.08	. 975452	. 73	. 539020	6.81	. 460980	55
6	. 514837	6.08	. 975408	. 73	. 539429	6.81	. 460571	54
7	. 515202	6.07	. 975365	. 73	. 5398937	6.80	. 460163	53
9	. 515930	6.07	. 975277	. 73	. 540245	6.80	. 459347	52
10	9.516294		9.975233		9.5410		10.458939	50
11	. 516657	6.05	. 975189	. 73	. 541468	7	. 4.458532	49
12	. 517020	6.05 6.04	. 975145	. 73	. 541875	6.78	. 458125	48
13	. 517382	6.04 6.04	. 975101	. 73	. 542281	6.78	. 457719	47
14	. 517745	6.03	. 975057	. 73	. 542688	6.77	. 457312	46
15	. 518107	6.03	. 975013	. 74	. 543094	. 6	. 456906	45
16	. 518468	6.02	. 9749969	. 74	. 543499	6.76	. 456501	44
17	. 518829	6.02	. 974925	. 74	. 543905	6.75	. 456095	43
18	. 519190	6.01	. 9748880	. 74	. 544310	6.75	. 455690	42
19	. 519551	6.00	. 974836	. 74	. 544715	6.74	. 455285	41
20	9.519911	6.00	9.97478	. 74	9.545119	6.74	10.454881	40
21	. 520271	5.99	. 974748	. 74	. 545524	6.73	. 454476	39
22	. 520631	5.99	. 97	. 74	. 545928	6.73	. 454072	38
23	. 520990	5.98	. 9	. 74	. 546331	6.72	. 453669	37
24	. 521349	5.98	. 974614	. 74	. 54671	6.72	. 453265	36
25	. 521707	5.97	. 974570	. 74	. 547138	6.71	. 452862	35
27	. 522066	5.97	. 9744481	. 74	. 5477540	6.71	. 452460	34
27	. 522424	5.96	. 97	. 74	. 548	6.70	. 452057	33
28		5.95	. 97	. 74	. 54	6.70	253	32 31
30	9.523495		9.9743		9.5491		10.45	30
31	. 523852		. 97430	. 75	. 549550		. 450450	29
32	. 524208	5.93	. 974257	. 75	. 549951		. 450049	28
33	. 524564	5.93	. 974212	. 75	. 550352	6.67	. 449648	27
	. 5	5.92	. 9	. 75	. 5	6.67	. 449248	26
	. 525275	5.92	. 974122	. 75	. 5511	6.67	. 448848	25
36	. 525630	5.91	. 974077	. 75	. 551552	6.66	. 448448	24
37 38	. 5259834	5.90	. 9740382	. 75	. 551952	6.66	. 4488048	23
	. 526	5.90	. 9	. 75	51	6.65	49	22
39	. 526693	5.89	. 973942	. 75		6.65	50	21
40	9.527046		9.973897	75	9.5531		10.446851	20
41	. 527400	5.89	. 9738582	. 75	. 553548	6.64	. 4464	19
42	. 527753	5.88	. 973807	. 75	. 553946	6.63	. 446054	18
43	. 528105	5.87	. 97373716	. 75	. 5543474	6.63	. 445656	17
44	. 5288458	5.87	. 973716	. 76	. 5547413	6.62	. 4442561	16
	. 52	5.86	. 9736	. 76	. 5	6.62	. 4444861	15
		5.86	. 9	. 76		6.61	. 444464	14
48	. 529864		. 973535	. 76	. 556329	6.61	. 443671	12
49	. 530215		. 973489		. 556725		. 443275	11
50	9.530565		9.973444		9.557121		10.442879	10
51	. 530915		. 973398	. 76	. 557517		. 442483	9
52	. 531265	5.82	. 973352	. 76	. 557913	6.59	. 442087	8
83	. 531614	5.82	. 973307	.76	. 558308	6.58	. 441692	7
	. 531963	5.81	.973261	. 76	. 5588702	6.58	. 441298	6
56	. 532661	5.81	. 973169	. 76	. 559491	6.57	. 440509	5
57	. 533009	5.80	. 973124	. 76	. 559885	6.57	. 440115	3
58	. 533357	5.80 5.79	. 973078	.76	. 560279	6.56	. 439721	2
59	. 533704	5.79	. 973032		. 560673	6.5	. 439327	1
60	. 534052	5.79	. 972986	. 7	. 561066	6.0	38934	0
M.	Cosine.	D. $1^{\prime \prime}$.	Sine.	D 1.	tan	D. 1		

M.	Sine.	D. $1^{\prime \prime}$.	Cosine.	D.1'.	Tang.	D. 1 .	Cotang.	M.
0	9.534052	5.78	9.972986	. 77	9.561066	6.55	10.438934	60
1	. 534399	5.78	. 972940	. 77	. 561459	6.54	. 4385541	59
2	. 534745	5.77	. 9728894	.77	. 5618251	6.54	.438149	58
3	. 535092	5.77	. 972848	. 77	. 562244	6.54	. 437756	57
$\frac{4}{5}$. 5357838	5.76	. 97282755	.77	. 56263028	6.53	. 43736972	56 55
6	. 536129	5.76	. 972709	. 77	. 563419	6.53	. 436581	54
7	. 536474	5.75	. 972663	. 77	. 563811	6.52	. 436189	53
8	. 536818	5.75 5.74	. 972617	. 77	. 564202	. 21	. 435798	52
9	. 537163	5.74 5.74	. 972570	. 77	. 564592	6.51	. 435408	51
10	9.537507		9.972524	. 77	9.564983	6.50	10.435017	50
11	. 537851	5.73 5.73	. 972478	. 77	. 565373	6.50	. 434627	49
12	. 538194	5.72	. 972431	. 78	. 565763	6.50	. 434237	48
13	. 5388538	5.71	. 972385	. 78	. 566153	6.49	. 433847	47
14	. 538880	5.71	. 972338	. 78	. 5666942	6.49	. 433458	46
15	. 539223	5.70	. 972291	. 78	. 5667332	6.48	. 433068	45
16	. 53956	5.70	. 972245	. 78	. 5677320	6.48	. 432680	44
17	. 539907	5.69	. 972198	. 78	. 567709	6.47	. 432291	43
18	. 540249	5.69	. 972151	. 78	. 568098	6.47	. 431902	42
19	. 540599	5.68	. 972105	. 78	. 568486	6.46	. 431514	41
20	9.540931	5.68	9.972058	. 78	9.568873	6.46	10.431127	40
21	. 541272	5.67	. 972011	. 78	. 569261	6.46	. 430739	39
22	. 541613	5.67	. 971964	. 78	. 569648	6.45	. 430352	38
23	. 541953	5.66	. 971917	. 78	. 570035	6.45	. 429965	37
24	. 542293	5.66	. 971870	. 78	. 570422	6.44	. 429578	36
25	. 542632	5.65	. 971823	. 78	. 570809	6.44	. 429191	35
26	. 542971	5.65	. 971776	. 78	. 571195	6.43	. 428805	34
27	. 543310	5.64	. 971729	. 79	. 571581	6.43	. 428419	33
28	. 543649	5.64	. 971635	. 79	. 572352	6.43	. 427648	32 31
29	. 54	5.63	.971635	. 79	. 612352	6.42	. 421648	31
30	9.544325	5.63	9.971588	. 79	9.572738	6.42	10.427262	30
31	. 544663	5.62	. 971540	. 79	. 573123	6.42	. 426877	29
32	. 545000	5.62	.971493	. 79	. 573507	6.41	. 426493	28
33	. 545338	5.61	. 971446	. 79	. 573892	6.40	. 426108	27
$3!$. 545674	5.61	. 971398	.79	. 574276	6.40	. 425724	26
35	. 546011	5.60	. 971351	. 79	. 574660	6.40	. 425340	25
36	. 546347	5.60	.971303	. 79	. 575044	6.39	. 424956	24
37	. 546683	5.59	. 971256	. 79	. 5754278	6.39	. 424573	23
38	. 547019	5.59	. 971208	. 79	. 575810	6.38	. 424190	22
39	. 547354	5.58	. 971161	. 79	. 5	6.38	. 423807	21
40	9.547689		9.971113	. 79	9.576576		10.423424	20
41	. 548024	5.57	. 971066	. 80	. 576958	6.37	. 423041	19
42	. 548359	5.57	. 971018	. 80	. 577341	6.37	. 422659	18
43	. 548693	5.56	. 970970	. 80	. 577723	6.36	. 422277	17
44	. 549027	5.56	. 970922	. 80	. 578104	6.36	. 421896	16
45	. 5493360	5.55	. 97087084	. 80	. 578486	6.35	. 421514	15
46	. 549693	5.55	. 97080779	. 80	. 578867	6.35	. 421133	14
	-. 550026	5.55	. 970779	. 80	. 579248	6.34	. 420752	13
48	. 550359	5.54	. 970731	. 80	. 579629	6.34	.420371	12
49	. 550692	5.54	683	. 80	. 580009	6.34	91	11
50	9.551024	5.53	9.970635	. 80	9.580389	6.33	10.419611	10
51	. 551356	5.53	. 970586	. 80	. 580769	6.33	. 419231	
52	. 551687	5.52	. 970538	. 80	. 581149	6.33	. 418851	8
53	. 552018	5.52	. 970490	. 80	. 581528	6.32	. 418472	7
	. 552349	5.51	. 970442	. 80	. 581907	6.32	. 418093	6
56	. 552680	5.51	. 97030345	. 81	. 582286	6.31	. 417714	5
56	. 553010	5.50	. 97034975	. 81	. 5828665	6.31	. 417335	4
6	. 553341	5.50	. 9702989	. 81	. 5833423	6.30	. 4169578	3
68 59	. 5533670	5.49	. 970249	. 81	. 5833422	6.30	. 4165788	2
69 60	. 5544329	5.49	. 970200	. 81	. 58841777	6.30	. 416200	1
M.	Cosine.	D.1'.	Sine.	D. $1^{\prime \prime}$.	Cotan	D. $1^{\prime \prime}$.	Tan	M.

TABLE IV. LOGARITHMIC SINES, ETC.

M.	Sine.	D. 1 .	Cosine.	D. $1^{\prime \prime}$	Tang.	D. 1 ".	Cotang.	M.
0	9.554329	5.48	9.970152	. 81	9.584177	6.29	10.415823	60
1	. 554658	5.48	. 970103	. 81	. 584555	6.29	.415445	59
2	. 554987	5.47	. 970055	. 81	. 584932	6.28	. 415068	58
3	. 555315	5.47	. 970006	. 81	. 585309	6.28	. 414691	57
4	. 555643	5.46	. 969957	. 81	. 585686	6.28	. 414314	56
5	. 555971	5.46	. 969909	. 81	. 586062	6.27	. 413938	55
6	. 556299	5.45	. 969860	. 81	. 586439	6.27	. 413561	54
7	. 556626	5.45	. 969811	. 81	. 586815	6.26	. 413185	53
8	. 556953	5.44	. 969762	. 81	. 587190	6.26	. 412810	52
9	. 557280	5.44	. 969714	. 81	. 587566	6.26	. 412434	51
10	9.557606	5.44	9.969665	. 82	9.587941	6.25	10.412059	50
11	. 557932	5.43	${ }^{-969616}$. 82	. 588316	6.25	. 411684	49
12	. 558258	5.43	. 969567	. 82	. 588691	6.24	. 411309	48
13	. 558583	5.42	. 969518	. 82	. 589066	6.24	. 410934	47
14	. 558909	5.42	. 969469	. 82	. 589440	6.24	. 410560	46
15	. 559234	5.41	. 969420	. 82	. 589814	6.23	. 410186	45
16	. 559558	5.41	. 969370	. 82	. 590188	6.23	.409812	44
17	. 559883	5.40	. 959321	. 82	. 590562	6.22	. 409438	43
18	. 560207	5.40	. 969272	. 82	. 590935	6.22	. 409065	42
19	. 560531	5.39	. 969223	. 82	. 591308	6.22	. 408692	41
20	9.560855	5.39	9.969173	. 82	9.591681	6.21	10.408319	40
21	. 561178	5.38	. 969124	. 82	. 592054	6.21	. 407946	39
22	. 561501	5.38	. 969075	. 82	. 592426	6.20	. 407574	38
23	. 561824	5.37	. 969025	. 82	. 592798	6.20	. 407202	37
24	. 562146	5.37	. 968976	. 83	. 593171	6.20	. 406829	36
25	. 562468	5.37	. 968926	. 83	. 593542	6.19	. 406458	35
26	. 562790	5.36	. 968877	. 83	. 593914	6.19	. 406086	34
27	. 563112	5.36	. 968827	. 83	. 594285	6.18	. 405715	33
28	. 563433	5.35	. 968777	. 83	. 594656	6.18	. 405344	32
29	. 563755	5.35	. 968728	. 83	. 595027	6.18	. 404973	31
30	9.564075	5.34	9.968678	. 83	9.595398	6.17	10.404602	30
31	. 564396	5.34	. 968628	. 83	. 595768	6.17	. 404232	29
32	. 564716	5.33	. 968578	. 83	. 596138	6.16	. 403862	28
33	. 565036	5.33	. 968528	. 83	. 596508	6.16	. 403492	27
34	. 565356	5.32	. 968479	. 83	. 596878	6.16	. 403122	26
35	. 565676	5.32	. 968429	. 83	. 597247	6.15	.402753	25
36	. 565995	5.32	. 968379	. 83	. 597616	6.15	. 402384	24
37	. 566314	5.31	. 968329	. 83	. 597985	6.15	. 402015	23
38	. 566632	5.31	. 968278	. 84	. 598354	6.14	. 401646	22
39	. 566951	5.30	. 968228	. 84	. 598722	6.14	. 401278	21
40	9.567269	5.30	9.968178	. 84	9.599091	6.13	10.400909	20
41	. 567587	5.29	. 968128	. 84	. 599459	613	.400541	19
42	. 567904	5.29	. 968078	. 84	. 599827	6.13	.400173	18
43	. 563222	5.28	. 968027	. 84	. 600194	6.12	. 399806	17
44	. 568539	5.28	. 967977	. 84	. 600562	6.12	. 399438	16
45	. 568856	5.28	. 967927	. 84	. 600929	6.12	. 399071	15
46	. 569172	5.27	. 967876	. 84	. 601296	6.11	. 398704	14
47	. 569488	5.27	. 967826	. 84	. 601662	6.11	. 398338	13
48	. 569804	5.26	. 967775	. 84	. 602029	6.10	. 397971	12
49	. 570120	5.26	. 967725	. 84	. 602395	6.10	. 397605	11
50	9.570435	5.25	9967674	. 84	9.602761	6.10	10.397239	10
51	. 570751	5.25	. 967624	. 84	. 603127	6.09	. 396873	9
52	. 571066	5.24	. 967573	. 85	. 603493	6.09	. 396507	8
53	. 571380	5.24	. 967522	. 85	. 603858	6.09	. 396142	7
54	. 571695	5.24	. 967471	. 85	. 604223	6.08	.395777	6
55	. 572009	5.23	. 967421	. 85	. 604588	6.08	. 395412	5
56	. 572323	5.23	. 967370	. 85	. 604953	6.07	. 395047	4
57	. 572636	5.22	. 967319	. 85	. 605317	6.07	. 394683	3
58	. 573950	5.22	. 967268	. 85	. 605682	6.07	. 394318	2
59 60	. 573263	5.21	.967217	. 85	.606046 .606410	6.06	. 3939594	1
M.	Cosine	D. 1	Sine.		Cotang		Tan	M

M.	Sine.	D.1'.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D.1".	Cotang.	
0	9.573575		9.96716		9.606410		10.393590	
1	. 573888	5.21	. 967115	. 85	. 606773	6.06	. 393227	
2	. 574200	5.20	. 967064	. 85	. 607137	6.06 6.05	. 392863	
3	. 574512	5.20	. 967013	. 85	. 607500		. 392500	
4	. 574824	5.19	. 966961	. 85	. 607863	6.05 6.05	. 392137	5
5	. 575136	5.19	. 96689810	. 85	. 608225	6.04	. 391775	
6	. 575	5.18	. 9668859	. 86	,608588	6.04	.391412	
8	. .576069	5.18	. 96668756	. 86	. 6089850	6.03	. 391050	
9	. $\mathrm{}$.	5.17	. 9666705	. 86	. 6099312	6.03	. 390688	5
10	9.576689		9.966653		9.610036		10.389964	
11	. 576999	5.16	. 966602	. 86	. 610397	6.02	10.389964	
12	. 577309	. 16	. 966550	. 86	. 610759	6.02	. 389241	
13	. 577618	5.15	. 966499	. 86	. 611120	6.02 6.01	. 388880	
14	. 577927	5.15	. 9664447	. 86	. 611480		. 388520	析
15	. 578236	5.14	. 9663395	. 86	. 611841	6.01	. 388159	45
16	. 578545	5.14	. 9663344	. 86	. 612201	6.00	. 387799	
17	. 5788853	5.14	. 966292	. 86	. 612561	6.00	. 387439	
18	. 579162	5.13	. 9666240	. 86	. 612921	6.00	. 387079	
		5.13	. 9661	. 86	. 613281	5.99	. 386719	
20	9.579777	5.12	9.966136	. 87	9.613641	5.99	10.386359	
21	. 580085	5.12	. 966085	. 87	9	5.98	. 386000	
22	. 580392	5.11	. 966033	. 87	614359	5.98	. 385641	38
24	. 5880699	5.11	. 96598928	. 87	18	5.98	. 385282	37
25	. 581312	5.11	. 965876	. 87	. 615435	5.97	. 384923	36
26	. 581618	5.10	. 965824	. 87	. 615793	5.97	. 384565	
27	. 581924	5.10	. 965772	. 87	. 616151	5.97	. 383849	34
28	. 582229	5.09	. 965720	.87	. 616509	5.96	. 383491	32
29	. 582535		. 965668		. 616867		. 383133	31
30	9.582840		9.965615		9.617224		10.382776	0
31	. 583145		. 965563		. 617582	5.95 5.95	. 382418	9
32	. 583449	5.07	. 965511	. 87	. 617939	5.95	. 382061	28
33	. 583754	5.07	. 965458	. 87	. 618295	5.94	. 381705	27
34	. 584058	5.06	. 965406	. 88	. 618652	5.94	. 381348	26
35 36 36	. 584361	5.06	. 965353	. 88	. 619008	5.94	. 380992	25
36	. 5846665	5.06	. 9653301	. 88	. 619364	5.93	. 380636	24
		5.05	. 9655248	. 88	. 619721	5.93	. 380280	23
39	. 5855574	5.05	143	. 88	. 620432	5.93	. 379924	22
40	9.585877		9.96509		9.620787		10.379213	20
41	. 586179	5.04	. 965037	. 88	. 621142	5.92	10.379885	19
42	. 586482	5.04	. 964984	.88	. 621497	5.92	. 378503	18
43	. 586783	5.03	. 964931	. 88	. 621852	5.91	. 378148	17
44	. 587085	5.02	. 964879	. 88	. 622207	5.91	. 377793	16
45	. 587386	5.02	. 9	. 88	. 62	5.90	. 377439	15
47	. 587989	5.01	964720	. 88	. 6222915	5.90	. 377085	14
48	. 588289	5.01	. 964666	. 88	6232623	5.90	. 3767631	13
49	. 588590	5.01	. 964613	. 89	. 623976		. 376024	11
60	9.588890		9.964560		9.624330		10.375670	
51	. 589190	4.99	. 964507		. 624683		. 375317	
52	. 589489	4.99 4.99	. 964454	89	. 625036		. 374964	
53	. 589789	4.99	. 964400	89	. 625388	5.88	. 374612	
54	. 590088	4.98	. 964347	89	. 620609	5.88 5.87	. 374259	
55	. 59038	4.98	. 96429424	89	. 626093	5.87	. 373907	
${ }_{5}^{56}$		4.97	. 96424187	. 89	. 626445	5.87	. 373555	
58	. 591282	4.97		. 89	. 627149	5.86	. 373203	3
59	. 591580		. 964080	89	. 627501	5.86	. 372499	
60	. 591878	96	. 964026	89	. 627852	5.86	. 372148	0
M.	Cosine.	D.1'.	Sine.	D. ${ }^{\prime \prime}$.	Cotang.	D.1".	Tang.	M.

M.	Sine.	D.1".	Cosine.	D. $1^{\prime \prime}$	Tang.	D.1*.	Cotang.	M.
0	9.591878	4.96	9.964026	. 89	3.627852	5.85	10.372148	60
1	. 592176	4.96 4.95	. 963972	. 89	. 628203	5.85	.371797	59
2	. 592473	4.95	. 963919	. 89	. 628554	5.85	.371446	58
3	. 592770	4.95 4.95	.963865	. 90	.628905	5.84	.371095	57
4	. 593067	4.95 4.94	.963811	. 90	. 629255	5.84	. 370745	56
5	. 593363	4.94 4.94	.963757	. 90	. 629606	5.84	.370394	55
6	. 593659	4.94	. 963704	. 90	. 629956	5.83	. 370044	54
7	. 593955	4.93 4.93	.963650	. 90	. 630306	5.83	. 369694	53
8	. 594251	4.93	. 963596	. 90	. 630656	5.83	.369344	52
9	. 594547	4.93 4.92	. 963542	. 90	.631005	5.82	. 368995	51
10	9.594842	4.92	9963488	. 90	9.631355	5.82	10.368645	50
11	. 595137	4.921	. 963434	. 90	. 631704	5.82 5.82	. 368296	49
12	. 595432	4.91	. 963379	. 90	. 632053	5.82	. 367947	48
13	. 595727	4.91	. 963325	. 90	. 632401	5.81	. 367599	47
14	. 596021	4.91 4.90	.963271	. 90	. 632750	5.81	.367250	46
15	. 596315	4.90 4.90	. 963217	. 90	. 633098	5.81	.366902	45
16	. 596609	4.89	. 963163	. 91	. 633447	5.80	. 366553	44
17	. 596903	4.89	. 963108	. 91	. 633795	5.80	. 366205	43
18	. 597196	4.89	. 963054	. 91	. 634143	5.80 5.79	.365857	42
19	. 597490	4.88	. 962999	. 91	. 634490	5.79 5.79	.365510	41
20	9.597783	88	9.962945	91	9.634838	5.79	10.365162	40
21	. 598075	4.88 4.88	. 962890	.91	. 635185	5.79 5.78	. 364815	39
22	. 598368	4.88 4.87	. 962836	. 91	. 635532	5. 78	. 364468	38
23	. 598660	4.87 4.87	. 962781	. 91	. 635879	5.78	. 364121	37
24	. 598952	4.86	. 962727	. 91	. 636226	5.78	. 363774	36
25	. 599244	4.86 4.86	. 962672	. 91	. 636572	5. 5.77	. 363428	35
26	. 599536	4.86 4.86	. 962617	. 91	. 636919	5.77	.363081	34
27	. 599827	4.86 4.85	. 962562	.91	. 637265	5.77	. 362735	33
28	. 600118	4.85 4.85	. 962508	. 91	. 637611	5.76	. 362389	32
29	. 600409	4.85	. 962453	. 91	. 637956	5.76	. 362044	31
30	9.600700		9.962398		9.638302	5.76	10.361698	20
31	. 600990	4.84	. 962343	92	. 638647	5.76	. 361353	29
32	. 601280	4.84 4.83	. 962288	. 92	. 638992	5.75	. 361008	28
33	. 601570	4.83 4.83	. 962233	.92	. 639337	5.75	. 360663	27
34	. 601860	4.83 4.83	. 962178	.92	. 639682	5.75	. 360318	26
35	. 602150	4.83 4.82	. 962123	. 92	. 640027	5.74	. 359973	25
36	. 602439	4.82 4.82	. 962067	. 92	. 640371	5.74	. 359629	24
37	. 602728	4.82 4.81	. 962012	. 92	. 640716	5.74 5.73	. 359284	23
38	. 603017	4.81	. 961957	.92	. 641060	5.73 5.73	. 358940	22
39	. 603305	4.81 4.81	. 961902	. 92	. 641404	5.73 5.73	. 358596	21
40	9.603594		9.961846		9.641747		10.358253	20
41	. 603882	4.80 4.80	. 961791	. 92	. 642091	5.73 5.72	. 357909	19
42	. 604170	4.80 4.79	. 961735	. 92	. 642434	5.72 5.72	. 357566	18
43	. 604457	4.79 4.79	.961680	. 92	. 642777	5.72 5.72	. 357223	17
44	. 604745	4.79 4.79	. 961624	. 93	. 643120	5.72 5.71	. 356880	16
45	. 605032	4.79 4.78	. 961569	. 93	. 643463	5.71 5.71	. 356537	15
46	. 605319	4.78 4.78	. 961513	. 93	. 643806	5.71 5.71	. 356194	14
47	. 605606	4.78 4.78	. 961458	. 93	. 644148	5.71 5.70	. 355852	13
48	. 605892	4.78 4.77	. 961402	. 93	.644490	5.70 5.70	. 355510	12
40	. 606179	4.77 4.77	. 961346	.93 .93	. 644832	5.70 5.70	. 355168	11
50	0.606465		9.961290		9.645174		10.354826	10
51	. 606751	4.76 4.76	. 961235	. 93	.645516	5.69 5.69	.354484	9
52	. 607036	4.76 4.76	. 961179	. 93	. 645857	5.69 5.69	. 354143	8
53	. 607322	4.76 4.75	. 961123	. 93	. 646199	5.69 5.69	. 353801	7
54	. $\mathrm{C07607}$	4.75	. 961067	. 93	. 646540	5.69 5.68	. 353460	6
55	. 607892	4.75 4.74	.961011	. 93	. 646881	5.68 5.68	.353119	5
56	. 608177	4.74 4.74	. 960955	. 93	. 647222	5.68	. 352778	4
57	. 608461	4.74	. 960899	. 93	.647562	5.68 5.67	.352438	3
58	. 608745	4.74 4.73	. 960843	. 94	. 647903	5.67 5.67	.352097	2
59	. 609029	4.73 4.73	. 960786	. 94	. 648243	5.67 5.67	. 351757	1
60	. 609313	4.73	. 960730	. 94	. 648583	5.67	. 351417	0
M.	Cosine.	D.1".	Sine.	11.1'	Cotang.	D.1".	Tang.	M.

M.	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D.1'.	Cotang.	M
1	9.609313	4.73	9.960730	. 94	9.648583		10.351417	60
2	. 609880	4.72	. 9660674	. 94	. 6489223	5.66	. 351077	59
3	. 610164	4.72	. 9605051	. 94	. 64949602	5.66	. 350737	58
4	. 610447	4.72	. 960505	. 94	. 6499942	5.66	. 350398	57 56
5	. 610729	4.71 4.71	. 960448	.94	. 650281	5.65	. 349719	55
6	. 611012	4.71 4.71	. 960392	. 94	. 650620	5.65	. 349380	54
7	. 611294	4.71 4.70	. 9603335	. 94	. 650959		. 349041	53
8	. 611576	4.70	. 960279	. 94	. 651297	5.64 5.64	. 348703	52
9	. 611858	4.69	. 960222	. 94	. 651636	5.64 5.64	. 348364	51
10	9.612140	4.69	9.960165		9.651974		10.348026	50
11	. 612421	4.69 4.69	. 960109	. 95	. 652312	5.64	. 347688	49
12	. 612702	4.69 4.68	. 960052	. 95	. 652650	5.63 5.63	. 347350	48
13	. 612983	4.68 4.68	. 959995	. 95	. 652988	5.63	. 347012	47
14	. 613264	4.68 4.68	. 9599938	. 95	. 653326	5.63	. 346674	46
15	. 613545	4.68 4.67	. 9598882	. 95	. 6536663	5.62	. 346337	45
16	. 61314105	4.67	. 9598825	. 95	. 654000	5.62	. 346000	44
18	. 614385	4.67	. 95979711	. 95	. 6543374	5.62	. 345663	43
19	. 614665	4.66	. 959654	. 95	. 655011	5.61	.345326 .344989	42
20	9.614944		9.959596		9.655348		10.344652	40
21	. 615223	4.65	. 959539	. 95	. 655684	5.61	1.344316	39
22	. 615502	4.65	. 959482	. 95	. 656020	5.61	. 343980	38
23	. 615781	4.65	. 959425	. 95	. 656356	5.60	. 343644	37
24	. 616060	4.64	. 959368	. 96	. 656692	5.60	. 343308	36
25	. 616338	4.64	. 959310	. 96	. 65702	5.60	. 342972	35
26	. 616616	4.63	. 959253	. 96	4	5.59	. 342636	34
28	. 616894	4.63	. 959195	. 96	. 657699	5.59	. 342301	33
29	. 61	4.63	. 959138	. 96	. 658034	5.58	. 341966	32
30	9.617727	4.62	9.959023	. 96	65	5.58	1	1
31	. 618004	4.62	9.958965	. 96	9.658704	5.58	10.341296	30
32	. 618281	4.61	. 9588969	. 96	. 659039	5.58	. 340961	29
33	. 618558	4.61	. 9588850	. 96	. 65997373	5.57	. 340627	28
34	. 618834	4.61	. 958792	. 96	. 660042	5.57	. 340292	27
35	. 619110	4.60 4.60	. 958734	. 96	. 660376	5.57	. 3399624	$\stackrel{26}{25}$
36	. 619386	4.60 4.60	. 958677	. 96	. 660710	5.56	. 339290	24
37	. 619662	4.69	. 958619	. 97	. 661043	5.56	. 338957	23
38	. 619938	4.59	. 9585561	. 97	. 661377	5.56	. 338623	22
39	. 620213	4.59	. 958503	. 97	. 661710	5.56	. 338290	21
40	9.620488		9.958445		9.662043		10.337957	
41	. 620763	4.58	. 958387	. 97	-. 662376	5.55	10.337624	19
42	. 621038	4.58	. 958329	. 97	. 662709	5.55	. 337291	18
43	. 621313	4.58	. 958271	. 97	. 663042		. 336958	17
44	. 621587	4.57	. 958213	. 97	. 663375	5.54	. 336625	16
45	. 621861	4.57	. 958154	. 97	. 663707	5.54	. 336293	15
47	. 6222409	4.56	${ }^{.958096}$. 97	. 6640379	5.53	. 335961	14
48	. 622682	4.56	. 957979	. 97	. 6664703	5.53	. 335629	13
49	. 622956	4.56	. 957921	.97	. 664703	5.53	. 33549297	12
50	9.623229		9.957863		9.665366		10.334634	10
51	. 623502	4.55 4.54	. 957804	. 97	. 665697	5.52	. 334303	9
${ }^{5}$. 623774	4.54 4.54	. 957746	. 98	. 666029	5.52	. 333971	8
53	. 624047		. 957687		. 666360	5.52	. 333640	7
54	. 624319	4.54 4.53	. 957628	. 98	. 666691	5.51	:333309	6
55	. 624591	4.53	. 957570	. 98	. 667021	5.51	. 332979	5
56	. 624863	4.53	. 957511	. 98	. 667352	5.51	. 332648	4
57	. 625135	4.52	. 957452	. 98	. 667682	5.50	. 332318	3
69	. 625677	4.52	.957393	. 98	. 6688013	5.50	. 331987	2
60	. 625948	4.52	$\begin{aligned} & .957335 \\ & .957276 \end{aligned}$. 98	. 668343 .668672	5.50	.331657	1
M.	Cosine.	D.1'.	Sine.	D.1' ${ }^{\prime \prime}$	Cotang.	D.1'.	Tang.	M.

M.

$\frac{1 \mathrm{M}}{0}{ }_{9}$ | 0 | 9.62 |
| ---: | ---: |
| 1 | .62 |
| 2 | .62 |
| 3 | .62 |
| 4 | .62 |
| 5 | .62 |
| 6 | .62 |
| 7 | .62 |
| 8 | .62 |
| 9 | .62 |
| 10 | 9.62 |
| 11 | .62 |
| 12 | .62 |
| 13 | .62 |
| 14 | .62 |
| 15 | .62 |
| 16 | .63 |
| 17 | .63 |
| 18 | .63 |
| 19 | .63 |
| 20 | | Sine. | .62262 |
| :--- |
| .6264 |
| .626 |
| .627 |
| .627 |
| .627 |
| .628 |
| .628 | 628647 628916 629185 629453 629721 629989 630257 630524 630792 631059

9.631326 .631593 .631859 632125 632392 .632658 632923 633189 633454 633719 9.633984 31
32
33
34
35
36
3
3
3
3

40

42

 4344

45 . 46

46	.638197
47	.638458

48
re
$\begin{array}{ll}51 & .639 \\ 52 & .639\end{array}$

54	.640
55	.640
55	.640

$\begin{array}{ll}57 & .641 \\ 68 & .641\end{array}$
M. $|\overline{\text { Cosine. }}| \overline{\text { D. 1'丷 }}|\overline{\text { Sine. }}| \overline{\text { D. 1'́. }} \mid$ Cotang. \mid D. $1^{\prime \prime} . \mid$ Tang. \mid M.

TABLE IV. LOGARITHMIU SINES, ETC.

M.	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	M.
0	9.641842		9.953660		9.688182		10.311818	60
1	. 642101	4.31	. 953599	1.03 1.03	. 688502	5.34 5.34	10.3114988	59
2	. 642360	4.31	. 9353537	1.03	. 68888238	5.34 5.34	.311177	58
4	. 642877	4.31	. .953413	1.03	. 6889463	5.34	7	57
5	. 643135	4.35 4.30	. 953335	1.03	. 689783	5.33	. .310217	56
6	. 643393	4.30 4.30	. 953290	1.03	. 690103	5.33	. 309897	54
7	. 643650	. 29	. 9533	1.03 1.03	. 690423	5.33	. 309577	53
8	. 643908	4.29	. 953166	1.03	. 690742	5.33 5.32	. 309258	52
9	. 644165	4.29	. 953104	1.03	. 691062		. 308938	51
10	9.644423	4.28	9.953042	1.03	9.691381		10.308619	50
11	:644680	4.28	. 952980	1.04	. 691700	5.32 5.32	. 308300	49
12	. 644936	4.28	. 952918	1.04	. 692019	5.31	. 307981	48
13	. 645193	4.27	. 952855	1.04	. 6923388	5.31	. 307662	47
14	. 64545706	4.27	. 95272731	1.04	. 6922659	5.31	. 307344	46
10	. 645962	4.27	. 952669	1.04	. 693293	5.31	. 306707	44
17	. 646218	4.26 4.26	. 952605	1.04 1.04	. 693612	5.30	. 306388	43
18	. 646474	4.26	. 952544	1.04	. 693930	5.30 5.30	. 306070	42
19	. 646729	4.26	. 952481	1.04	. 694248	5.30 5.30	. 305752	41
20	9.646984	4.25	9.952419	1.04	9.694566	5.29	10.305434	40
21	. 647240	4.25	. 957356	1.04	. 694883	5.29 5.29	. 305117	39
22	. 647494	4.25	. 952294	1.04	. 695201	5.29	. 304799	38
23	. 647749	4.24	. 952231	1.04	. 695518	5.29	. 304482	37
24	. 64888004	4.24	. 952168	1.05	. 6958153	5.29	. 304164	36
26	. 648512	4.24	. 952043	1.05	. 6966478	5.28	03530	35
27	. 648766	4.23	. 951980	1.05	. 696787	5.28	. 303213	34
28	. 649020	4.23 4.23	. 951917	1.05 1.05	. 697103	5.28	. 302897	32
29	. 649274	4.22	. 951854	1.05	. 697420	5.28	. 302580	31
30	9.649527	4.22	9.951791	1.05	9.697736		10.302264	30
31	. 649781	4.22 4.22	. 951728	1.05	. 698053	5.27 5.27	. 301947	29
32	. 650034	4.22	. 951665	1.05	. 6983639	5.27 5.27	. 301631	28
33	. 650287	4.21	. 951602	1.05	. 698685		. 301315	27
34	. 650539	4.21	. 951539	1.05	. 699001	5.26	. 300999	26
35 36	. 650792	4.21	. 951476	1.05	. 699316	5.26	. 300684	25
37	. 651297	4.20	. 951349	1.05	. 6999947	5.26	. 300368	24
38	. 651549	4.20	. 951286	106	. 700263	5.26	. 2909737	23
39	. 651800	4.20	. 951222	1.06	. 700578	5.25	. 299422	21
40	9.652052		9.951159		9.700893		10.299107	20
41	. 652304	4.19	. 951096	1.06	. 701208	5.25	. 298792	19
42	. 652555	4.19 4.18	. 951032	1.06 1.06	. 701523	5.25	. 298477	18
43	. 652806	4.18	. 950968	1.06	. 701837	5.24	. 298163	17
44	. 653057	4.18 4.18	. 950905	1.06	. 702152	5.24	. 297848	16
45	. 653308	4.18	. 950841	1.06	. 702466	5.24	. 297534	15
46	. 653558	4.17	. 950778	1.06	. 702781	5.24	. 297219	14
47	. 653808	4.17	. 950714	1.06	. 703095	5.23	. 296905	13
49	. 654309	4.17		1.06	. 703	5.23	. 296591	12
50	9.654558	4.16	9.950522	1.06		5.23		
51	- 654808	4.16	9.950458	1.07	9.704350	5.23	10.295964 .295650	10
52	. 655058	4.16	. 950394	1.07	. 704663	5.22	. 295337	8
53	. 655307	4.15	. 950330		. 704977	5.22	. 295023	7
54	. 655556	4.15	. 950266	1.07	. 705290	5.22	. 294710	6
55	. 655805	4.15	. 950202	1.07	. 705603	5.22	. 294397	5
	. 656054	4.14	. 950138	1.07	705916	5.22	. 294084	4
57	. 656302	4.14	. 950074	1.07	. 706228		. 293772	3
58	. 6556551	4.14 4.14	. 950010	1.07	. 706541	5.21	. 293459	2
59	. 656799	4.13	. 9499945	1.07	. 7068854	5.21 5.21	. 293146	1
60	. 657047	4.13	. 949881	1.07	. 707166	5.21	. 292834	0
M.	Cosine.	D. $1^{\prime \prime}$.	Sine.	D. $1^{\prime \prime}$.	Cotang.	D. $1^{\prime \prime}$.	Tang.	M.

TABLE IV. LOGARITHMIO SINES, ETO.

M.	- Sine.	D.1'.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	M.
0	9.657047		9.949881		9.707166		10.292834	60
1	. 657295	4.13 4.13	. 949816	1.07	. 707478	5.20	. 292522	59
2	. 657542	4.13 4.12	.949752	1.07	.707790	5.20	. 292210	58
3	. 657790	4.12 4.12	. 949688	1.08	.708102	5.20	. 291898	57
4	. 658037	4.12 4.12	.949623	1.08	.708414	5.20 5.20	. 291586	56
5	. 658284	4.12 4.12	. 949558	1.08	. 708726	5.19	.291274	55
6	. 658531	4.11	. 949494	1.08	.709037	5.19	290963	54
7	.658778	4.11	. 949429	1.08	.709349	5.19	. 290651	63
8	. 659025	4.11	. 949364	1.08	.709660	5.19	. 290340	52
9	. 659271	4.10	. 949300	1.08	. 709971	5.18	. 290029	51
10	9.659517	4.10	9.949235	1.08	9.710282	5.18	10.289718	50
11	.659763	4.10 4.10	. 949170	1.08	-. 710593	5.18 5.18	. 289407	49
12	. 660009	4.10 4.10	.949105	1.08	.710904	5.18 5.18	.289096	48
13	. 660255	4.10 4.09	. 949040	1.08	.711215	5.18	. 288785	47
14	. 660501	4.09 4.09	.948975	1.08	.711525	5.17	.288475	46
15	. 660746	4.09 4.09	.948910	1.08	.711836	5.17	. 288164	45
16	. 660991	4.09 4.08	.948845	1.09	.712146	5.17	. 287854	44
17	. 661236	4.08	.948780	1.09	.712456	5.17	.287544	43
18	. 661481	4.08	. 948715	1.09	.712766	5.17	. 287234	42
19	. 661726	4.08	. 948650	1.09	.713076	5.16	. 286924	41
20	9.661970		9.948584	1.0	9.713386		10.286614	40
21	. 662214	4.07	. 948519	1.09	.713696	5.16	. 286304	39
22	. 662459	4.07	. 948454	1.09	.714005	5.16	. 285995	38
23	. 662703	4.06	. 948388	1.09	.714314	5.15	. 285686	37
24	. 662946	4.06 4.06	. 948323	1.09	. 714624	5.15	. 285376	36
25	. 663190	4.06 4.06	. 948257	1.09 1.09	.714933	5.15 5.15	.285067	35
26	. 663433	4.06 4.05	. 948192	1.09	.715242	5.15	. 284758	34
27	. 663677	4.05	. 948126	1.09	.715551	5.15	. 284449	33
28	. 663920	4.05	. 948060	1.09	.715860	5.14	.284140	32
29	. 664163	4.05 4.05	. 947995	1.10	.716168	5.14	. 283832	31
30	9.664406	4.04	9.947929	1.10	9.716477		10.283523	30
31	. 664648	4.04	. 947863	1.10	. 716785	5.14	. 283215	29
32	. 664891	4.04 4.04	.947797	1.10	.717093	5.14	.282907	28
33	. 665133	4.04 4.03	.947731	1.10	.717401	5.13	. 282599	27
34	. 665375	4.03 4.03	. 947665	1.10	.717709	5.13	. 282291	26
35	. 665617	4.03 4.03	. 947600	1.10	. 718017	5.13	.281983	25
36	. 665859	4.03 4.03	. 947533	1.10	. 718325	5.13	. 281675	24
37	. 666100	4.03 4.02	. 947467	1.10	.718633	5.13 5.13	. 281367	23
38	. 666342	4.02 4.02	. 947401	1.10	.718940	5.13	. 281060	22
39	. 666583	4.02	. 947335	1.10	.719248	5.12	. 280752	21
40	9.666824		9.947269		9.719555		10.280445	20
41	. 667065	4.01	. 947203	1.10	. 719862	5.12	. 280138	19
42	. 667305	4.01	. 947136	1.11	.720169	5.11	. 279831	18
43	. 667546	4.01	. 947070	1.11	.720476	5.11	.279524	17
44	. 667786	4.01 4.00	. 947004	1.11	.720783	5.11	. 279217	16
45	. 668027	4.00 4.00	.946937	1.11	.721089	5.11	. 278911	15
46	. 668267	4.00 4.00	. 946871	1.11	.721396	5.11	. 278604	14
47	. 668506	4.00 3.99	. 946804	1.11	. 721702	5.10	. 278298	13
48	. 668746	3.99	. 946738	1.11	.722009	5.10	. 277991	12
49	. 668986	3.99	. 946671	1.11	.722315	5.10 5.10	. 277685	11
50.	9.669225		9.946604	1.11	9.722621		10.277379	10
51	. 669464	3.98	. 946538	1.11	. 722927	5.10	. 277073	9
52	. 669703	3.98 3.98	. 946471	1.11	. 723232	5.09	.276768	8
53	. 669942	3.98 3.98	. 946404	1.11	. 723538	5.09	.276462	7
54	. 670181	3.98 3.98	. 916337	1.12	. $72: 3844$	5.09	. 276156	6
55	. 670419	3.98 3.97	. 946270	1.12	.724149	5.09	.275851	5
56	. 670658	3.97	. 946203	1.12	.724454	5.09	. 275546	4
57	. 670896	3.97	.946136	1.12	.724760	5.09 5.08	. 275240	3
58	. 671134	3.96	. 946069	1.12	.725065	5.08	. 274935	2
59	. 671372	3.96 3.96	. 946002	1.12	. 725370	5.08 5.08	. 274630	1
60	. 671609	3.96	. 945935	1.12	. 725674	0.08	. 274326	0
M.	Cosine.	D.1'.	Sine.	D. $1^{\prime \prime}$.	Cotang.	D. $1^{\prime \prime}$.	Tang.	M.

M.	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	M.
0	9.671609	3.96	9.945935	1.12	9.725674	5.08	10.274326	60
2	. 671847	3.96	. 9458568	1.12	. 725979	5.08	. 274021	59
2	. 672084	3.95	. 9455800	1.12	. 726284	5.07	. 273716	58
3	. 672321	3.95	. 9445733	1.12	. 7265888	5.07	. 273412	57
5	. 6727258	3.95	. 9445666	1.12	. 7268197	5.07	. 273108	56
6	. 673032	3.94	. 945531	1.12	. 727501	5.07	. 272499	54
7	. 673268	3.94 3.94	. 945464	1.12 1.13	. 727805	5.07	. 272195	53
8	. 673505	3.94 3.91	. 945396	1.13	. 728109	5.06 5.06	. 271891	52
9	. 673741	3.93	. 945328	1.13	. 728412	5.06 5.06	. 271588	51
10	9.673977		9.945261		9.728716		10.271284	50
11	. 674213	3.93	. 945193	1.13	. 729020	5.06 5.06	. 270980	49
12	. 674448	3.93 3.93	. 945125	1.13	. 729323	5.05	. 270677	48
13	. 674684	3.92	. 945058	1.13	. 729626	5.05	. 270374	47
14	. 6749155	3.92	. 9444990	1.13	. 7299929	5.05	. 270071	46
15 16	.675155 .675390	3.92	. 944922	1.13	. 730233	5.05	. 269767	45
17	. 675624	3.91	. 94448786	1.13	. 730838	5.05	. 2699465	43
18	. 675859	5.91 3.91	. 944718	1.13	. 731141	5.05	. 268859	42
19	. 676094	3.91	. 944650	1.13	. 731444		. 268556	41
20	9.676228	3.90	9.944582	1.14	9.731746		10.268254	40
21	. 676562	3.90	. 944514	1.14	. 732048	5.04 5.04	. 267952	39
22	. 676796	3.90 3.90	. 944446	1.14	.732351	5.04	. 267649	38
23	. 677030	3.90 3.90	. 944377	1.14	. 732653	5.04	. 267347	37
24	. 677264	3.89	. 9443309	1.14	. 732955	5.03	. 267045	36
25	. 677438	3.89	. 9444241	1.14	. 733257	5.03	. 266743	35
27	. 6777318	3.89	. 9444172	1.14	. 7333558	5.03	. 266414	34
28	. 6787964	3.88	. 9444036	1.14	.733860 .734162	5.03	. 2665140	33
4	. 678430	3.88	. 943967	1.14	. 734463	5.02	. 265537	${ }_{31}$
30	9.678663		9.943899		9.734764		10.265236	30
31	. 678895	3.88 3.87	. 943830	1.14	. 735066	5.02	. 264934	29
32	. 679128	3.87 3.87	. 943761	1.15	. 735367	5.02	. 264633	28
33	. 679360	3.87 3.87	. 943693	1.15	. 735668	5.02 5.01	. 264332	27
34	. 679592	3.87	. 943624	1.15	. 735969	5.01	. 264031	26
35	. 679824	3.86	. 9433555	1.15	. 736269	5.01	. 263731	25
36	. 680056	3.86	. 9434386	1.15	. 736570	5.01	. 263430	24
37	. 680288	3.86	. 943417	1.15	. 736871	5.01	. 263129	23
38	. 680519	3.86 3.86	. 9433348	1.15	. 737171	5.01	. 262829	22
39	. 680750	3.85	. 943279	1.15	. 737471	5.00	. 262529	21
40	9.680982	3.85	9.943210		9.737771		10.262229	20
41	. 681213	3.85	. 943141	1.15	. 7388071	5.00	. 261929	19
42	. 681443	3.85 3.84	. 943072	1.15	. 738371	5.00 5.00	. 261629	18
43	. 681674	3.84	. 943003	1.15	- 738871	5.00	. 261329	17
44	. 6819205	3.84	. 9429834	1.15	. 7389871	4.99	. 261029	16
45	. 6882365	3.84	. 94282794	1.16	. 739271	4.99	. 260729	15
	. 6882595	3.83	. 9442726	1.16	. 73959870	4.99	. 260430	14
48	. 682825	3.83	. 942656	1.16	. 740169	4.99	. 259831	12
49	. 683055	3.83	. 942587	1.16	. 740468	4.99	. 259532	11
50	9.683284		9.942517	1.16	9.740767		10.259233	0
51	. 683514	3.82	. 942448	1.16	. 741066	4.98 4.98	. 258934	9
52	. 683743	3.82 3.82	. 94232378	1.16	. 741365	4.98	. 258635	8
53	. 683972	3.82 3.82	. 942308	1.16	. 741664	4.98	. 258336	7
5	. 684201	3.81	. 942239	1.16	. 741962	4.98 4.98	. 258038	6
55	. 6884430	3.81	. 9442169	1.16	. 712261	4.98 4.97	.257739	5
56 57	. 68464888	3.81	. 942092029	1.16	. 7422559	4.97	. 257414	4
58	. 6885115	3.80	. 9442029	1.17	. 7432858	4.97	. 257142	3 2 2
59	. 685343	3.80	. 941889	1.17	. 743454	4.97	. 2565646	1
60	. 685571	3.80	. 941819	1.17	. 743752	4.97	. 256248	0
M.	Cosine.	D. $1^{\prime \prime}$.	Sine.	D. $1^{\prime \prime}$.	Cotang.	D. 1'.	Tang.	M.

TABLE IV. LOGARITHMIC SINES, ETC.

M.	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	M
0	9.685571		9.941819		9.743752		10.256248	5
1	. 685799	3.80 3.79	-. 941749	1.17	$: 744050$	4.96	$.255950$	59
2	. 686027	3.79 3.79	. 941679	1.17	. 7443488	4.96	. 255652	58
3	. 686254	3.79	. 941609	1.17	. 744645	4.96	255355	57
4	. 686482	3.79	. 941539	1.17	.744943	4.96	. 255057	56
5	. 686709	3.78	. 941469	1.17	.745240	4.96	. 254760	55
6	. 68869363	3.78	. 94131328	1.17	.745538	4.95	. 2544162	54
8	. 6887163	3.78	. 9441258	1.17	. 746132	4.95	. 254168	3
9	. 687616	3.78	. 941187	1.17	. 746429	4.95	. 253571	51
10	9.687843	3.77	9.941117	1.18	9.7467		10.253274	50
11	. 688069	3.77	. 941046	1.18	. 747023	4.95	252977	49
12	. 688295	3.77	. 940975	1.18	.747319	4.94	.252681	48
13	. 688521	3.76	. 94090	1.18	.747616	4.94	. 252388	47
14	. 68874	3.76	. 94	1.18	. 7	4.94	. 252087	46
15	. 688972	3.76	. 406	1.18	885	4.94	.251791	45
16	. 689198	3.76	. 940693	1.18	. 7488505	4.94	.251495	44
17	. 689423	3.75	. 940622	1.18	.7488001	4.93	.251199	43
18	. 689648	3.75	. 940001	1.18		4.93	250607	42
19	. 689873	3.75		1.18		4.93	. 250607	41
20	9.69009	3.75	9.940409	1.18	9.749	4.93	10.250311	40
21	. 690323	3.74	. 94033	1.18	. 749985	4.93	. 250015	39
22	. 690548	3.74	. 940267	1.19	. 750281	4.93	. 249719	38
23	. 690772	3.74	. 940196	1.19	. 750576	4.92	. 2494912	37
24	. 690996	3.74	. 940125	1.19	. 7505716	4.92	. 249128	36
25	. 691220	3.73	. 939998	1.19		4.92	. 248583	35
26	. 691694	3.73		1.19	.	4.92	248243	33
28	. 691892	3.73	. 9339840	1.19	. 752052	4.92	. 247948	32
29	. 692115		. 93976	1.19	. 752347	4.92	. 247653	31
30	9.692339		9.93969		9.752642		10.247358	30
31	. 692562		. 93962		. 752937		. 247063	29
32	. 692785	3.72	. 93955	1.19	. 753231	4.91	. 246769	28
33	. 693008	3.71	. 939482	1.19	. 753526	4.91	. 246474	27
34	. 693231	3.71	. 939410	1.19	. 753820	4.91	. 246180	26
35	. 693453	3.71	. 9393339	1.20	. 754115	4.90	. 245885	25
36	. 6936	3.71	. 93929	1.20	. 754409	4.90	245591	24
37	. 6	3.70	. 9	1.20	.754703	4.90	. 245297	23
	. 694120	3.70	. 93	1.20		4.90	. 245003	22
39	. 694342	3.70		1.20	291	4.90	4709	21
40	9.694564	3.70	9.93898	1.20	9.755585	4.89	10.244415	20
41	. 694786	3.69	. 938908	1.20	. 755878	4.89	.244122	19
42	. 695007	3.69 3.69	. 9388836	1.20	. 756172	4.89	. 243828	18
43	. 695229	3.69	. 9388	1.20	. 756	4.89	. 243535	17
44	695450	3.69		1.20	75	4.89	. 243241	16
45	. 695671	3.68	. 93886	1.20	.7570	4.89	. 242948	15
4	. 6996113	3.68	. 9338475	1.20	.757638	4.88	242362	3
48	. 696334	3.68	. 938402	1.21	. 757931	4.88	. 242069	12
49	. 696554	3.68	. 9388330	1.21	. 758224		. 241776	11
50	9.696775		9.9382		9.7585		10.241483	10
51	. 696995	3.67 3.67	. 938185	1.21	. 758810	4.88	. 241190	9
52	. 697215	3.67 3.67	. 938113	1.21	. 759102		. 240898	8
53	. 697435	3.66	. 938040	1.21	. 759395	4.87 4.87	. 240605	7
54	. 697654	3.66 3.66	. 937967	1.21	.759687	4.87	. 240313	6
		3.66	. 937	1.21	. 759979	4.87	. 240021	5
57	. 6988094	3.66	. 9378782	1.21	0272	4.87	. 239728	4
57	. 698313	3.65	.937749 .937676	1.21	760564 760856	4.87	. 239136	3
58	. 698532	3.65	. 93767604	1.21	.760856	4.86	. 2391454	2
69 60	. 69888970	3.65	. 9376031	1.22	761148 .761439	4.8	. 238561	0
M.	Cosine.	D. $1^{\prime \prime}$.	Sine.	D. $1^{\prime \prime}$.	Cotang.	D. $1^{\prime \prime}$.	Tang.	M.

TABLE IV. LOGARITHMIC SINES, ETC.

M.	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	M.
0	9.698970		9.937531		9.761439	6	10.238561	
1	. 699189		. 937458	1.22	. 761731	4.86 4.86	. 238269	59
2	. 699407	3.64	. 937385	1.22	. 762023	4.86 4.86	. 237977	
3	. 699626	3.64	. 937312	1.22	. 762314	4.86	. 237686	57
4	. 6998844	3.64	. 937238	1.22	.762606	4.86	. 237394	56
6	. 7000280	3.63	. 937169	1.22	.762897 .763188	4.85	. 23710812	55
7	. 700498	3.63	. 937019	1.22	. 763479	4.85	236521	53
8	. 700716	3.63 3.63	. 936946	1.22	. 763770	4.85	236230	52
9	. 700933		. 936872	1.22	. 76406		. 235939	51
10	9.701151	3.62	9.9367	1.22	9:764	5	10.235648	50
11	. 701368	3.62	. 936725	1.23	. 764643	4.84	. 235357	49
12	. 701585	. 62	. 936652	1.23	. 764933	4.84	. 235067	48
13	. 701802	3.61	36578	1.23	. 765224	4.84	. 234776	47
14	. 702019	3.61	. 936505	1.23	. 765514	4.84	. 234486	6
15	. 702236	3.61	. 936431	1.23	. 765805	4.84	234195	45
16	. 702452	3.61 3.61	. 9363537	1.23	.766095	4.84	.233905	44
17	. 702669	3.60	. 936284	1.23	766385	4.83	5	43
18	. 7028	3.60	. 936	1.23	76665	4.83		41
20				1.2		4.83	. 232745	
21		. 60		23		4.83		
22	. 703749		. 935914	23	. 767834	. 83	232166	38
23	. 703964	. 59	. 935840	1.23	. 768124	4.83	231876	37
24	. 704179	3.59	. 935766	24	. 768413)	. 231587	36
25	. 704395	9	. 935692	1.24	. 768703	4.82	. 231297	35
26	. 704610	3.58	. 935618	1.24	. 768992	4.82	231008	34
27	. 704825	3.58	. 935543	1.24	. 769281	4.82	230719	33
28	. 705040	3.58	. 935469	1.24	.769571	4.82	230429	32
29	. 70525		. 9353	1.24	.769860	4.82	0140	31
30	9.705469		9.935320	1.	9.7701		10.2298	30
31	. 70568		. 935246		. 77043		. 2295	29
82	. 705898	3.57	. 935171	1.24	. 770726	4.81	. 2292974	28
83	. 706112	3.57	. 935097	1.24	. 771015	4.81 4.81	. 228985	7
34	. 706326	3.56	. 935022	1.24	. 771303	4.81	. 228697	26
35	. 706539	3.56	. 934948	1.24	. 771592	4.81	. 228408	25
	706	3.56	. 9348	1.25	. 77	4.80	. 228120	4
37		3.56		1.25		4.80	. 227832	23
38	. 707180	3.55	. 934723	1.25	. 772457	4.80	. 227543	22
39	. 707393	3.55	. 934649	1.25	. 772745	4.80	. 227255	21
40	9.707606		9.9345	1.25	9.773033		10.226967	
41	. 707819	3.55	. 93449	1.25	. 773321	4.80	. 226679	19
42	. 708032	3.54	. 9344	1.25	. 773	4.80	. 226392	18
43	.70824	3.54	. 93434	1.25	. 773896	4.79	226104	17
44	. 708458	3.54	.934109	1.25	. 774184	4.79	225816	16
45	. 708670	3.54	. 934199	1.25	. 7744759	4.79	225529	14
47	. 7080984	3.54	. 934048	1.25	. 775046	4.79	224954	14
48	. 709306	3.53	. 933973	1.25	. 775333	4.79	. 224667	
49	. 709518	3.53	. 933898	1.26	. 775621		. 224379	11
50	9.70973		9.933822		9.775908		10.224092	
51	. 709941		. 933747	1.26	. 776195		. 223805	
52	. 710153	3.62 3.52	. 933671	1.26	. 776482		. 223518	
63	. 710364	3.62	. 933596	1.26	. 7767	4.78	. 223231	
54	. 710575	3.52	. 9335245	1.26	. 77	4.78	222945	
	. 7107	3.51	. 9333445	1.26	77342	4.78	. 2222658	
56	. 710997	3.51	. 9333369	1.26	777628	4.77	. 2223372	
57	. 711208	3.51	. 9333293	1.26	. 77782015	4.77	. 2221799	
58	. 711419	3.51	. 9333141	1.26	. 778488	4.77	. 221512	
60	.711629 .711839	3.51	. 933066	1.26	. 778774	4.77	. 221226	0
M.	Cosine.	D. $1^{\prime \prime}$.	Sine.	D. $1^{\prime \prime}$.	Cotang.	D. $1^{\prime \prime}$.	Tang.	M.

TABLE IV. LOGARITHMIC SINES, ETC.

M.	Sine.	D. 1 .	Cosine.	D. $1^{\prime \prime}$	Tang.	D. ${ }^{\prime \prime}$.	Cotang.	M.
0	9.711839		9.933066		9.778774		10.221226	60
1	. 712050	3.50 3.50	. 932990	1.27	. 779060	4.77	. 220940	59
2	. 712260	3.50	. 932914	1.27	. 779346	4.77	. 2230654	58
3	. 712469	3.50	. 932838	1.27	. 7779632	4.76	. 222368	57
5	. 712679	3.49	. 932762	1.27	.779918	4.76	. 220082	56
6	. 712889	3.49	. 9332685	1.27	.780203	4.76	. 21979711	55 54
7	. 713308	3.49	. 932533	1.27	. 780775	476	. 2192225	53
8.	. 713517	3.49 3.48	. 932457	1.27	. 781060	4.76 4.76	. 218940	52
9	. 713726	3.48 3.48	. 932380	1.27	. 781346	4.76 4.76	. 218654	51
10	9.713935	3.48	9.932304	1.27	9.781631	4.75	10.218369	50
11	. 714144	3.48 3.48	. 932228	1.27	. 781916	4.75	. 218084	49
12	. 714352	3.48 3.48	. 932151	1.28	. 782201	4.75 4.75	. 217799	48
13	. 714561	3.48 3.47	. 932075	1.28	.782486	4.75	. 217514	47
14	. 7147699	3.47	. 931998	1.28	.782771	4.75	. 217229	46
15	.714978	3.47	. 931821	1.28	. 783056	4.75	. 216944	45
16	.715186	3.47	. 93181768	1.28	.783341	4.75	. 216659	44
17	.715394 .715602	3.46	. 9331768	1.28	.783626	4.74	. 216374	43
18	. 715809	3.46	. 93316914	1.28	. 783910	4.74	. 216090	42
19	. 715809	3.46	. 931614	1.28		4.74	. 215805	41
20	9.716017		9.931537		9.784479		10.215521	40
21	. 716224	3.46 3.46	. 931400	1.28	. 784764	4.74	. 215236	39
22	. 716432	3.45	. 931383	1.28	. 785048	4.74	. 214952	38
23	. 716639	3.45	. 931306	1.28	. 785332	4.74	. 214668	37
24	. 716846	3.45	. 931229	1.29	. 785616	4.74 4.73	. 214384	36
25	. 717053	3.45	. 931152	1.29	.785900	4.73	. 214100	35
26	. 717259	3.44	. 931075	$1: 29$. 786184	4.73	. 213816	34
27	. 717466	3.44	. 9330998	1.29	.786468	4.73	. 213532	33
28	. 717683	3.44	${ }^{.} 930921$	1.29	.786752	4.73	. 213248	32
29	. 717		. 930843	1.29	. 787036	4.73	. 212964	31
30	9.718085		9.930766		9.787319		10.212681	30
31	. 718291	3.43 3.43	. 930688	1.29	. 787603	4.73	. 212397	29
32	. 718497	3.43	. 930611	1.29	. 787886	4.72	. 212114	28
33	. 718703	3.43	. 930533	1.29	. 7888170	4.72	.211830	27
34	. 718909	3.43	. 930456	1.29	.788453	4.72	. 211547	26
35	. 719114	3.42	. 933030300	1.29	. 7888736	4.72	. 211264	25
37	. 719320	3.42	. 93302023	1.30	. 78993019	4.72	.210981	24
37 38	. 719730	3.42	. 930145	1.30	. 7899585	4.72	. 210415	23
39	. 719935	3.42	. 930067	1.30	. 789868	4.71	. 2101315	21
40	9.720140		9.929989		9.790151		10.209849-	20
41	720345	41	. 929911		. 790433	4.71	. 209567	19
42	. 720549	3.41	. 929833	1.30	. 790716	4.71	. 209284	18
43	. 720754	3.41	. 929755	1.30	. 790999	4.71	. 209001	17
44	. 720958	3.40	. 929677	1.30	. 791281	4.71	. 208719	16
45	. 721162	3.40	. 9295959	1.30	. 791563	4.70	. 208437	15
46	. 721366	3.40	. 9229521	1.30	.791846	4.70	. 208154	14
47	. 721570	3.40	. 9229442	1.31	.792128	4.70	. 207872	13
48	. 721774	3.39	. 929364	1.31	792410	4.70	. 207590	12
49	. 721978	3.39	. 929286	1.31	. 792692	4.70	. 207308	11
50	9.722181		9.929207		9.792974		10.207026	10
51	. 722385	3.39 3.39	. 929129	1.31	. 793256	4.70	. 206744	,
52	. 722588	3.39 3.39	. 929050	1.31	. 7935338	4.70	. 206462	8
53	. 722791	3.38	. 928972	1.31	793819	4.69	. 206181	7
54	. 722994	3.38	. 9288893	1.31	. 794101	4.69	. 205899	6
55	. 723197	3.38	. 9288815	1.31	794383	4.69	. 205617	5
56	. 723400	3.38 3.38	. 928736	1.31	. 794664	4.69	. 205336	
57	. 723603	3.37	. 9288557	1.31	.794945	4.69	. 205055	3
58	. 723805	3.37	. 9288578	1.31	.795227	4.69	. 204773	2
${ }_{6} 69$. 724007	3.37	. 9288429	1.32	. 7957808	4.69	. 2044211	1
60	. 24210						. 2042	0
M.	Cosine.	D. ${ }^{\prime \prime}$	Sine.	D. ${ }^{\prime \prime}$.	Cotang.	D.1".	Tang.	M.

M.	Sine.	D. 1 .	Cosine.	D. $1^{\prime \prime}$	Tang.	D. 1 .	Cotang.	M.
0	9.724210		9.928420		9.795789		10.204211	60
1	. 724412	3.37 3.37	$.928342$	1.32	. 796070	4.68 4.68	10.204211 .203930	59
2	. 72424814	3.36	. 92828183	1.32	.796351	4.68	. 203649	58
4	. 725017	3.36 3.36	. 928104	1.32	. 7966913	4.68.	. 203368	57
5	. 725219	3.36 3.36	. 928025	1.32	. 797194	4.68	-203087	56
6	. 725420	3.36 3.36	. 927946	1.32	. 797475	4.68	. 202525	55
7	. 725622	3.35 3.35	. 927867	1.32	. 797755	4.68 4.68	. 202245	53
8	. 725823	3.35	. 927787	1.32	. 798036	4.68 4.67	. 201964	52
9	. 726024	3.35	08	1.32	. 79831		. 201684	51
10	9.726225	3.35	9.927629		9.798596		10.201404	50
11	. 726426	3.35 3.34	. 927549	1.32	. 798877	4.67	. 201123	49
12	. 7266826	3.34	. 927470	1.33	.799157	4.67 4.67	. 200843	48
13	. 726827	3.34	. 9273730	1.33	.799437	4.67	. 200563	47
14	.727027 .727228	3.34	. 92737231	1.33	.799717	4.67	. 200283	46
16	. 727428	3.34	. 927151	1.33	. 79909977	4.66	. 200003	45
17	. 727628	3	. 927071	1.33	. 800557	4.66	-199743	44
18	. 727828	3.33 3.33	. 926991	1.33	. 800836	4.66	. 199164	42
19	. 728027	3.33	. 926911	1.33	. 801116	4.66 4.66	. 198884	41
20	9.728227	3.33	9.926831	1.33	9.801396		10.19860	40
21	. 728427	3.33 3.32	. 926751	1.33	. 801675	4.66 4.66	. 198325	39
22	. 728626	3.32	. 926671	1.33	. 801955	4.66	. 198045	38
23	. 728825	3.32	. 926591	1.34	. 802234	4.66	. 197766	37
24	. 729024	3.32	. 926511	1.34	. 802513	4.65	.197 1037	36
25	. 729223	3.31	. 926431	1.34	. 802792	4.65	. 197208	35
26	. 729422	3.31	. 9263521	1.34	. 803072	4.65	. 196928	34
28	.729820	3.31	. 926190	1.34	.803351	4.65	. 196649	33
29	. 730018	31	. 926110	1.34	. 803908	4.65	. 19636092	32 31
30	9.730216		9.926029		9.804187		10.195813	30
31	. 730415	3.30	. 925949	1.34	. 804466	4.65	. 195534	29
32	. 730613	3.30	. 925868	1.34	. 804745	4.64	. 195255	28
33	. 730811	3.30	. 925788	1.34	. 805023	4.64	. 1949 77	27
34	. 731009	3.30	. 925707	1.35	. 805302	4.64 4.64	. 194698	26
35	. 731206	3.29	. 925626	1.35	. 8055880	4.64 4.64	. 194420	25
36	. 731404	3.29	. 925545	1.35	.805859	4.64	. 194141	24
37	. 731602	3.29	. 92546385	1.35	. 806137	4.64	.19386:3	23
38	1799	3.29	. 9253538	1.35	. 806415	4.64	. 193585	22
		3.28	. 925303	1.35	. 806693	4.63	.193307	21
40	9.732193	3.28	9.925222	1.35	9.806971		10.193029	20
41	. 7323590	3.28	. 925141	1.35	. 807249	4.63	. 192751	19
42	. 732587	3.28 3.28	. 925060	1.35	. 807527	4.63	. 192473	18
43	. 732789	3.28	. 92494897	1.35	. 807805	4.63	. 192195	17
44	. 73298177	3.27	. 92488976	1.35	. 8080838	4.63	. 191917	16
46	. 733373	3.27	. 92424735	1.35	. 8083631	4.63	. 191639	15
47	. 733569	3.27	. 924654	1.36	${ }_{8}^{808916}$	4.63	. 191362	14
48	. 733765	3.27	. 924572	1.36	. 809193	4.62	. 19100807	12
49	. 733961	3.27	. 924491		. 809471	4.62	. 190529	11
50	9.734157		9.924409		9.809748		10.190252	10
51	. 734353	3.26 3.26	. 924328	1.36	. 810025		. 189975	9
52	. 734549	3.26 3.26	. 924246	1.36	.810302	4.62	. 189698	8
63	. 734744	3.26	. 924164	1.36	.810580	4.62 4.62	. 189420	7
64	. 734939	3.25	. 924083	1.36	. 810857	4.62	. 189143	6
65	. 735135	3.25	. 924001	1.36	. 8111134	4.61	. 188866	5
66 57	.735330	3.25	. 9233919	1.36	. 811416	4.61	. 188590	4
58	. 735719	3.25	. 9233755	1.37	. 8111964	4.61	. 188813	3
59	. 735914	3.24	. 923673	1.37	. 812241	4.61	. 1887759	2
60	. 736109	3.24	. 923591	1.37	. 812517	4.61	. 187483	0
M	Cosine.	D. $1^{\prime \prime}$.	Sine.	D. $1^{\prime \prime}$.	Cotang.	D. $1^{\prime \prime}$.	Tang.	M.

TABLE-IV. LOGARITHMIO SINES, ETC.

M.	Sine.	D.1".	Cosine.	D. $1^{\prime \prime}$	Tang	D.1".	Cotang.	M.
0	9.7361		9.92		9.8125		10.187483	60
1	. 7363	3.24 3.24	. 923	${ }_{1.37}^{1.37}$. 8127	4.61	.187206 .18693	${ }_{58}^{59}$
2 3	${ }^{.} 733649892$	3.24	. 9233434	1.37	. 8133474	4.61	. 1866653	${ }_{57}^{58}$
4	. 736886	${ }_{3}^{3.23}$. 9232263	${ }_{1}^{1.37}$. 813623	4.60	. 186337	56
5	. 737080	3.23	. 923181	1.37	. 8138989	4.60	. 186101	55
${ }^{6}$	${ }_{7} .7374674$	3.23	. 92333016	1.37	. 8141414	4.60	.185854	
8	. 737661	3.23		1.37	. 814728	4.50	. 185272	52
9	. 737855	3.22	. 922851		. 815004		. 184996	51
10	9.738048	3.2	9.9227		9.815		10.184720	50
11	. 738241	3.22	. 9222686	1.38	. 8155	4.60	. 184445	49
12	. 738434		. 922603		. 815831	4.59	. 184169	48
		3.21	. 92225	1.38		4.59		47
14	. 738820	3.21	. 92223	1.38		4.59		
	. 739013		. 9223	1.38	. 816	59	.183342	45
		3.21	. 9222189	38		4.59		
17	${ }_{7} .73959$	3.21	. .9222106	38	. 817484	4.59	. 182516	42
19	. 73978	3.	.922023	1.38	. 81775	4.59	. 182241	41
20	9.73997		9.921940		9.818035		10.181965	
	710	3.20	.9218	1.39	8183	4.58	. 181690	39
	. 74035	3.20	. 921774	1.39	81	4.58	. 181415	
	. 7405	3.19	. 9216				. 181140	
	. 7407	3.19	. 9215	1.39	. 8191913	4.58		${ }^{36}$
		3.19	. 921524	1.39	. 8199410	4.58	180590	
26	.74112	3.19		1.39				
	. 7413	3.19	. 9213		. 81992		. 180041	3
	. 7115	3.18	. 9212	1.39	.82020	4.58		32
29	. 74	3.18	. 9211	1.39	. 820	4.58	. 179	31
30	9.741889	3.18	9.921107	1.39	9.8207		10.179217	30
	. 7420	3.18	. 921023	1.39	. 8210	4.57	. 178943	
	.742	3.18	. 92200	1.40	. 821316	4.57	. 1788668	27
		3.1	. 9208	1.40	. 8216		. 178394	
34	. 742652	3.17	-9207	1.40	. 8218		.118120	
	. 74284	3.17	-920688	1.40	. 8222154		.177	
		3.17	. 9220520	1.40	.8222703	4.57	-1785	
			. 92204	1.40	8220		-1780	23
38	. 743413	3.16						
39	. 743602	16		1.40		4.56	. 176750	21
40	9.7437		202		9.8235		10.176	20
			,	1.40	.		.176	
42	. 741171	3.16	. 922	1.40	. 82	4.56	. 175	8
		3.15		11		4.56	. 175	17
4	. 74	3.15	. 91919846	11	${ }^{8} 824893$			
	. 7447439	3.1	${ }_{9197}$	1.41				
46	. 744928	3.15			.825166			
	. 745117	3.15	96	1	. 82		. 174561	13
	.7453	3	. 9195	1.41	. 82575	4.55	1742	2
49	. 745494	3.14	.91950	1.41	. 825986	4.55	. 174014	1
50	9.7456		9.9194		9.826		10.173	
		3.	-10		. 8226532		17	
		3.14	. 9192	1.41	.8268	55	. 173	8
		3.13		1.41	.827078		. 172922	
	. 74643		. 91		. 82		. 172649	
		3.13	${ }_{.91890}$	1.42	. 88276827	4.55	.172376	
		3.13			${ }_{8828170}$	55	. 172183	,
		3.						
	. 7	12	.91		.828872	4.54	71558	2
$\begin{array}{r} 69 \\ 60 \end{array}$. 7477562	3.12	. 91818574	1.42	.8287987	4.54	$.171285 .$	0
M.	Cosine.	D.1".	Sine.		tan	.1".	Tang	M.

M.	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. 1^{\prime}.	Cotang.	M.
0	9.747562	3.12	9.918574	1.42	9.828987	4.54	10.171013	60
1	. 747749	3.12	. 918489	1.42	. 829260	4.54	.170740	59
2	. 747936	3.12	. 918404	1.42	. 8295322	4.54	. 170468	58
3	.748123	3.11	. 91818238	1.42	. 8298005	4.54	.170195	${ }_{56}^{57}$
$\stackrel{4}{5}$. 7448497	3.11	. 91818147	1.42	. 83300347	4.54	. 1699651	56
6	. 748683	3.11	. 918062	1.43	. 830621	4.54	. 169379	54
7	. 748870	3.11	. 917976	1.43 1.43	. 830893	4.53	. 169107	53
8	. 749056	3.10	. 917891	1.43	. 831165	3	. 168835	52
9	. 749243	3.10	805	1.43	. 831437	4.53	. 168563	51
10	9.749429	3.10	9.917719	1.43	9.831709		10.168291	50
11	. 749615	3.10	. 917634	1.43 1.43	. 831981	4.53	. 168019	49
12	. 749801	3.10	. 917548	1.43	. 832253	4.53	. 167747	48
13	. 7499887	3.10	. 917462	1.43	. 832525	4.53	. 167475	47
14	. 750172	3.09	. 917376	1.43	. 832796	4.53	. 167204	46
16	. 750543	3.09	. 917204	1.43	. 8333339	4.53	. 1666661	45
17	. 750729	3.09 3.09	. 917118	1.43	. 833611	452	. 1666389	44
18	. 750914	3.09 3.09	. 917032	1.41	. 833882	4.52 4.52	. 166118	42
19	. 751099	3.08 3.08	. 916946	1.44	. 834154	4.52	. 165846	41
20	9.751284	3.08	9.916859	1.44	9.834425	4.52	10.165575	40
21	. 751469	3.08	. 916773	1.44	. 834696	4.52	. 165304	39
22	. 751654	3.08	. 916687	1.44	. 834967	4.52	. 165033	38
23	. 751839	3.08	. 916600	1.44	. 835238	4.52	. 164762	37
24	. 752023	3.07	. 916514	1.44	5509	4.52	. 164491	36
25	. 752208	3.07	. 916427	1.44	835780	4.52	. 164220	35
28	. 752392	3.07	. 916341	1.44	. 836051	4.51	. 163949	34
27	. 75252760	3.07	. 91616167	1.44	. 8363522	4.51	. 163678	33
28	. 752944	3.07	. 916081	1.45	. 836093	4.51	.163407	32
	9.753128	3.06		1.45		4.51		31
30	9.753128 .75312	3.06	9.915994 -915907	1.45	9.837134	4.51	10.162866	30
31	. 753495	3.06	-.915907	1.45	83740	4.51	162595	29
32	. 753679	3.06	. 915733	1.45	837675 837946	4.51	162325	28
34	. 753862	3.06	. 915646	1.45	. 8338216	4.51	. 162054	27
35	. 754046	3.05	. 915559	1.45	. 8388487	4.51	. 161513	26
36	. 754229	3.05 3.05	. 915472	1.45	. 838757	4.51	. 161243	24
37	. 754412	3.05 3.05	. 915385	1.45	. 839027	4.50	. 160973	23
38	. 754595	3.05 3.05	. 915297	1.45	. 839297	4.50 4.50	. 160703	22
39	. 754	3.05	. 915210	1.45	. 839568	4.50	. 160432	21
40	9.754960		9.915123		9.839838		10.160162	20
41	. 755143	3.04	. 915035	1.46	. 840108		. 159892	19
42	. 755326		. 914948		. 840378	4.50 4.50	. 159622	18
43	. 755508	3.04 3.04	. 914860	1.46 1.46	. 840648	4.50 4.50	. 159352	17
44	. 755690	3.04 3.04	. 914773	1.46 1.46	. 840917	4.50 4.50	. 159083	16
45	. 7558872	3.04 3.03	. 914685	1.46 1.46	. 841187	4.54	. 158813	15
46	.756054 .756236	3.03 3.03	. 91414510	1.46	. 841457	4.49	. 158583	14
48	. 756418	3.03	. 9144422	1.46	. 8441996	4.49	. 1588004	13
49	. 756600	3.03	. .9144334	1.46	. 8442266	4.49	. 157734	11
50	9.756782		9.914246	1.47	9.842535		10.157465	10
51	. 756963	3.02	. 914158	1.47	. 842805	4.49	. 157195	
52	. 757144	3.02 3.02	. 914070	1.47	. 8433074	4.49 4.49	. 156926	8
53	. 757326	3.02 3.02	. 913982	1.47 1.47	. 843343	4.49 4.49	. 156657	7
54	. 757507	3.02 3.02	. 913894	1.47	. 843612	4.49 4.49	. 156388	6
55 56	. 7576888	3.02	. 9138806	1.47	. 843882	4.49 4.49	. 156118	5
66 57	.757869 .758050	3.01	. 913718	1.47	. 844151	4.48	. 155849	4
58	.758050	3.01	. 91313530	1.47	. 8444420	4.48	. 1055580	3
59	. 758411	3.01	. 913453	1.47	.844689	4.48	. 155042	1
60	. 758591	3.01	. 913365	1.47	. 845227	4.48	. 154773	0
M.	Cosine.	D. $1^{\prime \prime}$.	Sine.	D. 1 ".	Cotang.	D. $1^{\prime \prime}$.	Tang.	M.

TABLE IV. LOGARITHMIC SINES, ETC. 75

M.	Sine.	D.	Cosine.	D. ${ }^{\prime \prime}$	Tan	D.1".	Cotang.	M.
0	9.75859		9.91		9.8		10.1	O
1	. 758772	3.01	. 913276	1.47	. 845496		. 154504	59
2	. 758952	. 00	. 913187	48	. 845764		. 154236	58
3	. 759132	00	. 913099	1.48	. 846033		. 153967	57
	. 759312	3.00 3.00	. 913010	1.48	. 846302	4.48 4.48	. 153698	56
	. 759492	3.00	. 912922	1.48	. 846570	4.48	. 153430	65
6	. 759672	2.99	. 912833	1.48	. 8468108	4.48	. 153161	54
7	. 759852	2.99	. 912744	1.48	. 8477376	4.47	. 152892	53
8	. 760031	2.99	. 912655	1.48	. 847376	4.47	. 152624	52
9	. 760211	2.99	. 912566	1.48		4.47		51
10	9.760390	2.99	9.912477	1.48	9.847913	4.47	10.152087	50
11	. 760569	2.99	. 912388	1.48	. 848181	4.47	. 151819	49
12	. 760748	2.98	. 912299	1.49	. 8484749	4.47	. 151551	48
13	. 760927	2.98	. 912210	1.49	. 848717	4.47	. 151283	47
14	. 761106	2.98	. 91212121	1.49	. 848986	4.47	. 151014	46
15	. 761285	2.98	. 9121942	1.49	. 8492	4.47	. 150746	45
16	. 76	2.98		1.4	${ }_{849790}$	4.47		4
18	. 761642	2.97	. 91117	1.49	. 850057	4.46	14994	42
19	. 761999	2.97	. 9111674	1.49	. 850325	4.46	. 149675	41
20	9.762177		9.911584		9.850593		10.149407	0
21	. 762356		. 911495	49	. 850861		. 149139	39
22	. 762534	2.97	. 911405	1.49	. 851129	4.46 4.46	. 148871	38
23	. 762712	2.96	. 911315	1.50	. 851396	4.46	. 148604	37
24	. 762888	2.	. 9111226	1.50	. 851664	4.46	. 148336	36
25	. 763067	2.96	.911136	1.50	. 8521931	4.46	. 1488069	35
26	. 763245	2.96	. 9110	1.50		4.46	. 147801	3
27	. 76342	96	. 910956	1.50		4.46		
	. 763600	2.95	. 91	1.50	85273	4.46		
29		2.95		1.50		4.45		
30	9.763954	2.95	9.9106	1.50	9.85	4.45	10.146732	30
31	. 764131	.95	. 910596	1.50	. 8533535	4.45	. 146465	29
32	. 764308	2.95	. 910506	1.50	. 853802	4.45	. 146198	28
	. 7644	2.95	. 910415	1.51	. 854	4.45	. 145931	27
		2.94	. 9103	1.51		4.45	. 145664	26
35	. 764838	2.94	. 910235	1.51	. 854603	4.45	. 145397	25
36	. 765015	2.94	. 910144	1.51	.854870	4.45	. 145130	24
37	. 765191	2.94	. 910054	1.51	. 850513	4.45	. 144863	23
38	. 765367	2.94		1.51		4.45	29	22
39		2.93		1		4.44	29	21
40	9.76572	2.93	9.909782	1.51	9.85593		10.144062	20
41	. 765896	2.93	. 909691	1.51	. 856204	4.44	. 143756	19.
42	. 766072	2.93	. 909601	1.51	. 856471	4.44	. 143529	18
43	. 766247	2.93	. 9099510	1.51	. 8556737	4.44	. 143263	17
44	. 76642	2.93	. 909419	1.52	. 857004	4.44	.142996	16
45	. 7	2.92		1.52	. 857270	4.44	. 142730	15
47		2.92	. 90909146	1.52	857803	4.44	12463	14
48	. 767124	2.92	. .909055	1.52	. 858069	4.44	141931	12
49	. 767300		. 908		. 858336		. 141664	11
50	9.767475		9.908873		9.85860		10.141398	10
51	. 767649	2.91	. 908781	1.52	. 858888	4.43	. 141132	
52	. 767824	2.91	. 908690	1.52	853134	4.43	. 140866	8
53	. 767999	2.91	. 908599	1.52	. 859400	4.43	. 140600	7
54	. 768173	2.91	. 908507	1.52	.859666 859932	4.43	. 140334	6
56	. 768348	2.91	. 9008416	1.53	. 885993	4.43	. 140068	5
56 57	-7	2.90	. 908324	1.53	. 8	4.43	. 139892	4
68		2.90	. 908141	1.53		4.43	. 139270	2
59	. 769045		. 908049		. 860995		. 139005	1
60	. 769219		. 907958	1.53	. 861261	4.43	138739	0
M.	Cosine.	D. $1^{\prime \prime}$.	Sine.	.1"	Cotang.	D. $1^{\prime \prime}$.	Tang	M

M.	Sine.	D.1'.	Cosine.	D. $1^{\prime \prime}$	Tang.	D. ${ }^{\prime \prime}$.	Cotang.	M.
0	9.769219	2.90	9.907958	1.53	9.861261	4.43	10.138739	60
1	. 769393	2.90	. 907866	1.50	. 861527	4.43	. 138473	59
2	. 769566	2.89	. 907774	1.53	. 861792	4.43	. 138208	58
3 4 4	.769740	2.89	. 9007682	1.53	. 862058	4.42	. 137942	57
$\stackrel{4}{5}$.769913 .770087	2.89	. 907597498	1.53	. 862232389	4.42	. 137677	56 55
6	. 770260	2.89 2.89	. 907406	1.53	. 862854	4.42 4.42	. 137146	54
7	. 770433	2.89 2.88	. 907314	1.54	. 863119	4.42 4.42	. 136881	53
8	. 770606	2.88 2.88	. 907222	1.54	. 8633385	4.42 4.42	. 136615	52
9	770779	2.88	. 907129	1.51	. 863650	4.42	. 136350	51
10	9.770952		9.907037		9.863915	4.42	10. 136085	50
11	. 771125	2.88	. 906945	1.54	. 864180	4.42	. 135820	49
12	. 771298	2.88	. 9068852	$1.5 \frac{1}{4}$. 864445	4.42	. 135555	48
13	.771470	2.87	. 906760	1.54	. 864710	4.42	. 135290	47
14	. 771643	2.87	. 9066667	1.54	. 864975	4.42	. 135025	46
15 16	. 77181987	2.87	. 9066475	1.54	. 8665240	4.41	. 1347460	45
17	. 772159	2.87	. 906389	1.55	. 865770	4.41	. 134230	43
18	. 772331	2.87 2.87	. 906296	1.55	. 866035	4.41	. 133965	42
19	. 772503	2.87 2.86	. 906204	1.55	. 866300	4.41 4.41	. 133700	41
20	9.772075	2.86	9.906111	1.55	9.866564	4.41	10.133436	40
21	. 772847	2.86	. 906018	1.55	. 8668829	4.41	. 133171	39
22	. 773018	2.86	. 905925	1.55	. 867093	4.41	. 132906	38
23	. 773190	2.86	. 905832	1.55	. 867358	4.41	. 132642	37
24	. 773361	2.85	. 905739	1.55	. 867623	4.41	. 132377	36
25	. 773533	2.85	. 905645	1.55	. 867887	4.41	. 132113	35
26	. 773704	2.85	. 905552	1.55	. 8688152	4.41	. 131848	34
27	.773875 .774046	2.85	. 9054566	1.56	. 86886816	4.41	. 131320	33
28	. 774217	2.85	. 905272	1.56	.8688945	4.40		31
30	9.774388		9.905179		9.869209		10.130791	30
31	. 774558	2.84	. 905085	1.56	. 869473	4.40 4.40	. 130527	29
32	. 774729	2.84	. 904992	1.56	. 869737	4.40	. 130263	28
33	. 774899	2.84	. 904898	1.56	. 870001	4.40 4.40	. 129999	27
34	. 775070	2.84	. 904804	1.56	. 870265	4.40	. 129735	26
35	. 775240	2.84	. 904711	1.56	. 870529	4.40 4.40	. 129471	25
36	. 775410	2.83	. 904617	1.56	. 870793	4.40	. 129207	24
37 38	.775580	2.83	. 9045423	1.57	. 871057	4.40	. 1289679	23
38 39	. 7759750	2.83	. 9043435	1.57	. 871321	4.40	. 1288415	22
40	9.776090	2.83	9.904241	1.57	9.871849	4.40	10.128151	20
41	-.776259	2.83	. 904147	1.57	. 8.872112	4.40	10.1281888	19
42	. 776429	2.83	. 904053	1.57	. 872376	4.39 4.39	. 127624	18
43	. 776598	2.82	. 903959	1.57	. 872640	4.39 4.39	. 127360	17
44	. 776768	2.82	. 903864	1.57	. 872903	4.39 4.39	. 127097	16
45	. 776937	2.82	. 903770	1.57	. 873167	4.39 4.39	. 126833	15
46	. 777106	2.82	. 903676	1.57	. 873430	4.39	. 126570	14
47	. 777275	2.82	. 903581	1.57	. 873694	4.39	. 126306	13
48	. 777444	2.81	. 903487	1.58	. 873957	4.39	. 126043	12
49	. 777613	2.81	. 903392	1.58	. 874220	4.39	125780	11
50	9.777781	2.81	9.903298	1.58	9.874484		10.125516	10
51	. 777950	2.81	. 003203	1.58	. 874747	4.39	. 125253	9
52	. 7778119	2.81	. 903108	1.58	. 875010	4.39	. 124990	8
53	. 7782878	2.81	. 903014	1.58	. 875273	4.39	. 124727	7
54	. 7788455	2.80	. 902919	1.58	. 87575837	4.38	. 124463	6
56	. 778782	2.80	. 902729	1.58	.875806	4.38	. 1242937	5
57	. 778960	2.80	. 902634	1.58	. 876326	4.38	. 123674	3
58	. 779128		. 902539	1.58	. 876589	4.38	. 123411	2
59	. 779295	2.80	. 902444	1.59	. 8768582	4.38 4.38	. 123148	1
60	. 779463	2.79	. 902349	1.59	. 877114	4.38	. 122886	0
M.	Cosine.	D.1".	Sine.	D.1".	Cotang.	D. $1^{\prime \prime}$.	Tang.	M

TABLE TV. LOGARITHMIC SINES, ETC.

M.	Sine.	D.1"	Cosine.	D.1'	Tang.	D. $1^{\prime \prime}$.	Cotang.	M.
0	9.779463		9.90234		9.877114		10.12	60
1	. 779631	2.79 2.79	. 902253	1.59	. 877377	4.38	. 122623	59
2	. 779798	2.79 2.79	. 902158	1.59	. 877640		.122360	68
3	. 779966	2.79	. 902063	1.59	. 877903		. 122097	57
4	. 780133	. 79	. 901967	1.59	. 878165	4.38	. 121835	56
5	.780300	2.78	. 901872	1.59	. 878428	4.38	. 121572	65
6	. 780467	2.78	. 901776	1.59	. 878691	4.38	. 121309	54
7	. 780634	2.78	. 901681	1.59	. 87878953	4.38	. 121047	53
8	.78080	2.78	. 901585	1.59	. 879216	4.37	. 120784	52
9	. 78	2.78		1.60		4.37		1
10	9.781134	2.78	9.901394	1.60	9.879741	4.37	10.120259	50
11	.781301	2.77	. 901298 .901202	1.60	$.880003$	4.37	.119997	49
12	. 781468	2.77		1.60	. 8880265	4.37	. 119735	48
13	.781634 .781800	2.77	. 90110106	${ }^{1} .60$. 8880528	4.37	. 119472	47
15	. 781966	2.77	. 900914	1.60	. 881052	4.37	. 118948	45
16	. 782132	2.77	. 900818	1.60	. 881314	4.37 4.37	. 118686	44
17	. 7822998	2.76	. 900722	1.60	. 881577	4.37	. 118423	43
18	. 782464	2.76	. 900626	1.60	. 881839	4.37	. 118161	42
19	. 782630	2.76	. 9	1.61	. 882101	4.37	. 117899	41
20	9.782796	2.76	9.9004	1.61	9.882363	4.37	10.117637	40
21	. 782961	2.76	. 9003	1.61	. 8822625	4.37	.117375	39
22	. 783127	2.76	. 900240	1.61	. 882888	4.36	. 117113	38
23	. 783292	2.75	. 900144	1.61	. 88314	4.36	. 116852	37
24	. 783458	2.75	. 900047	1.61	. 883410	4.36	. 116590	36
25	. 783623	2.75	. 8999951	1.61	. 8833672	4.36	. 116328	35
26	. 78378	2.75		1.61		4.36	. 116066	4
27	. 78	2.75		1.61		4.36	+	
28		2.75		1.61		4.36	. 115543	
29		2.74		1.62		4.36		
30	9.784447	2.74	9.89946	1.62	9.884980	4.36	10.115020	30
31	. 784612	2.74	. 8999370	1.62	. 885242	4.36	. 114758	29
32	. 78477	2.74	. 8999273	1.62	. 885504	4.36	. 114496	28
33		2.74		1.62	. 88	4.36	. 114235	27
34	. 78	2.74		1.62		4.36	. 113974	26
35	. 785269	2.73	. 88989881	1.62	. 8868288	4.36	. 113712	25
36	. 785433	2.73	. 88988884	1.62	. 88868411	4.36	. 113185	24
37	. 785	2.73	. 898	1.62	. 886811	4.35	. 113189	23
38	.	2.73		1.62		. 35	888	22
39		2. 3		1.62	. 88630	4.35	. 112667	21
40	9.786089	2.73	9.898494	1.63	9.8875	35	10.112406	20
41	. 786252	2.73	. 8988397	1.63	. 887855	4.35	.112145	19
42	. 786416	2.72	. 8982999	1.63	. 8888116	4.35	.111884	18
43	. 786579	2.72	. 898202	1.63	. 888378	4.35	. 1111622	17
44	. 7867	2.72		1.63	. 88	4.35	. 1111361	16
		2.72		1.63		4.35	100	15
	. 787069	2.72	. 89797810	1.63	. 8889161	4.35	110839	14
48	. 787395	2.72	. 897712	1.	. 8896882		. 110318	12
49	. 78755		. 89761	1.63	. 889943		. 110057	11
50	9.787720		9.897516		9.89020		10.109796	10
51	. 787883	2.71	. 897418	1.64	. 890465	4.35	. 109535	9
52	. 7888045	2.71	. 8973732	1.64	. 890725	4.34	. 109275	
53	. 788208	2.71	. 8977232	1.64	. 8900986	4.34	. 109014	
54	. 7888370	2.70	. 897123	1.64	. 8891247	4.34	. 108753	
	. 78	2.70	. 8897025	1.64	. 89	4.34	. 108493	
		2.70		1.64		4.34	. 1082372	
58	. 789018	70	. 896729	1.64	. 892289		. 107711	
59	. 789180		. 896631		. 892549		107451	1
60	. 789342	2.10	. 896532	1.64	892810	+	. 107190	0
M.	Cosine.	D. 1°	Sine.	D. ${ }^{\prime \prime}$	ta	. 1	Tang	

M.	Sine.	D.1'.	Cosine.	D.1.	Tang.	D.1'.	Cotang.	M.
0	9.789342		9.896532		9.892810	4.31	10.107190	60
1	. 7889504	2.69	. 896433	1.65 1.65	. 893070	4.34	. 106930	59
2	. 789665	2.69	. 8986335	1.65	. 8933331	4.34	. 106669	58
3	. 789827	2.69	. 8982336	1.65	. 8933591	4.34	. 106409	57
4	. 789988	2.69	. 896137	1.65	. 8938851	4.34	. 106149	56
5	. 790149	2.69	. 8960338	1.65	. 894111	4.34	. 1058889	${ }_{54}^{55}$
6	. 790310	2.68	5939	1.65	.894372	4.34	. 105628	54
7	. 7790471	2.68	.895840	1.65	. 89948932	4.34	. 105368	53 52
8	. 790632	2.68	.895،41	1.65	. 8985152	4.33	. 104848	51
10	9.790954		9.895542	1.66	9.895412	4.33	. 104588	50
11	. 791115	2.68	. 8954443	1.66	.8956\%2	4.33	. 104329	49
12	. 791275	2.67	. 8953433	1.66	. 8959332	4.33	. 104068	48
13	. 771436	2.67	. 8895244	1.66	. 8966192	4.33	. 103808	47 46
14	. 791596	2.67	. 8895145	1.66	. 8896712	4.33	. 103288	45
15	. 7919175	2.67	. 899494945	1.66	. 8986971	4.33	. 103029	44
16	. 79192077	2.67	. 8994849	1.66	. 8987231	4.3	. 102769	43
17	. 792238	2.67	. 8984746	1.66	. 897491	4.33	. 102509	42
18	. 792397	2.67	. 894646	1.66 1.66	. 897751		. 102249	41
20	9.792557		9.894546	1.67	9.898010		10.101990	40
21	. 792716	2.	. 894446	1.67	. 898270	4.33	. 101730	39
22	. 792876	2.66	. 894346	1.67	. 8988530	4.33	. 101470	38
23	. 793035	2.66	. 89424246	1.67	. 8888789	4.33	. 101211	37
24	. 793195	2.66	. 894146	1.67	. 8899049	4.33	. 100959	36
25	. 793354	2.65	. 894046	1.67	. 8999308	4.32	. 100692	35 34
26	. 793514	2.65	. 889394846	1.67	. 88999868	4.32	. 100173	34 33
27	.793673	2.65	. 88938745	1.67	. 89990086	4.32	. 099914	33
28	.793832	2.65	.8933645	1.67	. 9000346	4.32	. 099654	31
29	. 793991		. 893645		. 500346			
30	9.794150	2.65	9.893544	1.68	9.90060	4.32	10.099395	30
31	. 794308	2.64	. 8933444	1.68	. 900864	4.32	. 0999136	29
32	. 794467	2.64	. 8933343	1.68	. 901124	4.32	. 0988876	28
33	. 794626	2.64	. 8933243	1.68	. 901381642	4.32	. 09983588	27
34	. 794784	2.64	. 8993041	1.68	. 90161901	4.32	. 0988099	26
35	. 7949	2.64	. 8992940	1.68	. 902160	4.32	. 097840	24
36	. 795259	2.64	. 8982839	1.68	. 902420	4.32	. 097580	23
38	. 795417	2.64	. 892789	1.68	. 902679	4.32	. 097321	22
39	. 795575	2.63	. 892638	1.68	. 902938	4.32	. 097062	21
40	9.795733		9892536		9.903197		10.096803	20
41	. 795891	2.63	. 892435	1.69	. 903456	4.32	. 096544	19
42	. 796049	2.63	. 8923334	1.69	. 903714	4.31	. 096286	18
43	. 796206	2.63	. 8922233	1.69	. 903973	4.31	. 096027	17
44	. 796364	2.62	. 89292132	1.69	. 904232	4.31	. 0955568	16
45	.796521 .796679	2.62	. 8981929	1.69	. 9044750	4.31	. 095250	14
46	.796679 .796836	2.62	. 8981827	1.69	. 905008	4.31	. 094992	14
48	. 7968993	2.62	.891827	1.69	. 905267	4.31	. 094733	12
48	. 797150	2.62	. 891624	1.69	. 905526	4.31	. 094474	11
50	9.797307		9.891523		9.905785		10.094215	10
51	. 797464	2.61	. 891421		. 906043	4.31 4.31	. 093957	9
62	. 797621	2.61	. 891319	1.70	. 906302	4.31	. 0933698	8
53	. 797777	2.61	. 8981217	1.70	. 9065560	4.31	. 0933440	7
54	. 7979394	2.61	. 891115	1.70	. 9068819	4.31	. 0933181	6
55	. 79808941	2.61	. 889091011	1.70	. 9070737	4.31	. 09292623	5
66 57	. 79882478	$2.61{ }^{\text {a }}$. 890980911	1.70	.907336 .907594	4.31	. 0992406	- $\frac{4}{3}$
58	. 798560	2.60	. 890707	1.70	. 907852	4.31	. 092148	2
69	. 798716	2.60 2.60	. 890605	1.70	. 908111	4.31	. 091889	1
60	. 798872	2.60	. 890503	1.70	. 908369	4.31	. 091631	0
	Co	. 1	Sine	D. $1^{\prime \prime}$	ot	. 1		M

TABLE IV. LOGARITHMIC SINES, ETC.

M.	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. 1 .	Tang.	D. $1^{\prime \prime}$.	Cotang.	M
0	9.798872		9.890503		9.908369	4.30	19. 091631	60
2	. 7999188	2.60 2.60	$.890400$	1.71	$.908628$	430	$.091372$	59 58
2 3	.799184 .799339	2.60	.890298	1.71	. 9088886	4.30	.091114	58 57
3 4 4	.799339 .79949	2.59	. 8980093	1.71	. 909144	4.30	.090598	56
5	. 799651	2.59	. 8899990	1,71	.909660	430	090340	55
6	. 799806	2.59	. 889888	1.71	. 909918	4.30	.050052	54
7	. 799962	2.59	. 889785	1.71	. 910177	4.30	.089823	53
8	. 800117	2.59	. 889688	1.71	. 910435	4.30	. 089505	58
9	. 800272	2.59	. 889579	1.71	. 910693	4.30	. 089307	51
10	9.800427	2.58	9.889477	1.72	9.910951	4.30	10.089049	50
11	. 800582	2.58	. 8899374	1.72	. 911209	4.30	$.088791$	49
12	. 800737	2.58	. 889271	1.72	. 911467	4.30 4.30	. 088533	48
13	. 800892	2.58	. 8899168	1.72	. 9111724	4.30	. 088226	47
14	. 801047	2.58	. 888064	1.72	. 9111982	4.30	. 088018	46
15	. 801201	2.58	8888961	1.72	${ }^{.} 9122490$	4.30	.087760	45
17	. 801511	2.57	. 8888875	1.72	. 912756	4.30	.087244	43
18	. 801665	2.57	. 888651	1.72	. 913014	4.30	.086986	42
19	. 801819	2.57	. 888548	1.72	. 913271	4.30 4.30	. 086729	41
20	9.801973		9.888444		9.913529		10.086471	40
21	. 802128	2.57	. 888341	1.73	. 913787	4.29	086ㅇ13	39
22	. 802282	2.57	. 8888237	1.73	. 914044	4.29	. 085956	38
23	. 802436	2.56	. 8888134	1.73	. 914302	4.29 4.29	. 085698	37
24	. 802589	2.56	. 8888030	1.73	. 91456	4.29	. 085440	36
25	. 802743	2.56	. 887926	1.73	. 914817	4.29	. 085183	85
26	. 802897	2.56	. 8878782	1.73	. 915075	4.29	. 084925	84
27	. 803050	2.56	. 8877618	1.73	. 915332	4.29	. 0844410	${ }_{32}$
28	. 803204	2.56	.887614 .887510	1.73	. 91515847	4.29	. 084153	
29	. 803357	2.55	10	1.74	.915847	4.29		31
30	9.803511	2.55	9.887406	1.74	9.916104	4.29	10.083896	30
31	. 803664	2.55	. 887302	1.74	. 916362	4.29	. 083638	29
32	. 803817	2.55	. 887198	1.74	. 916613	4.29	. 083381	${ }_{27}^{28}$
33	. 803970	2.55	. 8887093	1.74	. $917687{ }^{\text {a }}$	4.29	. 0832866	27
34	. 804123	2.55	. 88868885	1.74	. 91717391	4.29	. 08282609	26
35	. 804276	2.55	. 8886780	1.74	. 9173648	4.29	. 0828235	24
36 37	. 8044581	2.54	.886780	1.74	. 9179048	4.29	. 082094	23
38	. 804734	2.51	.8860571	1.74	. 918162	4.29	. 081838	22
39	. 804886	2.54	. 8886466	174	. 918420	4.29	. 081580	21
40	9.805039		9.886362		9.918677		10.081323	20
41	. 805191	2.51	. 886257	1.75	. 918934	4.28	. 081066	19
42	. 805343	2.54	. 886152	1.75	. 919191	4.28 4.28	. 080809	18
43	. 805495	2.54	. 886047	1.75	. 919448	4.28	. 080552	17
44	. 805647	2.53	. 885942	1.75	. 919705	4.28 4.28	. 080295	16
45	. 805799	2.53 2.53	. 885837	1.75	. 919962	4.28 4.28	. 080038	15
46	. 805951	2.53	. 885732	1.75	. 920219	4.28 4.28	. 079781	14
47	. 806103	2.53	. 885627	1.75	. 920476	4.28	. 079524	13
48	. 806254	2.53	. 8855522	1.75	. 920733	4.28	.079267	12
49	. 806406	2.52	. 885416	1.76	. 920990	4.28	. 079010	11
50	9.806557		9.885311		9.921247		10.078753	10
51	. 806709		. 885205		. 921503	4.28	. 078497	8
52	. 806860	2.52	. 885100	1.76	. 921760	4.28	. 078240	8
53	. 807011	2.52	. 8849994	1.76	. 9222017	4.28	. 077983	6
54	. 807163	2.52	. 88848889	1.76	. 9222274	4.28	. 0777726	5
55	. 807314	2.52	. 88847878	1.76	. 92222538	4.28	. 0777470	4
5	. .807615	2.51	. 8884572	1.76	. 92223044	4.28	. 0776958	8
58	. 807766	2.51	. 884466	1.76	. 9233300	4.28	. 076700	2
59	. 807917	2.51	. 8884360	1.77	. 923557	4.28	. 076443	1
60	. 808067	2.5	. 884254	1.77	. 923813	4.28	. 076187	0
M.	Cosine.	D. $1^{\prime \prime}$.	Sine.	D.1:'	Cotang.	D. $1^{\prime \prime}$.	Tang.	M.

129°

M.	Sine.	D.1".	Cosine.	D.1"	Tang.	D. ${ }^{\prime \prime}$.	Cotang.	M.
0	9.808067		9.881254		9.923813		10.076187	60
1	. 808218	2.51	$.884148$	1.77	$.924070$	4.28 4.28	. 075930	59
2 3 3	. 80808519	2.51	. 888494936	1.77	. 924327583	4.27	. 075673	58
4	. 808669	2.50	. 8838829	1.77	. 9244840	4.27	. 075416	57
5	. 808819	50	. 883723	1.77	. 925096	4.27	. 074904	55
6	. 808969	2.50	. 883617	1.77	. 925352	4.27	. 074648	54
8	809119	2.50	. 883510	1.77	. 925609	4.27	. 074391	53
8	. 809269	2.50	. 8833104	1.78	. 925865	4.27	. 074135	52
9	. 809419	2.50	. 883297	1.78	. 926122	4.27	. 073878	51
10	9.809569	2.49	9.883191	1.78	9.926378	4.27	10.073622	50
11	. 809718	2.49	. 8883084	1.78	. 9266634	4.27	. 0733366	49
12	. 8098868	2.49	.882977	1.78	. 9226890	4.27	. 073110	48
13	. 810017	2.49	. 88828764	1.78	. 927147	4.27	. 072853	47
15	. 810316	2.49	. .882657	1.78	. 9274659	4.27	. 072341	46
16	. 810465	2.	. 882550	1.78	. 927915	4.27 4.27	. 072085	44
17	. 810614	2.48 2.48	. 882443	1.78	. 928171	4.27 4.27	. 071829	43
18	. 810763	2.48 2.48	. 882336	1.79	. 928427	4.27	. 071573	42
19	. 810912	2.48	. 882229	1.79	. 928683		. 071317	41
20	9.811061	2.48	9.882121	1.79	9.928940	4.27	10.071060	40
21	. 811210	2.48	. 882014	1.79	. 929196	4.27 4.27	. 070804	39
22	. 8111358	2.48	. 881907	1.79	. 9292452	4.27	. 070548	38
23	. 8111507	2.47	. 8881799	1.79	. 929708	4.27	. 070292	37
24	. 811655	2.47 2.47	. 881692	1.79	. 9329964	4.27	. 070036	36
25	. 811801	2.47	. 8881477	1.79	. 930220	4.27	. 069780	35
26	. 8112105	2.47	. 8881369	1.79	. 9330731	4.26	. 0699269	34 33
28	. 812248	2.47	. 881261	1.80	. 930987	4.26	. 069013	32
29.	. 812396		. 881153		. 931243		. 068757	31
30	9.812544		9.881046		9.931499		10.068501	30
31	. 812692	2.46	. 880938	1.80	. 931755	4.26 4.26	. 068245	29
32	. 812840	2.46	. 880830	1.80	. 932010	4.26 4.26	. 067990	28
33	. 81212988	2.46	. 880722	1.80	. 932266	4.26 4.26	. 067734	27
34	. 813135	2.46	. 8880613	1.80	. 932522	4.26	. 067478	26
35 36	. 813283	2.46	. 8880505	1.80	. 932778	4.26	. 067222	25
36	. 813430	2.46	. 8880397	1.81	. 9333033	4.26	. 0666967	24
37	. 8137278	2.45	. 8880180	1.81	. 93332845	4.26	. 0666455	${ }_{22}$
38	. 813872	2.45	. 8880072	1.81	. 93338300	426	. .0666200	21
40	9.814019		9.879963		9.934056		10.065944	20
41	. 814166	2.45	. 879855	1.81	. 934311	4.26	. 065689	19
42	. 814313	2.45 2.45	. 879746	1.81	. 934567	4.26 4.26	. 065433	18
43	. 814460	2.45	. 879637	1.81	. 934823	4.26 4.26	. 065177	17
44	. 814607	2.44	. 879529	1.81	. 935078	4.26 4.26	. 064922	16
45	.814753	2.44	. 87942311	1.81	. 9353333	4.26 4.26	. 064667	15
46	. 814900	2.44	. 87979311	1.82	. 9335589	4.26	. 064411	14
47	. 81815193	2.44	. 8789202	1.82	. 9335844	4.26	. 064156	13
48 49	. 81815339	2.44	. 878093	1.82	. 9336350	4.26	. 0633645	12
49	. 815339	2.44		1.82	. 936355	4.26	. 063645	11
50	9.815485		9.878875		9.936611		10.063389	10
51	. 815631	2.43	. 87878656	1.82	. 9336866	4.26	. 063134	9
52	. 81515978	2.43	. 87888547	1.82	. 937121	4.26	. 062879	8
53 54	.815924	2.43	. 87848438	1.82	. 93737638	4.25	. 062624	7
55	. 816215	2.43	. 878328	1.82	. 937887	4.25	. 062113	8
56	. 816361	2.43 2.43	. 878219	1.83	. 938142	4.25	. 061858	4
57	. 816507	2.43	. 878109	1.83 1.83	. 938398	4.25 4.25	. 061602	3
58	. 816652	2.42	. 877999	1.83	. 9388653	4.25 4.25	. 061347	2
59	. 816798	2.42	. 877890	1.83	. 938908	4	. 061092	1
60	. 816943		. 877780		. 939163		. 060837	0
M.	Cosine.	D.1".	Sine.	D.1'.	Cotang.	D.1'.	Tang	M.

TABLE IV. LOGARITGMIC SINES, ETC. 81

M.	Sine	D. 1	Co	D.1'.	T		Cotang.	M.
	9.81		9.87		9.429163		10.06	60
1	. 817088	2.42	. 87.670	183 1.83	. 939118		. 060582	59
2	. 817233	2.42	.87\% 50	1.83	. 939673	4.25	. 060327	E8
	. 817379	2.42	. 877450	1.83	.929328	4.25	. 060072	E7
4	. 817521	2.42	. 877340	1.81	. 940183	4.25	. 059817	16
5	${ }^{.817668}$	2.41	. 877230	1.81	. 940138	4.25	. 059562	55
6	. 817813	2.11	. 877120	1.81	.910694	4.25	. 059306	54
8	$\begin{aligned} & .817958 \\ & .818103 \end{aligned}$	2.41	. 87768	1.81	.940949 .941204	4.25	. 059051	53
9	. 818247	2.41	. 8767	1.81	. 941458	4.25 4.25	. 058542	51
10	9.818		9.87		9.911		. 0	zo
11	. 8185	2.41	. 8765		. 9119		. 0	49
12	. 818681	2.40	. 876457	1.81	. 942223		. 05%	48
13	. 818825	2.40	. 876347	1.81	. 942478	4.25	.057592	47
11	-818969	40	. 876236		. 942733	4.25 4.25	. 057267	46
15	. 819113	2.40	. 876125	1.8	. 942988	4.25	. 057012	45
16	. 819257	2.43	. 876014	1.85	. 913243	4.25	. 050707	44
17	. 819461	2.40	. 875959	1.85	. 913498	4.25	.056502	43
13	. 8195	2.40	. 875793	1.85	. 943752	4.25	. 056213	42
19	. 819	2.39	. 875682	1.85		4.25	. 057993	41
23	9.8198		9.875		9.94		10.0	40
21	. 8199		. 875459		. 9445	4.25	. 055183	39
23	. 820120	2.39	. 875318	1.85	. 944761	4.24	0.5229	38
23	. 820263	2.39	. 875237	186	. 945026	4.21	054974	37
21	. 820406	2.39	. 875126	1.	. 945281	4.21	054719	36
25	. 82055	2.39	. 875014	1.86	. 94.5535	4.24	.05465	35
23		2.38	. 8	1.86	9	4.24		34
		2.38		1.86		4.24		32
29	. 821122	2.38			. 9196	4.21	053446	31
$3)$	9.821265		9.874:		9.910		10.05	30
31	. 821407		. 874344		.947063		. 052937	29
33	. 821550		. 874232		. 947318	4.24	. 052682	28
33	. 821693	2.37	.874121	1.87	. 947572	4.24	. 052428	27
31	. 821835		. 874009	1.87	. 947826	4.24	. 052174	26
35	. 821977	2.37	. 873896	1.87	. 948081	4.24	. 051919	25
E3	. 822120	2.37	. 873384	1.87	948336	4.21	. 051664	21
	. 822262	2.37	. 873672	1.87	. 948590	4.24	. 051410	23
33	. 822101		. 8730		.94884	4.24	. 0511.5	22
39	. 822546	2.37	. 873448	1.87	. 949099	4.24	. 050901	21
49	9.82268		9.873		9.9493		10.05	20
41	. 822830	2.37 2.36	. 8733223	1.87	. 919608			19
42	. 822972	2.36 2.36	. 873110	1.83	. 949362	$4.2 \pm$	05013	18
43	. 823114	2.30	. 872998	1.83	. 950116	4.24	. 049884	17
44	. 823255	2.36	. 872885		. 950371	4.24	. 049629	16
45	. 823397	2.36	. 872732		. 950625		. 049375	15
46	. 823333	2.36	-8726.9	1.88	950879	4.24 4.24	. 049121	14
47	. 823080	2.36	. 872547	1.88	. 951133	4.24	048867	13
48	. 823821	2.36	. 872434	1.88	. 951388	4.24	. 048612	12
49	. 823963		. 872321		. 951642		. 048358	11
50	9.82410		9.872208		9.951896		10.048104	10
5	. 82424		. 872095		. 952150		. 017850	
52	. 824386	2.35 2.35	. 871981	1.89 1.83	. 952405	4.24 4.24	. 047595	
53	. 824527	2.35 2.35	. 871868	1.89	. 952659	4.24 4.24	. 047341	?
	. 824668	2.35	. 871755	1.89	. 952913	4.24	47087	
	. 824808	2.34	. 871641	1.89	. 953167	4.24	. 046833	
56	. 824949	2.34	. 871528		. 953421		. 046579	4
	. 825090	2.34	. 871414	1.89 1.89	. 953675	4.24	. 046325	3
	. 825230	2.34	. 8.13181	1.89 1.89	. 953929	4.23	. 046071	2
E	.82:371	2.31	. 87118	1.90	. 954183	4.23	. 045817	1
)	. 825511	2.01	. 87107	1.90	. 954437	4.23	. 045563	0
	Cosine.							

M.	Sinc.	D.1.	Cosine.	D.	Tang.	D.1'.	Cotang.	M
0	9.825511	2.34	9.871073	1.	9.954437		. 045563	
1	. 825651	2.34	. 870960	1.90	. 954691		. 045309	59
2	. 825791	2.33	. 870846	1.90	. 954945	4.23	. 045055	58
3	. 825931	2.33	. 87070618	1.90	. 955200	4.23	. 044800	57
$\stackrel{4}{5}$. 8226071	2.33	.870618 .870504	1.90	. 9555454	4.23	. 044546	56
6	. 826351	2.33	. 870390	1.90	. 955961	4.23	.044293	5
7	. 826491	2.33	. 870276	1.90	. 956215	4.23	. 043785	5
8	. 826631	3	. 870161	1.90 1.91	. 956469	4.23	. 043531	52
9	. 826770		. 870047	1.91	. 956723		043277	51
10	9.826910	32	9.869933	1.91	9.956977		10.043023	50
11	. 827049	2.32	. 869818	1.91	. 957231	4.23	. 042769	49
12	. 827189	2.32	. 86969584	1.91	. 957485	4.23	. 042515	48
13	. 827328	2.32	. 86959889	1.91	.957739	4.23	. 042261	47
14	. 827467	2.32	. 8699474	1.91	. 957993	4.23	. 042007	46
15	. 827606	2.32	. 8699390	1.91	${ }^{.958246}$	4.23	. 041754	45
16	. 827745	2.32	. 8699245	1.91	. 958500	4.23	. 041500	44
18	. 82888823	2.31	. 869130	1.92	. 958154	4.23	. 041246	43
10	. 828162	2.31	. 8688900	1.92	. 959262		. 040738	41
20	9.828301		9.868785		9.959516		10.040484	40
21	. 828439	2.31	. 868670	1.92	. 959769		. 040231	39
22	. 828578	2.31	. 868555	1.92	. 960023	4.23	. 039977	38
23	. 828716	2.31	. 868440	1.92	. 960277	4.23	. 039723	37
24	. 828855	2.31	. 868324	1.92	. 960530	4.23	. 039470	36
25	828993	2.30		1.92	9607	4.23	. 039216	35
27	. 829131	2.30	868093	1.93	. 961038	4.23	. 038962	34
$\stackrel{27}{ }$. 829269	2.30	. 8679788^{\prime}	1.93	. 961292	4.23	. 038708	33
28	9407	2.30	. 867878	1.93	. 961545	4.23	. 038455	32
20	. 829545	2.30		1.93	. 961799	4.23	. 038201	31
30	9.8296		9.8676	1.9	9.962052		10.037948	30
31	. 829821	2.30	. 867515	1.93	. 962306	4.23	. 037694	29
32	. 829959	2.29	. 867399	1.93	. 962560	4.23	. 037440	28
33	.830097	2.29	. 8677163	1.93	. 962813	4.23	. 037187.	27
$3 \pm$. 830234	2.29	. 867167	1.93	. 9633320	4.23	. 36933	26
35		2.29		1.94	. 9633574	4.23	. 036680	25
37	. 830646	2.29	86819	1.94	. 963828	4.23	. 036	23
38	. 830784		. 866703	1.94	. 964081	23	. 035919	22
39	. 830921		. 86658		. 964335		. 035665	21
40	9.831058		9.866470		9.964588		10.035412	20
41	. 831195	2.28	. 866353	1.94	. 964842	4.22	. 035158	19
42	. 831332	2.28	. 866237	1.94	. 965095	4.22	. 034905	18
43	. 831469	2.28 2.28	. 866120	1.94	. 965349	4.22	. 034651	17
44	. 831606	2.28	. 866004	1.95	. 965602	4.22	. 034398	16
45	. 831742	2.28	. 865888	1.95	. 965855	4.22	. 034145	15
	. 831879	2.28	. 865770	1.95	. 9661	4.22	. 033891	14
47	. 832015	2.27	. 8656553	1.95	. 966362	4.22	. 033638	13
48	. 832152	2.27	865536	1.95	. 966616	4.22	. 0333134	12
49	. 832288	2.27	. 865419	1.95	966869	4.22	. 033131	11
50	9.832425		9.865302		9.967123		10.032877	10
51	. 832561	2.27	. 865185	1.95	. 967376	4.22	. 032624	9
52	. 832697	2.27	. 865068	1.95	. 967629	4.22	. 032371	8
53	. 832833	2.27	. 864	1.96	. 967883	4.22	. 032117	7
54	. 832969	2.27	. 864716	1.96	. 968136	4.22	. 031864	${ }^{6}$
55	. 833105	2.26	. 864716	1.96	. 968389	4.22	. 031611	5
56	. 8333241	2.26	. 864598	1.96	.968643	4.22	. 031357	4
	. 833	2.26	. 864481	1.96	. 96888	4.22	. 031104	3
		2.26	63	1.96	. 969149	4.22	. 030851	2
59	. 833648	2.26		1.96	. 969403	4.22	. 030597	1
60	. 833783		. 864127		. 969656		03034	0
M	Cosine.	D. 1	Sine.	D. 1°	Cotang.	D.1	Tang	M.

M.	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$	Tang.	D. $1^{\prime \prime}$.	Cotang.	M.
0	9.833783	2.26	9.86412	1.96	9.969656	4.22	10.030344	60
1	. 833919	2.26	. 864010	1.97	. 969909	4.22	. 030091	59
2	. 834054	2.26 2.25	. 863892	1.97	. 970162	4.22	. 029838	. 58
3	. 834189	2.25	. 863774	1.97	.970416	4.22	. 0295854	${ }^{5} 57$
4	. 834325	2.25	.863656 .863538	1.97	. 970669	4.22	. 0293311	56
5	. 831460	2.25	. 86335319	1.97	. 97097112	4.22	. 029078	55
6	. 8334595	2.25	. 8663419	1.97	. 9711175	4.22	. 0288825	54
8	. 88348950	2.25	. 8663301	1.97	.971429 .971682	4.22	. 028581	53 52
9	. 834999	2.25 2.25	. 86303064	1.97	. 971935	4.22	. 0288065	51
10	9.835134		9.862946	1.98	9.972188		10.027812	50
11	. 835269	2.24	. 8862827	1.98	. 972441	4.22	. 027559	49
12	. 835103	2.24 2.24	. 8682709	1.98 1.98	. 972694	4.22	. 027306	48
13	. 8355538	2.24	. 862590	1.98 1.98	. 972948	4.22 4.22	. 027052	47
14	. 835672	2.24	. 862471	1.98	. 973201	4.22	. 026799	46
15	. 8358007	2.24	. 862353	1.98	. 973454	4.22	. 0265546	45
16	. 8359941	2.24	. 8622234	1.98	. 9737307	4.22	. 026293	44
17	. 8336075	2.23	. 8862115	1.98	. 973960	4.22	. 0202040	43
18	. 83362093	2.23	. 866181877	1.98	. 974213	4.22	. 025787	42
20	9.83647	2.23	9.8617	1.99		4.22	. 025280	40
21	. 836611	2.23	9.861638	1.99	9.974973	4.22	10.025027	39
22	. 836745	2.23	. 861519	1.99	.975226	4.22	. 024774	33
23	. 836878	2.23	. 861400	1.99	. 975479	4.22	. 024521	37
24	. 837012	2.23 2.23	. 861280	1.99 1.99	. 975732	4.22	. 024268	56
25	.837146	2.23	. 861161	1.99 1.99	. 975985	4.22	. 024015	35
26	. 837279	2.22	. 861041	1.99	. 976238	4.22	. 025762	34
27	. 837412	2.22	. 8660822	2.00	. 976491	4.22	. 022509	33
28	. 837546	2.22	. 8600802	2.00	. 976744	4.22	. $02 \sim 256$	32
29	. 837679	2.22	. 860682	2.00	976997	4.22	.02:003	51
30	9.837812	2.22	9.860562	2.00	$\rightarrow-7250$		10.022750	30
31	. 837945	2.22	. 860442	2.00 2.00	.9،7503	4.22	. 022497	29
32	. 838078	2.22	. 860322	2.00	. 977756	4.22	. 022244	28
33	. 838211	2.21	. 860202	2.00	. 978009	4.22	. 021991	27
34	. 8388344	2.21	. 860082	2.00	. 978262	4.22	. 021738	26
35	. 8388777	2.21	. 859962	2.00	. 978515	4.22	. 021485	25
36	.838610	2.21	. 8599892	2.01	. 978768	4.22	. 021232	24
37	. 8388875	2.21	. 8599601	2.01	. 979021	4.22	. 02020726	2
39	. 839007	2.21	. 8599480	2.01	. 97979527	4.22	. 020473	21
40	9.839140		9.859360		9.979780		10.020220	20
41	. 839272	2.21	. 859239	2.01	. 980033	4.22	. 019967	19
42	. 839404	2.20	. 859119	2.01	. 980286	4.22	. 019714	18
43	. 839536	2.20 2.20	. 858998	2.01	. 980538	4.22	. 019462	17
44	. 839668	2.20 2.20	. 858877	2.02	. 980791	4.22	. 019209	16
45	. 839800	2.20	. 858756	2.02	. 981044	4.21	. 018956	15
46	. 8399932	2.20	. 8558635	2.02	. 981297	4.21	. 018703	14
47 48	. 840061	2.20	. 8588514	2.02	. 9815150	4.21	. 01818197	13
49	. 84840328	2.19	. 85888272	2.02	. 981803	421	. 01817941	12
50	9.840459	2.19	9.858151	2.02	9.982309	4.21	10.017691	10
51	. 840591	2.19	. 858029	2.02	. 982562	4.21	. 017438	9
52	. 840722	2.19	. 857908	2.02	. 982814	4.21	. 017186	8
63	. 840851	2.19 2.19	. 857786	2.02 2.03	. 983067	4.21	. 016933	7
54	. 840985	2.19	. 857665	2.03 2.03	. 983320	4.21	. 016680	6
	. 841116	2.19	. 857543	2.03	. 983573	4.21	. 016427	5
56	. 841247	2.18	. 857422	2.03	. 983826	4.21	. 016174	4
57	. 811378	2.18	. 857300	2.03	984079	4.21	. 015921	3
58 59	. 8841509	2.18	.857178	2.03	. 9843331	4.21	. 015669	2
60	.841640	2.18	$\begin{aligned} & .857056 \\ & .856934 \end{aligned}$	2.03	$.984581$	4.21	$\begin{aligned} & .015416 \\ & .015163 \end{aligned}$	1
M.	Cosine.	D. 1 \because	Sine.	D. $1 \cdots$	Cotane.	D. 1\%.	Tang.	M.

M.	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	M.
0	9.841771		9.856934		9.984837		10.015163	60
1	. 841902	2.18	.856812	2.03	$.985090$	4.21	. 014910	59
2	. 842033	2.18	.856690	2.04	. 9853543	4.21	. 014657	58
3	. 842163	2.18	. 8556568	2.04	.985596	4.21	. 014404	57
4	. 8442294	2.17	. 8556446	2.04	. 9858101	4.21	. 014152	56
5	. 8442424	2.17	. 8556323	2.04	.986101	4.21	. 0138899	55
6 7	.842555	2.17	. 8556078	2.04	. 9868664	4.21	. 01364393	54 53
8	. 842815	2.17 2.17	. 855959	2.04 2.04	. 986860	4.21	. 013140	52
9	. 842946	2.17	. 855833	2.04	. 987112	4.21	. 012888	51
10	9.843076	2.17	9.85571	2.05	9.987365	4.21	10.012635	50
11	. 843200	2.17	. 8555588	2	. 987618	4.21	. 012382	49
12	. 843336	2.16	. 8555465	2.05	. 987871	4.21	. 012129	48
13	. 843466	2.16	. 855342	2.05	. 988123	4.21	. 011877	47
14	. 843595	2.16	. 8555219	2.05	. 9888376	4.21	. 011624	46
15	. 8433725	2.16	. 8555096	2.05	. 9888629	4.21	. 011371	45
16	. 84338855	2.16	.854973	2.05	. 98888882	4.21	. 011118	44
18	. 84441114	2.16	.854850	2.05	. 98989384	4.21	. 01010666	43
19	. 844243	2.16	. 854603	2.06	. 989640	4.21	. 010360	41
20	9.844372		9.854480	2.06	9.989893	4.21	10.010107	40
21	. 844502	2.15	. 854356	2.06	. 990145	4.21	. 009855	39
22	. 844631	2.15	. 854233	2.06	. 990398	4.21	. 009602	38
23	. 844760	2.15	. 854109	2.06	. 990651	4.21	. 009349	37
24	. 844889	2.15	.853986	2.06	.990903	4.21	009097	¢ 6
25	. 845018	2.15	.853862	2.06	. 991156	4.21	. 008844	35
27	. 845	2.15	. 8533614	2.06	. 991	4.21	. 008591	34
28	. 84545405	2.15	. 853490	2.07	. 99161914	4.21	. 0008385	33
29	. 845533	2.14	. 853366	2.07	. 992167	4.21	. 007033	31
30	9.845662		9.8522 A 2		9.992420		10.007580	30
31	. 845790	2.14	. 853118	2.07	. 992672	4.21	. 007328	29
32	. 845919	2.14 2.14	. 852994	2.07	. 992925	4.21	. 007075	28
33	. 846047	2.14	. 852869	2.07	. 993178	4.21	. 006822	27
34	. 846175	2.14	. 852745	2.07	. 993430	4.21	. 006570	26
35	. 846304	2.14	. 85262620	2.08	. 9933683	4.21	. 006317	25
36	. 81643	2.13	. 852496	2.08	. 9939336	4.21	. 006061	24
37		2.13	. 8523241	2.08	. 994189	4.21	. 005811	23
3	. 8846816816	2.13	. 852122	2.08	. 9994694	421	.005306	22
40	9.816944		9.851997		9.994947		10.005053	20
41	. 847071	2	. 851872	2.08	. 995199		. 004801	19
42	. 847199	2.13 2.13	. 851747	2.08	. 995452	4.21	. 004548	18
43	. 847327	2.13 2.13	. 851622	2.09	. 995705		. 004295	17
44	. 847454	2.13	. 851497	2.09	. 995957	4.21 4.21	. 004043	16
45	. 847582	2.12 2.12	. 851372	2.09 2.09	. 996210	4.21	. 003790	15
46	. 847709	2.12	. 851246	2.09 2.09	. 996463	4.21	. 003537	14
47	. 8478336	2.12	. 851121	2.09 2.09	. 996715	4.21	. 003285	13
48	. 847964	2.12	. 8509996	2.09	. 9969668	4.21	. 003032	12
49	. 848091	2.12	. 850870	2.09	. 997221	4.21	. 002779	11
50	9.848218	2.12	9.850745		9.997473	4.21	10.002527	10
51	. 848345	2.12	. 850619	2.09 2.10	. 997726	4.21	. 002274	8
52	. 8484872	2.11	.850493 .850368	2.10 2.10	. 997979	4.21	. 002021	8
	. 848	2.11	. 85502482	2.10	. 99982381	4.21	. 0001769	7
55	. 8488852	2.11	. 8550116	2.10	. 99988884	4.21	. 0001263	5
56	. 848979	2.11	. 849990	2.10	. 998989	4.21	. 001011	4
57	. 849106	11	. 849864	2.10	. 999242	4.21	. 000758	3
58	. 849232	2.11	. 849738	2.10	. 999495	4.21 4.21	. 000505	2
59	. 849359		. 849611	2.11	. 999748		. 000252	1
60	, 849485		. 849485		10.000000		. 000000	0
M.	Cosine.	D. $1^{\prime \prime}$.	Sine.	D. $1^{\prime \prime}$.	Cotang.	D. $1^{\prime \prime}$.	Tang.	M.

TABLE V.

LATITUDES AND DEPARTURES, OR

TRAVERSE TABLE.

	Dint． 1.		Dist． 2.		Dist．3．		1Dist．4．		bist． 5.		$B^{\prime \prime n g}$
	La	Dep		Dep．	t．	Dep．	Lat	Dep．	Lat．	Dep．	
015	1.0000	0.0044	2.0000	0.0087	3.0000	0.0131	4.0000	0.017	5.0000	0.0218	
30	0000	0087	1.9999	0175	2.9999	0262	3.9998	034	4.9998	0436	30
	0.9999	0131	9998	0262	9997	0393	9997	0524	9996	0654	
10	9998	0175	9997	0349	9995	0524	9994	0698	9992	0873	
15	9998	0218	． 9995	0436	9993	0654	9990	087	988	1091	
	9997	0262	93	0524	990	0785	9986	1047	9983	130	
	9995	05	91	06	986	91	9981	1222	9977	152	
20	9994	0349	988	0698	982	1047	976	139	9970	45	88
15	9992	0393	985	0785	9977	1178	9969	1570	9961	1963	45
30	9990	0436	81	0872	9971	1309	9962	1745	9952	218	
45	0.9988	0.0480	1.9977	0.0960	2.9965	0.1439	3.9954	0.1919	4.99420	0.2399	15
30	9986	0523	9973	1047	9959	1570	9945	2093	9931	2617	87
15	9984	0567	98	1134	9952	1701	9936	2268	9920	835	45
	81	0610	9963	1221	944	1831	9925	244	907	052	30
45	79	0654	9957	1308	936	1962	9914	261	989	270	15
40	976	0698	951	395	9927	093	9903	2790	9878	88	86
15	973	0741	45	88	918	2223	9890	2964	863	3705	45
30	9969	0785		1569	998	235	9877	3138	846	3923	30
45	9966	0828	9931	1656	897	248	9863	33	9828	4140	15
0	9962	0872	24	1743	9886	2615	9848	34	9810	4358	85
	0.9958	0.0915	． 9916	． 1830	2.9874	． 2745	3.98320	0.3660	4.9790	45	45
30	9954	0958	9908	1917	9862	2875	9816	3834	9770	478	30
45	9950	1002	899		9849	3006	9799	400	9748	009	
0	99	1045	390	2091	9836	313	978	418	72		
15	9941	1089	81	177	822	26	9762	435	70	543	5
	9936	1132	9871	264	807	3396		452	67		30
45	331	1175	861	2351	792	3526	723	4701	65	877	
$7 \quad 0$		1219	851	2437	776	3656	702	487	9627		830
15	9920	1262	840	52	760	3786		5048	9600	310	5
30	991	13	9829	2611		3916		5221	9572		－
45	0.9909	0.1349	1.9817	0.2697	2.9726	0.4046	3.9635	0.5394	4.9543	6743	，
80	9903	1392	9805	2783	9708	4175	9611	5567	9513	6959	820
15	989	1435	9793		9690	4305		5740	948		5
		1478	780	2956	9670	34	9561	5912	451		30
45	9884	1521	9767		651	4564	9534	6085	9418		
90	9877	1564	9754	129	9631	4693	50	6257	938	222	810
15		1607	40		9610	－		6430	9350		5
30		1650	11				2	6602	9314		
		1693	11				422	6774	278		
100							9392		9240		$80 \quad 0$
15	0.9840	0.1779	1.9681	0.3559	2.9521	0.5338	3.93620	0.7118	4.9202	． 889	45
30	983	1822	9665	3645	9498	5467	9330	7289	9163	911	
	0816	1865	0	16	9474	5724	9298	461	123	9326	15
	9816	1908	9633	3816	9449	5724	265	7632	081		79
15	9808	1951	9616	3902	424	5853	9231	7804	039		5
5	9799	1994	9598	3987	9398	5981	9197	797	8996	996	30
45	9791	2036	9581	4073	1	6109	9162	8146	902	1.018	
	9781	2079	9503	4158	344	623	128	8316	900		78
15	9772	2122	9545	4244	9317	6365	9089	8487	8862	609	45
30	9763	2164	9526	4329	9289	6493	9052	8658	8815	82	0
45	0.9753	0.2207	1.9507	0.4414	2.9260	0.6621	3.9014	0.8828	4.8767	． 103	
130	9744	2250	9487	4499	9231	6749	8975	8998	8719	1248	77
15	9734	2292	468	5	2201	6876	8935	16	仡	仡	45
30	9724	2334	9447	4669	9171	7003	8895	9338	818	167	30
45	9713	2377	9427	475	9140	7131	8854	9507	856	1884	15
14	97	2419	940	4838	109	725	8812	9677	851	2096	76
15	969	2462		4923	0	7385	8769	984	846	308	45
	，	504	込	008	11	5011		． 0015	840	519	30
5	． 5	2546	9341	5092	011	7638	8682	0184	8352	2730	15
	9659	2588	9319	5176	978	7765	8637	0353	8296		
	De			Lat．		at		at		Lat．	
B＇ng	Di	t． 1.	Dis							5.	B＇ng

TABLE V. TRAVERSE TABLE.

	List. 6.		Dist. 7.		Dist. 8.		Uist. 9.		Dist. 10.		ng
	Lat.	Dep.									
015	5.9999	0.0262	6.9993	0.0305	7.9999	0.0349	8.9999	0.03	9.9999	0.0	8945
30	9998	0524	9997	0611	9997	0698	9997	0785	9996	0873	30
45	9935	0785	9994	0916	9993	1047	9992	i178	9991	1309	15
10	9991	1047	9989	1222	9988	1396	9986	1571	9985	1745	89
15	9986	1309	9983	1527	9981	1745	9979	1963	9976	2181	45
30	9979	1571	9976	1832	9973	2094	9969	2356	9966	2618	30
45	9972	1832	9967	2138	9963	2443	9958	2748	9953	3054	15
20	9963	2094	9957	2443	9951	2792	9945	3141	9939	3490	880
15	9954	2356	9916	2748	9938	3141	9931	3533	9923	3926	45
30	9913	2617	9933	3053	9924	3490	9914	3926	9905	4362	30
45	. 9931	0.2879	6.9919	0.3358	7.9908	0.3838	8.9896	0.4318	9.9885	0.4798	15
30	9918	3140	9904	3664	9890	4187	9877	4710	9863	5234	$87 \quad 0$
15	9904	3402	9887	3968	9871	4535	9855	5102	9839	5669	45
30	9888	3663	9869	4273	9851	4884	9832	5494	9813	6105	30
45	9872	3924	9850	4578	9829	5232	9807	5886	9786	6540	15
4.0	9854	4185	9829	4883	9805	5581	9781	6278	9756	6976	60
15	9835	444	9808	5188	9780	5929	9753	6670	9725	7411	45
30	9815	4708	9784	5492	9753	6277	9723	7061	9692	78	30
45	9794	4968	9760	5797	9725	6625	9691	7453	9657	828	15
50	9772	5229	9734	6101	9696	6972	9658	7844	9619		0
15	5.9748	0.5430	6.9706	0.6405	7.9664	0.7320	8.9622	08235	9.9580	0.9150	5
30	9721	5751	9678	6709	9632	7608	9586	8626	9540	9585	30
45	9693	6011	9648	7013	9597	8015	9547	9017	9497	1.0019	15
60	9671	6272	9617	7317	9562	8362	9507	9408	9452	0453	0
15	9643	6532	9584	7621	9525	8709	9465	9798	9406	0887	45
30	9614	6792	9550	7924	9486	9056	9121	1.0188	9357	1320	30
45	9584	7052	9515	8228	9145	9403	9376	0578	9307	1754	15
70	95.3	7312	9478	8531	9404	9750	9329	0968	9255	2187	83
15	9520	7572	9440	8834	9360	1.0096	9280	1358	9200	2620	45
30	9487	7832	9401	9137	9316	0442	9230	1747	9144	3053	30
45	5.0452	0.8091	6.9361	0.9140	. 9269	1.0788	. 9178	1.2137	. 9087	1.3485	5
80	9416	8350	9319	9742	9221	1134	9124	2526	9027	3917	20
15	9379	8610	9276	1.0044	9172	1479	9069	2914	8965	4349	45
30	9341	8869	9231	0347	9121	1825	9011	3303	8902	4781	30
45	9302	9127	9185	0649	9069	2170	8953	3691	8836	5212	15
$9 \quad 0$	9261	9386	9138	0950	9015	2515	8892	4079	8769	5643	810
15	9220	9645	9090	1252	8960	2859	8830	4467	8700	6074	45
30	917	9303	9040	1553	8903	3204	8766	4854	8629	6505	30
45	9133	1.0161	8989	1854	8844	3548	8700	5241	8556	6935	15
100	9088	0419	8937	2155	8785	3892	8033	5628	8481	7365	800
15	5.9042	1.0677	6.8883	1.2456	7.8723	1.4235	8.8564	1.6015	9.8404	1.7794	5
30	8995	0934	8828	2756	8660	4579	8493	6401	8325	8224	30
45	8947	1191	8772	3057	8596	4922	8121	6787	8245	8652	15
110	8898	1449	8714	3357	8530	5265	8346	7173	8163	9081	790
15	8847	1705	8655	3656	8463	5607	8271	7558	8079	9509	45
30	8795	1962	8595	3956	8394	5949	8193	7943	7992	9937	30
45	8743	2219	8533	4255	8324	6291	8114	8328	7905	2.0364	15
120	8689	2475	8470	4554	8252	6633	8033	8712	7815	0791	780
15	8634	2731	8406	4852	8178	6974	7951	9096	7723	1218	45
30	8578	2986	8341	5151	8104	7315	7867	9480	7630	1644	30
45	5.8521	1.3242	6.8274	1.5449	7.8027	1.7656	8.7781	1.9863	9.7534	2.2070	15
130	8462	3497	8206	5747	7950	7996	7693	2.0 ± 46	7437	2495	0
15	8403	3752	8137	6044	7870	8336	7604	0628	7338	2920	45
30	8342	4007	8066	6341	7790	8676	7513	1010	7237	3345	30
45	8281	4261	7994	6638	7707	9015	7421	1392	7134	3769	15
140	8218	4515	7921	6935	7624	9354	7327	1773	7030	4192	760
15	8154	4769	7846	7231	7538	9692	7231	2154	6923	4615	45
30	8089	5023	7770	7527	7452	2.0030	7133	2534	6815	5038	30
45	8023	5276	7693	7822	7364	0368	7034	2914	6705	5460	15
150	7956	5529	7615	8117	7274	0706	6933	3294	6593	5882	750
	Dep	Lat.	De	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	
B'ng	Dis	6.	Dis	7.	Dis	8.	Dis	9.	Dis	10.	B'ng

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline B'ng \& \multicolumn{2}{|l|}{Disi. 1.} \& \multicolumn{2}{|l|}{Dist. 2.} \& \multicolumn{2}{|l|}{Dist. 3.} \& \multicolumn{2}{|l|}{Dist. 4.} \& \multicolumn{2}{|l|}{Dist. 5.} \& \multirow[t]{2}{*}{$$
\frac{B^{\prime} \mathrm{ng}}{.}
$$}

\hline \& Lat. \& Dep. \&

\hline \multirow[t]{3}{*}{1515} \& 0.0648 \& 0.2630 \& 1.929 \& 0.5261 \& 2.8944 \& 0.7891 \& 3.8591 \& 1.0521 \& 4.8239 \& 1.3152 \& 7445

\hline \& 9636 \& 2672 \& 9273 \& 5345 \& 8909 \& 8017 \& 8545 \& 0690 \& 8182 \& 3362 \& 30

\hline \& 9625 \& 2714 \& 9249 \& 5429 \& 8874 \& 8143 \& 8498 \& 0858 \& 8123 \& 3572 \& 15

\hline \& 9613 \& 2756 \& 9225 \& 5513 \& 8838 \& 8269 \& 8450 \& 1025 \& 8063 \& 3782 \& $74 \quad 0$

\hline \& 9600 \& 27 \& 9201 \& 5597. \& 8801 \& 8395 \& 8402 \& 1193 \& 8002 \& 3991 \& 45

\hline 30 \& 9588
956 \& 2840
2882 \& ${ }_{9151}^{917}$ \& 5680
5764 \& 8765 \& 8520
8646 \& 8353
8303 \& 1361
1528 \& 7941
7879 \& 42 \& 15

\hline $$
1745
$$ \& 9563 \& 2924 \& 9126 \& 5847 \& 8689 \& 8771 \& 8252 \& 1695 \& 7815 \& 4410 \& 15

\hline \multirow[t]{2}{*}{$\begin{array}{rr}17 & 0 \\ 15 \\ 30\end{array}$} \& 9550 \& 2965 \& 9100 \& 5931 \& 8651 \& 8896 \& 8201 \& 1862 \& 7751 \& 4827 \& 5

\hline \& 9537 \& 3007 \& 9074 \& 6014 \& 8612 \& 9021 \& 8149 \& 2028 \& 7686 \& 5035 \& 30

\hline \& 0.9524 \& 0.3049 \& 1.0018 \& 0.6097 \& 2.8572 \& 0.9146 \& 3.8096 \& 1.2195 \& . 7620 \& . 5243 \& 15

\hline \multirow[t]{4}{*}{180} \& 9511 \& 3090 \& 9021 \& 6180 \& 8532 \& 9271 \& 8042 \& 2361 \& 7553 \& 5451 \& 720

\hline \& 9497 \& 3132 \& 8994 \& 6263 \& 8491 \& 9395 \& 7988 \& 2527 \& 7485 \& 5658 \& 45

\hline \& 948 \& 3173 \& 8966 \& 6346 \& 8450 \& 9519 \& 7933 \& 2692 \& 7416 \& 58 \& 30

\hline \& 9469 \& 3214 \& 8939 \& 6429 \& 8408 \& 9643 \& 7877 \& 2858 \& 7347 \& 6072 \& 15

\hline \multirow[t]{4}{*}{19} \& 9455 \& 3256 \& 8910 \& 6511 \& 8366 \& 9767 \& 7821 \& 3023 \& 7276 \& 6278 \&

\hline \& 9441 \& 3297 \& 8882 \& 6594 \& 8323 \& 9891 \& 7764 \& 3188 \& 7204 \& 6485 \& 45

\hline \& 9426 \& 3338 \& 8853 \& 6676 \& 8279 \& 1.0014 \& 7706 \& 3352 \& 7132 \& 66 \& 30

\hline \& 9412 \& 3379 \& 8824 \& 6758 \& 8235 \& 0138 \& 7647 \& 3517 \& 7059 \& 6896 \& 5

\hline \& 9397
0.9382 \& 3420
0.3461 \& 8794
.8764 \& 6840
0.6922 \& 8191
2.8146 \& . 0261 \& 7588 \& 3681
1.3845 \& 6985 \& \& 70

45

\hline \multirow[t]{2}{*}{} \& 9367 \& 3502 \& 8733 \& 7004 \& 8100 \& 0506 \& 7467 \& 4008 \& 6834 \& 7510 \& 30

\hline \& 9351 \& 3543 \& 8703 \& 7086 \& 8054 \& 0629 \& 7405 \& 4172 \& 6757 \& 7715 \& 15

\hline | $21 \quad 0$ |
| :--- | \& 9336 \& 3584 \& 8672 \& 7167 \& 8007 \& 0751 \& 7343 \& 4335 \& 6679 \& 7918 \& 69

\hline \multirow[t]{2}{*}{15
30} \& 9320 \& 3624 \& 8640 \& 7249 \& 7960 \& 0873 \& 7280 \& 4498 \& 6600 \& 8122 \& 45

\hline \& 9304 \& 3665 \& 8608 \& 7330 \& 7913 \& 0995 \& 7217 \& 4660 \& 6521 \& 832 \& 30

\hline 30 \& 9288 \& 3706 \& 8576 \& 7411 \& 7864 \& 1117 \& 7152 \& 4822 \& 6440 \& 8528 \& 15

\hline \multirow[t]{2}{*}{22 $\begin{array}{r}20 \\ \\ \\ \hline\end{array}$} \& 9272 \& 3746 \& 8544 \& 7492 \& 7816 \& 1238 \& 7087 \& 4984 \& 6359 \& 8730 \& 80

\hline \& $$
\begin{aligned}
& 9255 \\
& 9239
\end{aligned}
$$ \& 3786

3827 \& 8511 \& 7573 \& 7766 \& 1359 \& 7022 \& 5146 \& 6277 \& 8932 \& 45

\hline 30 \& 9239
0.9222 \& 3827
0.3867 \& 8478 \& 7654
0.7734 \& 7716
2.7666 \& 1481
1.1601 \& 6955
3.6888 \& 5307
1.5468 \& $\begin{array}{r}6194 \\ \hline 6110\end{array}$ \& 9134
1.9336 \& 0

\hline 45. \& 9205 \& 3907 \& 8410 \& 7815 \& 7615 \& 1722 \& 6820 \& 5629 \& 6025 \& ${ }^{9537}$ \& 670

\hline 15 \& 9188 \& 3947 \& 8376 \& 7895 \& 7564 \& 1842 \& 6752 \& 5790 \& 5940 \& 9737 \& 45

\hline \multirow[t]{2}{*}{30
45} \& 9171 \& 3987 \& 8341 \& 7975 \& 7512 \& 1962 \& 6682 \& 5950 \& 5853 \& 9937 \& 30

\hline \& 9153 \& 4027 \& 8306 \& 8055 \& 7459 \& 2082 \& 6612 \& 6110 \& 5766 \& 2.0137 \& 15

\hline $24 \quad 45$ \& 9135 \& 4067 \& 8271 \& 8135 \& 7406 \& 2202 \& 6542 \& 6269 \& 5677 \& 0337 \& $6 \quad 0$

\hline \& 9118 \& 4107 \& 8235 \& 8214 \& 7353 \& 2322 \& 6470 \& 6429 \& 5588 \& 0536 \& 45

\hline 15 \& 9100 \& 4147 \& 8199 \& 8294 \& 7299 \& 2441 \& 6398 \& 6588 \& 5498 \& 073 \& 30

\hline 30
45
25 \& 9081 \& 4187 \& 8163 \& 8373 \& 7244 \& 2560 \& 6326 \& 6746 \& 540 \& 11 \& 5

\hline 250 \& 9063 \& 4 \& 8126 \& 8452 \& 7189 \& 2679 \& 6252 \& 6905 \& 5315 \& 11 \& 65

\hline 150 \& 0.90450 \& 0.4266 \& . 8089 \& 0.8531 \& 2.7134 \& 1.2797 \& 3.6178 \& 1.7063 \& 4.5223 \& 2.1328 \& 45

\hline 30 \& 9026 \& 4305 \& 8052 \& 8610 \& 7078 \& 2915 \& 6103 \& 7220 \& 5129 \& 1526 \& 30

\hline 26 \& 9007 \& 4344 \& 8014 \& 8689 \& 7021 \& 3033 \& 6028 \& 7378 \& 5035 \& 1722 \& 15

\hline 260 \& 8988 \& 4384 \& 7976 \& 8767 \& 6964 \& 3151 \& 5952 \& 7535 \& 4940 \& 1919 \& $64 \quad 0$

\hline \multirow[t]{2}{*}{15
30} \& 8969 \& 4423 \& 7937 \& 8846 \& 6906 \& 3269 \& 5875 \& 7692 \& 4844 \& 2114 \& 45

\hline \& 8949 \& 4402 \& 7899 \& 8924 \& 6848 \& 3386 \& 5797 \& 7848 \& 4747 \& 2310 \& 30

\hline 30 \& 8930 \& 4501 \& 7860 \& 9002 \& 6789 \& 3503 \& 5719 \& 8004 \& 4649 \& 2505 \& 15

\hline \& 8910
8890 \& 4540
4579 \& 7820 \& 9080
9157 \& 6730
6671 \& 3620
3736 \& 5640
5561 \& 8160
8315 \& 4451 \& $\stackrel{2700}{2894}$ \& [4

\hline 15
30 \& 8870 \& 4617 \& 7740 \& 9235 \& 6610 \& 3852 \& 5480 \& 8470 \& 4351 \& 30 \& 30

\hline 450 \& 0.8850 \& 0.4656 \& 1.7700 \& 0.9312 \& 2.6550 \& 1.3968 \& 3.5400 \& 1.8625 \& 4.4249 \& 2.3281 \& 15

\hline \multirow[t]{2}{*}{| 28 | 0 |
| ---: | ---: |
| | 15 |} \& 8829 \& 4695 \& 7659 \& 9389 \& 6488 \& 4084 \& 5318 \& 8779 \& 4147 \& 3474 \& 620

\hline \& 8809 \& 4733 \& 7618 \& 9466 \& 6427 \& 4200 \& 5236 \& 8933 \& 4045 \& 366 \& 5

\hline 15
30 \& 8788 \& 4772 \& 7576 \& 9543 \& 6365 \& 4315 \& 5153 \& 9086 \& 3941 \& 385 \& 5

\hline 40 \& 8767 \& 4810 \& 7535 \& 9620 \& 6302 \& 4430 \& 5069 \& 9240 \& 3836 \& 4049 \& 5

\hline 290 \& 874 \& 4848 \& 7492 \& 9696 \& 6239 \& 4544 \& 4985 \& 9392 \& 3731 \& 4240 \& 61

\hline 15 \& 8725 \& 4886 \& 7450 \& 9772 \& 6175 \& 4659 \& 4900 \& 9545 \& 3625 \& 431 \& 5

\hline $$
\begin{aligned}
& 30 \\
& 45
\end{aligned}
$$ \& 8682 \& 4924 \& 7364 \& 9924 \& 6046 \& 4886 \& 4728 \& 9849 \& 3410 \& 4811 \& 15

\hline \& 8660 \& 5000 \& 7321 \& 1.0000 \& 5981 \& \& 4641 \& 2.0000 \& 3301 \& 5000 \& 600

\hline - , \& Dep. \& Lat. \& \multicolumn{2}{|l|}{Dep. Lat.} \& Dep. \& Lat. \& Dep. \& Lat. \& \multicolumn{2}{|l|}{Dep.} \&

\hline B'ng \& \multicolumn{2}{|l|}{Dist. 1.} \& \multicolumn{2}{|l|}{Jist. 2.} \& \multicolumn{2}{|l|}{Hist. 3.} \& \multicolumn{2}{|l|}{Dist. 4.} \& \multicolumn{2}{|l|}{Pist. 5.} \& B'ng

\hline
\end{tabular}

TABLE $\mathrm{V}^{(}$TRAVERSE TABLE．

	Dist． 6.		Hist． 7.								
－．								Depr	t．	D	
1515	5.	1.5782	6.7	1.8412		10	． 6831	2.3673	9.64	2.	
	7818	6034	7454	8707	7090	1379	6727	4051	63		30
	7747	6286	7372	90	6996	1715	6621	4430	6246		5
	7676	6538	7288	9295	1	2051	6514	07	6126		
15	7603	90	7203	588	804	2386	04	85	6005		45
	7529	7041	7117	9881	706	2721	6294	5561	888		
	7454	7292	70302	2.0174	606	3056	6181	5938	5757		
170	78	7542	941	0466	04	3390	067	13	63		73
15	7301	7792	51	0758	402	3723	52	6689	5502	965	
30	722		仡	1049	297	40	35	7064	5372	3.00	
	7144	1.8292	6.66682	2.1341	7.6192	2.4389	8.5716	2.7438	9.52		
	70	8541	6574	1631	6085	4721	5595	7812	510		
		8790	79	1921	976	5053	5473	8185	49		
30	399	9038	6383	2211	866	5384	5349	855	4832		
45	6816	9286	6285	2501	5754	5715	5224	893	4693	214	715
190	6731	9534	6186	2790	5641	6045	5097	930	4552		710
	45	978	6086	078	5527	6375	4968	9672	4409		45
15	¢ 71	2.0028	985		411	6705	500	3.004	11		30
45	6471	0275	5882	3654	294	7033	4706	041	411		15
200	6382	0521	5778	3941	175	7362	4572	078	3969		
		2.0	732	2.4	． 5055	2.7689	8.4437	3.1151	9.38	3.	5
	200	1012	5567	4515	4934	8017	4300	1519	3667		
45	108	，	59	4800	4811	8343	4162	1886	51		15
210	6015	1502	5351	5086	4686	8669	4022	2253	3358		0
15		1746	5241	5371	4561	899	3881	2619	320	24	5
		1990	5129	5655	433	9320	3738	2985	3042		
45			017	5939	4305	9645	3593	3350	881		15
220		2476	4903	6222	175	9969	3447	3715	2718		88
15	5532	2719	4788	6505	4043	3.0292	3299	4078	255		45
30	5	161	4672	6788	3910	061	3149	44	23		30
45	5.5332	2.3203	． 4554	2.7070	7.3776	3.0937	8.2998	3.480	． 2220	3.86	
230	5230	3444	4435	7351	3640	1258	2845	5166	2050	0	0
15	5127	3685	4315	7632	3503	1580	2691	552	1879		45
3	50		4194	7912					1706		30
45	4919		72	8192		220		6	531	4.027	$6{ }^{15}$
240	4813	4404		8472	084	539	2219	660	355		
15	470	4643	22	8750	941	2858	2059	696	117	10	45
30	45	4882	3697	9029	797	17		322	砛		30
45	4	5120	3570	9306	250		173	7679	0814	186	15
250	4378	5357	3442	9583	2505		1568	8036	0631	226	
	5.4267	2.55	6.3312	2.9860	7.2356	3.4125	8.1401	3.8391	9.0446	4.2	45
30	4155	5831	3181	3.0136	2207	4441	1233	8746	0259	31	30
45	4042	6067	3049	0411	2056		1063	91	0070		15
26	38	6302	2916	0686	1904		0891	980	8.98	2	$64 \quad 0$
15	3812	6537	2781	096	505	538	19	980	析	4229	5
30	3696		2645	1234	595			4.0158	49	462	30
45	3579	00	2509	1507	1438	600	368	0509	29		15
27.0	346	7239	2370	1779	1281		0191	0859	101		63
15	33	7472	2231	2	121	6630	00	120	8902	578	45
30	32	7705	20	23	0961			1557	8701	61	30
45	5.30992	2.7937	． 19	3.2593	7.0799	3.7249	7.9649	4.1905	8.84	4.6	
280	2977	8168	1806	2863	0636	755	9465	2252		，	620
15	28	8399	1662	313	471	786	28	25	8089	733	45
0	27		1517	340	030	8173	9094	293	888	771	5
45	2604	8859	1371	3669	0138	8459	815	3289	7673	809	15
29	2477	9089	1223	3937	6.9970	\％	8716	3633	7462	8481	10
10	2350	9317	1075	42	9800	909	852	3976	250	886	45
5	22	773	0925	447	62	939 969		43	7036	924	5
45 30	1962	3.	674	4735 5000	9456	969	7942	4659 5000	6820		5
－	D					at．	Dep	at．	Dep．	dat．	
											＇n

B'ng	Dist	t		st. 2.								B'ng
	Lat.	Dep	at.	Dep.	Lat.	Dep.	Lat.	at. ${ }^{\text {D }}$	Dep.	Lat.	Dep.	
3015	0.8638	0.5038	1.7277									
	8654	5075	7233	0151	9			465	2			
310	${ }_{8572} 8$	5150	7142	0301	5715	54		287				
15	8549			0375	5647	55		196	0751	2746	5939	3945
	${ }_{8504}^{8526}$	${ }_{526}^{522}$	${ }_{7007}^{7053}$	0450	5579	56		106	0900	2632		
320	8480	5299	6961	${ }_{0598}^{0024}$	5441	589		${ }_{392}$	1197	${ }_{240}^{25}$		
15	8457		6915	0672	5372	600		829	1345			
30	8434	5373	6868	0746	5302	611		736	1492	217		30
	. 84	. 5410	6821	. 0819	. 5231	. 6229	3.364	6422	2.16	. 205		9
330	8	5446	6773	0893	5160			1				
15		5483	6726	0966	5089	64		45	193	181	74	545
45	8339 8315	${ }^{55}$	6678 6629	1111	5017	655		35	${ }_{222}^{202}$	1694	759	
340	8290	5592	6581	1184	4871			16	2368	1452		
15	8266		332	1256	4798	688		06	2512	13	81	0
45	8241	5664	6483	1328	4724	6992		96	2656	120		
45		5700		1400		710						
				72	4575	720		766	2943	095		
	8141	5807		1.1543 1614	2.4492	${ }^{1.7314}$		2.	2.308	4.083	2.88	45
45	8116	5842	6231	1685	4347			A	3370	057	92	15
360	8090	5878	6180	1756	4271	763		361	3511	045		
	8064	${ }_{5913}^{5913}$	6129	1826	4193	773		25	3652	032		45
		5948	6077	1896	4116	78		154	3793	019	97	
		60		1	4038			945				615
15	7960	6053	5920	2106	959	${ }^{815}$		${ }_{840}$	4212	9800		
	7934	6088	5867	2175	3801	826		734	4350	966	04	30
	0.7907	. 6122	. 5814		. 3721	. 8367	3.1628	析	44	3.9534	3.06	115
15	788	6157		2313	3640	8470		520	4626	9400		
15	${ }_{7826} 78$	${ }_{6}^{6191}$	565	${ }_{2}^{2382}$	${ }^{3560}$	857		13	4764	926	0955	545
45	7799	6259	5598	2518	${ }_{339}^{348}$	876		19	490	${ }_{89} 913$		
	777	629	5543	2586	3314	888		188	5173	8857		
15	7744	6327	5488	2654	3232	8981		,	b308	872		45
30 45	7716	${ }^{6361}$	5432	2722	3149			665	5443	858		
40	7660							754	557	844	19	
	. 7632	0.64	1.5265	1.2922	2981	9284		542				
	7604	6494	5208	2989	2812	948	041	116	5978	802	24	30
45	7576		5151	3055	2727	958		30	6110	787		5
41.	7547	6561	5094	3121	2641	968		18	624	773	280	
				${ }_{325}^{318}$	${ }_{246} 25$	${ }_{9879}^{9780}$		074	${ }_{6505}^{6374}$	744	${ }_{3131}^{2967}$	5
45	7461	665	4921	${ }_{3318} 2$	2382	${ }_{997}$		342	${ }_{663}$	730	${ }_{32}$	15
420	7431	${ }^{6} 6$	486	3383	2294	. 0074		2	676	715	3457	
${ }_{30}^{15}$	7402	6724	4804	3447	2207	0171		,	889	7011	3	45
30	7373	6756	4746	3512	2118	026	9491	191	7024	6864	37	30
	. 7343	0.6788	1.4686	1.3576	2.2030	2.036	2.937	3732.	. 7152	. 6716	3.39	15
430	7314	68	4627	3640	1941	046	9254	54	728	6568		
15	${ }_{7254}^{7284}$	68	456	3704	1851	055		35	740	6419	425	45
30 45	72	68	444		1761	${ }^{065}$			7661	6269	445	${ }^{30}$
440	719	694	438	3893	1580	084	8774	74	778	596	4733	
15	716	6978	432	3956	1489	093	8652	5	791	581	489	
			4265	40	1398	122	8		8	566	045	- 30
45	7071	7071	42	4142	1213	1213	8284	84	${ }_{8284}^{8161}$	${ }_{53}^{55}$	535	
	Dep.	Lat.	Dep.	Lat.	Dep.	Lat.	Dep.		Lat.	Dep	Lat.	
B'ng	Dist	t. 1.	Dist	t. 2.				ist. 4				

TABLE ∇. TRAVERSE TABLE.

B'ng	Dist. 6.		Dist. 7.		Dist. 8.		$\text { Dist. } 9 .$		Dist. 10. $\mathrm{B}^{\prime} \mathrm{ng}$		
	L					Dep.		Dep.	t.	Dep.	
30	5.18	3.02	6.0	3.52	6.9107	4.0302	. 7745	. 5340	8.6384	. 0376	
	1698	0452	0314	5528	8930	0603	7547	5678	6163	0754	30
	1564	0678	0158	5791	8753	0903	7347	6016	5941	1129	15
310	1430	0902	0002	6053	8573	1203	7145	6353	5717	1504	590
15	1295	1126	5.9844	6314	8393	1502	6942	-6690	91	877	5
30	1158	50	968	6575	8211	1800	738	7025	5264	2250	30
	析	1573	52	335	8028	2097	6532	7359	5035	2621	15
320	0883	1795	9363	7094	7844	2394	6324	7693	4805	299	0
15	0744	2017	9201	7353	7658	2689	6116	8025	4573	361	5
30	0603	2238	9037	7611	7471	2984	59	8357	433	3730	0
	5.0462	3.2458	5.8873	3.7868	6.7283	4.3278	7.5694	4.8688	8.4104	5.4097	5
330	0320	2678	8707	8125	7094	3571	5480	9018	3867	4464	0
15	0177	2898	8540	8381	6903	3863	5266	9346	3629	4829	45
	0033	3116	8372	8636	6711	4155	5050	967	3389	5194	- 30
	4.9888	3334	8203	8890	6518	47	4832	5.0001	3147	7	5
340	97	3552	8033	914	323	47	4613	0327	O4	9	0
15	9595 9448	376	7861	9396	6127 5930	[$\begin{aligned} & 5024 \\ & 5312\end{aligned}$	4171	0652 0977		6280 6641	4
,	9299	4200	11	9900	5732	5600	394	130	2165	7000	15
350	91	15	41	. 0150	5532	6886	372	162	1915	35	50
	4.8	3.4629	5.7165	4.0400	6.5331	4.6172	7.3498	5.1943	.1664	5.77	5
30	8847	4842	6988	0649	5129	6456	3270	2263	1412	8070	30
45	8694	50	810	0897	926	67	3042	588	1157	8425	15
360	85	5267	6631	14	4721	02	2812	2901	90	779	54
15	83	547	451	1392	4516	7305	2580	3218	644	131	45
30	8231	56	270	1638	4309	758	2347	35	0386	9482	
45	8075			1883	4100	78	2113	3849	01	9832	15
370	791	6109	5904	2127	3891	8145	1877	4163	7.9	6.01	530
15			20	71	680	8424	1640	76	00	529	
30	7601	65	35	13	3468	8701	1402	4789	933	87	
45	4.7441	3.6733	. 5	4.2855	. 3	4.89	. 11	. 51	7.9069	.	15
380	7281	6940	5161	3096	41	9253	0921	541	8801		520
15	7119	7146	4972	333	25	9528	0679	5718	8532	1909	
30	695	735	78	3576	609	9801	0435	602	826		
45	6793	755	4592	3815	2391	5.0074	0190	633	798	592	15
390	6629	775	位	4052	2172	0346	6.9943	663	7715	932	51
15	6464			4289	951	0616	9695	694	7439	271	45
30	6		14	4525	1730	0886	94	72	7162	3608	
45	6131	8366	3819	4761	1507	1155	9196	7550	6884	94	515
400	5963	8567	3623	995	1284	14	8944	7851	6604		
15	4.5	3.87	5.3426	4.5229	6.1059	5.1690	6.8691	5.8151	7.6323	6.4612	45
30	5624	8967	3228	5461	0832	1956	8437	8450	6041		
45		9166	3030	5693	0605	2221	8181	8748	5756		15
410	5283	9364	2830	5924	0377	2485	7924	904	5471	5606	9
15	5110	9561	2629	61	0147	27	76	934	5184		
30	493	975	2427	6383	5.9916	3071	7406	90	489	6262	30
45	4763	9953	224	6612	9685	3271	7145	992	460		
420	4589	4.0148	2020	6839	9452	3530	6883		4314	913	
15	4413	0342	1815	7066	9217	3789	6620	0513	4022	7237	45
4	4237	0535	1609	729	898	40	63	08	372		30
430	4.4059	4.0728	. 1403	4.7516	. 8746	5.4304	6.6089	6.1092	7.3432	6.788	
430	3881	0920	1195	7740	8508	4560	5822	138	1	20	47
15	3702	1111	098	796	8270	4815	5553	166	2837	518	
30	3522	1301	077	818	8030	506	5284	195	253	d	30
$44{ }^{45}$	334	14	05	8	77	5321	5013	223	2236	9151	15
44 0	3160	1680	0354	86	754	557	47	2519	1934	946	46
15	2978	186	0141	884	730	5823	446	280	030	9779	
30	2795	2055	4.9928	906	706	6073	4193	3082	1325	7.009	
45	2611	2241	9713	9281	6815	632	3917	3361	1019	401	15
	2426	242	94	9497	656	656	36	3640	071	07	
	De	Lat		at.		at		at.		Iat.	
'1	D									10.	

For Correction of Courses on Random Lines.

Minutes.	10 Chains.	20 Chains.	40 Chains.	80 Chains.	Minutes.
1	. 003	. 006	. 012	. 023	1
2	006	012	023	046	2
3	009	017	035	- 070	3
4	012	023	046	$-\quad 093$ -116	4
6	017	035	070	116	5
7	020	041	081	163	7
8	023	046	093	186	8
9	026	052	105	209	9
10	029	058	116	233	10
11	032	064	128	256	11
12	035	070	140	279	12
13	038	076	151	302	13
14	041	081	163	326	14
15	044	087	174	349	15
16	046	093	186	372	16
17	049	099	198	396	17
18	052	105	209	419	18
19	055	110	221	442	19
20	058	116	233	466	20
21	061	122	244	488	21
22	064	128	256	512	22
23	067	134	268	535	23
24	070	140	279	558	24
25	073	145	291	581	25
26	076	151	302	605	26
27	078	157	314	628	27
28	081	163	326	651	28
29	084	169	337	674	29
30	087	174	349	698	30
31	090	180	361	722	31
32	093	186	372	744	32
33	096	192	384	767	33
34 35	099	198	395	790	34
35	102	204	407	814	35
36	105	209	419	837	36
37	108	215	430	860	37
38	110	221	442	883	38
39	113	227	454	906	39
40	116	233	465	929	40
41	119	238	477	953	41
42	122	244	488	976	42
43	125	250	500	999	43
44	128	256	512	1.022	44
45	131	262	523	1.045	45
46	134	268	535	1.068	46
47	137	273	546	1.092	47
48 49	140	279 285	558 570	1.115	48
50	145	291	581	1.161	50
51	148	297	593	1.184	51
52	151	302	605	1.207	52
53	154	308	616	1.230	53
64	157	314	628	1.253	54
55	160	320	639	1.276	55
56	163	326	651	1.299	56
57 58	166 169	331 337	663 674	1.323	${ }_{88}^{57}$
¢9	172	343	686	1.369	68 89
60	174	349	698	1.392	60

1 ${ }^{\text {- }}$. . . . - 11°		11*...... 21°		$21^{\circ}-. . .-.31{ }^{\circ}$		$31^{\circ}-. .-4^{\circ}$	
Angle.	Secant.	Angle.	Secant.	Angle.	Secant.	Angle.	Secant.
1	1.00015	11	1.01872	21	1.07115	31	1.16663
10	1.00021	10	1.01930	10	1.07235	10	1.16868
20	1.00027	20	1.01989	20	1.07356	20	1.17075
30	1.00034	30	1.02049	30	1.07479	30	1.17283
40	1.00042	40	1.02110	40	1.07602	40	1.17493
50	1.00051	50	1.02171	50	$1.07 \% 27$	50	1.17704
2	1.00061	12	1.02234	22	1.07853	32	1.17918
10	1.00072	10	1.02298	10	1.07981	10	1.18133
20	1.00083	20	1.02362	20	1.08109	20	1.18350
30	1.00095	30	1.02428	30	1.08239	30	1.18569
40	1.00108	40	1.02494	40	1.08370	40	1.18790
50	1.00122	50	1.02562	50	1.08503	50	1.19012
3	1.00137	13	1.02630	23	1.08636	33	1.19236
10	1.00153	10	1.02700	10	1.08771	10	1.19463
20	1.00169	20	1.02770	20	1.08907	20	1.19691
30	1.00187	30	1.02842	30	1.09044	30	1.19920
40	1.00205	40	1.02914	40	1.09183	40	1.20152
50	1.00224	50	1.02987	50	1.09323	50	1.20386
4	1.00244	14	1.03061	24	1.09464	34	1.20622
10	1.00265	10	1.03137	10	1.09606	10	1.20859
20	1.00287	20	1.03213	20	1.09750	20	1.21099
30	1.00309	30	1.03290	30	1.09895	30	1.21341
40	1.00333	40	1.03368	40	1.10041	40	1.21584
50	1.00357	50	1.03447	50	1.10189	50	1.21830
5	1.00382	15	1.03528	25	1.10338	35	1.22070
10	1.00408	10	1.03609	10	1.10488	10	1.22327
20	1.00435	20	1.03691	20	1.10640	20	1.22579
30	1.00463	30	1.03774	30	1.10793	30	1.22833
40	1.00491	40	1.03858	40	1.10947	40	1.23089
50	1.00521	50	1.03944	50	1.11103	50	1.23347
6	1.00551	16	1.04030	26	1.11260	36	1.23607
10	1.00582	10	1.04117	10	1.11419	10	1.23869
20	1.00614	20	1.04206	20	1.11579	20	1.24134
30	1.00647	30	1.04295	30	1.11740	30	1.24400
40	1.00681	40	1.04385	40	1.11903	40	1.24669
50	1.00715	50	1.04477	50	1.1206	50	1.24940
7	1.00751	17	1.04569	27	1.12233	37	1.25214
10	1.00787	10	1.04663	10	1.12400	10	1.25489
20	1.00825	20	1.04757	20	1.12568	20	1.25767
30	1.00863	30	1.04853	30	1.12738	30	126047
40	1.00902	40	1.04950	40	1.12910	40	126330
50	1.00942	50	1.05047	50	1.13083	50	1.26615
8	1.00983	18	1.05146	28	1.13257	38	1.26902
10	1.01024	10	1.05246	10	1.13433	10	1.27191
20	1.01067	20	1.05347	20	1.13610	20	1.27483
30	1.01111	30	1.05449	30	1.13789	30	1.27778
40	1.01155	40	1.05552	40	1.13970	40	1.28075
50	1.01200	50	1.05657	50	1.14152	50	1.28374
9	1.01247	19	1.05762	29	1.14335	39	1.28676
	1.01294		1.05869	10	1.14521	10	1.28980
20	1.01342	20 30	1.05976	20	1.14707	20	1.29287
30 40	1.01391	30	1.06085	30	1.14896	30	1.29597
40 80	1.01440	50	1.06195	40 50	1.15085	8	1.29909
10	1.015	20	1.06418	30	1.15470	40	1.30541
10	1.01595	10	1.06531	10	1.15665	10	1.30831
20	1.01649	20	1.06645	20	1.15861	20	1.31183
30	1.01703	30	1.06761	30	1.16059	30	1.31509
40	1.01758	40	1.06878	40	1.16259	40	1.31837
50	1.01815	50	1.06995	50	1.16460	50	1.32168

41° - - - - 46°		6°-----51 $51{ }^{\circ}$		$51^{\circ}--{ }^{\text {- }}$ - 56°		56--. - - 61	
Angle.	Secant.	Angle.	Secan	Angle.	Secant.	Angle	Secant
				203040			
41	1.32	20304050	1.43956		1.58	56	1.78829
	1.32838 1.33177		1.44831		1.59475	10	1.79604 1.80388
	1.33519		1.45274		1.606	30	1.81180
	1.338		1.457 1.461		${ }_{1}^{1.612}$	40	1.81981
42	1.34563	47	1.46628	52 10 20 20 30 40 50 	1.62427	57	1.82790
	1.3491		1.47087		1.63035		1.84435
	1.3527		1.4755		1.636		1.85
	1.356 1.359		1.48019 1.4849		1.64268 1.64894 1	30 40	1.86116 1.86990
	1.3636		1.4896		1.655826	50	$\begin{aligned} & 1.87834 \\ & 1.88708 \end{aligned}$
43	1.367	48	1.49448	53	1.66164	58	
	1.371		1.499		1.66809		1.89591
	${ }_{1}^{1.3748}$	30	1.50422		1.67460		1.90485
	${ }_{1.38242}^{1.3786}$	30	1.50916		1.68117 1.68782	40	1.91388 1.92302
	1.386	50	1.51918		1.69452	50	1.93
$44 \begin{array}{r}10 \\ 10 \\ 20 \\ 30 \\ 40 \\ 50\end{array}$	1.3	49	1.52425		1.70130	$59 \quad \begin{array}{r}10 \\ 20 \\ 30 \\ 40 \\ 50\end{array}$	1.93
	1.39409		1.52938	54	1.70815		1.95106
	1.398		1.5345		1.71506		.96062
	1.402		1.53977		1.72205		1.9702
	1.40606		1.5450		1.72911		1.9800
	1.41012		1.55036		1.73624		. 9899
45	1.41421	50	1.55572	55	1.74345	60	. 00000
10 20	1.41835	10	${ }_{1}^{1.56114}$		1.75073	10	. 0101
	1.42251 1.42670	20 30	1.56661 1.57213		1.75808 1.76552		${ }_{2}^{2.02033}$
40				40		40	
50	1.4352	50	1.58333	50	1.780	50	.

JAN. 1.
TABLE VIII.
JAN. 1.
AZIMUTES OF POLARIS AT EXTREME RLONGATIONS.

㗊	1906	1907	1908	1909	1910	$\left\|\begin{array}{c} \pi \\ \end{array}\right\|$	1906	1907	1908	1909	1910
25	119.1	118.7	118.4	188.1	117.7	50	51.5	51.0	150.6	150.1	49.6
26	19.8	19.4	19.1	18.7	18.4	51	54.0	53.5	53.0	52.5	52.0
27	20.5	20.1	19.8	19.4	19.1	52	56.4	55.9	55.4	54.9	54.4
28	21.3	20.9	20.5	20.1	19.8	53	59.1	58.6	58.1	576	57.1
29	22.1	21.7	21.3	20.9	20.5	54	202.0	201.5	200.9	200.4	59:9
30	22.8	22.4	22.1	21.7	21.3	55	05.0	04.4	03.9	03.4	202.8
31	23.6	23.2	22.9	22.5	22.2	56	08.2	07.7	07.1	06.6	06.0
32	24.5	24.1	23.8	23.4	23.1	57	11.7	11.1	10.5	10.	09.4
33	25.5	25.1	24.7	24.3	24.0	58	15.3	14.7	14.2	13.6	13.0
34	26.5	26.1	25.7	25.3	25.0	59	19.2	18.6	18.0	17.4	16.8
35	27.5	27.1	26.8	26.4	26.0	60	23.4	22.8	22.1	21.5	20.9
36	28.6	28.2	27.9	27.5	27.1	61	27.9	27.1	26.6	25.	25.3
37	29.7	29.3	29.0	28.6	28.2	62	32.7	32.1	31.4	30.8	30.1
38	31.0	30.6	30.2	29.8	29.4	63	38.0	37.3	36.6	35.	35.2
39	32.3	31.8	31.4	31.0	30.6	64	43.6	42.9	42.2	41.5	40.8
40	33.6	33.2	32.8	32.4	32.0	65	49.7	49.0	48.3	47.5	46.8
41	35.0	34.6	34.2	33.8	33.4	66	56.3	55.6	54.8	54.1	53.3
42	36.5	36.0	35.6	35.2	34.8	67	303.6	302.8	302.0	301.2	
43	38.1	37.6	37.2 38	36.8	36.3	68	11.5	10.7	${ }^{0} 8.8$	09.0	08.2
44	39.7	39.2	38.8	38.4	37.9	69	20.	19.3	18.4	17.6	16.7
45	41.4 43 4	40.9	40.5 42.3	40.1	39.6 41.4	7	29.7 40.3	28.8 39.4	27.9 38.4	27.0 37.5	26.1 36.5
46	43.2 45.1	42.7 44.6	42.3 44.2	41.9 43.7	41.4 43.3	72	40.3 52.1	39.4 51.1	38.4 50.1	37.5 49.1	36.5 48.1
48	47.2	46.7	46.3	45.8	45.3						
49	I 49.3	I 48.8	148	147	I 47						

For one revolution of Gradienter Screw, used in finding d' and d. Page 117.

Elevation.	Multiplięs of r.		Elevation.		Multipliers of r.		Elevat'n.		Multipliers of r.	
e.	$\begin{aligned} & \text { Inc. } \\ & \text { Dist. } \end{aligned}$	Hor. Dist.			Inc. Dist.	Hor. Dist.			Inc. Dist.	Hor. Dist.
- 1			-	,						
100	99.97	99.95	14		96.79	93.91	22	30	92.01	85.01
2	99.90	99.84	14	30	96.56	93.49	23		91.66	84.37
3	99.81	99.67	15		96.33	93.05	23	30	91.31	83.73
4	99.69	99.44	15	30	96.09	92.59	24		90.95	83.08
5	99.53	99.15	16		95.85	92.13	24	30	90.58	82.42
6	99.35	98.80	16	30	95.60	91.66	25		90.21	81.75
7	99.13	98.39	17		95.34	91.17	25	30	89.83	81.08
8	98.89	97.92	17	30	95.07	90.67	26		89.44	80.39
9	98.61	97.39	18		94.80	90.15	26	30	89.05	79.69
10	98.31	96.81	18	30	94.52	89.63	27		88.65	78.99
$10 \quad 30$	-98.14	96.50	19		94.23	89.09	27	30	88.24	78.27
11	97.97	96.17	19	30	93.93	88.54	28		87.83	77.55
1130	97.79	95.83	20		93.63	87.97	28	30	87.40	76.81
12	97.61	95.47		30	93.32	87.41	29		86.98	76.07
1230	97.41	95.10	21		93.00	86.82	29	30	86.54	75.32
13	97.21	94.72		30	92.68	86.23	30		86.10	74.57
$13 \quad 30$	97.00	94.22	22		92.34	85.61	30	30	85.66	73.81

TABLE X. ANGLES OF ELEVATION,
Corresponding to numbers of Revolution of the Gradienter Screw,

\begin{tabular}{|c|c|c|c|c|c|}
\hline Screw. \& Angle. \& Screw. \& Angle. \& Screw. \& Angle.

\hline Rev. Div. \& - • " \& Rev. Div. \& - , /" \& Iev. Div. \& - . \cdot

\hline 0-1 \& $\begin{array}{rrr}0 & 00 & 21 \\ & 0 & 41\end{array}$ \& 010

20 \& $\begin{array}{lll}0 & 3 & 26 \\ & 6 & 53\end{array}$ \& 1
2 00 \& $\begin{array}{lll}0 & 34 & 23 \\ 1 & 08 & 45\end{array}$

\hline 3 \& 102 \& 30 \& 1019 \& \& $1 \quad 4306$

\hline \& 123 \& 40 \& 1345 \& 4 \& $\begin{array}{llll}2 & 17 & 26\end{array}$

\hline 5 \& 143 \& 50 \& 1711 \& 5 \& $2 \begin{array}{llll}21 & 51\end{array}$

\hline 6 \& 204 \& 60 \& $20 \quad 38$ \& 6 \& $\begin{array}{lll}3 & 26 & 01\end{array}$

\hline \& 24 \& 70 \& 2404 \& 7 \& $4 \quad 0015$

\hline 8 \& 245 \& 80 \& $27 \quad 30$ \& 8 \& 434126

\hline - 9 \& 306 \& ${ }^{90}$ \& 3056 \& 9 \& $5{ }_{5}^{5} \quad 0884$

\hline 010 \& 0326 \& 100 \& $0 \quad 3423$ \& 1000 \& 54238

\hline
\end{tabular}

TABLE XI. MEAN REFRACTIONS,
In Declination, for use with Solar Compass.

	Declinations.								
	For Latitude 30°.								
	$+20^{\circ}$	$+15^{\circ}$	$+10^{\circ}$	$+5^{\circ}$	0°	-5°	-10 ${ }^{\circ}$	-15°	-20 ${ }^{\circ}$
0h.	10^{10}	${ }_{19} 19$	${ }_{25}^{21}$	$271 \prime$ 31	33 38 38	40 46	480'	57"'	1 1 118 18
3	20	26	35	31	47	5	154	105	118 136
4	32	39	46	52	1'06	1 '19	135	157	229
5	1.00	110	1'24	1'52	207	244	346	543	1306
For Latitude $32^{\circ} 30^{\prime}$.									
Oh.2345	$13^{\prime \prime}$172335$1^{\prime} 03$	$18^{\prime \prime}$222943115	$24^{\prime \prime}$2835511.31	$30 \prime$3543101153	36424151$1^{\prime \prime} 13$220	$44 \prime$501001122305	$52^{\prime \prime}$ $1^{\prime} 02^{\prime \prime}$ $1^{\prime} 14^{\prime \prime}$ $1^{\prime \prime 0}$ 111 126 113 128 1447 146 213 254 425 736		

For Latitude 35°.

0h.	$15^{\prime \prime}$	$21^{\prime \prime}$	$27^{\prime \prime}$	$33^{\prime \prime}$	$40^{\prime \prime}$	$48^{\prime \prime}$	$57^{\prime \prime}$	$1^{\prime} 08^{\prime \prime \prime}$	$1^{\prime} 21^{\prime \prime}$
2	20	25	32	38	46	55	$1^{\prime} 05$	118	18
3	26	33	39	47	56	$1^{\prime} 07$	121	138	200
4	39	47	56	$1^{\prime} 07$	$1^{\prime} 20$	136	159	238	20
5	$1^{\prime} 07$	$1^{\prime} 20$	$1^{\prime} 38$	200	234	329	514	232	325

For Latitude $37^{\circ} 30^{\prime}$.

$\begin{aligned} & \hline 0 \mathrm{~h} . \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & \hline \end{aligned}$	$18^{\prime \prime}$ 22 29 43 $1 ' 11$	$24^{\prime \prime}$ 28 36 51 1.26	$30 \prime$ 35 43 $1{ }^{\prime \prime}{ }^{\prime} 1$ 154	$36^{\prime \prime}$ 42 52 $1{ }^{\prime} 13$ 210	$44^{\prime \prime}$ 50 $1^{\prime} 02$ 127 249	$52^{\prime \prime}$ $1^{\prime \prime} 00$ 114 149 355	$1{ }^{\prime} 02^{\prime \prime}$ $1^{\prime} 12$ 129 214 615	$1^{\prime} 14^{\prime \prime}$ 126 149 254 1458	$1{ }^{1} 29^{\prime \prime \prime}$ 145 216 405
For Latitude 40°.									
$\begin{aligned} & \text { wh. } \\ & 2 \\ & 3 \\ & 3 \\ & 4 \\ & 5 \\ & \hline \end{aligned}$	$21^{\prime \prime}$ 25 33 47 $1: 15$	$27^{\prime \prime}$ 32 40 55 1 1	$33^{\prime \prime}$ 39 48 106 151	$40^{\prime \prime}$ 46 57 $1^{1} 19$ 220	48 52 $5^{\prime \prime}$ 1 108 136 305		$1108^{\prime \prime}$ 1 198 193 2 734	(121' ${ }^{1}$	$1 / 39^{\prime \prime}$ 1 157 236 459
For Latitude $42^{\circ} 30^{\prime}$.									
$\begin{aligned} & \mathrm{Ch} . \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	$24^{\prime \prime}$ 28 36 50 116	$30^{\prime \prime}$ 35 43 100 136	$36^{\prime \prime}$ 39 52 111 158	$44^{\prime \prime}$ 50 $1^{\prime} 02$ 126 230		10 $102^{\prime \prime}$ 112 129 210 500	l'14' ${ }^{\prime \prime}$	$1 / 29$ 145 217 355	$1^{\prime} 49^{\prime \prime}$ 211 259 616

For Latitude 45°.

0	27	33^{\prime}	40	48^{\prime}	5	1'08'	1'21"	$1^{\prime} 39^{\prime \prime}$	2'02'"
2	32	39	46	52	106	119	135	157	229
3	40	47	56	107	121	138	200	234	329
4	54	104	1 '16	133	154	224	311	438	815
5	1'23	141	205	241	340	540	1202		

For Latitude $47^{\circ} 30^{\prime \prime}$

0h.	$30^{\prime \prime}$	$36^{\prime \prime}$	44"	$52^{\prime \prime}$	$1^{\prime} 02^{\prime \prime}$	1'14"	1'29''	1'49'	$2^{\prime} 18^{\prime \prime}$
2	35	42	50	1 '00	112	126	145	201	251
3	43	51	1 '01	113	128	147	215	256	408
4	56	1'09	123	140	205	240	339	537	1118
5	1 '27	146	212	252	401	630	1619		

Showing Number of Acres served by drains having bottom widths from 1 ft. to 10 ft , with side slopes of 1 to 1 , on the supposition of 1 tnch rain fall in $2 \&$ hours, one-half of which reaches the drain.

Computed by B. F. Welles, C. E., Marshall, Mich.

Fall in feet per			Bottom Widths.					
			1 ft .		2 ft .		3 ft .	
1 mi .	100 ft .	8 rd .	2 ft . deep.	$\begin{aligned} & 3 \mathrm{ft} \\ & \text { deep. } \end{aligned}$	2 ft . deep.	$3 \mathrm{ft} .$ deep.	2 ft , deep.	3 ft. deep.
1.6	. 030	. 04	407	981	594	1311	780	1649
2.0	. 038	. 05	462	1105	665	1473	879	1861
2.4	. 045	. 06	508	1218	732	1622	968	2047
2.8	. 053	. 07	553	1319	797	1762	1053	$2217{ }^{-}$
3.2	. 060	. 08	592	1416	853	1889	1128	2377
3.6	. 070	. 09	631	1505	939	2009	1198	2529
4.0	. 076	.10	666	1590	959	2115	1264	2665
4.8	. 091	. 12	733	1748	1057	2333	1391	2935
5.6	. 110	. 14	794	1895	1143	2523	1499	3172
6.4	. 120	. 16	. 852	2030	1225	2700	1612	3401
72	. 136	. 18	905	2154	1300	2869	1715	3612
8.0	. 150	. 20	956	2273	1373	3031	1809	3815

Fall in Feet per			Bottom Widths.					
			4 ft .		5 ft .		6 ft.	
1 mi .	100 ft .	8 rd .	2 ft . deep.	3 ft . deep.	2 ft . deep.	5 ft . deep.	2 ft . deep.	3 ft . deep.
1.6	. 030	. 04	976	2003	1171	2357	1368	2716
2.0	. 038	. 05	1094	2249	1316	2650	1541	3046
2.4	. 045	. 06	1206	2477	1448	2910	1699	3362
2.8	. 053	. 07	1308	2684	1572	3158	1835	3642
3.2	. 060	. 08	1404	2872	1684	3384	1970	3908
3.6	. 070	. 09	1494	3049	1790	3598	2097	4150
4.0	. 076	.10	1579	3227	1894	3800	2211	4322
4.8	. 091	. 12	1731	3553	2089	4173	2436	4810
5.6	. 110	. 14	1878	3849	2257	4512	2632	5203
6.4	. 120	. 16	2013	4115	2415	4838	2820	5571
7.2	. 136	. 18	2137	4372	2566	5141	3001	5927
8.0	. 150	. 20	2256	4609	2705	5412	3165	6257

Fall in Feet per			Bottom Widths.					
			7 ft . $\quad 8 \mathrm{ft}$.					
1 mi .	100 ft .	8 rd .	$2 \mathrm{ft} .$ deep.	3 ft . deep.	2 ft. deep.	3 ft . deep.	2 ft . deep,	3 ft . deep.
1.6	. 030	. 04	1574	3074	1767	3458	2177	4179
2.0	. 038	. 05	1768	3469	1983	3877	2448	4710
2.4	. 045	. 06	1946	3807	2181	4265	2695	5169
2.8	. 053	. 07	2115	4131	2369	4622	2921	5609
3.2	. 060	. 08	2259	4427	2538	4948	3136	6014
3.6	. 070	. 09	2403	4695	2097	5258	3327	6378
4.0 4.8	. 076	. 10	2538 2792	4963 5443	2848 3130	5552 6094	3508 3857	6745 7405
5.6	. 110	. 14	3029	5894	3393	6591	4184	8010
6.4	. 120	. 16	3240	6317	3628	7057	4489	8578
7.2	. 136	. 18	3443	6715	3854	7507	4760	9110
8.0	. 150	. 20	3629	7078	4070	7910	5038	9623

[^14]Showing Number of Acres drained by different sizes of tile, the rainfall being considered as equal to one-half inch in depth each 24 hours. Computed by R. C. Carpenter, Lansing, Mich.

Note.-Tile shouid not be iald to grades where numbers are replaced by dashes.

TABLE XIV. CAPACITY OF TILE.
Showing carrying capactty of different sizes of tile, in gallons. From Catalogue of the Bennett Sewer Pipe Co., Jackson, Mich.

Carrying Capacity-Gallons per Minute.								
21/2in.		20	28	34	40	49	55	68
$3 \quad$	21	30	42	52	60	74	85	104
4 "	36	52	76	92	108	132	148	184
5.	54	78	111	134	159	192	219	269
6°	84	120	169	206	240	294	338	414
	144	208	304	368	432	528	592	736
9 "	232	330	470	570	660	810	930	1140
10 "	267	378	463	655	803	926	1340	1613
12 "	470	680	960	1160	1360	1670	1920	2350
15 \%	830	1180	1680	2040	2370	2920	3340	4100
18 \%	1300	1850	2630	3200	3740	4600	5270	6470
20.	1760	2450	3450	4180	4860	5980	6850	8410
$24 *$	3000	4152	5871	7202	8303	10021	11743	14466

TABLE XV. AZIMUTHS OF TANGENT.

Latitude.	1 mile.			2 miles.			3 miles.			4 miles.		
-		-	"	-	,	"		,	.		,	"
30	89	69	30	89	58	59.9	89	58	29.9	89	57	69.9
31			28.8			57.5		58	26.3		57	55.0
32			27.5			55.0			22.5		57	50.0
33			26.2			52.5			18.7		57	44.9
34			24.9			49.9			14.8		57	39.7
35			23.6			47.2		58	10.8		57	34.4
36			22.2			44.4		58	06.8		57	28.9
37			20.8			41.6		58	02.5		67	23.3
38			19.4			38.8		57	58.2		57	17.5
39			17.9			35.8		57	53.7		57	11.6
40		59	16.4		58	32.8		57	49.2		57	05.5
41		69	14.8			29.6		57	44.4		56	59.3
42			13.2			26.4		57	39.6		56	52.8
43			11.5			23.1			34.6		56	46.2
44			09.8			19.6			29.5		56	39.3
45			08.0			16.1		57	24.1		56	32.1
46		59	06.2		58	12.4		57	18.6		${ }^{66}$	24.8
47	89	59	04.3	89	58	08.6	89	57	12.9	89	56	17.1

Latitude.	5 miles.			6 miles.			7 miles.			8 miles.		
-	-		"		-	"		,	"			"
30	89	57	29.9	89	56	59.8	89	56	29.8	89	55	59.8
31		57	23.8		56	52.5		56	21.3		${ }^{65}$	50.0
32		57	17.5		56	45.0		56	12.5		65	40.0
33		57	11.2		56	37.4		56	03.6		65	29.9
34		57	04.6		66	29.6		55	54.5		55	19.4
35		56	58.0			21.6		55	45.2		85	08.8
36		56	51.1		56	13.4		65	35.6		64	57.8
37		56	4.1		56	05.0		55	25.8		54	46.6
38		56	36.9		55	56.3		55	15.7		54	35.1
39		56	29.6		65	47.5		55	05.4		54	23.3
40		56	21.9		55	38.3		54	54.7		54	11.1
41		56	14.1		55	28.9		54	43.7		83	58.5
42		56	06.0			19.2		54	32.4		63	45.6
43		55	57.7		55	09.2		54	20.8		83	32.3
44		65	49.1		54	58.9		54	08.7		83	18.5
45		55	40.2		54	48.2		53	56.3		53	04.3
46		55	31.0		54	37.2		83	43.4		52	49.5
47	89	65	21.4	89	54	25.7	89	63	30.0	89	52	34.3

Latitude.	9 miles.			10 miles.			11 miles.			12 miles.		
-			.,		,	"			"		,	"
30	89	55	29.8	89	54	59.7	89	54	29.7	89	63	69.7
31		65	18.8		54	47.6		64	16.3		63	45.1
32		65	07.6		54	35.1		54	02.6		63	30.1
33		54	56.1		54	22.3		53	48.5		63	14.8
34		54	44.4			09.3		53	34.2		52	59.1
35		54	32.3		53	55.9 :		53	19.5		52	43.1
36		54	20.0		53	42.3		53	04.5		52	26.7
37		54	07.4		53	28.2		52	49.1		52	09.9
38		53	54.5		53	13.9		52	33.2		51	52.6
39		53	41.2		52	59.1		52	17.0		51	34.9
40		83	27.5		52	43.8		52	00.2		51	16.6
41		53	13.4		52	28.2		51	43.0		50	57.8
42		52	58.8		52	12.0		51	25.2		50	38.4
43		52	43.8		61	65.4		51	06.9		50	18.5
44		52	28.4		51	38.2		50	48.0		49	57.8
45		52	12.3		51	20.4		50	28.4		49	36.4
46		51	85.7		51	01.9		50	08.1		49	14.3
47	89	51	38.6	89	50	42.9	89		47.2	89		51.4

100 TABLE XVI. OFFSETS FROM TANGENT.

Latitude.	1 mile.	2 miles.	3 miles.	4 miles.
\cdots	Feet.	Feet.	Feet.	Feet.
-30	0.39	1.54	3.47	6.17
31	0.40	1.60	3.61	6.42
32	0.42	1.67	3.76 3.90	6.67 6.93
33	0.43	1.73	3.90	6.93
34	0.45	1.80	4.05	7.20
35	0.47	1.87	4.20	7.47
36	0.48	1.94	4.36	7.75
37	0.50	2.01	4.52	8.04
38	0.52	2.08	4.69	8.33
89	0.54	2.16	4.86	8.63
40	0.56	2.24	5.03	8.95
41	0.58 0.60	2.32 2.40	5.21 5.40	9.27 9.59
43	0.62	2.48	5.59	9.93
44	0.64	2.57	5.79	10.29
45	0.67	2.66	5.99	10.65
46	0.69	2.76	6.20	11.02
47	0.71	2.85	6.42	11.41

Latitude.	5 miles.	6 miles.	7 miles.	8 milles.
\bullet	Feet.	Feet.	Feet.	Feet.
30	9.64	13.88	18.89	24.67
31	10.03	14.44	19.66	25.68
32	10.42	15.02 15.60	20.44 21.23	26.69 27.74
33	10.82	15.60	21.23	27.74
34	11.25	16.20	22.05	28.80
35	11.68	16.81	22.89	29.89
36	12.11	17.41	23.74	31.01
37	12.57	18.09	24.62	32.16
38	13.02	18.75	25.52	33.33
39	13.49	19.43	26.44	34.54
40	13.98	20.11	27.40	35.78
41	14.48	20.85	28.37	37.06
42	14.99	21.53	29.38	38.38
43	15.52	22.35	30.42	39.74
44	16.07	23.14	31.50	41.14
45	16.64.	23.96	32.61	42.59
46	17.21 17.83	24.80 25.68	33.75 34.95	44.10 45.65
47	17.83	- 25.68	34.95	45.65
Latitude.	9 miles.	10 miles.	111 miles.	12 miles.
-	Feet.	F'eet.	Feet.	Feet.
30	31.23	38.55	46.65	55.52
31	32.49	40.12	48.54	57.77
32	33.78	41.71	50.47	60.06
33	35.10	43.34	52.44	62.41
34	36.45	45.00	54.45	64.80
35	37.83	46.71	56.62	67.27
36	39.25	48.45	68.63 60.79	69.77 72.35
37 38	40.70	50.24 52.08	60.79 63.02	72.35 75.00
38 39	42.19 43.71	52.08 53.97	63.02 65.30	75.00
40	45.29	55.91	67.65	80.51
41	46.90	57.91	70.07	83.39
42	48.57	59.97	72.56	86.35
43	50.29	62.09	75.13	89.41
44	52.07	64.28	77.78	92.57
45	${ }_{55}^{53.91}$	-66.65	80.63 83.37	95.84 99.22
48	67.78	71.34	- 86.32	102.72

TABLE XVII.-Minutes ir Decimala of Degree: 101

| $\mathbf{1}^{\prime}$ | .0167 | 11^{\prime} | .1833 | $\mathbf{2 1} 1^{\prime}$ | .35000 | 31^{\prime} | .5167 | 41^{\prime} | .6833 | 51^{\prime} | .8500 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | .0333 | 12 | .2000 | 22 | .3667 | 32 | .5333 | 42 | .7000 | 52 | .8667 |
| 8 | .0500 | 13 | .2167 | 23^{\prime} | .3833 | 33 | .5500 | 43 | .7167 | 53 | .8833 |
| 4 | .0667 | 14 | .2333 | 24 | .4000 | 34 | .5667 | 44 | .7332 | 54 | .9000 |
| 5 | .0833 | 15 | .2500 | 25 | .4167 | 35 | .5833 | 45 | .7501 | 55 | .9167 |
| 6 | .1000 | 16 | .2667 | 26 | .4333 | 36 | .6000 | 46 | .7667 | 56 | .9333 |
| 7 | .1167 | 17 | .2833 | 27 | .4500 | 37 | .6167 | 47 | .7833 | 57 | .9500 |
| 8 | .1333 | 18 | .3000 | 28 | .4667 | 38 | .6333 | 48 | .8000 | 58 | .9667 |
| 9 | .1500 | 19 | .3167 | 29 | .4833 | 39 | .6500 | 49 | .8167 | 59 | .9833 |
| 10 | .1667 | 20 | .3333 | 30 | .5000 | 40 | .6667 | 50 | .8333 | 60 | 1.0000 |

Table xviiI.-Inches in Decimals of a Foot.

$1-16$	$3-32$	$1 / 18$	$3-16$	$1 / 4$	$5-16$	$3 / 8$	$1 / 2$	$.5 / 8$	$3 / 4$	$7 / 8$
.0052	.0078	.0104	.0156	.0208	.0260	.0313	.0417	.0521	.0625	.0729
1	$\frac{2}{3}$	$\frac{4}{5}$	$\frac{6}{7}$	$\frac{7}{8}$	$\frac{8}{9}$	10	11			
.0833	.1667	.2500	.3333	.4167	.5000	.5833	.6667	.7500	.8333	.9167

Deg.	Radius	Tan. Def	Chd. Def.	Def. for 1 Foot	Deg.	Radius	Tan. Bef.	Chd. Def.	Def. for 1 Fool
$0^{\circ} 10^{\prime}$	31377.	. 145	. 291	0.05^{\prime}	$7{ }^{\circ}$	819.0	6.105	12.21	2.10^{\prime}
20	17189.	.291	. 592	0.10	20	781.8	6.395	12.79	2.10
30	11459.	. 436	. 873	0.15	30	764.5	6.540	13.08	2.25
40	8594.4	. 582	1.164	0.20	40	747.9	6.685	13.37	2.30
50	6875.5	. 727	1.454	0.25	8	716.8	6.976	13.95	2.40
1	5729.6	. 873	1745	0.30	20	688.2	7.266	14.53	2.50
- 10	4911.2	1.018	2.036	0.35	30	674.7	7.411	14.82	2.55
20	4297.3	1.164	2.327	0.40	40	661.7	7.556	15.11	2.60
30	3819.8	1.309	2.618	0.45	9	637.3	7.816	15.69	2.70
40	3437.9	1.454	2.909	0.50	20	614.6	8.136	16.27	2.80
50	3125.4	1.600	3.200	0.55	30	6038	8.281	16.56	2.85
9	2864.9	1.745	3.490	0.60	${ }^{40}$	593.4	8.426	16.85	2.90
- 10	2644.6	1.891	3.781	0.65	10	573.7	8.716	17.43	3.00
20	24.55	2.036	4072	0.70	30	546.4	9.150	18.30	3.15
30	2292.0	2.181	4.363	0.75	11	521.7	9.585	19.16	3.30
40	2148.8	2.327	4.654	0.80	$1{ }^{30}$	499.1	10.02	20.04	3.45
- 50	2022.4	2.472	4915	0.85	12	478.3	10.45	20.91	3.60
8	1910.1	2.618	5,235	0.90	30	459.3	10.89	21.77	3.75
10	1809.6	2.763	5.526	0.95	18	441.7	11.32	22.64	3.90
20	1719.1	2.908	5.817	1.00	${ }^{30}$	425.4	11.75	23.51	4.05
30	1637.3	3.054	6.108	1.05	14	410.3	12.18	24.37	4.20
40	1562.9	3.199	6.398	1.10	${ }^{30}$	396.2	12.62	25.24	4.35
4^{50}	1495.0	3.345 3	6.689	1.15	15	383.1	13.05	26.11	4.50
4	1432.7	3490	6.980	1.20	10^{30}	370.8	13.49	26.97	4.65
10 20	1375.4	3.635 3.781	7.271	1.25	16	359.3 348.5	13.92	27.84	4.80
20	$\begin{aligned} & 1322.5 \\ & 1973.8 \end{aligned}$	3.781	7.561	1.30	1^{30}	348.5	14.35	28.70	4.95
30	1273.6	3.926	7.852	1.35	17	338.3	14.78	29.56	5.10
40	1228.1	4.071	8.143	1.40	18	319.6	15.64	31.29	5.40
- 50	1185.8	4.217	8.433	1.45	19	302.9	16.51	33.01	5.70
510	1146.3	4.362	8.724	1.50	20	287.9	17.37	34.73	6.00
10	1109.3	4.507	9.014	1.55	21.	274.4	18.22	36.44	6.30
20 30	1074.7	4.653	9.305	1.60	28	262.0	19.08	38.16	6.60
- 30	1042.1	4.798	9.596	1.65	28	250.8	19.94	39.87	6.90
40 50	1011.5	4.943 0.088	9.886	1.70	24	240.5	20.79	41.58	7.20
${ }^{50}$	982.6	5. 088	10.18	1.75	25	231.0	21.64	43.28	7.50
6	955.4	5.234	10.47	1.80	26	222.3	22.50	44.99	7.80
10	929.6	5.379	10.76	1.85	27	214.2	23.35	46.69	8.10
20	905.1	5.524	11.05	1.90	28	206.7	24.19	48.38	8.40
30	881.9	5.669	11.34	1.95	29	199.7	25.04	50.07	8.70
40	859.9	5.814	11.63	2.00	30	193.2	25.88	51.76	9.00

102 Tablex x- Tangents and Externals to a 1° Curve.

Anglo.	Tangent.	Bxter'l.	Angle.	Tangent.	External	Angle.	Tangent,	External
$1{ }^{\circ}$	50.00	. 22	11°	551.70	26.50	21°	1061.9	97.57
10^{\prime}	58.34	. 30		560.11	27.31	10^{\prime}	1070.6	99.16
20	66.67	. 39	20	568.53	28.14	20	10792	100.75
30	75.01	. 49	30	576.95	28.97	30	1087.8	102.35
40	83.34	. 61	40	585.36	29.82	40	1096.4	10397
50	91.68	. 73	50	593.79	30.68	50	1105.1	105.60
2	100.01	. 87	12	602.21	31.56	22	1113.7	107.24
10	108.35	1.02	10	610.64	32.45	10	1122.4	10890
20	116.68	1.19	20	619.07	33.35	20	1131.0	110.57
30	125.02	1.36	30	627.50	34.26	30	1139.7	11225
40	133.36	1.55	40	635.93	35.18	40	1148.4	11395
50	141.70	1.75	50	644.37	36.12	50	1157.0	115.66
3	150.04	1.96	13	652.81	3707	23	1165.7	117.38
10	158.38	2.19	10	661.25	38.03	10	1174.4	119.12
20	166.72	2.43	20	669.70	39.01	20	1183.1	120.87
30	175.06	2.67	30	678.15	39.99	30	1191.8	122.63
40	183.40	2.93	40	686.60	40.99	40	1200.5	124.41
50	191.74	3.21	50	695.06	42.00	50	1209.2	126.20
4	200.08	3.49	14	703.51	43.03	24	1217.9	128.00
10	208.43	3.79	10	711.97	44.07	10	1226.6	129.82
20	216.77	4.10	20	720.44	45.12	20	1235.3	131.65
30	225.12	4.42	30	728.90	46.18	30	1244.0	183.50
40	233.47	4.76	40	737.37	47.25	40	1252.8	135.35
50	24181	5.10	50	745.85	48.34	50	1261.5	137.23
5	250.16	5.46	15	754.32	49.44	25	1270.2	13911
10	258.51	5.83	10	762.80	50.55	10	1279.0	141.01
20	266.86	6.21	20	771.29	51.68	20	12877	142.93
30	275.21	6.61	30	779.77	52.89	30	1296.5	144.85
40	283.57	7.01	40	788.26	53.97	40	1305.3	146.79
50	291.92	7.43	50	796.75	55.13	50	1314.0	148.75
6	300.28	7.86	16	805.25	5631	26	1322.8	15071
10	308.64	8.31	10	813.75	57.50	10	1331.6	152.69
20	316.99	8.76	20	822.25	58.70	20	1340.4	154.69
30	325.35	9.23	30	830.76	59.91	30	1349.2	156.70
40	333.71	971	40	839.27	61.14	40 50	1358.0	158.72
50	342.08	10.20	50	847.78	62.38	50	1366.8	160.76
7	350.44	10.71	17	856.30	63.63	27	1375.6	162.81
10	358.81	11.22	10	864.82	64.90	10	1384.4	164.86
20	367.17	11.75	20	873.35	66.18	20	1393.2	166.95
30	375.54	12.29	30	881.88	67.47	30	1402.0	169.04
40	383.91	12.85	40	890.41	68.77	40	1410.9	171.15
50	392.28	13.41	50	898.95	70.09	50	1419.7	173.27
8	400.66	13.99	18	907.49	71.42	28	1428.6	175.41
10	409.03	14.58	10	916,03	72.76	10	1437.4	177.55
20	417.41	15.18	20	924.58	74.12	20	1446.3	179.72
30	425.79	15.80	30	933.13	75.49	30	1455.1	181.89
41	434.17	16.43	40	941.69	76.86	40	1464.0	184.08
50	442.55	17.07	50	950.25	78.26	50	1472.9	18629
9	450.93	17.72	19	958.81	79.67	29		
10	459.32	18,38	10	967.38	81.09	10	1490.7	190.74
20	467.71	19.06	20	975.96	82.53	20	1499.6	
30	476.10	19.75	30	984.53	83.97	30 40	1508.5	195.25 197.53
40	484.49	20.45	40 50	993.12	85.43	40 50	1517.4	197.53 199.82
50	492.88	21.16	50	1001.7	86.90	50	1526.3	199.82
10	501.28	21.89	20	1010.3	88.39	30	1535.3	20212
10	509.68	22.62	10	1018.9	89.89	10	1544.2	204.44
20	518.08	23.38	20	1027.5	91.40	20	1553.1	206.77
30	526.48	24.14	30	1036.1	92.92	30	1562.1	209.12
40	534.89	24.91	40	1044.7	94.46	40 50	1571.0 1580.0	211.48 213.86
50	513.29	25.70	50	1053.3	96.01	50	1580.0	213,86

Table xx-Tangents and Externals to a 1° Curve. 103

Angle.	Tangent.	Extor'l.	Angle.	Tangent.	Estornal	Angla.	Tangent,	External
81°	1589.0	216.3	41°	2142.2	387.4	51°	2732.9	618.4
10°	1598.0	218.7	10^{\prime}	2151.7	390.7	10^{\prime}	2743.1	622.8
20	1606.9	221.1	20	2161,2	394.1	20	2753.4	627.2
30	1615.9	223.5	30	2170.8	397.4	30	2763.7	631.7
40	16249	226.0	40	2180.3	400.8	40	2773.9	636.2
50	1633.9	223.4	50	2189.9	404.2	50	2784.2	640.7
82	1643.0	230.9	42	2199.4	407.6	52	2794.5	645.2
10	1652.0	233.4	10	2209.0	411.1	10	2804.9	649.7
20	1661.0	235.9	20	2218.6	414.5	20	2815.2	654.3
30	1670.0	238.4	30	2228.1	418.0	30	2825.6	658.8
40	1679.1	241.0	40	2237.7	421.4	40	2835.9	663.4
50	1688.1	243.5	50	2247.3	425.0	50	2846.3	668.0
33	1697.2	246.1	43	2257.0	428.5	53	2856.7	6727
10	1706.3	248.7	10	2266.6	432.0	10	2867.1	677.3
20	1715.3	251.3	20	2276.2	435.6	20	2877.5	688.0
30	1724.4	253.9	30	2285.9	439.2	30	2888.0	686.7
40	1733.5	256.5	40	2295.6	442.8	40	2898.4	691.4
50	1742.6	259.1	50	2305.2	446.4	50	2908.9	696.1
34	1751.7	261.8	44	2314.9	450.0	54	2919.4	700.9
10	1760.8	264.5	10	23.24 .6	453.6	10	2929.9	705.7
20	1770.0	267.2	20	2334.3	457.3	20	2940.4	710.5
30	1779.1	269.9	30	2344.1	461.0	30	2951.0	715.3
40	1788.2	272.6	40	2353.8	464.6	40	2961.5	720.1
50	1797.4	275.3	50	2363.5	468.4	50	2972.1	725.0
35	1806.6	278.1	45	2373.3	472.1	55	2982.7	729.9
10	1815.7	280.8	10	2383.1	475.8	10	2993.3	734.8
20	1824.9	283.6	20	2392.8	479.6	20	3003.9	739.7
30	1834.1	286.4	30	2402.6	433.8	30	3014.5	744.6
40	1843.3	289.2	40	2412.4	487.2	40	3025.2	749.6
50	1852.5	292.0	50	2422.3	491,0	50	3035.8	754.6
86	1861.7	294.9	46	2432.1	494.8	56	3046.5	759.6
10	1870.9	297.7	10	2441.9	498.7	10	3057.2	7646
20	1880.1	300.6	20	2451.8	502.5	20	3067.9	769.7
30	1889.4	303.5	30	2461.7	506.4	30	3078.7	774.7
40	1898.6	306.4	40	2471.5	510.3	40	3089.4	779.8
50	1907.9	309.3	50	2481.4	514.3	50	3100.2	784.9
37	1917.1	312.2	47	2491.3	518.2	57	3110.9	790.1
10	1926.4	315.2	10	2501.2	522.2	10	3121.7	795.2
20	1935,7	318.1	20	2511.2	526.1	20	3132.6	800.4
30	1945.0	321.1	30	2521.1	530.1	30	3143.4	805.6
40	1954.3	324.1	40	2531.1	534.2	40	3154.2	810.9
50	1963.6	327.1	50	2541.0	538.2	50	3165.1	816.1
88	1972.9	330.2	48	2551.0	542.2	58	3176.0	821.4
10	1982.2	333.2	10	25610	546.3	10	3186.9	826.7
20	1991.5	336.3	20	2571.0	550.4	29	3197.8	832.0
30	2000.9	339.3	30	2581.0	554.5	30	3208.8	837.3
41	2010.2	342.4	40	2591.0	558.6	40	3219.7	842.7
50	2019.6	345.5	50	2601.1	- 562.8	50	3230.7	848.1
89	2029.0	348.6	49	2611.2	566.9	59	3241.7	853.5
10	2038.4	351.8	10	2621.2	571.1	10	3252.7	858.9
20	2047.8	3549	20	2631.3	575.3	20	3263.7	864.3
30	2057.2	358.1	30	2641.4	579.5	30	3274.8	869.8
40	2066.6	361.3	40	2651.5	583.8	40	3285.8	875.3
50	2076.0	364.5	50	2661.6	588.0	50	3296.9	880.8
40	2085.4	367.7	50	2671.8	592.3	60	3308.0	886.4
10	2094.9	371.0	10	2681.9	596.6	10	3319.1	892.0
20	2104.3	3742	20	2692.1	600.9	20	3330.3	897.5
30	2113.8	377.5	30	2702.3	605.3	30	3341.4	903.2
40	2123.3	380.8	40	2712.5	609.6	40	3352.6	908.8
50	2132.7	384.1	50	2722.7	614.0	50	3363.8	914.5

104 Table xx-Tangents and Externals te a 1° Curve.

Angle.	Tangent.	External	Angle.	Tangent.	External	Angle.	Tangent.	Extornal
61°	3375.0	920.2	$71{ }^{\circ}$	4086.9	1308.2			
10^{\prime}	3386.3	925.9		4099.5	1315.6	${ }^{81} 10^{\prime}$	4893.6 4908.0	1805.3
20	3397.5	931.6	20	4112.1	1322.9	20	4922.5	1824.1
30	3408.8	937.3	30	4124.8	1330.3	30	4937.0	1833.6
40	3420.1	943.1	40	4137.4	1337.7	40	4951.5	1843.1
50	3431.4	948.9	50	4150.1	1345.1	50	4966.1	1852.6
62	3442.7	954.8	72	4162.8	1352.6	82	4980.7	
10	3454.1 3465.4	960.6	10	4175.6 4188.5	1360.1	10	4995.4	1871.8
30		966.5	30	4188.5	1367.6 1375.2	20	5010.0 5024.8	1881.5
40	31883	978.3	40	4214.0	1375.2	30 40	5024.8	1891.2 1906
50	3499.7	984.3	50	4226.8	1390.4	50	5039.5 5054.3	$\begin{aligned} & 19009 \\ & 1910,7 \end{aligned}$
63	3511.1	990.2	78	4239.7	1398.0	83	5069.2	
	3522.6	996.2	10	4252.6	1405.7	10	5084.0	1930.4
20	3534.1 3545.6	1002.3 1003.3	$\stackrel{20}{30}$	4265.6 4278.5	1413.5	20	5099.0	1940.3
40	3550.6 3557.2	1014.4	40	4278.5	1421.2 1429	30 40	5113.9	1950.3
50	3568.7	1020.5	50	4304.6	1436.8	50	5143.9	1960.2
64	3580.3	1026.6	74	4317.6	1444.6	84	5159.0	1980.4
10	3591.9	1032.8	10	4330.7	1452.5	10	51741	1990.5
20	3603.5	10390	20	4343.8	1460.4	20	5189.3	2000.6
40	3615.1 3626.8	1045.2	30	4356.9	1468.4	30	52)1.4	2010.8
50	3638.5	1057.7	50	4383.3	1484.4	50	5219.7	$\begin{aligned} & 2021.1 \\ & 2031.4 \end{aligned}$
65	3650.2	1063.9	75	4396.5	1492.4	85	5250.3	2041.7
10	3661.9	1070.2	10	4409.8	1500.5	10	5265.6	2052.1
20	3673.7	1076.6	20	4423.1	1508.6	20	5281.0	2062.5
30	3685.4	1082.9	30	4436.4	1516.7	30	5296.4	2073.0
40	3697.2	1089.3	40	4449.7	1524.9	40	5311.9	2083.5
	3709.0	1095.7	50	4463.1	1533.1	50	5327.4	2094.1
66	3720.9	1102.2	76	4476.5	1541.4	86	5343.0	2104.7
10 20	3732.7	1108.6	10	4489.9	1549.7	10	5358.6	2115.3
$\left\|\begin{array}{l} 20 \\ 30 \end{array}\right\|$	3744.6	1115.1	20	4503.4	1558.0	20	5374.2	21260
40	3768.5	1128.2	40	4516.9	1566.3	30	5389.9	2136.7
50	3780.4	1134.8	50	4530.4 4544.0	1574.7	40 50	5405.6 5421.4	2147.5
67	3792.4	1141.4	77	4557.6	1591.6	87	5437.2	
10	3804.4	1148.0	10	4571.2	1600.1	- 10	5453.1	2180.2
20	38164	1154.7	20	4584.3	16086	20	5169.0	2191.1
30	3828.4	1161.3	30	4598.5	1617.1	30	5484.9	2202.2
40	3840.5	1168.1	40	4612.2	1625.7	40	5500.9	2218.2
50	3852.6	1174.8	50	4626.0	1634.4	50	5517.0	2224.3
68	3864.7	4181.6	78	4639.8	1643.0	88	5533.1	2235.5
10	3876.8	1188.4	10	4653.6	1651.7	10	5549.2	2246.7
20	3889.0	1195.2	20	4667.4	1660.5	20	5565.4	2258.0
40	${ }_{3913} 391.2$	1202.0	30	4681.3	1669.2	30	5581.6	$2: 269.3$
40 50	3913.4 3925.6	1208.9 1215.8	40	4695.2	1678.1	40	5597.8	2280.6
69			50	4709.2	1686.9	50	5614.2	2292.0
10	3937.9	1222.7	79	4723.2	1695.8	89	5630.5	2303.5
20	3962.5	1236.7	10	4737.2	1704.7	10	5646.9	2315.0
30	3974.8	1243.7	30	4765.3	17227	30	5663.4	2326.6
40	3987.2	1250.8	40	4779.4	1731.7	40	5679.9	2338.2
50	3999.5	1257.9	50	4793.6	1740.8	50	5713.6	2349.8 2361.5
20	4011.9	1265.0	80	4807.7	1749.9	90	5729.7	2373.3
10	4024.4	1272.1	10	4822.0	1759.0	10	5746.3	2385.1
20	4036.8	1279.3	20	4836.2	1768.2	20	5763.1	2397.0
30	4049.3	1286.5	30	4850.5	1777.4	30	5779.9	2408.9
40	4061.8	1293.6	40	4864.8	17×6.7	40	5796.7	2420.9
50	4074.4	1300.9	50	4879.2	1796.0	50	5813,6	2432.9

Table xx-Tangents and Externals to a 1° Curve. 105

Angle.	Tangent	Bxternal	Angle.	Tangent	Extercal	Angla.	Tangent	Estornal
91°	58.30 .5	2444.9	101°	6950.6	3278.1	111°	8336.7	4386.1
10^{\prime}	5847.5	2457.1	10^{\prime}	6971.3	3294.1	110	8362.7	4407.6
20	5864.6	2469.3	20	6992.0	3310.1	20^{-}	8388.9	4429.2
30	5881.7	2481.5	30	7012.7	3326.1	30	8115.1	44509
40	5893.8	2493.8	40	7033.6	33342.3	40	8141.5	4172.7
50	5916.0	2506.1	50	7054.5	$335 \times .5$	50	816.0	4494.6
92	5933.2	2518.5	102	7075.5	3374.9	112	8494.6	4516.8
10	5950.5	2531.0	10	7096.6	3391.2	10	8521.3	4538.8
20	5967.9	2543.5	20	7117.8	3107.7	20	8548.1	4561.1
30	5985.3	2556.0	30	7139.0	3124.3	30	8575.0	45>3.4
40	6002.7	2568.6	40	7160.3	3440.9	40	8602.1	4606.0
50	6020.2	2581.3	50	7181.7	3457.6	$5{ }^{5}$	8629.3	4628.6
93	6037.8	2594.0	103	7203.2	3474.4	118	8656.6	4651.3
10	6055.4	26168	10	7224.7	3491.3	10	8684.0	4674.2
20	6073.1	2619.7	20	7246.3	3508.2	20	8711.5	4697.2
30	6090.8	2632.6	30	7268.0	3525.2	30	8739.2	4720.3
40	6108.6	2645.5	40	7289.8	3542.4	40	8767.0	4743.6
50	6126.3	2658.5	50	7311.7	3559.6	50	8791.9	4766.9
94	6144.3	2071.6	104	73336	3576.8	114	8822.9	4790.4
13	6162.6	2684.7	10	7335.6	3594.2	- 10	8851.0	4814.1
20	6180.2	2697.9	20	7377.8	3611.7	20	8879.3	4837.8
30	6198.3	2711.2	30	7399.9	3629.2	- 30	8907.7	4861.7
40	6216.4	2724.5	40	7422.2	3646.8	- 40	8936.3	4885.7
50	6234.6	2737.9	50	7444.6	3664.5	50	8965.0	4909.9
95	6252.8	2751.3	105	7467.0	3682.3	115	8993.8	4934.1
10	6271.1	2764.8	10	74896	3700.2	10	9022.7	4958.6
20	6289.4	$2 \pi 78.3$	20	7512.2	3718.2	- 20	9051.7	4983,1
30	6307.9	2792.0	30	75349	3736.2	30	9080.9	5007.8
40	6326.3	2805.6	40	7557.7	3754.4	40	9110.3	5032.6
50	6344.8	2819.4	50	7550.5	3772.6	50	9139.8	5057.6
96	6363.4	2833.2	106	7603.5	3791.0	116	9169.4	5082.7
10	6382.1	2817.0	10	7626.6	3809.4	10	9199.1	5107.9
20	6400.8	2861.0	20	7619.7	3827.9		9229.0	5133.3
30	6419.5	2875.0	30	7672.9	3846.5	\% 30	9259.0	51.58 .8
40	6438.4	2889.0	40	7696.3	3×65.2	14.40	9289.2	5184.5
50	6457.3	2903.1	50	7719.7	3834.0	50	9319.5	5210.3
	6476.2	2917.3		7743,2	3902.9	117		5236.2
10	6195.2	2931.6	10	77668	3921.9	10	9380.5	5262.3
20	6514.3	2945.9	20	7790.5	3940.9	20	9411.3	5288.6
30	6533.4	2960.3	30	7814.3	3960.1	30	9142.2	5315.0
40	6552.6	2974.7	40	7838.1.	3979.4	40	9473.2	5341.5
50	6571.9	2989.2	50	7862.1.	3998.7	50	9504.4	5368.2
98	6591.2	3003.8	108	7886.2	4018.2	118	9535.7	5395.1
10	6610.6	3018.4		7910.4	4037.8	10	9567.2	5422.1
20	6630.1	3033.1	20	7934.6	4057.4	20	9598.9	5449.2
30	6649.6	3047.9	30	7950.0	4077.2	30	9630.7	5476.5
40	6669.2	3062.8	40	7983.5	4097.1	40	9662.6	5504.0
50	6658.8	3077.7	50	8008.0	4117.0	50	9691.7	5531.7
99	6708.6	3092.7	109	80.32 .7	4137.1	118	9727.0	5559.4
10	6728.4	3107.7	10	8057.4	4157.3	10	9759.4	5587.4
20	6748.2	3122.9		8082.3	4177.5	20	9792.0	5615.5
30	6768.1	3138.1	30	8107.3	4197.9	30	9824.8	5613.8
40	6788.1	3153.3	40	8132.3	4218.4	40	9857.7	5672.3
50	6808.2	3168.7	50	8157.5	4239.0	50	9890.8	5700.9
100	6828.3	3184.1	110	8182.8	4259.7	120	9924.0	5729.7
10	6848.5	3199.6	10	8208.2	4280.5	10	9957.5	5758.6
20	6868.8	3215.1	20	8233.7	4301.4	20	9991.0	5787.7
30	6889.2	3230.8	30	8259.3	4322.4	30	10025.0	5817.0
40	6909.5	3216.5	40	8285.0	4343.6	40	10059,0	5816.5
50	6930.1	3262.3	50	8310.8	4364.8	50	10093.0	5876.1

BY ARTHUR WINSLOW

Stadia reductions for reading 100

Table XXI.

STADIA REDUCTIONS FOR READING 100

Minutes.	(1) 4°		${ }^{4} \mathrm{E}^{\circ}$		86°		$7{ }^{\circ}$	
	Hor. Dist.	Diff. Elev.						
$0^{\prime \prime}$	99.51		99.24	8.68	98.91	10.40	98.51	12.10
2	99 50	7.02	99.23.	8.74	98.90	10.45	99.50	12.15
4	99.50	7.07	99.24	8.80	68.88	10.51	98.48	12.21
8	99.49 99.48	7.13 7.19	99.21 99.20	8.85	98.87 94.86	10.54 1062	58.47 98	12.26
10	99.45	7.25	99.19	8.97	98.85	10.68	98.44	12.38
12	99.46	7.30	99.18	9.03	98.33	10.74	98.43	12.43
14		7.36	99.17	9.03	98.82	10.79	98.41	12.49
16	99.45	7.42	99.16	9.14	98.81	10.85	98.40	12.55
18	99.44	7.48	99.15	9.20	93.80	10.91	98.39	12.60
20	99.43	7.53	99.14	9.25	98.78	10.96°	98.37	12.65
22	99.42	7.59	99.13	9.31	98.77	11.02	98.36	
24	99.41	7.63	99.11	9.37	98.76	11.08	98.34	12.76
26	99.40	7.1	99.10	9.43	98.74	11.13	${ }_{98}^{98.33}$	12.83
28	99.39	7. 76	99.09	9.48	93.73	11.19	93.31	12.88
30	99.38	\%.82	99.08	9.54	98.22	12.25	98.29	12.94
32	99.38	\%. 88	99.07	9.60	98.11	11.30	98.28	13.00
34	99.35	7.94	99.06	9.65	98.69	11.36	98.27	13.05
36	99.36	\%.99	99.05	9.7	95.68	11.42	98.25	13.11
38	99.35	8.05	99.01	9.7 -	98.67	11.47	98.24	13.1\%
40	99.31	8.11	99.03	9.83	98.65	11.53	98.22	13.22
42	99.33	8.17	99.01	9.88	98.64	11.59	98.20	13,28
44	99.32	8.	99.00	9.91	98.63	11.64	98.19	13.33
46	99.31	$5 \stackrel{3}{3}$	95.99	10.00	98.61	11.50	93.17	1339
48	99.30	8.34	98.98	10.05	95.60	11.76	98.16	13.45
50	99.29	8.40	98.9\%	10.11	98.58	11.81	98.14	13.50
52	99.28	8.45	98.96	10.17	98.57	11.87	95.13	13.56
54	99.27	8.51	98.34	10.22	93.56	11.93	:8.11	13.61
56	99.26	$8.5 i$	9*. 93	10.25	98:54	11.95	¢ $\$.10$	13.6%
58	99.25	8.63	98.92	10.34	98.53	12.04	93.08	13.73
60	99.24	8.68	98.91	10.40	98.51	12.10	98.06	13.78
$+f=. .5$	75	. 06	. 5	. 07	. 5	. 08	. 4	.10
$c+f=1.00$	1.00	. 09	. 99	. 09	. 99	.11	. 99	. 13
$c+f=1.25$	1.25	10	1.24	. 11	1.24	. 14	1.24	. 16

Table XXI.

stadia RFDUCTIONS FOR READING 100

'lable XXI.

STADI HEDUCTIONS FUR READING 100

Minutes.	12°		$13^{\text {c }}$		14°		15°	
	Hor. Dist.	Diff. Elev.						
0^{\prime}	95.68	20.34	94.94	21.92	94.15	23.47	93.30	25.00
2	95.65	20.39	94.91	21.97	94.12	23.52	93.27	25.05
	95.63	20.44	94.89	22.02	94.09	23.58	93.24	25.10
	95.61	20.50	94.86	22.08	94.07	23.63	93.21	25.15
10	95.58 95.56	20.55 20.60	94.84 94.81	22.13 22.18	94.04	23.68 23.73	93.18 93.16	25.20 25.25
12	95.53	20.66	94.79	22.23	9398	23.78	93.13	25.30
14	C5.51	20.71	94.76	22.28	93.95	23.83	93.10	25.35
16	95.49	20.76	94.73	22.34	9.3.03	23.88	93.07	25.40
18	95.46	20.81	94.71	22.39	93.90	23.93	93.04	25.45
20	95.44	20.87	94.68	22.44	93.87	23.99	93.01	25.50
22	95.41	20.92	94.66	22.49	93.84	24.04	92.98	25.55
24	95.39	20.97	91.63	22.54	93.81	21.09	92.95	25.60
26	95.36	21.03	94.60	2. 2.60	93. ${ }^{9} 9$	24.14	92.92	25.65
28	95.34	21.08	94.58	22.65	93.76	24.19	92.89	25.70
30	95.32	21.13	91.55	$22 . \% 0$	93.73	24.24	92.86	25.75
3.2	95.29	21.18	94.52	22.75	43.70	24.29	92.83	25.30
34	95.27	21.24	94.50	22.80	93.67	24.34	92.80	2585
36	95.24	21.29	94.47	22.85	93.65	24.39	92.77	25.90
38	95.22	2131	94.44	22.91	93.62	24.44	92. ${ }^{\text {n }}$	25.95
40	95.19	21.33	94.42	22.96	93.59	24.49	92.15	26.00
42	95.17	21.45	94.39	25.01	93.56	24.55	9268	26.05
44	95.14	21.50	94.36	23.06	93.53	24.60	92.65	26.10
46	95.12	21.55	94.34	23.11	93.50	24.65	92.62	26.15
48	95.09	21.60	94.31	23.16	93.47	24.70	92.59	26.20
50	95.07	21.66	94.28	23.22	93.45	24.15	92.56	26.25
	95.04	21.71	'94.26	23.27	93.42	24.80	92.53	26.30
	95:02	21.6	94.23	23.32	93.39	24.85	92.49	26.35
56	04.99	21.81	94.20	23.37	93.36	24.90	92.46	26.40
58 60	94.97 94.94	21.87	94.17	23.42	93, 83	24.95	92.43	26.45
60	94.94	21.92	94.15	23.47	93.30	25,00	92.40	26.50
$c+f=.75$. 78		. 73	.17	. 73	. 19	. 72	. 20
$c+f=1.00$. 98	. 22	. 97	. 23	. 97	. 25	. 96	. 27
$c+f=1.25$	1.22	. 27	1.21	29	1.21	. 31	1.20	. 34

UNIVERSITY OF CALIFORNIA, DEPANTMENT OF CIVIL ENGINEERINC BERKEDEY, CALIFORNIA

TABLE XXI. STADIA REDUCTIONS

Table XXI.

STADIA REDUCTIONS FOR READING 100

Minutes.	16°		17°		18°		19°	
	Hor. Dist.	$\begin{aligned} & \text { Diff. } \\ & \text { Elev. } \end{aligned}$	Hor. Dist.	Diff. Elev.	Hor. Dist.	Diff. Elev.	H.r. Dist.	$\begin{aligned} & \text { Diff. } \\ & \text { Elev. } \end{aligned}$
0^{\prime}	92.40	26.50	91.45	27.96	90.45	29.39	89.40	30.78
2	92.37	26.55	91.42	28.01	${ }^{90.42}$	29.44	8936	30.83
4	$9: 3.35$ 0.31	26.59	91.39	28.06	90.38	29.48	89.33	30.87
8	0.31 $9 \because .28$	26.64	91.35 91.32	28.10	90.35	29.53	89.29 89.26	30.92
10	92.25	26.74	91.29	28.20	90.28	$\stackrel{29.63}{ }$	89.22	31.01
12	92.22	26.79	91.26	28.25	90.24	29.67	89.18	31.06
14	92.19	26.84	91.22	28.30	90.21	29.72	89.15	31.10
16	92.15	26.89	91.19	28.34	90.18	29.76	89.11	3 3r. 15
18	92.12 92.09	26.94 26.99	91.16	28.39	90.14	29.81	89.08	31.19
2	92.09	26.99	91.12	28.44	90.11	29.86	89.04	31.24
22	$9 ? .06$	27.04	91.09	28.49	90.07	29.90	89.00	31.28
24	92.03	27.09	91.06	28.54	90.04	29.95	88.96	31.33
26	92.00	27.13	$91.0 \pm$	28.58	90.00	30.00	88.93	31.38
28	91.97	27.18	90.99	28.63	89.97	30.04	88.89	31.42
30	91.93	27.23	90.96	28.68	89.93	30.09	88.86	31.47
32	91.90	27.28	90.92	28.73	89.90	20.14	88.82	31.51
34	${ }^{91.87}$	27.33	90.89	28.77	89.86	30.19	88.78	31.56
36	91.84	27.38	90.56	28.8	89.83	30.23	88.75	31.60
38 40	91.81 91.77	27.43 27.48	90.82 90.79	28.87 28.92	89.79 89.76	30.28	88.71	31.65
40	91.77	27.48	90.19	28.92	89.76	30.32	88.67	31.69
(1) 42	91.74	27.53	90.76	28.96	$89 . i^{2}$	30.37	88.64	$31 .{ }^{2} 4$
dr 244	91.71	22.57	90.72	29.01	89.69	30.41	88.60	31.78
46	91.68	27.62	90.69	29.06	89.65	30.46	88.56	31.83
48	91.65	27.67	90.66	29.11	89.61	30.51	88.53	31.87
50	91.61	$2 \% .72$	90.62	29.15	89.58	30.55	88.49	31.92
52	91.58	27.77	90.59	29.20	89.54	30.60	88.45	31.96
54	91.55	21.81	90.55	29.25	89.51	30.65	88.41	32.01
(4) $\quad 56$	91.52	27.86	90.52	29.30	89.47	30.69	85.38	32.05
$\begin{array}{r}15 \\ \hline 88 \\ \hline\end{array}$	91.48	27.91	90.48	29.34	89.44	30.74	88.34	$3: .09$
60	91.45	27.96	90.45	29.39	89.40	30.78	88.30	32.14
$c+f=. \tilde{7} 5$. 72	. 21	. 72		. 71	. 24	71	. 25
$c+f=1.00$. 28	. 95	. 30	95	. 39	. 94	.33
$c+f=1: 35$	1.20	. 86	1.19	. 38	1.15	. 40	1.18	. 42

Table XXI.

STADIA REDUCTIONS FOR READING 100

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Minutes.} \& \multicolumn{2}{|r|}{\(20^{\circ}\)} \& \multicolumn{2}{|r|}{\(21^{\circ}\)} \& \multicolumn{2}{|c|}{\(22^{\circ}\)} \& \multicolumn{2}{|l|}{\(23^{\circ}\)} \\
\hline \& Hor. Dist. \& Diff. Elev. \& Hor. Dist. \& \begin{tabular}{l}
Diff. \\
Elep.
\end{tabular} \& Hor. Dist. \& Diff. Elev. \& Hor. Dist. \& Diti. Elev. \\
\hline \multirow[t]{5}{*}{\begin{tabular}{rr}
\& \(0^{\prime}\) \\
\& 2 \\
\& 4 \\
\& 6 \\
\& 8 \\
\& 10
\end{tabular}} \& 88.30 \& 32.14 \& 87.16 \& 33.46 \& 85.97 \& 34.73 \& 84.73 \& 35.97 \\
\hline \& 88.26 \& 3. 18 \& 87.12 \& 33.50 \& 85.93 \& 34.75 \& 84.69 \& 36.01 \\
\hline \& 88.23
88.19 \& 32.23
32.27 \& 87.08
87.04 \& 33.54
\(3: 39\) \& 85.89
85.85 \& 34.85
31.80 \& 84.65
84.61 \& 36.05
36.09 \\
\hline \& 88.15 \& 32.32 \& 87.00 \& 33.63 \& 85.80 \& 3190 \& 84.57 \& 36.13 \\
\hline \& 88.11 \& 32.36 \& 86.96 \& 33.67 \& 85.76 \& 34.94 \& 81.52 \& 36.17 \\
\hline \multirow[t]{4}{*}{\[
\begin{aligned}
\& 12 \\
\& 14 \\
\& 16 \\
\& 18 \\
\& 20
\end{aligned}
\]} \& 88.08 \& 32. 41 \& 86.92 \& 33 P \& 85.72 \& 34.98 \& 84.48 \& 36.21 \\
\hline \& 88.04 \& 32.45 \& 86.88 \& 33.76 \& 85.68 \& 35.02 \& 84.44 \& 36.25 \\
\hline \& 88.00 \& 32.49 \& 86.84 \& 3:3 80 \& 85.61 \& 35.07 \& 83.40 \& 36. \\
\hline \& 87.96
87.93 \& 32.54
32.58 \& 86.81
86.77 \& 33.84
33.89 \& 85.60
85.56 \& 35.11
35.15 \& 84.35
84.31 \& 36.33
36.36 \\
\hline \multirow[t]{5}{*}{} \& 87.89 \& 32.63 \& 86.83 \& 3:3.93 \& 85.53 \& 35.19 \& 84. 27 \& 36.41 \\
\hline \& 87.85 \& 32.67 \& 86.69 \& 33.97 \& 85.48 \& 35.23 \& 84.23 \& 36.45 \\
\hline \& 87.81 \& 32.22 \& 86.65 \& 34. 01 \& 85.44 \& 35.29 \& 84.18 \& 36.49 \\
\hline \& 87.75 \& 3..76 \& 80.61 \& 34.06 \& 85.40 \& 35.31 \& 84.14 \& 36.53 \\
\hline \& 87.74 \& 32.80 \& 86.57 \& 34.10 \& 85.36 \& 3536 \& 84.10 \& \(36.5 \%\) \\
\hline \multirow[t]{4}{*}{\[
\begin{aligned}
\& 32 \\
\& 34 \\
\& 36 \\
\& 38 \\
\& 40
\end{aligned}
\]} \& 87.60 \& 32.85 \& 86.53 \& 34.14 \& 85.31 \& 35.40 \& 84.06 \& 36.61 \\
\hline \& 87.66 \& 33.89 \& 86:49 \& 34.18 \& 85, 27 \& 35.44 \& 84.01 \& 3665 \\
\hline \& 87.62
87.58 \& 32.93
32.98 \& 86.45
86.41 \& 34.23
31.36 \& 85.23
85.19 \& 35.48
35.52 \& \({ }_{8}^{83.97}\) \& 36.69
36.73 \\
\hline \& 87.54 \& 33.02 \& 86.3 i \& 34.31 \& 85.15 \& 35.56 \& 83.89 \& 36 \% \\
\hline \multirow[t]{5}{*}{42

44
44
46
48

50} \& 87.51 \& 33.07 \& 86.33 \& 34. 35 \& 85.11 \& 35.60 \& 83.81 \& 36.80

\hline \& 87.47 \& 33.11 \& 86.39 \& 31.40 \& 85.07 \& 35. 64 \& 83.80 \& 36.84

\hline \& 81.43 \& 33.15 \& 86.25 \& 31.44 \& 85.01 \& 35.64 \& 83.76 \& 36.88

\hline \& $8 \% .39$ \& 33.20 \& 86.21 \& 34.48 \& 84.98 \& 35.12 \& 83.12 \& 36.9:

\hline \& 87.35 \& 33.24 \& 86.16 \& 34.5\% \& 84.94 \& 35.76 \& 83.6% \& 36.96

\hline \multirow[t]{4}{*}{| 52 | |
| :--- | :--- |
| | 52 |
| | 54 |
| | 56 |
| | 58 |
| | 60 |} \& 87.31. \& 33.28 \& 86.13 \& 31.56 \& 81.90 \& 35.80 \& 83.63. \& 37.00

\hline \& 87.27 \& 33.33 \& 86.09 \& 31.61 \& 84.86 \& 35.85 \& 83.59 \& 37.08

\hline \& 87.24 \& ${ }_{33.37}^{33}$ \& 86.05 \& 31.65 \& 84.82 \& 35.89 \& 83.51 \& 3708

\hline \& 87.20
87.16 \& 33.41
33.46 \& 86.01
85.97 \& 3.69 \& 84. 21.1 \& 35.93 \& 83.50 \& $3 \hat{1} \cdot 1!$

\hline \multirow[b]{4}{*}{$$
\begin{aligned}
& c+f=.75 \\
& c+f=1.00 \\
& c+f=1.25
\end{aligned}
$$} \& \& \& \& \& \& \& \&

\hline \& . 0 \& . 26 \& \% \& 27 \& . 69 \& . 29 \& 69. \& . 30

\hline \& . 94 \& . 35 \& . 93 \& \& . 92 \& . 38 \& \& . 40

\hline \& 1.17 \& 44 \& 1.16 \& .46 \& 1.15 \& . 48 \& 1.15 \& . 50

\hline
\end{tabular}

Table XXI,

stadia reductions for reading 100

Minutes.	24°		25°		23°		27°	
	Hor. Dist.	Diff. Elev.	Hor. Dist	Diff. Elev.	Hor. Dist.	Diff, Elev.	Hor: Dist.	Diff. Elev.
0^{\prime}	83.46	37.16	82.14	38.30	80.78	39.40	ก9.39	40.5
2	83.41	37.20	82.09	38.34	80.74	39.44	79.34	4049
4	83.37 83.33	37.23	82.05	38.38	80.69	39.47	79.30	40.52
8	83.33 83.28	37.27 37.81	82.01 81.96	38.41 38.45	80.65 80.60	39.51 39.54	79.25 79.20	40.55 40.59
10	83.24	37.35	81.92	38.45 38.49	80.50	39.58 39.58	79.20 79.15	40.59
12	83.20	37.39	81.87	38.53	80.51	39.61	79.11	40.66
	83.15	37.43	81.83	38.56	80.48	39.65	79.06	40.69
16	83.11 83.07	37.47 37	81.78 81.74	3860 38.64	80.41 80.37	39.69 39.72	79.01	40: 72
18 20	83.07 83.02	37.51 37.54	81.74 81.69	38.64 38.67	80.37 80.32	39.72 39.70	78.96 78.92	40.76 40.79
22	82.98	37.58	81.65	38.71	80.28	39.79	\%8.87	40.82
24	82.93	37.62	81.60	38.75	80.23	39.83	78.82	40.86
26	82.89	37.66	81.56	38.78	80.18	39.86	78.77	40.89
28 30	82.85 82.80	37.70 37.74	81.51.	38.82	80.14	39.90	78.73	40.93
			81.47	38.86	80.09	39.93	78.68	40.96
32	82.76	37.77	81.42	38.89	80.04	39.97	78.63	40.99
34	82.72	37.81	81.38	38.93	80.00	40.00	78.58	41.02
36 38	8.67	37.85	81.33	38.97	79.95	40.04	78.51	41.06
40	82.68	37.89 37.93	81.28 81.24	39.00 39.04	79.90	40.07 40.11	78.49 78.44	41.09 41.12
42	82.54	37.96	81.19	39.08	79.81	40.14	78.39	41.16
44	82.49	38.00	81.15	39.11	79.76	40.18	T8.34	41.19
46	82.45	38.04	81.10	39.15	79.72	40.21	78.30	41.22
48	82.41	38.08	81.06	39.18	79.67	40.24	78.25	41.26
50	82.36	38.11	81.01	39.22	79.62	40.28	78:20	41.29
- 52	82.32	38.15	80.97	39.26	79.58	40.31	78.15	41.32
10584	82.27	38.19	80.92	39.29	79.53	40.35	78.10	41.35
56	82.23	38.23	80.87	39.33	79.48	40.38	78.06	41.39
58 60	82.18 82.14	33.26	80.83 80.78	39.36.	79.44	40.42	¢8.01	41.42
$c+f=.75$	68	. 31	68	. 32	67	. 33	66	35
$c+f=1.00$	91	. 41	90	. 43	89	. 45	. 89	46
$c+f=1.25$	1.14	. 52	1.13	. 54	1.12		1.11	. 5

CURVE FORMULE.

50 tan . $1 / 2 \mathrm{I}$		Chord der. - R
Sin. D		
50	$\begin{array}{ll} \sin . \text { D } \end{array}$	No.
\boldsymbol{K}	E-R ex. sec.	ce
50 tan . $1 / 2 \mathrm{I}$		its
T	$E=T \tan \cdot 1 / 4$	Tan. def. $=1 / 3$ chord

The square of any distance, divided by twice the radius, will equal the distance from Tangent to Curve, very nearly.
Table XX contains Tangents and Externals to a 1° curve. Tan. and Ext. to any other radius may be found, nearly enough, by dividing the Tan. or Ext. opposite the given Central Angle by the given degree of curve.
To find Deg. of Curve, having the central Angle and Tangent: Divide Tan. opposite the given Central Angle by the given Tangent.

To find Deg. of Curve, having the Central Angle and External: Divide Ext. opposite the given Central Angle by the given External.

To find Nat. Tan. and Nat. Ex. Sec. for any angle by Table XX: Tan. or Ext. of twice the given angle divided by the radius of a 1° curve will be the Nat. Tan. or Ex. Sec.

To find angle for a given distance and deflection.
Rule 1. Multiply given distance by 01745 (def. for 1° for 1 ft .), and divide given deflection by the product.
Rule 2. Multiply given deflection by 57.3 , and divide the product by the giren distance.
To find deflection for a given angle and distance: Multiply the angle by .01745 . and the product by the distance.

M MANUAL
 - OR-

 LAND SURVEYING.

 LAND SURVEYING.}

By F. HODGMAN, M. S., C. E.,
Practical Surveyor and Civil Engineer.

Over 500 pages, printed on strong, light paper, and bound in leather with flap.
The Land Surveyor's Best Pocket Companion.
STAR EDITION, $\$ 3.00$
The star edition differs only in the binding, which is of the best Morocco and workmanship to be had to stand hard use.

SURVEYOR'S TABLES.

Being the tables from the "Mandal of Land Surveying," bound separately. The handiest little pocket table book for students, surveyors, aud mining engineers. Bound in leather, with round corners. The Star Edition is of the very best paper, binding and workmanship to be had in the market, and has 32 pages of blank cross-section paper for memoranda.

A premium given to the first person who discovers and reports any error in the tables. PRICE - $\$ 1.00$

STAR EDITION - $-\quad-10.0$ - -1.50

HODGMAN'S
 FIELD BOOK FOR SURVEYORS.

FOR TAKING DOWN NOTES IN THE FIELD.
Ruled in small cross-sections, and having tables of Natural Sines, Tangents, Secants, Departures, Azimuths of Polaris, Radi; and Deflections, Tangents and External Secants of a 1° Curve Curve Formulæ, Traverse Table, 176 blank pages and Index.

Strong linen paper bound in red Russia, with flap and pencil holder.

The a bove books published and for sale by-

the T. F. RANDOLPH co.

 MANUFACTURERS, IMPORTERS, AND DEALERS IN Surveyors' and Engineers' Instruments AND SUPPLIES OF ALL KINDS. ROE, CHESTERMAN AND PANE'S TAPES.

SOLE MANUFACTURERS OF
Randolph's Patent Telescope Compasses, Patent Telescope Attachment for Common Compasses, Patent Gem

Transit, Patent Quick Leveling Tripod,
Patent Transit Level, Patent Dalsy
Level, Patent Sole Leather Boxes.

.05 H9, 0 वИАЯ $\cdot 7$.T анา

 .839月T Z'3\#

UNIVERSITY OF CALIFORNIA LIBRARY

 BERKELEYReturn to desk from which borrowed. This book is DUE on the last date stamped belo ENGINEERING LIBHANY

$\overline{Y A} .030 E ?$

UNIVERSITY OF CALIFORNIA, DEPARTMENT OF CIVIL EMGINEERING BERKEI.EY, CALIFORNIA

[^0]: - By reference to the above table, the surveyor will observe that the times between Nov. 1 and 15 are greater than $8{ }^{\text {h }} 24 \mathrm{~m}$; consequently, the culmination for one day earlier, Nov. 6, will be ased ; see directions on page 37 ; also, last clause of example 3, page 38.
 bFrom Part II, Table V, opposite 6th day of month, and under " 3 94m."
 - To subtract, take 1 day from Nov. 7, and add its equivalent, 24^{b}, to 8 m 24 m , making, Nov. $6,32^{\mathrm{h}} 24^{\mathrm{m}}$ (which is the time expressed by Nov. 7, 8^{h} $24 \mathrm{~m})$; then subtract in the usual manner.
 ${ }^{\text {dSee last clause of footnote, page } 40 .}$
 -In case the Hour Ansle comes out greater than 111488, subtract it from 23b 56.1 : ; see example 4, on above.
 ${ }^{1}$ The Hour Angle being less than $11^{\mathrm{b}} 58{ }^{\mathrm{m}}$, the Azimuth is west; see procepts, top of Table VII.

[^1]: *The area above was also claimed by Virginia and included in her cesslon.
 +Connecticut's jurisdictional cession of the Western Reserve and Fire-lands, containing about 3.800 .000 , included under Virginia cession.

[^2]: *No. 21.-An Act to amend the act entitled "An act providing for the sale of the lands of the United States, in the territory northwest of the Ohio, and above the mouth of the Kentucky River."
 Sec. 3. And be it further enacted, That the surveyor-general shall cause the townships west of the Muskingum, which by the abovementioned act are directed to be sold in quarter townships, to be subdivided into half sections of three hundred and twenty acres each, as nearly as may be, by running parallel lines through the same from east to west, and from south to north, at the distance of one mile from each

[^3]: * Note.-" Circular to Surveyors-General, Nov. 9, 1821.-Sir: By the first section of the act of April 24, 1820, all the public lands of the United States shall be offered at public sale in half-quarter sections; and

[^4]: fractional sections containing one hundred and sixty acres and upward shall, as nearly as practicable, be divided into half-quarter sections, under such rules and regulations as mày be prescribed by the Secretary of the Treasury; but fractional sections containing less than one hundred and sixty acres shall not be divided, etc. By the act of May 10,1800 , section 3 , the excess or deficiency of regular sections or quarter-sections in any township is to be thrown on the north and west sides of the township, making fractional sections more or less than one hundred and sixty acres. In subdividing such fractional sections to form a half-quarter section, viz., 80 acres, the Secretary of the Treasury directs that the subdividing line for such fractions as lie on the north side of a township shall be an east and west line, forming the half-quarter section on the south side of the fraction; and for such fractions as lie on the west side, the subdividing line shall be a-meridian, forming the half-quarter section on the east side of the fraction. This mode of subdivision will preserve the compactness of the tracts with the general divisions, and will not interfere with the ruleadopted relative to fractions formed by a stream, a river, etc."

[^5]: Richer v. Barry, 34 Me. 116.
 Tewksbury v. French, 44 Mich. 102.
 See also 35 N. H. 121, and 11 Conn. 335.

[^6]: Jackson v. Reeves, 3 Caines, N. Y. 293.
 Brandt v. Ogden, 1 Johns. N. Y. 156.

[^7]: Casey v. Dunn, 8 N. Y. S. 305.

[^8]: "Sec 440. All navigable rivers, within the territory occupied by the public lands, shall remain and be deemed public highways; and, in all cases where the opposite banks of any streams not navigable belong to different persons, the stream and the bed thereof shall become common to both." (1 Stat. 468; 2 id. 235; R. S. 2476.)

[^9]: Marsh v. Stephenson, 7 Ohio, N. 3, 264.
 Quinnin v. Reimers, 46 Mich. 605.

[^10]: Allen v. Koepsel (Tex.) 14 S. W. 151.

[^11]: * E. F. Best, acting commisioner of the General Land Office, in an opinion given April 16, 1896, says: "These cases seem to be exceptions to the stringent law that the original corners 'muststand as the true corners which they were intended to represent, whether the corners be in place or not.' The improper placing of such a corner results in a change of the true line of the standard parallel into a broken line, if the erroneous corner must be held valid. It is the opinion of this office that the true intent of the law is subserved by holding that such corners must show the true locus of the line separating the sections but cannot alter the position of the township line; hence, that all corners of small tracts adjacent thereto should be set on the true line originally run."

[^12]: " Second. Extinct interior section corners must be re-established at the intersection of two right lines joining the nearest known points on the original section lines east and west and north and south of it.
 "Third. Any extinct quarter-section corner, except on fractional lines, must be re-established equidistant and in a right line between the section corners; in all other cases at its proportionate distance between the nearest original corners on the same line."

 The corners thus determined, the surveyors are required to perpetuate by noting bearing trees when timber is near.

 To estimate properly this legislation, we must start with the admitted and unquestionable fact that each purchaser from government bought such land as was within the original boundaries, and unquestionably owned it up to the time when the monuments became extinct. If the monument was set for an interior section corner, but did not happen to be " at the intersection of two right lines joining the nearest known points on the original section lines east and west and north and south of it," it nevertheless determined the extent of his possessions, and he

[^13]: "By a consultation of the meteorological records of the Agricultural College we learn that, although large showers in which the rainfall exceeds one inch occur comparatively seldom (on the average only four times a year), yet they bring with them twen-ty-eight per cent of our total rainfall during that period, and consequently they must be fully provided for in any works for thorough drainage. The following table is compiled from the meteorological records kept at the college, and shows the comparative depth and number of showers from the months of March to December for five years. The last column shows the total percentage of rainfall in all the showers of a given depth. The last

[^14]: Formulas: $v=\left\{\frac{a f \times 9000}{p}-\frac{1 / 2}{}\right.$
 $Q=a v$.
 $A=Q \times 47.6=$ Acreage.

