ARCHIV

FÜR DIE GESAMMTE

PHYSIOLOGIE

DES MENSCHEN UND DER THIERE.

HERAUSGEGEBEN

VON

DR. E. F. W. PFLÜGER,
ORD. ÖFFENTL. PROFESSOR DER PHYSIOLOGIE AN DER UNIVERSITÄT
UND DIRECTOR DES PHYSIOLOGISCHEN INSTITUTES ZU BÖNN.

ZEHNTER BAND.
ERSTES HEFT.
MIT 1 TAFEL.

BÖNN, 1875.
VERLAG VON MAX COHEN & SOHN.
(FR. COHEN.)

Ausgegeben Ende Januar 1875.
Inhalt.

Ueber binoculare Farbenmischung. Von Dr. W. Dobrowolsky aus Petersburg. ... 56

Vierter Artikel. .. 62
ARCHIV

FÜR DIE GESAMMTE

PHYSIOLOGIE

DES MENSCHEN UND DER THIERE.

HERAUSGEGEBEN

VON

DR. E. F. W. PFLÜGER,

ORD. ÖFFENTL. PROFESSOR DER PHYSIOLOGIE AN DER UNIVERSITÄT
UND DIREKTOR DES PHYSIOLOGISCHEN INSTITUTS ZU BÖNN.

ZEHNTER BAND.
MIT 5 TAFELN UND 3 CURVENZEICHNUNGEN.

BÖNN, 1875.

VERLAG VON MAX COHEN & SOHN.
(FR. COHEN.)
I n h a l t.

Ueber binoculare Farbenmischung. Von Dr. W. Dobrowolsky aus Petersburg. ... 56

Zur Abiogenesisfrage. Von D. Huizinga in Groningen. Vierter Artikel ... 62

Ueber den Luftdruck als mechanisches Mittel zur Fixation des Unterkiefers gegen Oberkiefer im ruhenden Zustand. Von Dr. Joh. Mezger im Amsterdam. .. 89

Über die Zusammensetzung einer als Chylus aufsuffassenden Entleerung aus der Lymphfistel eines Knaben. Von Dr. Hensen, Prof. der Physiologie in Kiel. ... 94
Über die Sumpfgasgährung. Von Dr. Leo Popoff aus St. Petersburg. (Aus dem Laboratorium des Herrn Prof. Dr. Hoppel-Seyler in Strassburg i. E.) ... 113
Existirt eine Verschiedenheit in der Reaction der Nerven gegen den galvanischen Strom, je nachdem die Kette mit der Kathode oder Anode geschlossen oder geöffnet wird? Von Dr. H. Engesser. (Experimentalarbeit aus dem physiol. Institut zu Freiberg i. Br.) .. 147
Erklärung in Betreff des Eiweissharns. Von H. Senator in Berlin. ... 151
Eine neue Methode zur Harnsäurebestimmung. Von A. P. Fokker, Dr. med. in Goes (Holland). .. 153
Notiz, die reflexhemmenden Mechanismen betreffend. Von J. Set- schenow. ... 163
Über das Verhalten isolirter glatter Muskeln bei elektrischer Reizung. Von A. Gruenhagen und cand. med. Samkowy in Königsberg i. Pr. (Hierzu 3 Curvenzeichnungen.) 165
Nachwort zum Vorstehenden. Von A. Gruenhagen. 172
Über die Erregung und Hemmung der Thätigkeit der nervösen Centralorgane. Von Dr. A. Freusberg, Assistent am physiologischen Institut der Universität Strassburg 174
Über das Auftreten von Gallenfarbstoff im Harn. Von F. Hoppel- Seyler. ... 208
Mittheilungen aus dem Laboratorium für angewandte Chemie der Universität Erlangen. Von Dr. A. Hilger.
1. Ein Beitrag zur chemischen Zusammensetzung seröser Transsudate. ... 211
2. Zur Kenntniss der Mineralbestandtheile der Echinodermen und Tunicaten. ... 212
Fortgesetzte Untersuchungen über die Beziehungen zwischen Polarisation und Erregung im Nerven. Von L. Hermann. (Aus dem physiologischen Laboratorium in Zürich.) .. 215
Über die quantitative Bestimmung des Eiweisses in tierischen Flüssigkeiten. Von A. Heynsius .. 239
Inhalt

Über Cholecyanin und Cholestelin. Nachschrift zu Heinsohn's und Campbell's Abhandlung. Von A. Heynsius. 246
Beiträge zur Lehre von der Respiration. (Aus dem physiologischen Laboratorium in Bonn.) 251

I. Über die physiologische Verbrennung in den lebenden Organismen. Von E. Pflüger. 251
§ 1. Definition der Aufgabe 251
§ 2. Kritik der Beweise, welche für die Gegenwart des Ozons im tierischen Organismus vorgebracht worden sind 252
§ 3. Kritik der Untersuchungen Scheremetjewsky's 266
§ 4. Thatsachen der vergleichenden Physiologie, welche für die Beziehung der Zelle zum Sauerstoff bedeutungsvoll sind 270
§ 5. Die Phosphorescenz der lebenden Organismen und ihre Bedeutung für die Principien der Respiration 275
§ 6. Thatsachen und Hypothesen zu den hier in Frage kommenden Principien 300
§ 7. Widerlegung der Untersuchungen und Theorien von C. Ludwig und A. Schmidt 345
§ 8. Kritik der Untersuchungen von Dr. W. Sadler 356
§ 9. Über die Grenzen des Partialdrucks des Sauerstoffs, welche für die tierische Verbrennung bestehen 364

II. Über den Einfluss der Strömungsgeschwindigkeit und Menge des Blutes auf die tierische Verbrennung. Von Dr. Dittmar Finkler. (Aus dem physiologischen Laboratorium in Bonn.) 368

Über verschiedene Pepsinwirkungen. Vorläufige Mittheilung von Dr. Dittmar Finkler. (Aus dem physiologischen Laboratorium in Bonn.) 372

Über die Lage des Gefäßcentrums. Von Dr. Moritz Nussbaum. Hierzu Tafel II. (Aus dem physiologischen Laboratorium in Bonn.) 374

Weitere Untersuchungen über die physiologischen Wirkungen des Atropin und Physostigmin, mit einem Beitrag zur Physiologie des Vagus. Von Dr. M. J. Rossbach, Professor der Pharmakologie an der Universität Würzburg. Mit Tafel III und IV. 383
Die Fortpflanzungsgeschwindigkeit der Reizung in der quergestreiften Muskelfaser. Erwiderung an Herrn Prof. L. Hermann, von Prof. Chr. Aeby... 465

Theorie des Schlafes. Von E. Pflüger. (Physiologisches Laboratorium in Bonn.) ... 468

Ueber die Sauerstoffaufnahme in den Lungen bei gewöhnlichem und erhöhtem Luftdruck. Von Dr. G. v. Liesbig in Reichenhall 479

Ueber Peptone und Ernährung mit denselben. Von P. Plöss und A. Gyergyai in Budapest. ... 536

Beiträge zur Kenntniss des Pancreas. Von R. Heidenhain. Hierzu Tafel V. (Aus dem physiologischen Institut zu Breslau.) 557

Ueber das Fieber der Kaltblütler. Von Dr. O. Lassar. ... 633

Bemerkung zur Fortpflanzungsgeschwindigkeit der Erregung im Muskel. Von L. Hermann. ... 639

Nachtrag zu meinem Aufsatz „Ueber die physiologische Verbrennung in den lebendigen Organismen“. Von E. Pflüger... 641
Berichtigungen.

S. 236 Z. 7 v. o. lies: „Nervenstroms“ statt „Nervensystems“.

„275“ 6 v. u. „schwer erklärbar wäre“ statt „erklärbar schwer wäre“.

„332“ 5 v. u. „im lebendigen Körper primär entstehenden“ statt „im lebendigen Körper entstehenden“.

„334“ 17 v. u. „das Radical-Cyan enthalten oder unmittelbare Cyanverivate sind?“ statt „das Radical-Cyan enthalten?“

„358“ 13 v. o. „natürlich mit ungeronnenem Blute“ statt „unnatürlich mit geronnenem Blute“.
Versuche
über die Reactionszeit einer Geschmacksempfindung,
vorgenommen von
M. v. Vintschugau und J. Höfgeschmied.
1. Theil.
(Aus dem physiologischen Institut zu Innsbruck.)

Nebst Tafel Ia.

Einleitung.

Der erste, welcher versuchte, die Reactionszeit ¹) für die Ge-
Schmacksempfindung zu bestimmen, war v. Wittich ²), welcher mit
D. Grünhagen einige Versuche anstellte. Wir wollen hier seine
eigenen Worte anführen.

„Ich bediente mich hierzu einer mehrgliedrigen Kette, die durch
den Assistenten gleichzeitig mit dem Zeichenstrom durch Umwerfen
einer Wippe geschlossen wurde und deren eine Elektrode auf die
Zungenspitze gesetzt wurde, während ich die andere in der Hand
hielt. Der Strom erzeugte beim Aufsetzen auf die äussere Haut
durchaus keine Empfindung, wohl aber einen sehr deutlichen sauern
Geschmack auf der Zunge. Die mittlere Zeit (von Zunge zur Hand)
berechnet sich aus 40 Beobachtungen auf 0,167 Secunden."

Diese ist die einzige literarische Nachricht, die wir über diesen
Gegenstand auffinden konnten. Da es von grossem Interesse wäre,
Versuche auch mit schmeckbaren Substanzen anzustellen, so haben
wir getrachtet, diese Frage in Angriff zu nehmen.

Die Schwierigkeiten, welche dieselbe umgeben, sind nicht ge-
ing, und es ist ein grosser Aufwand an Zeit und Geduld erforder-

¹) Wir gebrauchen das Wort „Reactionszeit“ in demselben Sinne, in
welchem dasselbe von Dr. Sigm. Exner angewendet wurde. Exp. Unter-
²) v. Wittich Ueber die Fortleitungs- geschwindigkeit im menschlichen
M. Pflüger, Archiv f. Physiologie. Bd. X.
lich, die meisten derselben zu überwinden, um einige wohl begrün-
dete Resultate zu erzielen.

Die Frage kann wohl einfach folgendermassen gestellt werden: welche ist die Reaktionszeit einer Geschmacksempfindung? — Da man jedoch auf verschiedene Umstände Rücksicht nehmen muss, und zwar sowohl auf die schmeckbare Substanz, als auch auf den Theil der Zunge, auf welchen dieselbe applizirt wird, und da man berücksichtigen muss, welche Momente die Resultate solcher Versuche beeinflussen, so wird die Fragestellung ziemlich complicirt.

Die Reaktionszeit wird eine sehr verschiedene Grösse haben, je nachdem man bloss beurtheilen soll, ob die Geschmacksendorgane ganz einfach erregt wurden, oder ob es darauf ankommt, die statt-
gehabte Geschmacksempfindung von einer andern Geschmacksempfin-
dung zu unterscheiden. Wir stellen uns nämlich die Sache so vor, dass, wenn der Betreffende im Voraus weiss, dass bloss eine be-
stimmtme schmeckbare Substanz auf die Zunge applizirt wird, er das Signal der Empfindung schon in jenem Momente auslösen wird, in welchem die erste Andeutung des betreffenden Geschmackes auftritt; muss er aber dagegen entscheiden, ob destilliertes Wasser oder eine im Voraus bestimmte schmeckbare Substanz applizirt wurde, so wird er mit dem Auslösen des Signals so lange warten, bis die Empfin-
dung so deutlich wurde, dass eine Täuschung nicht möglich ist. Soll er endlich zwischen zwei schmeckbaren Substanzen entscheiden, und das Signal für jede der beiden Empfindungen auf zwei verschie-
dene, für jede Geschmacksempfindung im Voraus bestimmten Weisen auslösen, so wird wieder die Zeit ganz anders ausfallen. Endlich ist es auch möglich, dass bei verschiedenen Individuen die Reaktions-
zeit einer Geschmacksempfindung verschieden sei. Es ist somit klar, dass die Fragen, die sich bei diesem Gegenstand aufdrängen, ziem-
llich zahlreich sind.

Wir haben uns die Aufgabe gestellt, die einzelnen einschlägigen Fragen einer näheren Untersuchung zu unterwerfen. Wir wollen uns zuerst mit den von uns verwendeten Vorrichtungen und mit deren Fehlern beschäftigen.

Beschreibung der Apparate und Bestimmung der Fehler derselben.

Die erste Vorrichtung, die wir uns anschaffen mussten, war eine solche, welche geeignet gewesen wäre, die schmeckbare Substanz auf eine sehr kleine Partie der Zunge zu appliciren und welche gleich-
zeitig im Stande gewesen wäre, in demselben Augenblick, in welchem die schmeckbare Substanz mit der Zunge in Berührung kommt, einen zeitmessenden Strom zu schliessen. Wir haben geglaubt, diese beiden Zwecke mit der in folgenden Zeilen beschriebenen kleinen Vorrichtung erzielen zu können (Fig. 1).

An der unteren Seite des vorderen Endes a einer metallenen Feder ist eine schmale und kurze Hülse angelöht, in welche ein kleiner Tuschpinsel eingekittet wird; dieser letztere wird nachher passend derart zugeschnitten, dass man einen dünnen und kurzen Pinsel hat. Auf den oberen Theil des vorderen Endes der Feder, also oberhalb der Hülse für den Pinsel, wird ein kleines Platinplättchen befestigt; das andere Ende b dieser Feder ist dick und gleichzeitig etwas keilförmig zugeschnitten; es dient dazu, dieselbe leicht in eine metallene Hülse einzuschieben und aus derselben herauszunehmen, was unumgänglich nothwendig ist, um den Pinsel nach dem Gebrauche gehörig reinigen zu können.

Die oben erwähnte Hülse befindet sich in einem Heft c aus einer isolirenden Substanz und verlängert sich nach hinten in ein metallenes, in dem Heft eingeschlossenes Stäbchen d, welches am hinteren Theil des Heftes etwas hervorragt und mit einer kleinen Klemmschraube versehen ist, um einen Leitungsdraht aufzunehmen.

Oberhalb der oben beschriebenen Feder, aber mit ihr parallel und gleich lang, verläuft ein metallener Stab e f, welcher genau gegenüber dem Platinplättchen eine Platin spitze trägt, welche bestimmt ist, mit dem Plättchen in Berührung zu kommen. Dieser obere Stab e f steckt in demselben Heft, in welchem auch die Feder befestigt wird, beide sind aber von einander vollständig isolirt. Dieser obere Stab ragt am hinteren Theil des Heftes etwas hervor und ist ebenfalls mit einer kleinen Klemmschraube versehen, um den zweiten Leitungs draht aufzunehmen 1).

Das Spiel dieser Vorrichtung ist leicht verständlich. In demselben Augenblick nämlich, in welchem der Pinsel die Zunge berührt, muss die Feder sich etwas nach aufwärts biegen und das Platinplättchen die Platin spitze des oberen Stabes berühren, wodurch der zeitmessende Strom geschlossen wird.

1) Alle Apparate, von welchem im Text der Anfertiger nicht angegeben ist, wurden vom hiesigen Mechaniker F. Müller in tadelloser Ausführung geliefert.
Es drängt sich hier natürlich die Frage auf, ob diese Vorrich-
tung dem beabsichtigten Zwecke vollkommen entspricht.

Es ist nämlich zu bestimmen, ob beide Zeitmomente, Berüh-
 rung der Zunge mit dem Pinsel und Berührung des Platinplättchens
mit der Platinspitze wirklich zusammenfallen.

Dass diese beiden Zeitaugenblicke nicht zusammenfallen kön-
nen, ist theoretisch ganz sicher, denn zuerst muss der Pinsel die
Zunge berühren, dann kann sich die Feder etwas nach aufwärts
biegen, um mit der Platinspitze in Berührung zu kommen; also der
Schluss des zeitmessenden Stromes wird jedenfalls um jenes kleine
Zeittheilchen später eintreten, welches eben nothwendig ist, damit
die Feder mit der Spitze in Berührung gelange. Die Entfernung
zwischen Spitze und Feder kann sehr klein gemacht werden und
deshalb auch das in Rede stehende Zeittheilchen ungemein klein
werden; dasselbe wird aber niemals gleich Null sein.

Da es nicht möglich ist, dieses Zeittheilchen gleich Null zu
machen, so tritt die Nothwendigkeit ein, zu untersuchen, ob das-
deselbe so verkleinert werden kann, dass der daraus resultirende Fehler
vollständig vernachlässigt werden könne.

Es ist in der That nicht schwer, dieses Zeittheilchen so klein
t zu machen, dass dasselbe keinen Einfluss auf das Endresultat der
Versuche ausübt. Man kann dasselbe so verschwindend klein ma-
chen, dass ohne einen in Betracht kommenden Fehler angenommen
werden kann, dass die Berührung der Zunge mit dem Pinsel und
die Berührung der Feder wirklich zusammenfallen, nur müssen fol-
gende zwei Bedingungen erfüllt werden.

1. Die Entfernung des Platinplättchens von der Platinspitze
muss eine minimale sein; durch sanftes Biegen der Feder lässt sich
dies leicht erreichen 1).

2. Der Pinsel muss rasch und etwas fest auf die Zunge appli-
ciert werden, damit die Feder auch rasch die Platinspitze erreiche.

Wir haben nicht unterlassen, uns auch experimentell zu über-
zeigen, dass bei Erfüllung der beiden oben angegebenen Bedingun-
gen das in Rede stehende Zeittheilchen verschwindend klein ist, und

1) Man hätte die Entfernung der Platinscheibe von der Platinspitze mit-
telst einer isolirten sehr feinen Schraube reguliren können. Wir haben die-
ses Mittel nicht angewendet, da mit dem im Texte angegebenen einfachen
Kunstgriff derselbe Zweck erreicht werden konnte.
Versuche über die Reactionszeit einer Geschmacksempfindung.

5
dass desshalb dasselbe vernachlässigt werden kann. Zu dem Zwecke haben wir folgende Versuche vorgenommen, deren schematische Anordnung in Fig. 2 ersichtlich ist.

Denken wir uns den Schlüssel geschlossen, so ist es klar, dass, wenn die Feder a den Klotz K berührt, der Stromkreis E a K M D S E geschlossen und der Anker des Electromagnetes M angezogen wird; sobald aber die Feder a mit der Spitze b in Berührung gelangt, auch der Stromkreis E a b D S E geschlossen wird; da aber gesorgt wurde, dass dieser Draht sehr dick und kurz war, so wurde eine gute Nebenleitung hergestellt, welche den Strom in E a K M D S E bedeutend abschwächte, womit auch der Magnetismus in dem Electromagnet so weit abgeschwächt wurde, dass der Anker vom Magnet durch die Abreissfeder entfernt wurde. Es ist nun klar, dass, wenn die Feder a den metallenen Klotz K in denselben Momente berührt, als die Feder a sich an die Spitze b anlegt, der Magnetismus in M keine Zeit hat, sich zu entwickeln; die schreibende Stift muss desshalb in Ruhe bleiben und wir werden auf dem Cylinder kein Zeichen finden; die Linie, da der schreibende Stift an den Cylinder anliegt, wird in ihrer ganzen Länge keine Krümmung zeigen.

Bevor wir jedoch diese Versuche unternommen, haben wir die Zeit bestimmt, welche nothwendig ist, damit nach Schluss des mag-

1) Für diese Versuche haben wir aus der kleinen metallenen Hülse den Pinsel entfernt.
2) Dieser Schlüssel hat in diesem Falle keinen andern Zweck, als die Leitung herzustellen; dazu hätte man ganz gut jede andere Kontaktvorrichtung gebrauchen können.
nentisirenden Stromes der Magnetismus des Eisenkernes jene Intensität erreiche, welche nothwendig ist, um den Anker samt schreibenden Stift anzuziehen. Wir werden später die von uns angewendeten Methoden ausführlich mittheilen. An dieser Stelle wollen wir nur erwähnen, dass die Abreissfeder des Ankers so viel als möglich abgespannt wurde, um den Widerstand, welchen dieselbe der Ankerbewegung entgegengesetzt, bedeutend zu verkleinern. Wir verwendeten ausserdem einen stärkeren magnetisirenden Strom als jenen, den wir für die eigentlichen Versuche zu benutzen pflegen.

Wir fanden in zwei Versuchsreihen folgende Zahlen in Secunden:

I. Reihe: 0,00492 0,00584 0,00538 0,00538, Mittel 0,00538.
II. Reihe: 0,00599 0,00534 0,00430 0,00662 0,00704, 0,00573, Mittel 0,00584.

Wenn wir nun dem Apparat jene Anordnung gaben, welche wir vorher beschrieben haben, konnten wir, sobald wir die metallene Hülse für den Pinsel mit einer mittelmässig kräftigen und raschen Bewegung auf den metallenen Klotz andrückten, gar kein Zeichen auf dem Papier finden, aus welchem entnommen werden konnte, dass der Anker sich bewegt hätte.

Wir müssen deshalb sagen, dass bei Erfüllung der oben angegebenen Bedingungen, nämlich, dass die Entfernung des Platinplättchens von der Platin spitze eine minimale sei, und dass der Pinsel mittelmässig rasch und fest an dem zu prüfenden Theil applizirt werde, die Zeit, welche zwischen Berührung der Zunge oder der Haut mit dem Pinsel und Berührung der Feder mit der metallenen Spitze verstreicht, kleiner, oder höchstens gleich dem kleinsten Werth sein muss, welchen wir in den zwei oben angeführten Reihen gefunden haben; also geringer als 0,0043 sein. Wollte man sehr vorsichtig sein, so könnte man sagen, dass in Rede stehende Zeittheilchen gewiss nicht grösser sein kann als das Maximum, welches wir in den oben angeführten Reihen gefunden haben, nämlich nicht grösser als 0,00704. Sobald wir dagegen die Pinselfülse langsam auf den Klotz applizirten, fanden wir ein deutliches Zeichen auf dem berussten Papiere; die Länge der gezeichneten Linie war desto grösser, je langsamer und schächer die Pinselfülse auf den Metallklotz applizirt wurde.

Mit diesen Versuchen ist wenigstens die höchste Fehlergrenze bestimmt. Mit denselben ist jedoch die Möglichkeit nicht ausgeschlossen, dass die untere Grenze vielleicht null sei.
Versuche über die Reaktionszeit einer Geschmacksempfindung.

Um uns zu überzeugen, dass die in Rede stehende Zeit nicht gleich Null ist, haben wir folgende Versuche unternommen.

Wir verwendeten dazu den physiologischen Rheoskop, das Froschpräparat.

Die schematische Anordnung des Versuches ist durch Fig. 3 dargestellt. N ist das Froschpräparat, dessen Ischiadicus auf den Electroden der secundären Spirale S" des Schlitten-Inductoriums von Du-Bois aufliegt. E ist eine Batterie. Ein Leitungsdräht der selben geht zum metallenen Klotz K; der andere Draht aus der Batterie theilt sich in zwei Aeste, von welchen sich einer zur primären Spirale S' begibt, der zweite Ast dagegen mit dem oberen Stab der Pinselvorrichtung sich verbindet; das andere Ende der primären Spirale S' steht in Verbindung mit der Feder unserer Pinselvorrichtung.

Wie man leicht sieht, haben wir im Princip dieselbe Anordnung, die wir vorher für den Electromagnet angewendet haben; nur dass gegenwärtig beim Berühren des Klotzes K mit der Feder a, in Folge der Stromschliessung ein Inductionsstrom entsteht, welcher den Nerv N reizt. Wenn wirklich zwischen Berühren des Klotzes K mit a und Anlegen der Platinplatte an die Spitze b keine Zeit verstreicht, so musste das Froschpräparat vollkommen ruhig bleiben. Dies war aber niemals der Fall; der Froschsenkel zuckte jedesmal, wenn auch die Berührung des Klotzes K mit der Pinselvorrichtung sehr rasch stattfand.

Die in Rede stehende Zeit ist also, wie schon a priori ersichtlich war, durchaus nicht gleich Null; sie hat, sobald man die oben angeführten Bedingungen erfüllt, eine Grösse, welche, nach dem früher mitgetheilten Versuche, in keinem Falle grösser sein kann als 0,004—0,007 Sec.

Die nächste Frage ist nun, ob dieses kleine Zeittheilchen vernachlässigt werden kann. Wir glauben dasselbe vernachlässigen zu dürfen, da die mitgetheilten Versuche wohl zeigen, dass dasselbe nicht grösser sein kann, wenn auch dieselben uns keinen Aufschluss geben, wie klein dieses Zeittheilchen ist.

Dieses leistet der schreibenden Spitze keinen nennenswerthen Widerstand und nur an jener Stelle, an welcher die beiden Enden zusammentreffen sind, wird dasselbe dicker, wodurch ein leichtes Springen der schreibenden Spitze in jenen Fällen erfolgt, in welchen der Cylindervon grosser Geschwindigkeit dreht und das Papier etwas zu dick ist; um diesen Uebelstand zu verkleinern, nahmen wir für gewöhnlich das dünnste dieser Gattung, welches wir aufreiben konnten.

Um die in horizontaler Lage sich befindende Trommel in Bewegung zu setzen, verwendeten wir zwei verschiedene Motoren.

Für eine lange Reihe von Versuchen haben wir als Motor das Uhrwerk benutzt, welches für das Kymographion von Ludwig von Mechanik Schöpman construiert wird. Der Cylindervon der grössten Geschwindigkeit, welche ihm das Uhrwerk mittheilen kann, macht eine Umdrehung in 15 bis 16 Secunden, und da der Umgang des Cylinders ungefähr 0,5000 Mt. beträgt, so entspricht jede Secunde durchschnittlich einer Länge von 0,03333 bis 0,03125 Mtr.

Diese geringe Geschwindigkeit des Cylinders ist für alle Versuche, ja sogar für Versuche über den Tastsinn hinreichend. Bei einer so geringen Geschwindigkeit, ist die Länge der gezeichneten Linie klein, und deshalb muss deren Messung mit der grössten Sorgfalt vorgenommen werden, damit die Fehler in der Berechnung der Reaktionszeit klein bleiben.

Um eine grössere Geschwindigkeit des Cylinders zu erreichen, haben wir jenen Kunstgriff verwendet, welcher in der Mechanik so häufig gebraucht wird.

Wir haben uns ein eisernes Stativ construiren lassen, bestimmt, die Endpunkte der Trommelaxe aufzunehmen. Da die Axenlagen sehr gut bearbeitet waren und der Cylinder genau äquilibriert wurde, so war erstens die Reibung eine sehr geringe, und zweitens genügte eine sehr kleine Kraft, um den verhältnissmässig sehr schweren Cylinder in Bewegung zu setzen. Die Trommelaxe trug eine Welle, welche kleiner war als jene, die durch das Uhrwerk direct in Bewegung gesetzt wurde; man konnte deshalb dem Cylinder ungefähr die dreifache Geschwindigkeit geben als früher.

Da dieser Cylinder auch durch den Electromotor von H e l m h o l t z in Bewegung gesetzt wurde, so wurden auf seine Axen noch zwei andere Wellen von verschiedenen Durchmessern befestigt, damit durch die einfachen Uebertragung der endlosen Schnur auf die eine oder auf die andere Welle es gestattet wäre, die Geschwindigkeit
des Cylinders zu ändern, ohne an den Apparaten eine weitere Änderung vorzunehmen.

Obwohl das Uhrwerk des Kymographions mit einem Regulator versehen ist, so ist doch seine Geschwindigkeit keine ganz gleichförmige und deshalb waren wir bedacht, auf den Cylinder die Zeit zu notiren.

Wir notirten die Zeit mittelst eines Secundenpendels, welches so eingerichtet war, dass jedesmal bei Erreichung seiner grössten Elongation ein elektrischer Strom geschlossen wurde.

Den Electromotor haben wir von Mechaniker Zimmermann in Heidelberg bezogen.

Wir haben zwei Schreibvorrichtungen construiren lassen und da wir mit beiden eine ziemlich grosse Anzahl von Versuchen gemacht haben, so sei es uns gestattet, beide hier kurz zu beschreiben.

Die erste von uns angewendete Vorrichtung ist so eingerichtet, dass die schreibende Spitze für die Secunden kurze Zeit vor Beginn des Versuches, nachdem der Cylinder für einige Zeit sich in Gang befand, sich an denselben anlegt und eine Zickzacklinie zeichnet; entsprechend dem Öffnen und Schliessen des Stromes durch das Pendel. Wir werden der Kürze halber diesen Strom den Pendelstrom nennen.

Um das Anlegen dieser schreibenden Spitze beliebig zu bewerkstelligen, ist letztere von einer Metallfeder getragen, welche mittelst
einer dünnen Schnur etwas nach hinten, nämlich von dem Cylinder weg, gebogen werden kann.

Der Anker des zweiten Electromagnetes, jenes, welcher für die Reactionsszeit bestimmt ist, ist so eingerichtet, dass die von ihm getragene Spitze von der Trommel nur um sehr wenig entfernt ist. Beim Schliessen des Stromes legt sich die Spitze an den Cylinder an, bei dessen Aufhören entfernt sie sich von demselben. Man erhält deshalb auf dem berussten Papier eine gerade Linie, welche jener Zeit entspricht, während welcher der Strom geschlossen bleibt. Ob die Länge der Linie wirklich dieser Zeit entspricht, werden wir später erörtern und den möglichen Fehler näher bestimmen; diesen Strom nennen wir der Kürze wegen „den zeitmessenden Strom“.

Bei der zweiten Schreibvorrichtung ist sowohl der Electromagnet für das Pendel, als auch jener für den zeitmassenden Strom so construiert und eingerichtet, dass deren schreibende Spitzen zu jedem beliebigen Moment an den Cylinder angelegt werden können. Der Electromagnet für das Pendel zeichnet in diesem Falle die Secunden in derselben Art wie beim ersten Apparat, dagegen jener für den zeitmassenden Strom eine gerade Linie zeichnet, so lang der Strom noch geöffnet ist; in dem Moment, in welchem der zeitmassende Strom geschlossen wird, zeichnet die Spitze zuerst eine kurze krumme Linie, welche in eine gerade übergeht, wenn der Anker sich an den Magnet anlegt; beim Aufhören des Stromes wandelt sich diese gerade in eine kurze krumme Linie, die in die ursprüngliche gerade in jenem Moment übergeht, in welchem der Anker seine ursprüngliche Lage erreicht.

Bei diesem zweiten Apparat ist der obere Theil der beiden Anker mit einer metallenen Feder versehen. Jede Feder trägt an ihrem freien Ende eine kleine Hülsse, die als Schraubenmutter für eine Schraube dient. Die Spitze dieser Schraube, welche gegen den Cylinder gerichtet ist, wurde sehr fein zugeschliffen und dient als schreibende Spitze, der Knopf der Schraube trägt dagegen ein kleines Häckchen, um an demselben einen Faden befestigen zu können. Die Schraube also gestattet, dass man die Reibung der schreibenden Spitze reguliren kann und durch den Faden können beide Spitzen von der Trommel entfernt werden; da eine Entfernung von nur 1 Mm. genügt, so erleidet die Uhrfeder keine nachtheilige Zerrung 1).

1) Wir haben bei vielen Versuchen statt einer starren Spitze eine sehr fein zugeschnittene elastische Feder gebraucht, ähnlich jener, welche Marrey...
Die Stellung der beiden Anker kann mit kleinen messingenen Stellschrauben so regulirt werden, dass ihre Entfernung von dem entsprechenden Eisenkerne eine sehr kleine ist; außerdem verhindernd kleine messingene Schrauben, dass die Anker sich vollständig an den entsprechenden Eisenkern anlegen; endlich dienen regulirbare Abreissfedern dazu, die Anker rasch von den Magneten zu entfernen.

Der an dem Knopf jeder schreibenden Spitze befestigte Faden ist ausserdem an einer kleinen Unterbrechungsvorrichtung 1), welche nach Art des Dubois'schen Schlüssels construit ist, so befestigt, dass man dessen Spannung ebenfalls reguliren kann und zwar so, dass wenn diese Unterbrechungsvorrichtung offen ist, die beiden schreibenden Spitzen nur 1 Mm. von der Cylinderfläche entfernt sind, wenn dagegen die Unterbrechungsvorrichtung geschlossen ist, die Fäden vollständig abgespannt sind 2). Wir werden nachher den Fehler auch dieses zweiten Apparates näher bestimmen. Wir wollen noch hinzufügen, dass sowohl die erste als auch die zweite Schreibvorrichtung auf einem kleinen Schlitten befestigt ist, so dass man dieselben leicht verschieben kann. Die Verschiebung der Trommel nach ihrer Längsaxe und jene der Schreibvorrichtung erlauben es, die ganze Papierbreite für die Versuche zu benutzen.

Es sei uns nun gestattet, den Gang eines Versuches mit dem einen und mit dem anderen Apparate anzuführen. Wir beginnen zuerst mit der Schilderung jener Versuche, in welchen das Pendel zur Notirung der Zeit eingeschaltet ist (Fig. 4).

Das Pendel P wird zuerst durch eine halbe Stunde geprüft; es wird nämlich mittelst eines elektrischen Zählerwerkes und einer

an seinen verschiedenen Schreibvorrichtungen anwendet. — In diesem Falle ist die Schraube zur Regulirung der Reibung unnöthig, da derselbe Zweck durch eine sanfte Biegung der Feder sich erreichen lässt.

1) Diese Unterbrechungsvorrichtung ist eigentlich nichts anderes als ein doppelter Dubois'scher Schlüssel, welcher mit einem Heft in Bewegung gesetzt werden kann und dessen beide Hälften durch eine isolirende Substanz getrennt sind. Wir haben dieselbe construiren lassen, um mit einer einzigen Bewegung beide schreibenden Spitzen an den Cylinder anlegen und beide Ströme, Pendelstrom und zeitmessenden Strom, schliessen zu können.

2) Ein gleichzeitiges Anlegen der Spitzen und Schlüssen der Ströme ist weder beabsichtigt worden noch nothwendig. Wir werden diese kleine Vorrichtung den Doppelschlüssel nennen.

Der Doppelschlüssel ist offen, der Taster wird ebenfalls — durch ein Gewicht — offen gehalten; nun wird das Uhrwerk in Bewegung gesetzt und der kleine Pinsel in die schmeckbare Substanz eingetaucht. Sobald der Cylinder C die gehörige Geschwindigkeit erreicht hat, wird das Gewicht vom Taster entfernt und derjenige, welcher die Versuche vornimmt — der Beobachter — giebt ein verabredetes Zeichen, bei welchem derjenige, mit welchem der Versuch vorgenommen werden soll — der Beobachtete — den Finger auf den Taster lose auflieg, um bei dem späteren Niederdrücken so wenig Zeit als möglich zu verlieren, und in der That genügt die leiseste Bewegung des Fingers, um den Strom zu unterbrechen. Der Beobachtete streckt die Zunge aus und richtet gleichzeitig seine ganze Aufmerksamkeit auf die wahrzunehmende Empfindung. Der Beobachter schliesst dann den Doppelschlüssel U, wodurch die beiden Spitzenden, oder bei jenem Apparat, bei welchem nur eine Spitze mit dem Faden versehen ist, diese sich an den Cylinder anlegt; das Pendel notirt nun die Sekunden auf den Cylinder. Nun wird mit einer raschen und mittelmässig kräftigen Bewegung der Pinsel auf die Zunge applizirt und so lange liegen gelassen, bis durch Niederdrücken des Tasters; die wahrgenommene Empfindung signalisirt ist; während noch der Beobachtete den Taster niederdrückt, wird das Instrument von der Zungenfläche entfernt und auf den Taster das Gewicht angehängt, um jede weitere Herstellung des Stromes hintanzuhalten. Jetzt werden durch Oeffnen des Doppelschlüssels die beiden Spitzen vom Cylinder entfernt, oder, wenn nur eine Spitze mit einem Faden versehen ist, wie beim ersten Apparate, diese vom Cylinder abgezogen, gleichzeitig auch der zweite Stromkreis geöffnet und das Uhrwerk arretirt. Nun wurde in sehr vielen Fällen aufgeschrieben, ob das Oeffnen des Stromes für die Reactionszeit genau stattfand oder welcher Fehler nach dem subjectiven Ermessen dabei stattge-
funden habe und endlich auch angemerkt, wie die Geschmacksempfindung war.

Nach Verschiebung des Cylinders oder der Schreibvorrichtung konnte ein zweiter Versuch vorgenommen werden. Nach jedem maligem Versuch musste sich der Beobachtete den Mund mit lauwarmem Wasser so lange ausspülen, bis er keinen Nachgeschmack mehr wahrnahm.

Von dem Moment, in welchem der Doppelschlüssel geschlossen wird, bis zu jenem, in welchem derselbe geöffnet wird, vergehen zwei, höchstens drei Secunden.

Bei Anwendung des Electromotors von Helmholtz wurde zuerst die Umdrehungsgeschwindigkeit des Cylinders bestimmt.

Da bekanntlich die Geschwindigkeit des Electromotors sich ändert, wenn während des Versuches die Reibungen, die zu überwinden sind, sich ändern, so haben wir bei vielen Versuchen die schreibende Spitze in fortwährender Berührung mit dem Cylinder gelassen. Später, nachdem wir uns überzeugten, dass, wenn die schreibende Spitze nur während vier oder fünf Umdrehungen innerhalb einer Viertelminute mit dem Cylinder in Berührung blieb, dessen Geschwindigkeit sich kaum ändert, so haben wir dieselbe ohne Anlegung der Spitze bestimmt.

Es versteht sich von selbst, dass jene Spitze, welche bei Anwendung des Uhrwerks als Motor für den Pendelstrom gebraucht wurde, bei diesen Versuchen, bei denen der Electromotor von Helmholtz zur Benützung kam, so weit zurückgeschraubt wurde, dass dieselbe den Cylinder niemals berühren konnte; ja in diesem Falle ist der zweite Electromagnet, also der ganze Kreis EPMUE entbehrlieh. Wurde die Geschwindigkeit des Cylinders durch einige Viertelminuten constant gefunden, so wurde der Motor durch Unterbrechung der beiden Ströme arretirt und durch Öffnen des Doppelschlüssels U die Spitze vom Cylinder entfernt 1). Es werden nun diejenigen kleinen Vorbereitungen, welche für die Versuche unumgänglich nothwendig sind, vorgenommen. Sind diese vollendet, dann wird der Taster mit dem Gewicht belastet, um jede zufällige Herstellung des Stromes zu verhindern, der Doppelschlüssel geschlossen.

1) Es ist selbstverständlich, dass in diesem Falle ein Doppelschlüssel vollkommen entbehrlieh ist und dass auch der Du bois'sche Schlüssel oder irgend eine andere Vorrichtung zur Herstellung des Contactes genügt.

Nach fünf oder sechs Versuchen wird die Geschwindigkeit des Cylinders neuerdings bestimmt, um zu sehen, ob dieselbe sich geändert und welche Veränderungen sie erfahren hat. Besonders in den Versuchsserien, die wir in den letzten Monaten vornahmen, haben wir die Umdrehungsgeschwindigkeit des Cylinders sehr häufig während einer und derselben Versuchsserie bestimmt.

Auf einen Papierstreifen lassen sich mehrere Versuche notiren, da derselbe die Breite von 150 Mm. hat. Nach Beendigung einer Versuchsserie wurde das Papier vom Cylinder entfernt und mit einer Lösung von Colophonium in Alkohol die Zeichen fixirt.

Da es nicht möglich ist, dass die Spannung des Papiers auf der Trommel eine constante sei und da dort, wo die Enden desselben zusammengeklebt waren, die Lage eine doppelte ist und je nachdem mehr oder weniger Papier zusammengeklebt wurde, auch die Gesammtlänge des Streifens sich ändert, so haben wir, wenn die Bewegung des Cylinders mit dem Electromotor erzeugt wurde, jeden Papierstreifen, nach Fixirung der Linien, genau gemessen. Wir fanden im Allgemeinen zwischen den einzelnen Streifen nur Unterschiede von wenigen Deci-Millimetern.

Nachdem wir die Einrichtung unserer Apparate geschildert haben, müssen wir sehen, wie gross die Fehler sind, welche man mit denselben machen kann. Es ist dies unumgänglich nothwendig, da wir erstens die absolute Grösse der Zeit zu bestimmen und zweitens Versuche miteinander zu vergleichen haben, welche mit verschiedenen Vorrichtungen und zu verschiedenen Epochen vorgenommen wurden. Wir wollen die Betrachtungen über die Fehler unserer Vorrichtungen mit jenen über das Pendel beginnen, das wir benutzt haben.

Wir verwendeten jenes Pendeluhrwerk, welches von einem von

Um die Zeit einer Pendelschwingung zu bestimmen, haben wir folgende Methode angewendet.

Die beiden Klemmschrauben des Pendels wurden mittelst Leitungsdrähten mit einem Zählerwerk 2) und mit einer Batterie verbunden; in diesem Kreis wurde ausserdem eine kleine Unterbrechungsvorrichtung eingeschaltet.

Da in Innsbruck eine bessere Uhr nicht zu finden war, so mussten wir uns mit einer sehr guten Taschenuhr begnügen, welche die Secunden anzeigte. Der Secundenzeiger der Taschenuhr wurde mit der Brücke’schen oder mit einer Steinheil’schen Loupe beobachtet und in demselben Moment, in welchem der Zeiger über einen im Voraus bestimmten Theilstrich einer Secunde ging, wurde der Stromkreis geschlossen; bei jedem Pendelsschlag bewegte sich der Zeiger des elektrischen Zählerwerkes. Am Ende der im Voraus bestimmten Zeit, welche an der Taschenuhr abgelesen wurde, und sobald der Secundenzeiger wieder an demselben Theilstrich vorüberging, wurde die Stromleitung unterbrochen.

1) Della numerazione dei battiti cardiaci nelle ricerche fisiologiche. sul vago e sul simpatico; per F. P. Vlacovich Prof. di Anatomia nell’ università di Padova e M. Vintschgau Prof. di Fisiologia nell’ università di Innsbruck — Atti del r. Istituto veneto di scienze lettere ed arti. E. XVI. Serie III.

2) Ein ähnliches elektrisches Zählerwerk wurde von einem von uns bei einer anderen Gelegenheit erwähnt. Siehe Della numerazione dei battiti etc. per G. P. Vlacovich e M. Vintschgau.
Die Zahl der Minuten, während welcher die Beobachtung dauerte, mit 60 multiplicirt, müsste, wenn das Pendel richtig gestellt war, jener Zeit entsprechen, die man an dem Zählerwerk abgelesen, hatte. Wenn der Unterschied zwischen beiden Zahlen mehr als drei Secunden in der angenommenen Zeiteinheit betrug, wurde das Pendel und vorzugsweise die Stellung der beiden elastischen Federn regulirt, eine neue Zählung vorgenommen und dies so lange wiederholt, bis innerhalb eines verhältnissmässig langen Zeitraums (30 bis 60 Minuten) entweder kein Unterschied oder höchstens ein Unterschied von 2 bis 3 Secunden sich zeigte. Obwohl ein Fehler von 1 bis 3 Secunden innerhalb einer halben Stunde kaum einen Einfluss auf die Zeit einer einzigen Schwingung hat, so haben wir doch diesen Fehler in soweit berücksichtigt, dass wir in solchen Fällen die Schwingungsdauer des Pendels mit der nöthigen Correctur ausgerechnet und die so erhaltene Zahl für die Berechnung benutzt haben. Bei einem Fehler von 1 Secunde in 30 Minuten erhalten wir als Zeit für eine Schwingung 1,00056 oder 0,99944 Sec., je nachdem dieselbe in plus oder minus ist. — Bei einem Fehler von 3 Secunden in 30 Minuten erhalten wir als Zeit für eine Schwingung 1,00166 oder 0,99833, je nachdem dieselbe in plus oder minus ist. Man sieht wohl ein, dass im ersten Falle der Fehler leicht hätte vernachlässigt werden können und dass auch im zweiten derselbe gewiss nicht beträchtlich ist. Wir haben jedoch diesen Fehler jedesmal in Rechnung gebracht, auch in jenen Fällen, in welchen die Pendelschwingungen länger als eine halbe Stunde gezählt wurden.

Ein Fehler beim Ablesen der Secunden an der Taschenuhr war, nachdem wir uns dazu einer Loupe bedienten. nicht möglich, dagegen kann wohl ein Fehler von höchstens einer Secunde beim Schliessen des Stromes unterlaufen. In der That, denke man sich, dass das Pendel beinahe am Ende einer Schwingung sei in dem Moment, in welchem der Stromkreis geschlossen wird; in diesem Falle würde das Zählerwerk eine Secunde anzeigen, welche noch nicht verstrichen ist.

Dieser Fehler macht sich schon in der ersten Minute bemerkbar; er wurde von uns dadurch vermieden, dass, wenn schon in der ersten Minute das Zählerwerk statt 60, 61 Secunden anzeigte, die Beobachtung unterbrochen und von Neuem angefangen wurde.

Am Ende einer Beobachtung könnte ein Fehler von einer Secunde in minus dadurch entstehen, dass der Stromkreis in jenem
Moment unterbrochen wird, in welchem das Pendel im Begriffe steht, eine Schwingung zu vollenden. Dieser Fehler kann nicht vermieden werden, aber da es sich, wenn man auch blos für 30 Minuten gezählt hat, nur um 0,0005 einer Secunde handelt, so kann derselbe vernachlässigt werden.

Bei der Messung der Linien, welche den Pendelschwingungen angehören, fiel uns auf, dass dieselben nicht gleich lang waren.

Dieser Unterschied konnte von folgenden Ursachen abhängen:
1) von einer ungleichmässigen Bewegung des Cylinders durch das Uhrwerk;
2) von einer ungleichförmigen Bewegung des Pendels durch die Wirkung der beiden seitlichen Federn, oder endlich
3) von beiden Ursachen gleichzeitig;

Wir wollen die zweite Ursache der Ungleichheit der vom Pendel geschriebenen Linien näher untersuchen.

Es ist leicht denkbar, dass, obwohl die Schwingungszahl des Pendels innerhalb einer Minute oder auch einer bedeutend längeren Zeit mit der an der Taschenuhr abgelesenen Secundenzahl genau übereinstimmt, doch die einzelnen Schwingungen des Pendels untereinander durch die Wirkung der seitlichen elastischen Federn nicht gleichförmig seien, dass jedoch diese Ungleichheiten der Pendelschwingungen im Laufe der Zeit sich gegenseitig compensiren.

Um uns über die Gleich- oder Ungleichförmigkeit der Pendelschwingungen vollkommene Klarheit zu verschaffen, haben wir zuerst das Pendel nach der oben angeführten Methode durch 43 Minuten geprüft und erhielten 2681 Schwingungen, woraus sich berechnet, dass jede Schwingung 1,00038 Sec. dauerte. Nun verbanden wir die beiden Leitungsdrähte des Pendels mit einem electromagnetischen Schreibapparat und liessen die Pendelschwingungen auf einen berussten Cylinder schreiben, welcher mit der Hand in Rotation gesetzt wurde und bei seiner Drehung gleichzeitig längs der Axe sich bewegte.

Auf denselben Cylinder liessen wir gleichzeitig die Schwingungen einer Stimmgabel notiren.

Die erhaltenen Zahlen sind:

Die grösseren Zahlen entsprechen der freien Schwingung des Pendels, die kleineren dagegen jenen Zeittheilchen, in welchen das
Pendel die eine oder die andere Feder berührt. Während nun die freien Schwingungen des Pendels untereinander um höchstens eine Stimmgabelschwingung, also um $\frac{1}{148}$ bis $\frac{1}{149}$ (0,00675 Sec.—0,00671 Sec.) verschieden sind, beträgt der Unterschied für die Zeiten des Contactes mit den seitlichen Federn schon $\frac{2}{148}$ bis $\frac{3}{148}$ (0,01351 Sec.—0,01342 Sec.). Es gibt jedoch einen kleinen Kunstgriff, durch welchen gezeigt werden kann, dass die einzelnen vollen Pendelschwingungen untereinander um höchstens eine Stimmgabelschwingung, also um 0,00675 Sec.—0,00671 Sec. von einander verschieden sind; einen Kunstgriff, den wir auch bei Messung der vom Pendel gezeichneten Linien angewendet haben.

Wir haben nämlich die zwei kleinen Zahlen, welche eine grosse Zahl zwischen sich fassen, zusammenaddirt, die Summe durch 2 getheilt und die nun erhaltene Zahl zu der grossen Zahl addirt, die sich zwischen den zwei kleinen befindet; oder mit andern Worten, ie ganze Zeit, während welcher das Pendel mit den beiden elastischen Federn in Berührung bleibt, durch zwei getheilt, und die erhaltene Zeit zu jener Zeit addirt, welche der freien Bewegung des Pendels entspricht. Wollen wir diese Angaben durch ein Beispiel erläutern.

Lassen wir die erste grosse Zahl (126) bei Seite und verwenden die nun folgenden drei Zahlen 23—125—24; wir erhalten $\frac{23+24}{2}$

$+125=148\frac{1}{2}$. Nehmen wir die anderen drei Zahlen 24—126—22, so haben wir $\frac{24+22}{2}+126=149$. Wenn man nun so weiter für alle übrigen Zahlen fortfährt, so erhält man der Reihe nach $148\frac{1}{2}$—149—$148\frac{1}{2}$—$149\frac{1}{2}$—$148\frac{1}{2}$—$148\frac{1}{2}$.

Die Vergleichung dieser Zahlen beweist also, dass in dem gegebenen Falle zwischen den einzelnen Pendelschwingungen der grösste Unterschied $\frac{1}{148}$ bis $\frac{1}{149}$ Secunde sein kann, woraus hervorgeht, dass die vom Pendel gezeichneten Linien ziemlich genau einer Secunde entsprechen, sobald man die eben angeführte Vorsicht anwendet.

Da aber auch bei dieser Vorsicht die gezeichneten Linien untereinander nicht gleich sind, so folgt weiter, dass die Bewegung des Cylinders keine gleichförmige ist.

Um die Resultate, die wir nach der eben geschilderten Methode erhielten, zu controliren, haben wir in vielen Fällen den Electromotor von Helmholtz angewendet.

Die Erfahrung hat uns gezeigt und die Mittelzahlen, die wir
später mittheilen, werden es beweisen, dass man mit beiden Methoden ziemlich gut übereinstimmende Erfolge erhält, weshalb wir auch keinen Anstand nehmen, die Resultate aus beiden Methoden zu verwerthen.

Wir haben nun zu untersuchen, welcher Fehler mit dem Electro-motor gemacht werden kann.

Wir haben früher gesagt, dass die Cylindergeschwindigkeit im Verlaufe einer Versuchsreihe in Folge von verschiedenen Umständen sich änderte; wir waren deshalb genöthigt, mehrmale im Verlaufe einer Versuchsreihe, welche manchmal eine volle Stunde in Anspruch nahm, die Cylindergeschwindigkeit zu bestimmen.

In jenen Fällen, in welchen die Cylindergeschwindigkeit sich geändert hatte, hätte man entweder die Versuche verwerfen oder auf ein Mittel denken müssen, durch welches der Fehler verringert würde.

Von grösserer Bedeutung und nicht zu vernachlässigten sind die Fehler, die wir nun betrachten werden.

Bekanntlich verstreicht nach Schluss einer Kette, deren Leitungsdraht um einen Eisenkern geführt ist, eine wohl messbare Zeit, bis
in derselben der Magnetismus jene Intensität erreicht hat, welche
notwendig ist, um den Anker anzuziehen.

Die Grösse des Zeittheilchens zwischen Schluss der Kette und
beginnender Bewegung des Ankers hängt ab von der Stromintensität,
die angewendet wird, von der Entfernung des Ankers vom Eisen-
kern, von der Reibung an der Axe des Ankers, von der Spannung
der Abreissfeder und endlich von der Reibung des schreibenden
Stiftes, wenn derselbe an der Papierfläche anliegt.

Wir haben geglaubt, dass es für unseren speziellen Fall un-
nöthig sei, die einzelnen Factoren besonders zu untersuchen.

Die zwei Factoren, die bei unseren Versuchen am meisten
veränderlich waren, sind die Spannung der Abreissfeder und die
Reibung der Spitze gegen die Cylinderoberfläche. Damit sich die
Stromintensität bei allen Versuchen möglichst gleich bleibe, haben
wir getrachtet, immer dieselbe Anzahl von Elementen zu gebrauchen,
ebenso haben wir dem Anker eine Entfernung vom Eisenkern
gegeben, welche hinreichte, dass beim zweiten Apparate die
Knickung der Linie genug markirt erschien, während beim ersten
Apparate die schreibende Spitze kaum 1 Mm. von der Cylindero-
fläche entfernt blieb.

Bei den folgenden Bestimmungen haben wir also jene Zeit
ermittelt, welche vom Augenblick, in welchem der Strom geschlossen
wurde, bis zu jenem, in welchem der Anker anfing sich zu bewegen,
verstreicht. Dies bezüglich des zweiten Apparates.

Bezüglich des ersten Apparates haben wir jene Zeit ermittelt,
welche von jenem Augenblick, in welchem der Strom geschlossen
wurde, bis zu jenem, in welchem sich die Spitze an den Cylinder
anlegt, verstreicht.

Die Bestimmungsmethode war in beiden Fällen ganz gleich.
An der Welle, welche auf der Axe des Cylinders befestigt war,
liessen wir einen kleinen Zahn anbringen. Wir liessen ausserdem
eine kleine Wippe construiren, welche sich mit der Hand in hori-
zontaler Richtung sanft verschieben liess. Das kleine Brettcchen
trug zwei Säulen, durch welche mittelest kleiner Schrauben und
Gegenmutter ein kleiner, mit einer geringen Reibung beweglicher
Hebel getragen wurde; der Arm dieses Hebels, welcher gegen die
Welle gerichtet ist, ist kurz, der entgegengesetzte etwas länger und
so schwer, dass die an seiner unteren Seite befestigte Platinspitze
sicher auf einer darunter gelegenen Platinspitze aufliegen kann.
Versuche über die Reactionszeit einer Geschmacksempfindung.

Sobald also der Zahn der Welle gegen den kurzen Arm des Hebels stiess, wurde die Berührung an der vorderen Seite aufgehoben und dadurch eine elektrische Leitung unterbrochen.

Damit aber durch das Zurücksinken des Hebels der Contact sich nicht wieder herstelle, wurden die Axenschrauben angezogen und ausserdem folgender Kunstgriff getroffen.

In der Nähe des kurzen Hebels wurde eine kleine Metallfeder befestigt, welche einen kleinen Vorsprung hatte. Diese Feder drückte gegen einen Seitenheil des kurzen Armes; in demselben Moment, in welchem der kurze Hebelarm niedergedrückt wurde, wurde auch die kleine Seitenfeder seitwärts gedrückt, so dass der Hebelarm beim Zurücksinken des Hebels von dem Zahn der Feder aufgehalten und verhindert wurde, in die horizontale Lage sich zu begeben.

Um die früher angegebene Zeit zu messen, verfahren wir folgendermassen (siehe die schematische Anordnung in Fig. 5):

Die Hauptleitung ist EDSME, wenn der Schlüssel DS geschlossen und der Hebel H offen ist. Ist dagegen unsere Unterbrechungsvorrichtung H geschlossen, dann bildet dieselbe eine gute Nebenleitung und der Strom ergiesst sich also bloss durch den Kreis ED SHE.

Beim ersten Apparate war der Gang eines Versuches folgender: Wir drehten den Cylinder mit der Hand sehr langsam; in jenem Augenblick, in welchem der Zahn an die Unterbrechungsvorrichtung stiess, wurde die Nebenleitung unterbrochen und der ganze Strom ergoss sich durch die Spirale des Electromagnetes; der Anker legte sich an den Cylinder an und zeichnete eine gerade horizontale Linie, deren Anfangspunkt genau jenem Zeitpunkt entspricht, in welchem die schreibende Spitze sich an den Cylinder anlegte. Der Cylinder wurde längs seiner Axe um 1 Mm. ungefähr verschoben, die Unterbrechungsvorrichtung etwas zurückgezogen und dann der

Beim zweiten Apparate verfuhrn wir auf dieselbe Weise, nur dass jetzt statt einer horizontalen eine gerade senkrechte Anfangslinie gezeichnet wurde, dass wir nicht den Cylinder längs der Axe zu verschieben brauchten, und dass das zweite Mal der Anfang der Ankerbewegung in jenem Augenblick stattfand, in welchem die gerade horizontale Linie in die krumme überging. Die Entfernung zwischen diesem Punkte und der senkrechten Linie entspricht der Verzögerung der Ankerbewegung.

Wir glauben, dass es überflüssig sei, die einzeln erhaltenen Zahlen mitzutheilen und dass folgende Angaben genügen werden.

 Bezüglich des ersten Apparates ist zu erwähnen, dass die Reibung der schreibenden Spitze gleich Null ist, da dieselbe nicht an den Cylinder anlag; dagegen aber braucht die Spitze, obwohl ihre Entfernung vom Cylinder eine sehr geringe ist, doch eine kleine Zeit, an demselben sich anzulegen. In diesem Falle wird also die Verzögerung aus zwei Zeittheilchen zusammengesetzt: nämlich aus der Zeit für das Entstehen des Magnetismus plus der Zeit für die Bewegung der schreibenden Spitze. Wir haben beide Zeittheilen zusammen nach der früher geschilderten Methode gemessen und erhielten als Mittel 0,02309 Sec.

Mit dem zweiten Apparate, welcher bedeutend leichter arbeitete, und bei welchem die schreibende Spitze an den Cylinder anlag, bei welchem also die wenn auch geringe Reibung der Spitze zu überwinden war, erhielten wir als Mittel 0,00813. Diese beiden Zahlen lassen sich nicht ohne Weiteres als Fehler der Apparate ansehen, da man noch einen anderen Umstand berücksichtigen muss.

Mit dem Aufhören des Stromes verschwindet der Magnetismus nicht augenblicklich, der Anker verlässt den Eisenkern nur dann, wenn der Magnetismus so abgeschwächt ist, dass die Abreissfeder ihre Kraft zu entwickeln im Stande ist; und auch dann, wenn die in allen ähnlichen Apparaten angewendete Vorrichtung vorhanden
ist, dass der Anker sich nicht an den Eisenkern anlegen kann, muss nach dem Aufhören des magnetisierenden Stromes eine kleine Zeit verstreichen, bis der Anker anfängt sich vom Kern zu entfernen.

Es musste also auch diese kleine Zeit gemessen werden, da die gezeichnete Linie um eben diese Zeit länger ausfallen muss. Die Bestimmung dieses Zeittheilchens wurde folgendermassen vorgenommen: Die Anordnung der Apparate ist in Fig. 6 schematisch dargestellt. Aus derselben ersieht man nun, dass unsere Unterbrechungsvorrichtung H gegenwärtig nicht als Nebenleitung, sondern in die Hauptleitung eingeschaltet ist, dass gegenwärtig überhaupt nur eine einzige Leitung vorhanden ist.

Der Gang eines Versuches ist folgender: Der Cylinder wird langsam mit der Hand gedreht; sobald der Zahn sehr nahe der Wippe sich befindet, wird der Strom geschlossen und es wird somit auf den Cylinderr eine horizontale Linie gezeichnet; in dem Moment, in welchem der Zahn gegen die Unterbrechungsvorrichtung stößt, hört der Strom auf und der Anker verlässt den Eisenkern, wodurch bei Anwendung des ersten Apparates die horizontale Linie aufhört, bei Anwendung des zweiten dagegen eine senkrechte Linie gezeichnet wird. Im ersten Falle wird nun der Cylnder um seine Längssachse um 1 Mm. verschoben, damit die zweite Linie sehr nahe der ersten sich befindet.

Nun wird der Hebel der Unterbrechungsvorrichtung niedergedrückt, letztere von der Welle etwas entfernt und der Cylinderr in Bewegung gesetzt; sobald dieser eine regelmässige Geschwindigkeit erreicht hat, wird der Strom geschlossen und gleich darauf die Wippe der Welle genähert, so dass der Zahn den kleinen Hebel niederdücken könnte.

Der Unterschied zwischen den Endpunkten der beiden horizon-
talen Linien — wenn man den ersten Apparat angewendet hat, — oder die Entfernung zwischen der senkrechten Linie und dem Punkt, wo die horizontale Linie sich zu heben anschickt, entsprechen der Zeit, welche die Abreissfeder braucht, um den Anker vom Eisenkern zu entfernen.

Wir haben mit dem ersten Apparates mehrere Bestimmungen vorgenommen und das Mittel aus denselben ist 0,00527 Sec.

Da wir aber vorher gefunden haben, dass beim Einbrechen des Stromes der Anker erst nach Verstreichung von 0,02309 Sec. sich in Bewegung setzt, so folgt, dass bei Anwendung des ersten Appa-
rates an der gemessenen und berechneten Linie der Reaktionszeit folgende Correctur angebracht werden muss: 0,02309 — 0,00527 = 0,01782. — Wir haben auch diese Correctur angebracht, jedoch mit Vernachlässigung der zwei letzten Decimalstellen. Ähnliche Bestimmungen der Verzögerung der Ankerbewegung nach dem Verschwinden des Magnetismus haben wir auch beim ersten Apparate vorgenommen. Als Mittel mehrerer Bestimmungen erhielten wir 0,00348, so dass die Correctur bei Anwendung des zweiten Apparates 0,00813 — 0,00348 = 0,00465 beträgt, welche, wie man sieht, sehr klein ist, so dass dieselbe bei sehr vielen Versuchen sogar vernachlässigt werden könnte.

Wir haben endlich zu erwähnen, auf welche Weise die gezeichneten Linien gemessen wurden.

Bei allen Messungen bedienten wir uns eines Stangenzirkels, dessen Spitzen sehr fein ausgezogen waren und welcher mit Nonius versehen, gestattete, 1/10 Mm. mit Sicherheit abzulesen. Die Messung aller kurzen Linien wurde unter einer Loupe vorgenommen, so dass jener Fehler, welcher in Folge einer etwas ungenauen Application des Stangenzirkels an deren Enden möglich ist, nicht grösser als 1/10 Mm. sein kann. Wenn die zu messende Linie an den beiden Endpunkten eine etwas gedehnte Krümmung hat, dann ist es in solchen Fällen ungemein schwierig, den richtigen Punkt zu treffen, in welchem die gerade Linie in die krumme übergeht.

In allen diesen Fällen haben wir unter der Loupe mit einer feinen Nadel eine senkrechte Linie gezogen, welche jenen Punkt traf, in welchem die krumme Linie begann. Blieb dennoch noch ein Zweifel, so wurde neben der ersten eine zweite senkrechte Linie gezogen und es war uns jetzt möglich zu beurtheilen, ob die zwischen den beiden senkrechten liegende Linie eine gerade oder eine krumme war.

Wir glauben uns berechtigt anzunehmen, dass der Fehler der Messungen sowohl in Folge der Anlegung der beiden Spitzen des Stangenzirkels, als auch in Folge der Krümmung der Linie sehr klein ist und gewiss in keinem Falle 2/10 Mm. übersteigt. Dieser Fehler, welcher nicht zu ermitteln ist, kann bald in einem, bald in dem andern Sinne ausfallen; derselbe kann nur für jene Linien eine Bedeutung haben, die sehr kurz sind. Dieser Fehler lässt sich nur dadurch verkleinern, dass man die grösstmöglichste Genauigkeit bei Messung der Linien anwendet.
Angewendete schmeckbare Substanzen.

Wir haben für unsere Versuche nur vier Stoffe gewählt, welche als Vertreter der vier Hauptgeschmacke betrachtet werden, nämlich des Bitteren, des Süssens, des Salzigen und des Sauren.

Obwohl die Wahrnehmung des Sauren von einigen Physiologen nicht als eine ganz reine Geschmacksempfindung betrachtet wird, da auch Gefühlsnerven mit an der Sensation des Sauren Theil haben können, so glaubten wir doch, nicht versäumen zu dürfen, dasselbe in den Kreis unserer Untersuchungen zu ziehen. Bei der Wahl der schmeckbaren Substanzen haben wir selbstverständlich alle jene vermieden, welche flüchtig sind und deshalb auf das Geruchsorgan einwirken können.

Als Repräsentant des Süssens bedienten wir uns einer Zuckerslösung. Wir bereiteten uns eine dick syrupöse, also vollständig gesättigte Lösung. Da aber die dickflüssige Beschaffenheit derselben verhindert hätte, dass dieselbe bis zu den Geschmacksbechern rasch genug gelange, und da wir andererseits darauf sehen mussten, eine sehr concentrirte Lösung zu haben, damit die Empfindung sehr deutlich auch auf einer sehr beschränkten Stelle der Zunge entstehe, so haben wir im Beginne einer jeden Versuchsreihe einige Tropfen der dickflüssigen Lösung in ein Glasschälchen gegossen und mit ein wenig Wasser so weit verdünnt, dass dieselbe leicht flüssig, aber dabei der süße Geschmack noch sehr intensiv war, so dass bei dem Vorversuche eine ganz scharfe und prägnante Geschmacksempfindung entstand.

Als Repräsentant des Salzigen benutzten wir eine gesättigte Kochsalzlösung.

Als Repräsentant des Sauren endlich wählten wir manchmal eine verdünnte Lösung von Phosphorsäure, manchmal eine verdünnte Lösung von Citronensäure. Bei der Bereitung dieser Lösung mussten wir uns lediglich an die subjective Empfindung halten; es wurde deshalb die angewendete Säure so weit mit Wasser verdünnt, dass die Lösung noch intensiv, jedoch nicht unangenehm sauer schmeckte. Da die Concentration der süßen und der sauren Lösung bloss nach
der subjectiven Empfindung gewählt wurde, so haben wir eine genaue Bezeichnung der Concentration als überflüssig erachtet.

An der Zungenspitze lassen sich mit den übrigen drei Substanzen viele Versuche hintereinander anstellen, ohne besorgen zu müssen, dass irgend eine Störung eintrete, sobald man die folgenden Vorsichten beobachtet:

Der Beobachtete muss sich vor dem Beginn jeder Versuchsreihe den Mund mit lauwarmem Wasser gut ausspülen. Nach jedem einzelnen Versuche wird das Ausspülen des Mundes mit lauwarmem Wasser so oft wiederholt, bis jede Geschmacksempfindung vollständig verschwunden ist.

So lange man die schmeckbaren Substanzen auf die Zungenspitze appliziert, genügt es, den Mund ein oder zwei Mal mit lauwarmem Wasser auszuspülen, um den Nachgeschmack des Säuren, des Salzigen und des Süßens zu entfernen; ganz anders verhält es sich mit dem Bitteren des Chinins, in diesem Falle muss das Ausspülen der Mundöhle sehr rasch nach Beendigung des Versuches vorgenommen werden, damit die Chinin-Lösung sich nicht ausbreite, denn sonst dauert der Nachgeschmack ziemlich lang und nur ein sehr fleißiges Ausspülen der Mundöhle kann ihn, meist erst nach einigen Minuten, vollständig entfernen.

Sobald man aber die Versuche auf dem Zungenrücken in der Gegend der Papillae vallatae vornimmt, treten mehr Schwierigkeiten entgegen. Die erste ist, dass nicht jedes Individuum im Stande ist, den Mund so stark zu öffnen, als eben nöthig ist, um ohne weitere Hülfe eine oder die andere Papilla vallata zu sehen.

Die Anwendung der gewöhnlichen Mittel, um den Zungenrücken zu sehen, haben wir absichtlich vermieden, da die Handhabung der
in den früheren Seiten beschriebenen Apparate und die Application der schmeckbaren Substanzen auf die gewünschte Stelle des Zungenrückens ohnehin die größte Aufmerksamkeit von Seite des Experimentators erfordern und es wäre gewiss schwer gewesen, die Versuche vorzunehmen, sobald wir unsere Apparate noch mehr complicirt hätten. Wir haben deshalb nur bei solchen Individuen Versuche vorgenommen, die im Stande waren so weit den Mund zu öffnen, dass man hinreichend deutlich eine oder die andere Papilla vallata sehen konnte.

Aber auch in solchen Fällen ist das Experimentieren nicht leicht, da man mit dem Instrumente nicht herumtasten darf und die Application der schmeckbaren Substanz eine sehr rasche sein muss; so ist es nicht immer möglich, die im Voraus sich ausgesuchte Stelle zu treffen, es müssen daher viele Versuche als missglückt betrachtet werden, obwohl diese scheinbar missglückten Versuche den Beweis liefern können, wie dies später noch weiter erörtert werden soll, dass die anderen Versuche richtig sind und nur gewisse Theile der Zungenfläche für die Geschmacks-Perception in Betracht kommen.

Das Experimentiren am Zungenrücken hat noch andere kleine Uebelstände, welche verbieten, die Versuche lange fortzusetzen.

Das starke Oeffnen der Mundöhle ist anstrengend und der Beobachtete ist nach einiger Zeit so ermüdet, dass man nicht verlangen kann, dass seine Aufmerksamkeit noch eine intensive sei; ausserdem erzeugt das häufige Berühren des Zungenrückens mit dem Pinsel eine mechanische Reizung desselben, welche ein unangenehmes Gefühl zur Folge hat, so dass wieder die Wahrnehmung des Geschmacks etwas erschwert wird. Zuletzt sei noch erwähnt, dass nach Application schmeckbarer Substanzen auf die umwallten Papillen ein wiederholtes Ausspülen der Mundöhle mit Wasser unumgänglich nothwendig ist, um den Nachgeschmack zu entfernen, welcher wieder besonders bei Chinin ziemlich lang andauert.

Es sei hier endlich ausdrücklich bemerkt, dass jede Täuschung zwischen einer Geschmacks- und einer Tastempfindung sowohl auf der Zungenspitze als auf dem Zungenrücken als vollständig ausgeschlossen zu betrachten ist.

Zu den Versuchen wurden bloss physiologisch gebildete Individuen verwendet und da dieselben ein Interesse daran hatten, so ist in keinem Falle an eine absichtliche Täuschung zu denken.

Die Versuche selbst sprechen gegen jede willkürliche oder
unwillkürliche Täuschung. In der That dauerte in allen jenen Fällen, in welchen weder Papillae fungiformes noch Papillae vallatae getroffen wurden, die physiologische Zeit ungemein lang, manchmal länger als eine Secunde, ja sogar mehrere Secunden.

Um endlich jede mögliche Täuschung ausschliessen, haben wir bei einigen Individuen die Zunge entweder mit dem Inductionsschlag gereizt oder einfach mit dem Pinsel berührt und die Reactionszeit der elektrischen oder der mechanischen Reizung berechnet. Wir haben ferner die Versuche in der Art vorgenommen, dass das betreffende Individuum nicht wusste, ob man bloss destillirtes Wasser oder eine im Voraus bestimmte schmeckbare Substanz appliciren werde und endlich wurden die Versuche so modifizirt, dass zwei schmeckbare Substanzen im Voraus bestimmt wurden, aber das betreffende Individuum nicht wusste, welche von den beiden Substanzen applicirt werden und nach stattgebahnter Empfindung dasselbe den Stromkreis je nach dem wahrgenommenen Geschmack mit der rechten oder mit der linken Hand öffnen musste.

Im Folgenden wollen wir die Versuche über die Application der schmeckbaren Substanzen an der Zungenspitze bei verschiedenen Individuen schildern und in der nächsten Abhandlung werden wir die übrigen Resultate mittheilen.

Reactionszeit einer Geschmacksempfindung an der Zungenspitze.

Die zahlreichsten Versuche betreffend die Betupfung der Zungenspitze mit den vorhin genannten schmeckbaren Substanzen wurde von uns bei Herrn H. vorgenommen. Seine Zungenspitze eignete sich besonders zu diesen Versuchen, da dieselbe für Geschmäcke sich sehr empfindlich zeigte.

Bei einer Versuchsreihe, in welcher Herr H. nicht wusste, welche von den vier oben erwähnten schmeckbaren Substanzen auf die Zungenspitze applicirt werden würde, und bei welcher er mit dem Finger ein im Voraus verabredetes Zeichen über die stattgebahnte Empfindung geben musste, kam es auch nicht ein einzigesmal vor, dass er über die applicirte Substanz sich getäuscht hätte.

Wir glauben dies ausdrücklich hier erwähnen zu sollen, da uns der Fall vorkam, dass einer der Herren mit der Zungenspitze allein nicht im Stande war, die einzelnen schmeckbaren Substanzen von einander zu unterscheiden, so dass wir mit ihm wohl Versuche mittelst
Berührung und elektrischer Reizung der Zungen- und Fingerspitze, aber keine Geschmacksvorsuche vornehmen konnten.

Alle die Betrachtungen, die wir im Folgenden vornehmen werden, beziehen sich einzig und allein, wenn nicht das Gegenheil gesagt wird, auf die Zungenspitze, und zwar in einer Ausdehnung von höchstens ein Quadrat-Cent.; die untere Fläche der Zungenspitze ist jedoch im Allgemeinen ausgeschlossen, wenn sie aber in das Bereich der Untersuchung gezogen wurde, so ist es ebenfalls ausdrücklich angegeben.

Es sei hier auch erwähnt, dass es für alle diese Versuche von grossem Vorteil ist, wenn der Beobachtete im Stande ist, die Zunge vollkommen ruhig zu halten, wie dies bei Herrn H. der Fall war, da dadurch leichter und sicherer die gewünschte Stelle berührt werden kann.

Als Endresultat der Versuche, die wir an der Zungenspitze des Herrn H. mit schmeckbaren Substanzen vornahmen, ergibt sich, dass die Reactionszeiten für die vier Hauptgeschmacke folgende sind:

<table>
<thead>
<tr>
<th>Geschmack</th>
<th>Reactionszeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlornatrium</td>
<td>0,1698</td>
</tr>
<tr>
<td>Zucker</td>
<td>0,1689</td>
</tr>
<tr>
<td>Säure</td>
<td>0,1676</td>
</tr>
<tr>
<td>Chinin</td>
<td>0,2951</td>
</tr>
</tbody>
</table>

Die eben mitgetheilten Zahlen zeigen ganz deutlich, dass die Reactionszeit für die bittere Empfindung des Chinins auf der Zungenspitze die längste ist, während sie für die anderen drei Geschmacke bedeutend kürzer ausfällt. Wir glauben, dass über dieses Resultat gar kein Zweifel obwaltung kann; fraglich könnte wohl sein, ob die kleinen Unterschiede in den Reactionszeiten der anderen drei Empfindungen richtig sind und ob die beobachteten kleinen Zeitunterschiede nicht innerhalb der Grenzen der Versuchfehler fallen.

Bevor wir auf unsere Versuche näher eingehen, sei es uns gestattet, noch folgende Zusammenstellung anzuführen:

<table>
<thead>
<tr>
<th>Tabelle a.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlornatrium</td>
</tr>
<tr>
<td>Zucker</td>
</tr>
<tr>
<td>Säure</td>
</tr>
</tbody>
</table>

1) Wenn man auch Reihe 8 und 9 (siehe Tab. IV) vernachlässigen will, so erhält man doch noch immer als Gesamtmittel 0,2196, welches, gegenüber dem im Texte angegebenen Mittel um 0,0155 kleiner ist.
Wir haben in der vorstehenden Tabelle a in der ersten vertikalcn und in der ersten horizontalen Reihe die einzelnen schmeckbaren Substanzen, die wir anwendeten, notirt.

In den einzelnen Rubriken ist angegeben, um wie viel später die stattgebahnte Erregung signalisiert wurde je nach der Substanz, die man angewendet hat; als Grundzeit haben wir jene, die wir für das Kochsalz ermittelten, benutzt, und man sieht, dass z. B. die Empfindung des Süßens um 0,0041 Sec. später signalisiert wurde, als jene des Chinin.

Man könnte vielleicht einwenden, dass unsere Reihe willkürlich ist, da wir die oben angeführten Zahlen nach Auslassung nicht bloss aller zweifelhafter Versuche, sondern auch nach Auslassung jener Versuchsreihen, die uns, sei es durch die grossen, sei es durch die kleineren Mittelzahlen, die wir erhielten, als verdächtig erschienen, berechnet haben. Wir glauben deshalb, dass es nicht überflüssig sei, auch die Mittel aus der Gesammtzahl der Versuche anzuführen:

Chlornatrium	0,1737
Zucker	0,1846
Säure	0,1883
Chinin	0,2581

Auch diese Gesammtmittel zeigen dieselbe Reihenfolge, wie wir dieselbe vorher angeführt haben. Bei Betrachtung derselben geht hervor, dass möglicherweise die absoluten Zahlen, die wir vorher angaben, nicht richtig sein könnten, die Verhältnisszahlen aber, nämlich der Unterschied zwischen der Signalisirung der verschiedenen schmeckbaren Substanzen bei Herrn H. sich gewiss nicht viel von der Wahrheit entfernen. Wir werden jedoch recht bald sehen, dass nach unserem Dafürhalten auch die absoluten Zahlen, die wir Seite 29 angeführt haben, richtig sein müssen.

Wir haben ebenfalls in folgender Tabelle b die Unterschiede zwischen den einzelnen rohen Gesammtmitteln zusammengestellt 1).

Tabelle b.

<table>
<thead>
<tr>
<th>Zucker</th>
<th>Säure</th>
<th>Chinin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlornatrium</td>
<td>0,0108</td>
<td>0,0145</td>
</tr>
<tr>
<td>Zucker</td>
<td>-</td>
<td>0,0087</td>
</tr>
<tr>
<td>Säure</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

1) Man erkennt also gleich, dass auch diese kleine Tabelle genau nach demselben Grundsatz wie die frühere entworfen ist.
Versuche über die Reaktionszeit einer Geschmacksempfindung.

Wenn man diese zweite Tabelle mit der ersten vergleicht, wird augenblicklich hervortreten, dass mit nur zwei Ausnahmen die Uebereinstimmung in dem Unterschiede eine ziemlich grosse ist, so dass die von uns aufgestellte Reihe bezüglich der Raschheit, mit welcher die einzelnen Empfindungen signalisirt werden, sich gewiss von der Wahrheit nicht entfernt, ja wir werden später bei Besprechung der Versuche an Dr. D. dieselbe Reihenfolge treffen.

Bevor wir unsere Versuche näher besprechen, wollen wir hier noch folgende Bemerkungen einschalten. Wir haben geglaubt, dass in vielen Fällen es ganz überflüssig sei, alle unsere Versuchs-Protocolle zu veröffentlichen. Die Mittheilung derselben hätte das Volumen dieser Schrift ungemäen vergrössert und deshalb schlingen wir einen andern Weg ein; wir stellten nämlich in einigen Tabellen die Mittel der einzelnen Versuchsreihen übersichtlich zusammen mit gleichzeitiger Angabe der angewendeten Motoren, des Tages, an welchem die einzelnen Versuchsreihen vorgenommen wurden und der Zahl der Versuche, die zur Berechnung des Mittels verwendet wurden. Im Texte dagegen berichten wir über die Fehlergrenzen der gesammten Versuche. Jeder, welcher Versuche über die Reaktionszeit vornimmt, macht recht bald die Erfahrung, dass die erhaltenen Zahlen ziemlich schwankend sind, obwohl alle äusseren Versuchsbedingungen vollkommen gleich sind. In einigen Fällen kann der Beobachtete mit Sicherheit angeben, ob er nach seinem Ermessen den zeitmessenden Strom früher oder später, als der wahrgenommene Erregung entspricht, unterbrochen hat. In einigen Fällen findet man nämlich bei der Berechnung, dass doch die Reaktionszeit nicht verschieden ist von der, welche in jenen Fällen berechnet ist, in denen der Beobachtete angab, genau den Strom unterbrochen zu haben. Es kommt aber auch vor, dass, wenn auch der Beobachtete angibt, genau den Strom unterbrochen zu haben, doch bei der Berechnung eine Reaktionszeit gefunden wird, welche verhältnissmässig zu gross oder auch zu klein ist. Man kann also im Zweifel sein, welche Zahlen für die Berechnung des Mittels zu verwenden seien. Es war anfangs unsere Idee, diese Fehler durch eine sehr grosse Anzahl von Versuchen zu verringern; wir mussten aber von derselben abhören, da das Material so angewachsen wäre, dass nicht blos die Zahlen kaum zu bewältigen, sondern auch eine sehr lange Zeit zur Vornahme der Versuche und zur Ausmessung der Linien nothwendig gewesen wäre.
M. v. Vintschgau und J. Höngischmied:

Wir haben deshalb aus jeder Versuchsreihe das Mittel berechnet, ohne irgend eine Zahl (Beobachtungsresultat) unberücksichtigt zu lassen, dann berechneten wir ein neues Mittel nach Auslassung aller jener Zahlen, welche entweder nach der Angabe des Beobachteten unverlässiglich waren, oder von denen es durch ihre unverhältnismässige Grösse oder Kleinheit im Vergleich zu den übrigen in derselben Versuchsreihe enthaltenen wahrscheinlich erschien, dass sie nicht richtig seien.

Es könnte Jemand den Einwurf machen, dass das Mittel aus allen Versuchen ohne Ausnahme gar keinen Werth hat. Wir geben zu, dass dieses Mittel einen sehr geringen Werth besitzt und wir haben dasselbe auch nur mitgetheilt, um zu zeigen, in wie weit die zweifelhaften Versuche das Mittel beeinträchtigen. Da wir, wie gesagt, von der ausführlichen Veröffentlichung der meisten Protokolle abstehen mussten, so geben die Fehlergrenzen der Gesammtzahl der Versuche und das aus diesen berechnete Mittel und die Fehlergrenzen der vollkommen gut gelungenen Versuche und deren bezeichnetes Mittel ein, wir möchten sagen verkleinertes Bild der gesammten Versuchsreihen.

Wir wollen nun die mit den einzelnen Substanzen vorgenommenen Versuche näher betrachten.

Chlornatrium.

In der Tabelle I haben wir die Resultate der einzelnen Versuchsreihen für die Betupfung der Zungenspitze mit Chlornatrium zusammengestellt¹). Aus dieser kleinen Tabelle ersieht man, dass nach Ausschliessung der Reihe 41²) in allen übrigen

2) Wir sind nicht in der Lage, anzugeben, warum die Reihe 41 uns so hohe Zahlen liefernte, dass deren Mittel um ein Bedeutendes das Mittel aller übrigen Reihen übersteigt.

Es wäre vielleicht auf zwei Möglichkeiten zu denken. Erstens, dass wir in der Handhabung des Motors noch nicht so eingeübt waren, da wir eben im Dezember 1873 angfangen haben, den Motor zu verwenden. Für diese Vermuthung würde die Thatsache sprechen, dass auch bei den Versuchen mit Zucker die Reihe 42, bei welcher auch der Motor angewendet wurde, sehr hohe Zahlen lieferade. Dagegen aber sprechen die Reihe 44 mit
Versuche über die Reactionszeit einer Geschmacksempfindung.

Versuchsreihen die Mittel nicht sehr verschieden von einander sind; sei es nun, dass man blos jene Mittel berücksichtigt, die ohne Auslassung der zweifelhaften Versuche (Stab 5) erhalten wurden, oder jene Mittel betrachtet, welche nach Auslassung der höchst wahrscheinlich fehlerhaften Versuche berechnet wurden (Stab 7). Der grösste Unterschied zwischen den partiellen Mitteln des Stabes 5 beträgt 0,0285 Sec. 1) zwischen jenen des Stabes 7 = 0,0209 Sec. Wir haben bei Herrn H. 78 Versuche mit Chlornatrium vorgenommen; die Fehlerngrenzen, die sich hierbei ergaben, sind 0,355 — 0,076, der Unterschied 0,2798). Es sind dies wohl sehr beträchtliche Fehlerngrenzen, doch ist zu bedenken, dass wir in diesem Falle alle Versuche ohne Ausnahme berücksichtigt haben, während, wenn wir die Fehlerngrenzen jener Versuche betrachten, welche zur Be- rechnung der Mittel des Stabes 7 gedient haben, wir 0,285—0,115, Unterschied 0,150 erhalten; wenn wir endlich auch Reihe 41 auslassen, so haben wir 0,197 — 0,115 = 0,082, nämlich in 57 Versuchen blos eine Schwankung 0,082, gewiss ein Resultat, welches als befriedigend angesehen werden kann und welches uns berechtigt, anzunehmen, dass an der Zungenspitze des Herrn H. für Chlornatrium die Reactionszeit von 0,1598 die richtige sei8). Wir können endlich zur

Säure und die Reihe 43 mit Chinin, welche ebenfalls an denselben Tagen bei Anwendung des Motors vorgenommen wurden und doch die Mittel derselben niemlich gut mit den Mitteln der übrigen Reihen übereinstimmen.

Die andere Möglichkeit ist, dass die Beschaffenheit der Zunge für Ge- schmacksempfindungen an den verschiedenen Tagen nicht gleich sei. Diese letzte Möglichkeit ist die wahrscheinlichste, da die tägliche Erfahrung zeigt, dass wir nicht immer gleich gut mit der Zungenspitze schmecken und die Betrachtung aller unserer Versuche ganz deutlich ergiebt, dass an den ver- schiedenem Tagen verschiedene Resultate erhalten werden.

1) Alle die Zahlen sowohl in den Tabellen als auch im Texte sind schon mit der nöthigen Correctur versehen.

2) Wir werden bei Angabe der Fehlerngrenze die vierte Decimalstelle vernachlässigen, da dieselbe ohnehin eine sehr geringe Bedeutung hat.

E. Pflüger, Archiv f. Physiologie. Bd. X.

3
Bekräftigung der Richtigkeit dieser Zahl noch anführen, dass unter den 57 Versuchen, aus welchen die genannte Zahl berechnet wurde, nicht weniger als 39, also zwei Drittel der Versuche innerhalb der Grenzen 0,197—0,150 sich befinden.

Zucker.

Aus Tabelle II ersieht man, dass die Mittel der verschiedenen Reihen, sobald man Reihe 42 auslässt, nicht sehr verschieden von einander sind. Der größte Unterschied in den partiellen Mitteln des Stabes 5 beträgt 0,0333, in jenen des Stabes 7 0,0210.

Wir haben bei Herrn H. 83 Versuche mit Zuckerlösung vorgenommen; die Fehlervergrenzen, welche sich hierbei ergaben, sind 0,388 — 0,117 = 0,271. Lassen wir aber die zweifelhaften Versuche bei Seite, dann sind die Fehlervorgenzen 0,237 — 0,117 = 0,120 und endlich bei Auslassung der Reihe 42 0,217 — 0,117 = 0,100. Die Schwankung ist also etwas grösser als beim Chloratium. Wir haben zur Berechnung des Mittels 0,1639 56 Versuche benutzt und unter diesen finden wir nicht weniger als 45, also über drei Viertel innerhalb der Grenzen 0,200 und 0,150.

Säure.

Bei Betrachtung der Tabelle III ersieht man, dass wenn man Reihe 28 auslässt, welche verhältnismässig sehr hohe Zahlen ausweist, der Unterschied in den partiellen Mitteln des Stabes 5 0,0275 und jener in den partiellen Mitteln des Stabes 7 0,0292 beträgt.

Wir haben mit Säuren im Ganzen 88 Versuche vorgenommen und dabei die Fehlervorgenzen 0,331 — 0,107 = 0,224 gefunden. Bei Auslassung der zweifelhaften Versuche erhalten wir als Fehlervorgenzen 0,286 — 0,115 = 0,151 und wenn wir endlich noch Reihe 28 vernachlässigen, so bleiben noch 61 Versuche, deren Fehlervorgenzie 0,212 — 0,115 = 0,097 beträgt. Unter diesen 61 Versuchen finden wir 49, also etwas mehr als drei Viertel, innerhalb der Grenzen 0,200 und 0,150.

Wir glauben hier noch auf folgenden Umstand aufmerksam
machen zu müssen. Wir haben nämlich im Beginne dieser Abhandlung (S. 1) angeführt, dass von Wittich fand, dass die Reaktionszeit für die saure Empfindung, erzeugt durch Hindurchleiten eines elektrischen Stromes durch die Zunge, 0,167 Sekunden beträgt. Diese Zahl stimmt auffallender Weise vollständig überein mit jener, die wir durch Betupfen der Zungenspitze mit einer Säure erhalten haben, wir erhielten nämlich 0,1676 Sekunden.

Chinin.

Wenn wir Tabelle IV betrachten, so sehen wir, dass die partiellen Mittel sehr grosse Schwankungen zeigen, so finden wir, dass bei den Mitteln, welche im Stabe 5 gesammelt sind, folgende Schwankung vorkommt: 0,3583 — 0,1464, Unterschied 0,2119. Auch wenn wir die Mittel des Stabes 7 betrachten, ist die Schwankung in denselben ziemlich beträchtlich, 0,3383 — 0,1916 = 0,1467. Geringer sind dieselben, wenn man die Reihen 7 und 11 auslässt; dann finden wir 0,3319 — 0,2136 = 0,1183 für Stab 5 und 0,2910 — 0,1949 = 0,0961 für Stab 7. Noch geringer werden dieselben, wenn man auch die Reihen 8 und 9 eliminiert; man erhält dann beziehungsweise 0,2710 — 0,2136 = 0,0574 und 0,2470 — 0,1949 = 0,0521.

Selbstverständlich sind die Schwankungen in den einzelnen Versuchen noch beträchtlicher als jene, welche aus der Betrachtung der Mittel der einzelnen Reihen hervorgehen. Die grossen Schwankungen, die wir bei den Versuchen mit Chinin fanden, haben uns veranlasst, mit dieser Substanz sehr viele Versuche vorzunehmen, wie man sieht, beträgt die Zahl derselben 113.

Wenn man alle Versuche ohne Ausnahme in Betracht zieht, sind die Fehlergrenzen 0,648 — 0,057 = 0,591, also mehr als eine halbe Sekunde. Bei Vernachlässigung der zweifelhaften Versuche 0,409 — 0,157 = 0,252. Bei Auslassung der Reihen 7 und 11 0,397 — 0,157 = 0,240 und endlich, wenn man auch die Reihen 8 und 9 vernachlässigt, 0,319 — 0,157 = 0,162.

Letztere Schwankung ist noch immer grösser als jene, welche wir bei allen übrigen Geschmackssubstanzen gefunden haben. Man könnte denken, dass unsere Apparate nicht richtig genug waren und dass wir nur deshalb so schwankende Resultate erhielten; dies ist jedoch keineswegs der Fall, denn wir bedienten uns genau derselben Apparate, die wir auch bei allen übrigen schmeckbaren Substanzen in Anwendung zogen und doch fanden wir bei den Ver-
suchen mit diesen letzteren niemals so grosse Schwankungen, wie beim Chinin.

Ja wenn wir auch bloß die beiden letzten Versuchsreihen mit Chinin (113 und 114) in Betracht ziehen, bei welchen wir eine beinahe ängstliche Sorgfalt bei Anstellung der Versuche sowohl bezüglich der gleichförmigen Bewegung des Motors als auch der Application des Pinsels anwendeten, finden wir doch, dass die Fehlergrenzen nicht bedeutend geringer sind. In der That erhalten wir für die partiellen Mittel dieser beiden Reihen folgende Unterschiede: 0,2398 — 0,2236 = 0,0157 und 0,2299 — 0,2236 = 0,0063. Für diese zwei Versuchsreihen sind die Fehlergrenzen nach Ausschluss aller zweifelhaften Versuche 0,3141 — 0,1702 = 0,1439, jedenfalls eine Schwankung, die grösser ist als jene Schwankungen, die wir bei allen übrigen angewendeten schmeckbaren Substanzen gefunden haben.

Diese grossen Schwankungen bei der Empfindung des Bitteren hängen durchaus nicht von Fehlern bei den Versuchen selbst, sondern von anatomischen Verhältnissen an der Zungenspitze ab. Letztere Annahme wird noch mehr an Wahrscheinlichkeit gewinnen, ja sogar als sicher angesehen werden müssen, sobald wir die Versuche, die wir bei Herrn Dr. D. vornehmen, näher beleuchten werden.

Um die bis jetzt besprochenen Thatsachen noch mehr zu bekräftigen, wollen wir die grössten und die kleinsten Zahlen zusammenstellen, die wir mit den verschiedenen schmeckbaren Substanzen an der Zungenspitze des Herrn H. erhalten haben, jedoch nach Ausschluss aller zweifelhaften Versuche.

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Grösste Zahl</th>
<th>Kleinste Zahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorzitrum</td>
<td>0.197</td>
<td>0.115</td>
</tr>
<tr>
<td>Zucker</td>
<td>0.217</td>
<td>0.117</td>
</tr>
<tr>
<td>Säure</td>
<td>0.212</td>
<td>0.115</td>
</tr>
<tr>
<td>Chinin</td>
<td>0.319</td>
<td>0.157</td>
</tr>
</tbody>
</table>

Auch diese Zahlen zeigen ganz deutlich, dass Chlorzitrum, Zucker und Säure an der Zungenspitze des Herrn H. gleich rasch signalisirt werden, da sowohl die kleinsten als auch die grössten Zahlen, die wir erhielten, eine befriedigende Uebereinstimmung zeigen; für die bittere Empfindung des Chinins ist dagegen eine längere Zeit nothwendig. Es sei hier auch erwähnt, dass nicht so sehr aus der Betrachtung der kleinsten, sondern vorzugsweise der grössten Zahlen wieder hervorgeht, dass die Reihenfolge, die wir früher aufgestellt haben, als sehr wahrscheinlich erscheint.
Versuche über die Reaktionszeit einer Geschmacksempfindung. 37

Bei einem zweiten Herrn, nämlich bei Herrn Dr. Fu., haben wir nur wenige Versuche an der Zungenspitze mit einer Zuckerslösung unternommen.

Dieselben sind in Tabelle V zusammengestellt. Aus diesen nicht sehr zahlreichen Versuchen geht hervor, dass bei ihm die Empfindung des Süßens an der Zungenspitze erst nach 0,3502 Sec. signalisiert wurde. Diese Zeit ist durchaus nicht bedeutend länger, wenn man auch die zweifelhaften Versuche in Betracht zieht; man erhält dann 0,3595.

Die Schwankung in den partiellen Mitteln nach Auslassung der zweifelhaften Versuche ist 0,3832 — 0,3236 = 0,0596. Bei Betrachtung aller Versuche, welche uns dienten, die Mittel des Stabes 7 zu berechnen, erhalten wir als Fehlergrenze 0,487 — 0,233 = 0,264. Diese Schwankung erscheint sehr beträchtlich.

Wir bedauern, dass wir nicht in der Lage waren, ausgedehntere Versuche mit Herrn Dr. Fu. vorzunehmen, da derselbe Innsbruck für immer verliess, bevor wir noch eine klare Einsicht in die Ergebnisse der Versuche erhalten hatten. Wenn wir uns auch nicht berechtigt betrachten, anzunehmen, dass die Zeit von 0,3502 Sec. vollständig verlässlich sei, so können wir doch mit Sicherheit aus sprechen, dass beim Herrn Dr. Fu. die Empfindung des Süßens bedeutend später signalisiert wurde, als beim Herrn H.

Diese Erscheinung wird nicht mehr befremden, sobald man eine ähnliche, ja in noch grösserer Auffälligkeit bei Herrn Dr. D. zum Vorschein kommen sieht.

Bei Herrn Dr. D. haben wir nur mit drei Substanzen Versuche vorgenommen, nämlich mit Chlornatrium, Zucker und Chinin.

Wir haben wohl die partiellen Mittel, die wir aus den brauchbaren Versuchen der einzelnen Reihen erhielten, in den Tabellen VI, VII und VIII zusammengestellt; wir sind jedoch genöthigt, die ausführlicheren Protocole zu veröffentlichen, da aus denselben deutlich hervorgeht, wie schwer es war, bei Herrn Dr. D. brauchbare Zahlen zu erhalten und wie verschieden lang die Zeiten ausfielen, je nach dem Theil der Zungenspitze, welcher berührt wurde.

Wir wollen hier neuerdings ausdrücklich bemerken, dass bei Herrn H., wie aus dem früher Mitgetheilten deutlich zu ersehen ist, keine so grossen Schwankungen wie bei Herrn Dr. D. vorkamen.
sobald man sich in dem oben angeführten Bereich der Zungenspitze
hielt und wir betrachten es daher als ein besonderes Glück, dass
der Zufall uns im Beginn unserer Versuche ein Individuum zuführte,
bei welchem der Geschmackssinn an der Zungenspitze sich so gut
twickelt zeigte.

Bevor wir speziell die einzelnen Versuchsgruppen näher be-
trachten, wollen wir noch die erhaltenen Mittel zusammenstellen.

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlornatrium</td>
<td>0.597</td>
</tr>
<tr>
<td>Zucker</td>
<td>0.752</td>
</tr>
<tr>
<td>Chinin</td>
<td>0.993</td>
</tr>
</tbody>
</table>

Wir treffen auch hier, trotzdem die Zeiten bedeutend länger
als bei Herrn H. ausfallen, doch wieder dieselbe Reihenfolge als bei
diesen. Nachdem wir nun bei zwei Individuen dieselbe Reihenfolge
in der Zeit, mit welcher die einzelnen Geschmacksempfindungen
signalisiert werden, gefunden haben, so ist es wohl erlaubt, anzu-
nehmen, dass wir es hier mit einer constanten Erscheinung zu
thun haben.

Wir haben .nachstehende Tabelle nach demselben Prinzip wie
die beiden anderen (Seite 29 und 30) entworfen.

<table>
<thead>
<tr>
<th>Zucker</th>
<th>Chinin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlornatrium</td>
<td>0.155</td>
</tr>
<tr>
<td>Zucker</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>0.396</td>
</tr>
<tr>
<td></td>
<td>0.241</td>
</tr>
</tbody>
</table>

Aus dieser Tabelle geht deutlich hervor, dass die Unterschiede
in den Reactionszeiten der einzelnen schmeckbaren Substanzen an
der Zungenspitze des Herrn Dr. D. bedeutend länger sind als bei
Herrn H. Wir verhehlen uns nicht, dass es ganz erwünscht ge-
wesen wäre, noch bei anderen Individuen ähnliche Versuche vor-
zunehmen und wir werden es auch in der nächsten Zeit thun, um
die Erscheinung, dass die verschiedenen schmeckbaren Substanzen
eine verschieden lange Zeit brauchen, um die Endorgane anzuregen,
wohl zu constatiren.

Chlornatrium.

In Tabelle IX haben wir alle Versuche, die wir durch Be-
tupfung der Zungenspitze mit Chlornatrium angestellt haben, ge-
sammelt. Die Aufschriften der einzelnen Stäbe sind genügend klar,
so dass wir dieselben nicht näher zu erörtern brauchen. Wir haben
mit * alle jene Versuche bezeichnet, welche zur Berechnung des
Mittels nicht verwendet wurden. Es sei ausserdem bemerkt, dass
die Bezeichnungen obere, untere Fläche der Zungenspitze, seitlich
von derselben, von uns in dem Sinne angewendet wurden, dass nicht
genau die äusserste Zungenspitze, sondern eine andere Stelle, welche
doch derselben sehr nahe war, berührt wurde und nur in einer
der bezeichneten Weisen sich von derselben entfernte; in jedem
Falle betrug aber diese Entfernung blos wenige Millimeter.

Wenn man die Versuchs-Protocole durchgeht, wird man fol-
gendes bemerken. In den meisten Fällen, in welchen der Geschmack
nicht deutlich auftrat, war die Reaktionszeit sehr lang, obwohl die
Zungenspitze genau getroffen wurde (s. Nr. 18, 21). Es ist diess
leicht erklärlich, da in den meisten von diesen Fällen solche Partien
der Zunge getroffen wurden, an denen keine Papillae fungiformes
sichtbar, daher, damit die Empfindung hervortrete, es nöthig war,
dass die schmeckbare Lösung bis zu den nächsten Geschmacksor-
nen diffundire.

Schwer zu erklären ist jener Fall (s. Nr. 23), in welchem der
salzige Geschmack nicht deutlich war und doch die Zeit ziemlich
kurz ausfiel. Man könnte vielleicht davon denken, dass in diesem
Falle der Pinsel nur mit seinem Rande eine Papilla fungiformis traf
und dass eben durch die Beschränkheit der Berührung die Undeut-
llichkeit des Geschmackes zu erklären wäre.

Es kommen aber auch Fälle vor, in welchen der salzige Ge-
schmack sehr deutlich hervortrat und doch die Zeit eine sehr lange
war (s. Nr. 22, 24). In diesem Falle ist eine Erklärung unmöglich,
wen man nicht davon denken wollte, dass Papillae fungiformes nicht
getroffen wurden, daher die Salzlösung bis zur nächsten Papille
diffundiren musste und dass der Beobachtete so lange mit der Signa-
lisirung abwartete, bis die Empfindung sehr deutlich hervortrat.

Es muss endlich hervorgehoben werden, dass bei allen Versu-
chen über den Geschmack der Zustand der Zunge einen grossen
Einfluss ausübte. Nur daraus lässt es sich erklären, wie es möglich
ist, dass einmal mehrere Versuche hintereinander vorgenommen wer-
den können, ohne dass dabei die einzelnen Zahlen grosse Schwank-
gungen zeigen, wie dies aus den Versuchen 4 bis 10 zu entnehmen
ist, bei welchen wir auf den berührten Theil der Zungenspitze kaum
Acht gegeben haben, während es uns in anderen Fällen trotz aller
Vorsicht nicht gelang, hintereinander mehrere Versuche vorzuneh-
men, welche übereinstimmend gewesen wären.

Wie aus dem mitgetheilten Protocole ersichtlich ist, haben wir
bloss 17 Versuche verwendet, um das Gesamtmittel zu berechnen.
Die Fehlergrenzen in den partiellen Mitteln aus den einzelnen Versuchsreihen sind: 0,655—0,476=0,179. Die Fehlergrenzen der 17 Versuche, aus welchen das Gesamtmittel berechnet wurde, betrugen: 0,897—0,437=0,460. Es sind dies ziemlich grosse Fehlergrenzen.

Zucker.

Mit einer Zuckerlösung haben wir an der Zungenspitze des Herrn Dr. D. nur zwei Versuchsreihen vorgenommen. Dieselben sind ausführlich in Tabelle X mitgetheilt, welche genau so einge richtet ist, wie jene für die Kochsalzlösung.

Die Betrachtung dieser Protocolle zeigt ganz deutlich, dass die Resultate höchst schwankend sind.

In Reihe 73, welche noch die beste ist, finden wir, dass die Fehlergrenzen sehr gross sind, nämlich: 0,979—0,450=0,429. Wenn man die zu den einzelnen Versuchen angefügten Anmerkungen betrachtet, ist es leicht wahrzunehmen, dass es ziemlich schwer ist, irgend einen Versuch ausschneiden; man könnte höchstens Nr. 2 und 4 auslassen, da eben bei denselben gesagt wird, dass einen Moment zu spät geöffnet wurde. Die Zeiten dieser beiden Versuche sind jedoch nicht beträchtlich verschieden von jenen, die man erhielt, als die Signalisierung richtig geschah, und man würde ausserdem finden, dass die Mittel mit und ohne Auslassung der beiden Versuche nicht beträchtlich verschieden sind. In der That, aus den 11 Versuchen erhalten wir als Mittel 0,722, und berechnen wir dieselbe mit Auslassung der Versuche 2 und 4, so ergibt sich als Mittel 0,709. Der Unterschied von 0,012 ist gewiss nicht beträchtlich. In Reihe 78 sind die Fehlergrenzen noch grösser als in Reihe 73. Dieselben sind 1,066—0,566, da die Versuche 1 und 8 ausgelassen werden müssen, indem bei denselben entweder der Strom zu spät geöffnet wurde oder die Geschmacksempfindung nicht deutlich genug war. Ja wir glauben uns auch berechtigt, die Versuche 6 und 7 vernachlässigigen zu dürfen; dieselben sind wahrscheinlich nicht fehler frei, da die Zeit ungemein lang ausfiel. Wenn wir nun aus allen übrigen Versuchen das Mittel berechnen, so erhalten wir 0,819, eine Zahl, welche in Berücksichtigung der gegebenen Umstände nicht als bedeutend verschieden von jenem aus Reihe 73 bezeichnet werden kann. Der Unterschied zwischen beiden Mitteln ist 0,098 und be ziehungsweise 0,110. Aus beiden Reihen nach Vernachlässigung aller zweifelhaften Versuche berechnet sich als Mittel 0,752.
Versuche über die Reactionszeit einer Geschmacksempfindung. 41

Chinin.

Wir haben endlich die Zungenspitze des Herrn Dr. D. mit Chinin betupft, um die Zeit zu bestimmen, nach welcher die bittere Empfindung signalisiert wird; wir können aber nicht unterlassen, uns die Frage zu stellen, ob die bei Herrn Dr. D. angestellten Versuche verwendbar sind.

Im Anhang Tabelle XI haben wir die ausführlichen Versuchs-Protocollle mitgetheilt.

Auch eine sehr flüchtige Betrachtung derselben zeigt ganz deutlich, dass in einigen Fällen gar keine bittere Empfindung auftrat. Dr. D. gab manchmal an, dass die Empfindung eine sehr schwache und undeutliche, manchmal, dass dieselbe durchaus nicht ähnlich der des Chininbitter war; ja in einigen Fällen sogar, dass dieselbe eine gewisse Ähnlichkeit mit dem Geschmacke des Kochsalzes hatte. Sogar in jenen Fällen, in welchen angegeben wurde, dass die Empfindung eine deutliche war, war dieselbe niemals prägnant.

Es ist einleuchtend, dass nach diesen Angaben es beinahe unmöglich ist, aus unseren Versuchen ein Mittel zu berechnen, und wenn wir dennoch wagen, es zu thun, so geschicht dies nicht so sehr, weil wir die Ueberzeugung haben, dass dasselbe richtig sei, sondern vielmehr um zu zeigen, dass die Empfindung des Bitteren bei Herrn Dr. D. bedeutend später signalisirt wurde, als jene der übrigen Geschmacke.

Wir haben im Ganzen 31 Versuche vorgenommen, in 4 Reihen eingetheilt, darunter sind aber nur 14 Versuche, welche halbwegs zur Berechnung des Mittels brauchbar sind. Das Mittel beträgt 0,993 Sec.; die kürzeste Zeit, die wir überhaupt bei Betupfung der Zungenspitze mit Chinin erhielten, ist 0,932.

Als wir die Versuche in der Weise vornahmen, dass wir die verschiedenen schmeckbaren Substanzen bei geschlossenen Augen auf die Zungenspitze applicirten, unterschied Herr Dr. D. wohl die einzelnen schmeckbaren Substanzen, doch mussten dieselben längere Zeit mit der Zunge in Berührung bleiben, bevor Herr Dr. D. angab, welche Substanz appliziert wurde.

Wir wollten noch bei einem vierten Herrn, nämlich bei Herrn Dr. Fr., Versuche über die Reaction der Geschmacksempfindungen an der Zungenspitze vornehmen; wir mussten aber von unserem Vorhaben abstehen, da er nicht im Stande war, die einzelnen schmeck-
baren Substanzen von einander zu unterscheiden; es kamen manchmal sehr eigenthümliche Verwechslungen vor.

Die bis jetzt mitgetheilten Resultate zeigen ganz deutlich, dass der Geschmackssinn an der Zungenspitze bei verschiedenen Individuen sehr verschieden entwickelt ist; während sich derselbe bei einigen, wie bei Herrn H., sehr ausgebildet zeigt, ist er dagegen bei anderen so wenig entwickelt, dass sie nicht im Stande sind, mit der Zungenspitze die einzelnen schmeckbaren Substanzen zu unterscheiden und wir finden auch demgemäss, dass die Reactionszeit bei den verschiedenen Versuchspersonen sehr verschieden ausfällt.

<table>
<thead>
<tr>
<th>Tabelle I.</th>
<th>Betupfung der Zungenspitze mit Kochsalz.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Der zeitmessende Strom mit der linken Hand geöffnet. — Herr H.</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>2.</td>
</tr>
<tr>
<td>U</td>
<td>21</td>
</tr>
<tr>
<td>U</td>
<td>26</td>
</tr>
<tr>
<td>M</td>
<td>41</td>
</tr>
<tr>
<td>M</td>
<td>56</td>
</tr>
<tr>
<td>U mit T</td>
<td>100</td>
</tr>
<tr>
<td>U mit T</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lässt man Reihe 41 aus, so erhält man:

- 65 | 0,1681 | 57 | 0,1598 |

<table>
<thead>
<tr>
<th>Tabelle II.</th>
<th>Betupfung der Zungenspitze mit Zucker.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Der zeitmessende Strom geöffnet mit der linken Hand. — Herr H.</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>2.</td>
</tr>
<tr>
<td>U</td>
<td>16</td>
</tr>
<tr>
<td>M</td>
<td>42</td>
</tr>
<tr>
<td>M</td>
<td>105</td>
</tr>
<tr>
<td>M</td>
<td>105</td>
</tr>
<tr>
<td>M</td>
<td>106</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lässt man Reihe 42 aus, so erhält man:

- 65 | 0,1758 | 58 | 0,1689 |
Tabelle III.

Betupfung der Zungenspitze mit Säuren.

Der zeitmessende Strom mit der linken Hand geöffnet. — Herr H.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>23</td>
<td>4. Juli 1873</td>
<td>20</td>
<td>0,1718</td>
<td>15</td>
</tr>
<tr>
<td>U</td>
<td>24</td>
<td>5. Juli 1873</td>
<td>25</td>
<td>0,1826</td>
<td>20</td>
</tr>
<tr>
<td>U</td>
<td>28</td>
<td>14. Juli 1873</td>
<td>10</td>
<td>0,2540</td>
<td>7</td>
</tr>
<tr>
<td>M</td>
<td>44</td>
<td>12. Dec. 1873</td>
<td>20</td>
<td>0,1904</td>
<td>15</td>
</tr>
<tr>
<td>M</td>
<td>57</td>
<td>9. Jan. 1874</td>
<td>7</td>
<td>0,1781</td>
<td>5</td>
</tr>
<tr>
<td>M</td>
<td>57</td>
<td>9. Jan. 1874</td>
<td>6</td>
<td>0,1629</td>
<td>5</td>
</tr>
</tbody>
</table>

| Gesamt: 88 | 0,1882 | 68 | 0,1742 |

Lässt man Reihe 28 aus, so erhält man:

Tabelle IV.

Betupfung der Zungenspitze mit Chinin.

Der zeitmessende Strom mit der linken Hand geöffnet. — Herr H.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>3</td>
<td>5. Mai 1873</td>
<td>9</td>
<td>0,2482</td>
<td>8</td>
</tr>
<tr>
<td>U</td>
<td>4</td>
<td>6. Mai 1873</td>
<td>5</td>
<td>0,2710</td>
<td>4</td>
</tr>
<tr>
<td>U</td>
<td>7</td>
<td>13. Mai 1873</td>
<td>5</td>
<td>0,1464</td>
<td>3</td>
</tr>
<tr>
<td>U</td>
<td>8</td>
<td>27. Mai 1873</td>
<td>12</td>
<td>0,3319</td>
<td>8</td>
</tr>
<tr>
<td>U</td>
<td>9</td>
<td>29. Mai 1873</td>
<td>15</td>
<td>0,3069</td>
<td>13</td>
</tr>
<tr>
<td>U</td>
<td>11</td>
<td>11. Juni 1873</td>
<td>8</td>
<td>0,3588</td>
<td>7</td>
</tr>
<tr>
<td>U</td>
<td>12</td>
<td>18. Juni 1873</td>
<td>4</td>
<td>0,2690</td>
<td>3</td>
</tr>
<tr>
<td>M</td>
<td>43</td>
<td>18. Dec. 1873</td>
<td>19</td>
<td>0,2136</td>
<td>15</td>
</tr>
<tr>
<td>M</td>
<td>113</td>
<td>18. Juni 1873</td>
<td>16</td>
<td>0,2393</td>
<td>14</td>
</tr>
<tr>
<td>M</td>
<td>114</td>
<td>19. Juni 1873</td>
<td>20</td>
<td>0,2236</td>
<td>20</td>
</tr>
</tbody>
</table>

| Gesamt: 113 | 0,2581 | 95 | 0,2409 |

Lässt man die Reihen 7 und 11 aus, so erhält man:

Lässt man auch die Reihen 8 und 9 aus, so erhält man:

Tabelle V.
Betupfung der Zungenspitze mit Zucker.
Der zeitmessende Strom geöffnet mit der linken Hand. — Dr. Fu.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>34</td>
<td>21. Juli 1873</td>
<td>9</td>
<td>0.3419</td>
<td>6</td>
</tr>
<tr>
<td>U</td>
<td>35</td>
<td>22. Juli 1873</td>
<td>4</td>
<td>0.3882</td>
<td>4</td>
</tr>
<tr>
<td>U</td>
<td>39</td>
<td>23. Juli 1873</td>
<td>6</td>
<td>0.3550</td>
<td>6</td>
</tr>
<tr>
<td>U</td>
<td>39</td>
<td>23. Juli 1873</td>
<td>7</td>
<td>0.3724</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>26</td>
<td>0.3696</td>
<td>22</td>
</tr>
</tbody>
</table>

Tabelle VI.
Betupfung der Zungenspitze mit Chlornatrium.
Der zeitmessende Strom mit der linken Hand geöffnet. — Herr Dr. D.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>U mit T</td>
<td>69</td>
<td>23. Febr. 1874</td>
<td>2</td>
</tr>
<tr>
<td>U mit T</td>
<td>74</td>
<td>4. März 1874</td>
<td>5</td>
</tr>
<tr>
<td>U mit T</td>
<td>75</td>
<td>5. März 1874</td>
<td>6</td>
</tr>
<tr>
<td>U mit T</td>
<td>78</td>
<td>10. März 1874</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

Tabelle VII.
Betupfung der Zungenspitze mit Zucker.
Der zeitmessende Strom mit der linken Hand geöffnet. — Herr Dr. D.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>U mit T</td>
<td>73</td>
<td>4. März 1874</td>
<td>11</td>
<td>0.721</td>
<td>9</td>
</tr>
<tr>
<td>U mit T</td>
<td>78</td>
<td>10. März 1874</td>
<td>6</td>
<td>0.819</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>17</td>
<td>0.755</td>
<td>15</td>
</tr>
</tbody>
</table>

Tabelle VIII.
Betupfung der Zungenspitze mit Chinin.
Der zeitmessende Strom mit der linken Hand geöffnet. — Herr Dr. D.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>U mit T</td>
<td>76</td>
<td>6. März 1874</td>
<td>3</td>
</tr>
<tr>
<td>U mit T</td>
<td>76</td>
<td>6. März 1874</td>
<td>6</td>
</tr>
<tr>
<td>U mit T</td>
<td>77</td>
<td>7. März 1874</td>
<td>2</td>
</tr>
<tr>
<td>U mit T</td>
<td>77</td>
<td>7. März 1874</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>-------------</td>
<td>--------------</td>
</tr>
<tr>
<td>1</td>
<td>28. III. 1874.</td>
<td>M</td>
<td>69</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>U</td>
<td>74</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*9</td>
<td>10. III. 1874.</td>
<td>U</td>
<td>78</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fortl. Nr.</td>
<td>Datum</td>
<td>Angewendete Motoren</td>
<td>Versuchsreihe</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>---------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>1</td>
<td>4. III. 1874</td>
<td>U 73</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>10. III 1874</td>
<td>U 78</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fortl. Nr.</td>
<td>Datum</td>
<td>Angewendete Motorien</td>
<td>Versuchsreihe</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>----------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2</td>
<td>0,845</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>3</td>
<td>1,475</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>4</td>
<td>1,372</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>5</td>
<td>0,894</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>6</td>
<td>1,829</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>7</td>
<td>1,755</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>8</td>
<td>1,284</td>
</tr>
<tr>
<td>9</td>
<td>6. III. 1874. U 76</td>
<td>1</td>
<td>1,827</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>3</td>
<td>0,987</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>4</td>
<td>1,061</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>5</td>
<td>1,380</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>6</td>
<td>0,942</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>7</td>
<td>1,205</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>8</td>
<td>1,047</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>9</td>
<td>0,965</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>10</td>
<td>1,988</td>
</tr>
<tr>
<td>19</td>
<td>7. III. 1874. U 77</td>
<td>1</td>
<td>1,889</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>2</td>
<td>2,889</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>3</td>
<td>1,946</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>4</td>
<td>1,788</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>5</td>
<td>1,069</td>
</tr>
<tr>
<td>26</td>
<td></td>
<td>8</td>
<td>1,297</td>
</tr>
</tbody>
</table>
Neue Messungen über die Fortpflanzungsgeschwindigkeit der Erregung im Muskel.

Von

L. Hermann.

(Aus dem physiologischen Laboratorium in Zürich.)

Nebst Tafel Ia.

Erneute Messungen der Geschwindigkeit, mit welcher sich die Erregung im Muskel fortpflanzt, sind ein hohes Bedürfniss, seitdem die letzten Untersuchungen über diesen Gegenstand 1) einen 3 bis 4 mal so grossen Werth ergeben haben, als die übereinstimmenden Angaben der vier früheren Untersucher 2). Aber noch ein anderer

Grund zu neuer Prüfung lag vor, nämlich ein sehr wesentlicher Fehler, der in einem beträchtlichen Theil der bisher angestellten Versuche untergegangen ist. Abeby benutzte den freilich sehr bequem zu präparirenden und leicht zu handhabenden Adductor magnus Cuvier, welcher jetzt nach du Bois-Reymonds Vorgang 1) gewöhnlich als Gracilis bezeichnet wird. Er übersah jedoch, dass dieser Muskel eine, in dem später erschienenen Werke von Ecker 2) erwähnte und (Fig. 82) abgebildete Inscriptio tendinea besitzt, an welcher anscheinend sämtliche Fasern unterbrochen sind; der Muskel wird hierdurch 3) zu diesen Versuchen strengenommen unbrauchbar. Bernstein benutzte „die beiden Adductoren zusammen“; das sind, wie aus dem Zusammenhang und der Erwähnung des unter ihnen liegenden Semitendinosus hervorgeht (letzteren zweiköpfigen Muskel nennt er Biceps, obgleich als Biceps sonst ein ganz anderer Muskel des Froschoberschenkels bezeichnet wird), der Gracilis mit dem Semimembranosus. Nun hat unglücklicherweise nicht bloss ersterer, sondern auch letzterer 4) eine Inscriptio tendinea, mit ganz vollständiger Faserunterbrechung! — Ein letzter Grund, der die Anstellung neuer Versuche wünschenswerth erscheinen liess, lag darin, dass bei allen bisherigen das graphische Verfahren angewendet wurde, welches aber für diese spezielle Aufgabe sehr bedeutende Uebelstände hat. Bekanntlich lässt sich die Stelle, an welcher sich die Zuckungscurve von der Abscissenaxe ablöst, nie genau feststellen, man ist also auf die Messung höher gelegener Horizontalstrecken beider Curven angewiesen, und dies setzt eine vollkommene Congruenz derselben, wenigstens im ansteigenden Theile, voraus. Bei den Helmholtz’schen Messungen der Leitungsgeschwindigkeit im Nerven konnte diese leicht erreicht werden, dadurch, dass man maximale Zuckungen anwandte. Bei unserer Aufgabe dagegen müssen möglichst schwache Reize angewandt werden, so dass eine Congruenz der Curven viel schwerer, ja überhaupt gar nicht zu erreichen ist, selbst dann nicht, wenn man, was unbedingt nöthig und von Bernstein auch geltend worden ist, die entfernteren Reiz stärker macht.

f. Natur- und Heilkunde IV. 305 (vgl. auch Place, in den Onderzoekingen gedaan in het physiol. labor. der Utrecht’sche Hoogeschool. II. Reeks. I. 186); Valentin, dies Archiv IV. 115.

1) Arch. f. Anatomie und Physiologie 1867. 264.

3) Vgl. Ecker a. a. O. p. 113, und Fig. 81, p. 111.

4) Pfäger, Archiv f. Physiologie. Bd. X.
um die Abnahme der Erregung beim Ablauf durch den Muskel auszugleichen.

Ich habe aus diesen Gründen die Pouillet'sche Zeitmes-
sung angewendet, und zwar in der Weise, dass die Zeit gemessen wurde zwischen Reizung des Muskels und Verdickung einer Muskel-
stelle, einmal bei nahe, einmal bei entfernter Reizung. Bei dieser
Anordnung, die auch Bernstein und im Grunde auch v. Bezold
und Engelmann benutzt haben, wird strenggenommen etwas An-
deres gemessen, als bei der Aeby'schen Methode, bei der nur Eine
Reizstelle, aber zwei Verdickungsstellen vorhanden sind; hierauf ist
bisher nicht geachtet worden. Die Aeby'sche Methode misst die
Fortpflanzungsgeschwindigkeit der Contractionswelle, die andere die
der Reizwelle. Dass beide Geschwindigkeiten identisch seien, ist
zuwahrscheinlich, aber eigentlich nicht bewiesen. Ich war genötigt,
die letztere Methode zu wählen, d.h. die Geschwindigkeit der Reiz-
waile zu messen; denn die andere hätte erfordert, den zeitmessenden
Strom durch die Verdickung des Muskels an der ersten Stelle
Schlissen zu lassen, was nie exact ausführbar ist.

Zu den Versuchen wurden ausschliesslich Sartorien benutzt,
und zwar stets die beiden eines Frosches zusammengelegt.

Die Messungen geschahen mittels des du Bois'schen Frosch-
unterbrechers 1), an welchem mit geringen Kosten ein kleiner Appa-
rat und einige Veränderungen angebracht wurden. 1) Die Säule
mit der Muskelklemme wurde entfernt, ebenso der Vorsprung aus
Kammmasse, welcher die Schraubenklemmen (k und k' bei du Bois-
Raymond) trägt. 2) Die Axe des Hebels wurde durch untergelegte
Scheiben um ca. 4 Mm. erhöht; ferner wurden von den Contactschrau-
ben die Gegenmutter entfernt und die Schrauben ganz eingedreht,
um sie möglichst zu verlängern. 3) Der Hebel wurde durch einen
eingeschraubten Stahlstab rückwärts verlängert und an dessen Ende
durch eine Wagschale mit Gewichten nahezu aequilibriert, so dass
der Contactarm nur ein sehr geringes Uebergewicht hatte; an die
untere Fläche des letzteren wurde, an Stelle des Hakens, der sonst die
Wagschale trägt, eine kleine longitudinale Latte 1 (Fig. 1 u. 2) ange-
bracht, die zum Auflegen auf dem Muskul bestimmt war. 4) An den
Messingtisch T des Froschunterbrechers wurde hinten (an dem mes-
singnen Verstärkungsvorsprung V, den an meinem Instrument das

1) Vgl. E. du Bois-Raymond, Beschreibung einiger Vorrichtungen etc.
Berlin 1868. Taf. III. Fig. 12.
Tischchen hinter dem Loch für die Muskelsäule besitzt) ein Klötzen a angeschraubt, welches die Axe für das leicht drehbare Messinghebelchen bh trägt; das letztere geht von hinten nach vorn über den Tisch herüber, dem die Hebelstange h hindurch, und ruht vorn auf der den Tisch durchbohrenden Micrometerschraube s. An beiden Enden ist das Hebelchen bh etwas verbreitert, nach oben aufgebogen und gabelig gespalten, um das Röllchen r zu tragen. 5) Vertikal unter dem Hebelhebel trägt das Hebelchen die der A e b y'schen ähnliche Gabelvorrichtung zur Aufnahme der Experimentierstelle des Muskels MM. Die eine Gabel g ist am Hebelchen befestigt, die andere g² ist auf dem vierkantigen Stäbchen t verschiebbar und wird durch die Klemmschraube k festgestellt; sie ist in Fig. 2 der Deutlichkeit halber vom Muskel abgerückt gezeichnet. Der Gabelstelke entsprechend ist das Hebelchen seitlich etwas eingeführt (s. die verticale Punctlinie in h, Fig. 2), damit die Gabeln möglichst nahe zusammengeschoben werden können, und ferner durch das Klötzchen e etwas erhöht, bis zu gleichem Niveau mit den Reizvorrichtungen. 6) Die Reizvorrichtungen bestehen aus den Stahldrähten i, die auf hh reitend verschoben und durch Schraubchen festgestellt werden können. Sie tragen die Kammmassenplatte m, in welche zwei Messingdrähte d (in Fig. 1 im Querschnitt, schwarz, sichtbar) eingelassen sind, die nach einer Seite herausragen (s. Fig. 3) und in welchen je 2 frei nach oben herausragende Platindrähte pp befestigt sind. An die Drähte d sind die übersponnenen Leitungsdrähte q angelötet, die an einem auf dem Tisch T festgezwickten Electrodenstativchen ihre nächste Station haben. Jedem dem Muskel anliegende Electrodenpaar besteht also aus zwei Paaren von Platindrähten, die den Muskel umgreifen und leicht an ihn angedrückt werden. Diese Reizungsart schützt viel besser vor Stromschleifen als die Anbringung zweier diametral sich gegengüberstehender Electroden.

Von den Zeichnungen stellt Fig. 1 die seitliche Ansicht des Hebelchens mit dem Muskel dar (halb als Durchschnitt gehalten), Fig. 2 die vordere Ansicht der Gabeln (das Hebelchen h quer durchschnitten), Fig. 3 eine ebensolche Ansicht einer Reizvorrichtung. In den Figuren ist alles, was dem ursprünglichen d u Bois'schen Froschunterbrecher angehört, mit grossen, das neu Hinzugekommene mit kleinen Buchstaben bezeichnet.

Die Reizvorrichtungen wurden stets so wie in der Figur zu beiden Seiten def Gabel in ungleicher Entfernung von derselben angebracht; die Differenz der Abstände betrug etwa 18—24 Mm. Das
Muskelpaar wird, nachdem an seinen beiden Enden Fäden, mit je 2 grm. belastet, befestigt worden, in die 3 Gabelvorrichtungen zunächst ohne allen seitlichen Druck eingelegt und dem Versuche entsprechend gelagert; während jetzt die über die Röllchen r laufenden Fäden den Muskel gespannt halten, wird ihm die Zuckungsgabel und die beiden Reizgabeln fest angelegt, die Distanzen gemessen und nun der Muskel wieder entspannt. Die Gewichte werden auf den Tisch T gestellt und die Reizvorrichtungen so nahe an gg herangeschoben, dass der Muskel völlig spannungslos, gekrümmt da liegt; bei den Zuckungen kann sich jetzt nichts verlagern.

Der Rest der Vorrichtungen bedarf nur weniger Bemerkungen. Die Reize bestanden in Schliessungsinductionsschlägen, welche dadurch ausgelöst wurden, dass die Helmholtz'sche Wippe eine Nebenschliessung zur primären Spirale hinwegräumte; es geschah dies, um den Funken an der Wippe zu vermeiden, der die Reize ungleich macht. Es wurde immer diejenige Reizstärke gewählt, welche eben hinreichte, den Quecksilberfaden des Unterbrechers mit Sicherheit zu zerreißen. Trotzdem der Inductionsenschlag nur durch Wegräumung einer Nebenschliessung erzeugt wurde, brauchten doch die Induktionsrollen weiter einander genähert zu werden, als bis 1 Cm. Zwischenraum, ein Beweis für das leichte und empfindliche Spiel des Apparats.

Der zeitmessende Strom wurde von einem ganz kleinen Daniell'schen Element geliefert; in seinen Kreis war ein Widerstand von 300 — 500 S.-E. eingeschaltet, um die unvermeidlichen Widerstandsschwankungen an den Contactstellen des Unterbrechers unschädlich zu machen. Die Boussole war eine Wiedemann'sche, neueres Sauerwald'sches Modell. Die Dämpfhluse derselben war gänzlich entfernt, was das letztere Modell gestattet. Dies ist für genaue und bequeme Zeitmessungsversuche fast unentbehrlich. Um nach jeder Ablenkung den Magneten in Ruhe zu setzen, diente ein besonderer Stromkreis, der durch Umlegen einer Wippe mit der Boussole verbunden wurde; derselbe enthielt einen äusserst schwachen Stromzweig eines Daniell und eine Vorrichtung, ähnlich einem Telegraphenschlüssel, die durch leichte Fingerschläge
sehr kurze Schliessungen herzustellen gestattete. Man erlangt schnell eine solche Uebung im Handhaben dieser Vorrichtungen (Polwechsel findet nicht statt, die Stromschlusse werden also immer nur bei der einen Bewegungsrichtung des Magneten angewendet), dass man selbst nach Ausschlagen weit über den Scalenbereich hinaus den Magneten in der zweiten, spätestens dritten Schwingungsperiode vollkommen bewegunglos auf den Nullpunkt einstellen kann. Der Magnet war aus naheliegenden Gründen nur mäsig astatisch; seine (einfache) Schwingungsdauer betrug meist nur 3—4 Secunden.

Die Bestimmung der Ablenkung durch den permanent geschlossenen Strom geschah jedesmal am Schluss des Versuchs, in der von Helmholtz beschriebenen Weise, indem das Galvanometer mit einem gleich grossen Rheostatwiderstand vertauscht wurde, von dem ein Stromzweig (meistens etwa 1/40) zur Boussole geleitet wurde. Die hierzu nöthigen Um- und Einschaltungen geschahen auf die schnellste und bequemste Weise durch Umlegen einer Wippe und Schliessung eines Schlüssels. Sowohl für diese Ablösung als für die Zeitmessungen selbst war die Scala nahe ihrem einen Ende eingestellt, damit die ganze Länge für die, stets gleichsinnigen Ablenkungen zu Gebote stänke.

Im Ganzen wurden 33 Versuchsreihen am Frosch (und eine an der Schildkröte) angestellt, welche in die Zeit von Anfang Juli bis Mitte November fielen 1). Etwa ein Drittel der Versuche wurde mit Curarevergiftung angestellt, die später unterlassen wurde, weil sich nie ein Unterschied zwischen vergifteten und unvergifteten Muskeln zeigte. Diese schon von Aeby gefundene Thatsache ist ohne Zweifel so zu erklären, dass die an den Reizstellen getroffenen Nervenfasern, deren Erregung natürlich viel schneller die Strecke bis zur Zuckungsstelle zurücklegen würde, nur wenige Muskelfasern beherrschten, so dass diese noch keine Hebung des Hebels bewirken; letztere tritt erst ein, wenn die direct gereizten Fasern durch muskuläre Leitung sich einheitlich in der Gabel verdicken. Da die Reizstellen den Muskelenden sehr nahe liegen, so ist namentlich beim Sartorius keine grosse Mitreizung von Nerven zu erwarten, und die getroffenen Nervenfasern treten in die Muskelfasern noch entfernter von der der Gabel ein, als letztere direct gereizt werden.

1) Die fünf ersten Versuchsreihen sind im Sommersemester 1874 von Prf. Tomasewicz ausgeführt worden, die übrigen 28 von mir während der grossen Ferien, nachdem der Apparat beträchtliche Vervollkommnungen erfahren hatte.
Während jeder Versuchsreihe ist die Leitungsgeschwindigkeit in beständiger Abnahme begriffen, wie auch die früheren Beobachter angaben. Folgendes Beispiel mag dies veranschaulichen, und zugleich von der Art der Versuche eine Vorstellung geben:

\[
v = \frac{0,021 \cdot \pi \cdot 1885,818}{h \cdot 3,6 \cdot 35} \quad \text{Meter.}
\]

Diese Werthe von \(v \) sind für die oben angegebenen Werthe von \(h \) successive

2,883; 2,523; 2,613; 2,206; 2,224; 2,034; 2,003 Meter.

Der erste Werth kommt natürlich dem wahren Werthe, der stets etwas grösser anzunehmen ist, am nächsten.

Unter den 33 gefundenen Anfangswerthen für \(v \) ist der grösste 3,513 mtr., der kleinste 1,667 mtr. 1), das Mittel aus allen 2,698 mtr. Die von mir gefundenen Zahlen stehen also den Bernstein'schen bedeutend näher als den Aebby'schen, Bezd'schen und Engelmann'schen, und ich glaube, dass sie, da viele Fehlerquellen früherer Versuche hier vermieden sind, den wahren Werth der Muskelleitungsgeschwindigkeit mit ziemlicher Sicherheit repräsentieren. Er liegt ohne Zweifel etwa bei 3 Metern 2). Von einer so grossen Ge-

1) Jedoch ist dieser Versuch verdächtig, da überhaupt nur 2 Anfangswerthe unter den 35 unterhalb 2 Meter lagen.

2) Bernstein's hohe Werthe (bis zu 4,25 Mtr.) rühren möglicherweise von der von ihm übersehenen Inscription tendinea her (vgl. oben). Wenn er bei der entfernten Stelle, die unzweifelhaft jenseits derselben lag, den Strom soweit verstärkte, bis Hebung eintrat, so hieß das die Ströme so weit verstärken, bis die Stromschleifen jenseits der Inscription hinreichend kräftig waren, um dort zu erregeg; die lange Muskelsstrecke durfte also nicht von der Reizstelle, sondern erst von der Inscription ab zählen; der Werth von \(v \) musste zu gross erhalten werden. Uebrigens verwischt sich der Einfluss der Inscription etwas durch ihre sehr scharfe Lage. Dass niemals eine Zuckung die Inscription überschreitet, davon habe ich mich durch besondere Versuche am curarisirten Gracilis auf das Genaueste überzeugt.
Nauigkeit, wie etwa bei Messungen der Nervenleitungs geschwindigkeit, kann überhaupt bei diesen zarten und schwierigen Versuchen nicht die Rede sein 1). Einmal liegt in der Längenmessung am Muskel eine ungemein beträchtliche Fehlerquelle, viel größer als alle Fehler des galvanischen Versuchs zusammengenommen; nicht allein ist dieselbe an sich ungenau, sondern sie hängt auch durchaus von der Belastung ab, welche strenggenommen in jedem Versuch dem Querschnitt des Muskels proportional verändert werden sollte; bei meinen Versuchen war sie durchweg nur 2 Grm. (für 2 Sartorien; die Größe der benutzten Frösche war ziemlich constant, nicht grade beträchtlich), also sehr gering. Bei grösserer Belastung wäre natürlich die Leitungsgeschwindigkeit grösser erschienen (vorausgesetzt, dass sie nicht durch die Dehnung selbst beeinflusst wird). Zweitens ist die Leitungsgeschwindigkeit des Muskels nicht in dem Grade eine constante, wie die des Nerven. Sie ändert sich viel schneller als diese mit der Zeit nach dem Tode, mit den Umständen, unter denen sich der Muskel befindet, ganz besonders mit der Temperatur. Legt man parallel dem Muskel ein verkorktes, mit warmem Wasser oder Eiswasser gefülltes Probirglas auf den Tisch T, so kann man ausserst schnell durch die Strahlung die Leitungsgeschwindigkeit beträchtlich erhöhen, resp. erniedrigen. Auch fand ich im Sommer überhaupt höhere Zahlen als im Herbst, trotzdem die Zeit zwischen Tötung und ersten Messungen sich durch zunehmende Uebung immerfort verkleinerte; und im Spätherbst fand ich öfters auffallend niedrige Zahlen, weil der Frosch unmittelbar aus dem ungeheizten Vorzimmer zum Versuche genommen war.

Eine Messung habe ich an einer ziemlich grossen Schildkröte (Testudo graeca), und zwar an den schönen parallelfasrigen Halsretractoren angestellt. Ich fand die Leitungsgeschwindigkeit ziemlich beträchtlich kleiner als beim Frosch, nämlich zu 1,829 Metern.

Die Frage, ob verstärkte Erregungen schneller fortgeleitet werden als schwächere, lässt sich am Muskel durch elektrische Reizung nicht entscheiden. Zwar erhält man, wenn man die Rollen einander nähert, kleinere Ausschläge, also grössere Fortpflanzungsgeschwindigkeiten; aber es ist klar, dass die stärkeren Ströme sich im Muskel auch weiter verbreiten, so dass die Reizstelle dadurch gleichsam näher an die Gabel herangerückt wird.

1) Uebrigens schwankten auch bei der Helmholtz'schen Untersuchung der Nervenleitungs geschwindigkeit die Werthe zwischen 24,6 und 38,4 Meter.
Ueber binoculare Farbenmischung.

Von

Dr. W. Dobrowolsky aus Petersburg.

Da mir Versuche mit binoculärer Farbenmischung vielleicht deshalb nicht gelungen, weil ich sie nur immer beiläufig anstellte und dieselben kurze Zeit andauerten, so machte ich mich jetzt auf's Neue an dieselben, um mich über die Richtigkeit der Folgerungen von Bezold's zu überzeugen. Ich habe die Versuche in anderer Form als Bezold angestellt und wandte mich zunächst an das Stereoskop von Weatstone und Brewster.

Wenn die Schlüsse Bezold's richtig sind, so mus eine binoculare Farbmischung auch bei einem Stereoskop gelingen, bei welchem wir leicht eine Annäherung oder Entfernung eines Sehfeldes vom Auge dadurch erzielen können, dass wir vor das Auge, welches das blaue Sehfeld vor sich hat, eine Concavlinse, oder aber vor das Auge, vor welchem sich das rothe Sehfeld befindet, eine Convexlinse setzen. Aus den Untersuchungen von Fraunhofer und Helmholtz folgt, dass das Auge, wenn es für die unendliche Ferne eingerichtet ist und zu gleicher Zeit entsprechend der Linie C die rothen Strahlen des Spectrums sieht, den Gegenstand, dessen Farbe der Linie G entspricht, zugleich auf die Entfernung von 18—24 Zoll dem Auge zu nähern hat, um ihn in demselben Zustande der Accommodation zu sehen. Daher stellte ich vor das Auge, welches für das blaue Feld bestimmt war, ein Concav von 24—28, oder vor das andere Auge, welches das rothe Object vor sich hatte, ein Convexglas von entsprechender Stärke.

Mir fiel es nicht schwer, diesen Unterschied in der Entfernung beider Felder durch sphärische Gläser zu beseitigen, es gelang mir jedoch nicht, die Mischfarbe (violett) gleich, sondern erst nach langen Anstrengungen zu erhalten. Hierbei fielen besonders folgende zwei Umstände auf: 1) Ich erhielt die Mischfarbe stets nur auf einem sehr beschränkten Raume um den Fixationspunkt und sie schwand hierbei

1) Helmholtz, Physiolog. Optik, pag. 120.
grösstentheils bald, einem Wettstreit der Sehfelder weichend. 2) Es gelang bedeutend schneller und leichter die Mischfarbe zu erhalten, wenn ich mich etwas vom Stereoskop entfernte.

Die erstere Erscheinung, nämlich dass die Mischfarbe nur in der Nähe des fixirten Punktes erhalten wurde, hing davon ab, dass die von mir angewandten Farbenfelder sehr gross waren und dass sie dabei Unebenheiten, Erhöhungen und Vertiefungen zeigten, die, so klein sie auch sein mögen, doch bei der binocularen Mischung hinderlich sind, weil die von ihnen ausgehenden Strahlen nicht einen Brennpunkt besitzen. Ferner erreichte ich fast niemals, dass beide Felder in ihrer ganzen Ausdehnung genau zusammenfielen, so aufmerksam ich auch die Spiegel, die an meinem Stereoskop beweglich sind, einrichtete; grösstentheils stehen sie schrag zu einander und fallen nur in ihrer Mitte zusammen, während ihre Ränder aus- einandergehen.

Das Schwinden der Mischfarbe und das Auftreten des Wettstreits der Felder hängt von Convergenzschwankungen und ungenauer Fixation ab, da der zur Fixation bestimmte Punkt sich hierbei immer verdoppelt.

Die grössere Leichtigkeit, mit welcher der Beobachter die Mischfarbe in dem Maasse, als er sich vom Stereoskop entfernt, erhält, erklärt sich wenigstens theilweise durch die verschiedene Brechbarkeit der rothen und blauen Strahlen. Aus den Berechnungen von Helmholtz 1) folgt, dass der Abstand zwischen dem Brennpunkt der rothen und violetten Strahlen, wenn das Auge in die Ferne sieht, etwa 0,434 Mm. gleich ist. Wenn wir aber die beiden verschiedenfarbigen Objecte dem Auge nähern werden, so wird sich der

Abstand zwischen ihren Brennpunkten noch vergrößern und reicht hierbei nach den Berechnungen von Matthiessen 1) bis 0,62 Mm. Damit zugleich müssen sich auch die Accommodationsschwankungen vergrößern, um bald das rothe, bald das blaue Object deutlich zu sehen. Es ist also begreiflich, dass der Beobachter, wenn er sich vom Stereoskop entfernt, in einer günstigeren Lage sich befindet, um eine Mischfarbe zu erhalten. Zugleich beweist dieser erwähnte Umstand deutlich die Richtigkeit der Erklärung, die Bezold in Bezug auf das Misslingen und die negativen Resultate bei binoculärer Farbenmischung gegeben hat.

Auscerdem muss man auch jenen wichtigen Umstand nicht unbeachtet lassen, dass wir uns zugleich mit der Entfernung vom Stereoskop die Convergenz der Gesichtsliinien und die Fixation des Objectes erleichtern.

Nach den am Stereoskop angestellten Versuchen und Uebungen

1) Physiolog. Pag. 127.

Da eine Farbenmischung bei solchen Versuchen von Helmholz in Frage gestellt, ja sogar verneint wird und er die Entstehung der Mischfarbe nur durch Missverständnisse erklärt und darauf hinweist, dass in der Mitte des gemeinschaftlichen Gesichtsfeldes, wo das rothe Feld vom blauen bedeckt wird, die blaue Farbe in der That durch Hinzutritt von rothen Strahlen in ihrem Farbenton verändert erscheint, dass dies aber nicht eine eigentliche Mischfarbe, so hatte ich zur Vermeidung eines solchen Missverständnisses stets ein doppelbrechendes Prisma und andere Exemplare derselben farbigen Papierstücke, von welchen ich die Mischfarbe im Stereoskop erhielt, bei der Hand, um mich über die Identität der im Stereoskop erhaltenen Farbe mit derjenigen, die ich vermittelst des Prisma erzeugte, zu überzeugen. Ich muss also mit besonderem Nachdruck den Umstand hervorheben, dass die bei meinen Versuchen erhaltene Mischfarbe eine wirkliche war, die sich in ihrem Ton in keiner Weise von derjenigen Farbe unterschied, welche ich mit Hilfe des doppelbrechenden Prisma erhielt, gleich gut, welche Farben ich mischte, ob roth und blau, gelb und blau, roth und grün u. s. w.

Wenn die Mischfarbe bisweilen doch eine besondere Nuance zeigte, so wurde dies nur in den Fällen beobachtet, wo beide Felder nicht gleichmässig erleuchtet waren; dann nähert sich die Mischfarbe derjenigen von beiden Componenten, welche heller erleuchtet ist. Durch ungleichmässige Beleuchtung wird möglicherweise auch der Umstand erklärt, dass einige Beobachter bei binocularer Farbenmischung Farbentöne erhielten, die den Gesetzen der Farbenmischung widersprachen.

Zum Schluss kann ich die Folgerung Bezzold's vollkommen bestätigen, dass die Accommodationsschwanckungen eines der Haupthindernisse bei der binocularen Farbenmischung ausmachen. In

Höchst wahrscheinlich lassen sich durch die erwähnten Schwankungen der Convergenz und Accommodation jene negativen Resultate erklären, die selbst die besten Beobachter bei solchen Versuchen erhalten haben.

Wenn wir uns nun die Frage stellen, warum einige Beobachter leicht, andere dagegen gar nicht eine Mischfarbe erhalten, da doch das Hinderniss bei binoculärer Farbenmischung für jedes Auge vorhanden ist und seine Bedeutung hat, so müssen wir folgende Umstände im Auge behalten: 1) häufig trifft man bei ein und demselben Individuum Augen mit verschiedener Refraction an und wenn ein solcher Beobachter das blaue Feld vor das Auge mit der stärkeren Refraction stellt, so befindet er sich in günstigeren Bedingungen, als der Beobachter mit gleicher Refraction beider Augen. 2) Übung spielt hierbei eine wichtige Rolle und im Anfang gelingen die Versuche weniger als in der Folge. 3) Es existirt eine ungeheure grosse individuelle Verschiedenheit, in Folge deren ein Individuum innerhalb gewisser Grenzen mit jedem seiner Augen für verschiedene
Entfernungen accommodiren kann, während dieses einem andern entschieden nicht gelingt. Wenn wir irgend eine feine Schrift lesen und dabei vor das eine Auge ein concaves, vor das andere dagegen ein convexes Glas setzen, so werden wir sehen, dass Einige selbst bei starken Gläsern leicht und lang lesen können, andere dagegen nicht im Stande sind, selbst schwache Gläser zu überwinden und über Unterschied in der Grösse der Gegenstände, Ermüdung der Augen u. s. w. klagen. Diese Thatsachen sind Augenärzten sehr gut bekannt, die häufig genug bei verschiedenem Baue der Augen Brillen mit verschiedenen Gläsern zu verordnen haben.

Zur Abiogenesisfrage.

Von

D. Huizings

in Groningen.

Vierter Artikel.

Ich hatte mir vorgenommen, die Reihe meiner Mittheilungen über diese Sache vorläufig mit der dritten zu schliessen, sehe mich aber veranlasst, denselben noch eine vierte hinzuzufügen. Dieselbe wird eine neue Beweisführung zu Gunsten der Abiogenesis enthalten, wogegen sich, wie mir scheint, weniger einwenden lässt, als gegen die früher mitgetheilten, und welche zugleich wesentlich einfacher ist.

Ich machte mir nun folgenden Einwand:

Die Untersuchungen von Mayer haben darzetheben, dass die verschiedenen stickstoffhaltigen Körper einen sehr verschiedenen Werth besitzen als Nahrungsmittel für Saccharomyceten und dass
von allen bekannten Substanzen die Peptone am besten dazu geeignet sind. Sollte nun etwas Ähnliches auch für Bakterien gelten? Sollte das Resultat der Controlversuche darum negativ ausgefallen sein, weil die Keime in diesen Versuchen nur über den ziemlich schlechten Nahrungsstoff Harnstoff zur Erlangung ihres Stickstoffs verfügen könnten, während ihnen im Hauptversuch der ausgezeichnete Nahrungsstoff Pepton zu Gebote stand?

Sehr zwingend erschien allerdings dieser Einwand nicht. Es ließ sich ja zeigen, dass eine zucker- und harnstoffhaltige Flüssigkeit, mit einer Spur Bakterien infectirt, nach 24 Stunden diese Organismen massenhaft enthielt, und da hätten doch die Controlversuche, wenn wirklich Keime anwesend wären, eine, wenn auch noch so schwache Bakterienentwicklung zeigen müssen, während sie dagegen vollkommen klar und bacterienfrei blieben.

 d. Natriumurat je 0,5 pCt.

 d. Natriumurat je 1 pCt.

Immer fand in a. die Entwicklung der Bakterien schneller und intensiver statt als in b. c. d. Als Maass für die Schnelligkeit wurde die Zeit angenommen, nach welcher die Flüssigkeit die erste bemerkbare Trübung zeigte; als Maass der Intensität diente der Grad der Trübung, welchen die Flüssigkeit nach ein, zwei, drei Tagen zeigte. Beides kommt in diesem Falle wohl eigentlich auf dasselbe hinaus.
In der Mischung b. blieb die Entwicklung der Bacterien zwar nicht aus, aber war immer deutlich schwächer als in c. und d. Diese beiden, c. und d., blieben am ersten Tage bedeutend hinter a. zurück; am zweiten und dritten Tage glich sich diese Differenz mehr aus, ohne dass jedoch die Trübung jemals die Intensität erreichte, welche sie in der peptonhaltigen Flüssigkeit zeigte. Unter sich waren das Ammonsalz und das Urat nicht merklich verschieden, nämlich wenn die Flüssigkeit neutral oder schwach sauer reagierte. Wenn die Reaction aber alkalisch war, war die Bacterienentwicklung bei der angegebenen Aussaatmenge viel schwächer, namentlich beim Urat.

Pepton und Ammontartrat haben nahezu den gleichen procentischen Stickstoffgehalt (15 pCt.), Natriumurat enthält mehr Stickstoff (28 pCt.) und Harnstoff noch mehr (46 pCt.). Der absolute Stickstoffgehalt des Nahrungsgemisches ist also in dieser Hinsicht nicht maassgebend, denn in den Reihen B. und C. enthielt die Flüssigkeit a., in welcher sich die Bacterien am besten entwickelten, weitaus die geringste Menge Stickstoff.

1) Noch weniger geeignet zur Ernährung von Bacterien ist rohes Eiereiweiss. Trockenes (nicht coagulirtes) Hühnerereiweiss wurde der erwähnten zucker- und salzhaltigen Lösung zu 0,5 oder 1 pCt. zugesetzt und dann Bacterien eingebracht. Das Eiweiss war bald gelöst, aber bei der Brütung zeigte die Flüssigkeit selbst nach mehreren Tagen nur eine ganz geringe Trübung, während die anderen Lösungen (auch die harnstoffhaltige) viel schnellere und stärkere Bacterienentwicklung zeigten. Sowohl in alkalischer als in neutraler Lösung war dies der Fall.

Zur Abiogenesisfrage.

Eine solche Substanz fand ich im Inulin. Käufliches Inulin ward in kochendem Wasser gelöst und heiss filtrirt. Das klare farblose Filtrat tropfte in eine grosse Menge Alkohol von 95 pCt. Wenn der Niederschlag sich nicht schnell flockig absetzt, sondern sein vertheilt suspendirt bleibt, genügt es, dem Alkohol eine Spur Säure (Salzsäure) zuzusetzen, um sogleich ein flockiges Absetzen zu erzielen. Das gefällte Inulin wird auf dem Filter gesammelt, mit absolutem Alkohol gewaschen und bei 100° getrocknet. Es ist ein
vollkommen weisses, in warmem Wasser klar losliches Pulver. Die Lösung reagirt neutral.

Zum Versuche diente nun die früher erwähnte Salzlösung (1 Kaliumnitrat, 1 Magnesiumsulphat, 0,2 (auch wohl 0,3) Calciumphosphat: 500 Wasser); weiter chemisch reine wasserhaltige Glucose und reines Pepton. Für die Darstellung desselben zu diesem Zwecke empfiehle ich folgendes Verfahren: Eiereiweiss wird bei gewöhnlicher Temperatur ohne vorheriges Coaguliren getrocknet. 20 Gr. dieser trockenen Masse werden mit 1 Liter künstlichen Magensafts (1000 Wasser, 5 officinelle Salzsäure, 10 Pepsin-Glycerin) digerirt bei 30°. Nach 24 Stunden wird die Flüssigkeit mit Natronlauge versetzt bis zur alkalischen Reaction, dann mit Essigsäure angesäuert und gekocht. Das von den Albuminaten getrennte klare Filtrat wird auf dem Wasserbade eingedampft zu dünnem Syrup und dieser in eine grosse Menge Alkohol von 95 pCt. gegossen. Der Niederschlag wird abfiltrirt, oberflächlich getrocknet und in einer nicht zu grossen Menge kochenden Wassers gelöst. Die heisse klare filtrirte Lösung trübt sich beim Erkalten, wird aber, bevor dies eintritt, wieder in 95procentigen Alkohol gegossen. Der Niederschlag wird dann gesammelt, mit absolutem Alkohol gewaschen und schliesslich bei 100° getrocknet. Das so erhaltene zweimal gefällte Pepton ist ein weisses eben gelbliches Pulver, in Wasser klar loslich mit neutraler Reaction.

Wenn man in der angegebenen Weise verfährt, gehen zwei Drittel des angewandten Eiweisses in Lösung und man erhält schliesslich ungefähr ein Drittel Pepton (von 20 Gr. Eiweiss 6—6,5 Gr.). Die ursprünglich erhaltene Peptonmenge ist grösser, da man bei der wiederholten Fallung und Sammlung der Niederschläge nicht unbeträchtliche Verluste erleidet.

Ein beachtenswerther Umstand bei dieser Darstellung ist, dass man Sorge trägt, die Reaction der Peptonlösung nicht alkalisch werden zu lassen und lieber schwach sauer zu erhalten. Daher soll auch die Digestion mit der sauren Pepsinlösung nicht zu lange dauern. Wenn man nämlich statt 24 Stunden zwei, drei oder mehr Tage digerirt oder leicht verdauliche Eiweissstoffe verwendet (z. B. coagulirtes Serumweiess oder frisches Fibrin), so erhält man leicht, aller Cautelen ungeachtet, ein alkalisch reagirendes Pepton, das zu den Versuchen weniger tauglich ist. Neutralisation (mit einer fixen Säure, z. B. Weinsteinsäure) hilft in solchen Fällen nicht viel, da
die Lösung beim Kochen doch wieder alkalisch wird. Bei der hohen Wahrscheinlichkeit, dass es eine größere Anzahl Peptone gibt und dass dieselben in einer bestimmten Reihenfolge aus Eiweiss entstehen, ist die Vermuthung wohl zulässig, dass diese „alkalischen“ Peptone durch tierer eingreifende Zersetzung der Eiweissstoffe entstanden sind und dass für unsern Zweck vorzüglich nur die dem Eiweiss näher stehenden Peptone brauchbar sind.

Zur Ausführung des Versuchs werden nun auf 100 Ccm. der obengenannten Salzlösung 1 Gr. reiner Glucose, 0,3 Gr. Inulin und 0,3 Gr. Pepton gelöst. 50 Ccm. dieser Mischung werden in einem 100—150 Ccm. fassenden, mit Asphalt umrandeten Kolben 10 Minuten gekocht und dann während des Kochens der Kolben mit einer beissen Thonplatte verschlossen 1). Nach dem Erkalten ist die Flüssigkeit vollkommen klar, während sich ein geringer Bodensatz von Calciumphosphat abgesetzt hat. Der Kolben kommt nun in die Brütmaschine. Am Ende des ersten oder im Laufe des zweiten Tages zeigt sich eine Trübung und am dritten Tage ist die Flüssigkeit ganz milchartig undurchsichtig und wimmelt von Bacterien, hauptsächlich Micrococcus und Bacterium Termo.

Die Controlversuche wurden folgenderweise angestellt. Auf 100 Ccm. Salzlösung kamen:

a. 1 Gr. Glucose, 0,3 Gr. Pepton, oder:
 b. 0,3 Gr. Inulin, 0,3 Gr. Pepton.

Diese Lösungen wurden ebenso behandelt wie im Hauptversuch, doch zeigten auch nach tagelanger Brütung niemals eine Spur von Bacterien. Sie blieben vollkommen klar und die mikroskopische Untersuchung that die völlige Abwesenheit von Organismen dar.

Gegen den Controlversuch b. könnte man möglicherweise folgendes einwenden: Diese Lösung enthält nur 0,3 Gr. stickstofffreie Substanz, während im Hauptversuch 1,3 Gr. anwesend ist. Die Hauptlösung ist also reicher an Nahrung und daher für die hypothetischen Bacterienkeime ein besseres Medium zur Entwicklung als die Controllösung. Ausserdem ist vielleicht Glucose ein besserer Nahrungsstoff für Bacterien als Inulin.

Stichhaltig sind aber diese Einwendungen nicht, denn:

1) Für die Details der Ausführung verweise ich auf das früher Gesagte, dies Archiv VII, 560 ff.
1. Zwischen Glucose und Inulin besteht kein merkbarer Unterschied hinsichtlich ihrer Fähigkeit zur Ernährung von Bakterien. In 100 Ccm. Salzlösung ward 0,3 Gr. Pepton gelöst und zur einen Hälfte dieser Lösung 0,5 Gr. Glucose gesetzt, zur andern 0,5 Gr. Inulin. Beide wurden nun gekocht, nach dem Erkalten mit zwei Tropfen derselben verdünnten bacterienhaltigen Flüssigkeit infizirt, verschlossen und gebrütet. In beiden Flüssigkeiten fand die Entwicklung der Bakterien mit der gleichen Intensität statt.

2. Wenn man den Controlversuch b so modifiziert, dass statt 0,3 Gr. Inulin 1 Gr. dieser Substanz verwendet wird, so bleibt der Erfolg dennoch gleich. Die Flüssigkeit bleibt klar und bacterienfrei.

Aus diesen Erwägungen ergibt sich, dass wenn in den Controlversuchen a. und b. die Flüssigkeit klar und bacterienfrei bleibt, daraus, mit Sicherheit geschlossen werden kann, dass dieselbe keine developmentsfähigen Keime enthält. Das heisst:

2. Die poröse thönerne Schliessplatte lässt keine Bacterienkeime aus der Atmosphäre in das Innere der Versuchskolben gelangen. Denn wenn dies der Fall wäre, so hätten sich in den Controlversuchen ebenso gut wie im Hauptversuch Bakterien entwickeln müssen.
Zur Abiogenesefrage.

Folgende Bemerkungen mögen hier noch schliesslich eine Stelle finden.

von wachsähnlicher Consistenz. Von diesen Klumpen wurden die äußeren Schichten mit einem unmittelbar vorher geglätteten Messer abgeschabt und nur die inneren Theile verwendet. Die so erhaltene Glucose gab mit Pepton angestift keine Spur von Bakterien, und war also zu den Versuchen brauchbar.

3. Für die beschriebene Versuche ist die Frage nach der Tödungstemperatur der Bakterien völlig irrelevant, da nur solche Materialien zur Verwendung kommen, von denen sich beweisen lässt, dass sie nach dem Erhitzen auf 100° während 10 Minuten keine lebenden Keime mehr enthalten. Dies ist ein grosser Vortheil, denn die Tödungstemperatur der Bakterien lässt sich gar nicht endgültig ein für allemal feststellen. Viele Forscher behaupten, dass eine Temperatur von 100°, während einiger Minuten einwirkend, immer genüge, die Bakterien in einer Flüssigkeit zu tödten. Hierbei kommen aber mehrere Umstände in Betracht, die wohl noch nicht genügend in Rechnung gezogen sind.

Erstens hat die Reaction der bakterienhaltigen Flüssigkeit einen merklichen Einfluss auf die vitale Resistenz dieser Organismen. Caeteris paribus sind sie in alkalischer Flüssigkeit am wenigsten resistent, in saurer widerstehen sie schon etwas besser und in neutraler Flüssigkeit am besten der erhöhten Temperatur. Schon ganz geringe Alkalescenz, resp. Säuregrad, reicht hin, die Tödungstemperatur um mehrere Grade herabzudrücken.

Zur Abiogenesisfrage.

Frische Zoogloea-Massen, d. h. der Bodensatz aus einer ausgefaulten Flüssigkeit, die aber nicht zu lange gestanden haben darf, verhalten sich in Hinsicht ihrer vitalen Resistenz wie frische Bacterien.

Bei Beachtung aller hieraus sich ergebenden Cautionen, wenn also die Flüssigkeit neutral reagiert und gute Nahrungsmittel (Glucose und Pepton) enthält, wenn Luft während der Brütung zutreten kann und ganz frische Bacterien zur Verwendung kommen, erhalte ich folgendes Resultat:

Die vielfachen früheren Angaben über niedrigere Tötungstemperaturen (Cohn: 80 ° während 30 Min.; Pasteur: 105 ° u.s.w.) rühren offenbar von der Nichtbeachtung der angegebenen Cautionen her. Daher rührt auch meine eigene Angabe (dies Archiv VIII, 562), dass 102 ° während 10 Minuten genüge; bei diesen Versuchen wurde nämlich Harnstoff als stickstoffhaltiger Nahrungsstoff verwendet.

Bei der in dieser Mitteilung angegebenen Beweisführung für
die Abiogenesis kann die Frage nach der Tödungstemperatur der Bacterien gänzlich umgangen werden, da durch die Controlversuche die völlige Abwesenheit aller Organismen ganz sicher gestellt wird. Es lässt sich nun noch eine zweite Beweisführung denken, wobei die Organismen und ihre Keime durch vorheriges Erhitzen getötet werden und ihre Abwesenheit dadurch sicher gestellt wird, dass die verwendeten Materialien über die Tödungstemperatur der Bacterien erhitzt worden sind. Dazu wird aber meine Mischung (Glucose, Inulin, Pepton) nicht brauchbar sein. Das Pepton nämlich erleidet beim Erhitzen auf 110° chemische Umsetzung (vgl. d. Arch. VIII, 558) und dasselbe ist beim Inulin der Fall. Auch dieser Körper bleibt beim Erhitzen mit Wasser, zumal bei Temperaturen über 100°, nicht unverändert (vgl. Gmelin's Handbuch i. v. Inulin). Wenn also meine Mischung, wie es thatsächlich der Fall, nach dem Erhitzen auf 110° bacterienfrei bleibt, so kann daraus kein swingendes Argument gegen die Abiogenesis abgeleitet werden, da immer die Möglichkeit vorliegt, dass die verwendeten Materialien durch die nachweisbare Umsetzung zur Production von Bacterien ungeeignet geworden sind.

Wer also die Abiogenesisfrage in dieser zweiten hier angedeuteten Weise studieren will, und seinen Versuchen die Tödungstemperatur der Bacterien zu Grunde legen will, wird nur solche Materialien verwenden dürfen, von denen es sich nachweisen lässt, dass sie eine Temperatur von 110° während 30 Minuten ohne Zersetzung ertragen.

Zusatz.

Seit die vorstehenden Zeilen an den Herrn Herausgeber dieses Archives eingesandt waren, sind noch zwei Kritiken meiner Abiogenesis-Versuche erschienen, von den Herren Gscheidlen (IX, 163) und Putzeys (IX, 391). Ich erlaube mir hier einiges zur Beantwortung derselben hinzuzufügen.

Die Sache, um welche es sich hier handelt, scheint mir folgenderweise zu stehen.

Man bekommt in einer bestimmten Mischung, nachdem dieselbe einige Zeit einer erhöhten Temperatur von etwa 30° ausgesetzt ist, Bacterien. Für das Auftreten dieser Organismen sind nun von vorn-
hierin zwei Erklärungen zulässig. Die eine lautet: »Die Bakterien haben sich entwickelt aus Keimen, welche in der Mischung anwesend waren oder während der Brüttung hineingekommen sind.« Die andere lautet: »Die Bakterien sind entstanden durch Abiogenesis.«

Zur Entscheidung zwischen diesen beiden Möglichkeiten kann man in verschiedenen Richtungen experimentieren.

Allererst soll die Mischung, welche zum Versuch dient, völlig frei von entwicklungsfähigen Keimen gemacht werden. Man kann dies erreichen durch starke Erhitzung. Im Laufe meiner Untersuchungen und derjenigen meiner Kritiker hat sich ergeben, dass die vollkommene Todtung aller Keime nicht so leicht erreichbar ist. Wie oben angegeben, ist dazu eine Erhitzung auf 110° während einer halben Stunde erforderlich; dann erst kann man sicher sein, eine völlig keimfreie Mischung zu haben.

Will man also durch bloße Erhitzung die Keimfreiheit der Mischung garantiren, so muss diese Temperatur während der angegebenen Zeit auf die Flüssigkeit eingewirkt haben.

Nun lässt sich aber zeigen, dass eine Erhitzung auf 110° während 30 Minuten einen Bestandtheil der Mischung, das Pepton 1), chemisch alterirt (vgl. d. Arch. VIII, 558). Wenn also nach einer solchen Erhitzung die Bakterien ausbleiben, so ist damit eine vollgültige Entscheidung zwischen den beiden angedeuteten Möglichkeiten noch nicht erreicht. Denn für die zweite Erklärungsweise (die Abiogenesis) bleibt dann noch der Einwand offen, die chemische Alteration habe die Mischung zur Production de novo von Bakterien ungeeignet gemacht.

Kann man nun aber die Keimfreiheit der Mischung auch auf eine andere Weise garantiren, ohne eine solche Erhitzung? Allerdings ist dies möglich und zwar folgenderweise. Man hat als Bestandtheile der Mischung, welche bei der Brüttung Bakterien zeigt, Pepton, Glucose, Inulin und Salze. Nun lässt sich nachweisen, dass die Bakterien ausbleiben, wenn aus der Mischung die Glucose oder das Inulin fortgelassen wird, obgleich durch den Ausfall einer von diesen beiden Substanzen die Nährhaftigkeit der Flüssigkeit für Bakterien nicht beeinträchtigt wird. Wie oben ausführlicher aus-

1) Peptone verschiedener Herkunft verhalten sich in dieser Hinsicht nicht völlig gleich, auch ist es nicht gleichgültig, ob das Pepton alt oder frisch, stark oder schwach digerirt ist, etc. In jedem Falle aber lässt sich die chemische Alteration nach der Erhitzung leicht nachweisen.
einandergesetzt, lässt sich also zeigen, dass keine der verwendeten Substanzen Bacterienkeime enthält.

Leicht anwendbar ist freilich diese Methode nicht; denn es hält zuweilen ziemlich schwer, sich die Materialien von genügender Reinheit zu verschaffen, so dass Pepton und Glucose für sich gemengt, steril bleiben und ebenso Pepton und Inulin für sich. Sonst aber hat diese Methode vor der andern meines Erachtens das voraus, dass sie die Sache entscheidet, ohne Einwendungen wie die soeben genannte zuzulassen, da die Mischung keiner höheren Temperatur als 100° ausgesetzt wird.

Auf diesem zweiten Wege, der auch schon in meinen früheren Mittheilungen angedeutet war, ist mir keiner meiner Kritiker gefolgt, sie haben sich alle mit der ersten Methode begnügt und die Garantie für die Keimfreiheit in der starken Erhitzung gesucht. Ich gebe gern zu, dass die nach dieser Methode gemachten Versuche, auch die reinen, nicht beweiskräftig sind, aber zugleich behaupte ich, dass die Entscheidung der Frage in einer anderen Richtung gesucht werden muss, wenigstens wenn man Materialien verwendet, welche wie Pepton (und auch Inulin) durch längeres Erhitzen über 100° eine beginnende chemische Alteration erleiden.

Durch die genannten Controlversuche (und nicht durch die Erhitzung über 100°) soll man sich also von der Keimfreiheit der angewendeten Mischung überzeugen. Nun kommt es darauf an, den Zutritt der Keime während der Brütung zu verhindern. Am einfachsten geschah dies durch Zuschmelzen des Gefäßes, aber damit wird auch der Luft der Zutritt abgeschlossen. Ein negativer Erfolg eines solchen Controlversuchs (wie bei Putzey's) würde eben so gut erklärlich sein durch den Abschluss der Luft, als durch den Abschluss der Keime. In Putzey's Versuchen blieben die auf 100° (1 Stunde lang) erhitzen Röhren bacterienfrei, während in den auf 70° und 80° erhitzen Röhren sich Bakterien entwickeln. Allerdings, in jenen waren die Bakterien getödtet, in diesen nicht. Aber das entscheidet die Abiogenesisfrage gar nicht, denn die von vorn herein sehr berechtigte Behauptung: zur Production de novo von Bakterien in der bekannten Mischung ist der Luftzutritt erforderlich, wird durch diese Versuche nicht im mindesten widerlegt.

Wie man diesen Luftzutritt zu Stande kommen lässt, kann ziemlich gleichgültig sein, wenn nur die atmosphärischen Keime sicher zurückgehalten werden, und dazu scheinen mir die Thon-
Zur Abiogenesisfrage.

So viel ich weiss, hat noch Niemand die von mir empfohlenen Thonplatten als Verschlussmittel zur Abhaltung von Keimen nachgeprüft; Jeder aber, der sich diese Mühe giebt, wird sich bald überzeugen, dass sie in dieser Hinsicht vollkommen leisten was sie sollen.

Standpunkte der Vortheidiger der Abiogenesis hat jedesfalls dieser Schluss seine Berechtigung.

Schliesslich möchte ich meinen eigenen Standpunkt in der Abiogenesisfrage, worauf ich im Laufe dieser Untersuchungen angelangt bin, kurz folgenderweise präzisieren:

Wenn man eine Mischung verwendet, welche durch Erhitzung über 100° eine, wenn auch noch so geringe chemische Umwandlung erleidet, sind Controlversuche, wobei man durch hohe Temperatur die sichere Tödtung aller möglichen Keime erreichen will, nicht beweiskräftig. Hierbei kann die Sterilität der Mischung auf zweierlei Weise gedeutet werden, ohne dass eine sichere Entscheidung zwischen diesen Deutungen annoch getroffen werden kann. Nur vermitteln der anderen von mir angewendeten Methode können entscheidende Ergebnisse erreicht werden. Ich möchte jedem Forscher, der die Frage experimentell bearbeiten will, vorschlagen, sich dieser Methode zu bedienen und empfehle dabei die Thonplatten als Verschlussmittel zur Filtration der Luft.
Von nachstehenden Zeitschriften suchen wir complete Exemplare, einzelne Serien, Jahrgänge, Bände und Hefte und zahlen dafür die höchstmöglichen Preise. Gefällige Anerbietungen erbitten wir direct per Post, worauf sofort Antwort erfolgt:

Annalen der Chemie von Liebig.
Annalen der Physik von Poggendorff.
Centralblatt für die med. Wissenschaften.
Jahresbericht über die Fortschritte der Chemie.
Journal für Mathematik von Crelle.

Buchhandlung Max Cohen & Sohn in Bonn.
In unserem Verlag ist eben erschienen:

Kurzes Lehrbuch
der
Anorganischen Chemie
wesentlich für
Studirende auf Universitäten und polytechnischen
Lehranstalten sowie auch zum Selbstunterricht.
Von
Professor Dr. V. v. Richter.
Mit 62 Holzschnitten u. 1 Spectraltafel.
Preis 7 Mark.

Die Verlagsbuchhandlung
MAX COHEN & SOHN (Fr. Cohen) Bonn.
ARCHIV
FÜR DIE GESAMMTE
PHYSIOLOGIE
DES MENSCHEN UND DER THIERE.
HERAUSGEGEBEN
VON
DR. E. F. W. PFLÜGER,
ORD. ÖFFENTL. PROFESSOR DER PHYSIOLOGIE AN DER UNIVERSITÄT
UND DIRECTOR DES PHYSIOLOGISCHEN INSTITUTES ZU BONN.

ZEHNTER BAND.
ZWEITES UND DrittES HEPT.

BONN, 1875.
VERLAG VON MAX COHEN & SOHN.
(FR. COHEN.)
Ausgegeben Ende Februar 1875.
Inhalt.

Ueber den Luftdruck als mechanisches Mittel zur Fixation des Unterkiefers gegen Oberkiefer im ruhenden Zustand. Von Dr. Joh. Mezger in Amsterdam 89

Ueber die Zusammensetzung einer als Chylus aufzufassenden Entleerung aus der Lymphfistel eines Knaben. Von Dr. Hensen. Prof. der Physiologie in Kiel. 94

Ueber die Sulphgasgärung. Von Dr. Leo Popoff aus St. Petersburg. (Aus dem Laboratorium des Herrn Prof. Dr. Hoppe-Seyler in Strassburg i. E.) 113

Existirt eine Verschiedenheit in der Reaction der Nerven gegen den galvanischen Strom, je nachdem die Kette mit der Kathode oder Anode geschlossen oder geöffnet wird? Von Dr. H. Engesser. (Experimentalarbeit aus dem physiol. Institut zu Freiburg i. Br.) 147

Erklärung in Betreff des Eiweissharns. Von H. Senator in Berlin. 151

Eine neue Methode zur Harnsäurebestimmung. Von A. P. Fokker, Dr. med. in Goes (Holland). 153

Notiz, die reflexhemmenden Mechanismen betreffend. Von J. Setschenow. 163

Berichtigung.

In dem Aufsatz des Herrn Prof. E. Cyon Bd. IX. p. 506 Anm. lies: statt „nachträglich erschienene“, „nachträglich erscheinende.“

Von nachstehenden Zeitschriften suchen wir complete Exemplare, einzelne Serien, Jahrgänge, Bände und Hefte und zahlen dafür die höchstmöglichsten Preise. Gefällige Anerbietungen erbiten wir direct per Post, worauf sofort Antwort erfolgt:

Annalen der Chemie von Liebig.
Annalen der Physik von Poggendorff.
Centralblatt für die med. Wissenschaften.
Jahresbericht über die Fortschritte der Chemie.
Journal für Mathematik von Crelle.

Buchhandlung Max Cohen & Sohn in Bonn.
Ueber electriche Reizversuche an der Grosshirnrinde.

Nach Versuchen in Gemeinschaft mit den Herren

Dr. von Borsanyai, Luchsinger, Steger, Pestalozzi

mitgetheilt von

L. Hermann.

(Aus dem physiologischen Laboratorium in Zürich.)

Unsere Versuche hatten den Zweck zu entscheiden, inwieweit der von verschiedenen Seiten erhobene Einwand berechtigt sei, dass die Erfolge der Fritsch-Hitzig’schen Reizversuche an der Hirnrinde 1) nicht von Erregung der Rindenstellen selbst, sondern von der tiefer gelegener Theile herrühren.

Niemand konnte sich beim Bekanntwerden dieser Versuche des Staunens erwehren, dass die grosse Mehrzahl der erfahrensten und sorgfältigsten älteren Experimentatoren eine so leicht zu constatierte Erregbarkeit der Hirnrinde nicht bloss übersehen, sondern geradezu bestritten haben sollten, und dass nach den Verfassern selbst die Erregbarkeit, was sonst unerhört ist, auf electricen Reiz beschränkt sein soll. Der Verdacht lag ungemessen nahe, dass die Verfasser ihre positiven Resultate einer von den früheren vermiedenen oder nicht erreichten Höhe der Stromstärken verdankten, durch welche in der Tiefe gelegene motorische Apparate in Action gesetzt wurden. In der That musste bei einem Organ, welches ein unendlich feines Gewebe von Apparaten in eine compacte Masse zusammengedrängt enthält, der electric Reiz als der gefährlichste, weil am wenigsten streng local beschränkbare erscheinen.

Fritsch und Hitzig haben diese Bedenken mit folgenden Gründen aus dem Felde schlagen zu können geglaubt. Erstens:

H. Pflüger, Archiv f. Physiologie. Bd. X.

Der zweite und hauptsächliche Grund, den die Verfasser für eine ganz oberflächliche Lage der erregten Stelle geltend machen, ist das strenge Gebundensein des Erfolges an circumscripte Stellen.
Wenn kleine Verschiebungen der Elektroden den Erfolg schon gänzlich ändern, so kann, argumentieren sie, die erregte Stelle nicht im Bereiche tiefer Stromschleifen liegen. Dieser Grund ist zunächst nicht genügend. Gesetzt, es läge in einer gewissen Tiefe ein Organ, dessen Oberfläche auf local beschränkte Reizungen motorische Erfolge giebt, so wird es für jede Elektrodenstellung an der Hirnfläche an jenem Organ eine Stelle geben, welche intensivere Stromfäden empfängt als die übrigen. Diese Zusammgehörigkeit wird um so strenger sein, je constanter der ganze Bau des Gehirns bei verschiedenen Individuen ist, und sie wird sich um so mehr durch Wechsel des Erfolges mit Verschiebung der Elektroden geltend machen, je mehr man sich an die Minimalstromstärken hält, die noch Erfolge geben. Mit Zunahme der Ströme wird in diesem Falle etwas leichter als bei oberflächlicher Lage Ausbreitung und Regellosigkeit der Bewegungen eintreten; sie tritt wirklich ein (s. unten); wer will nun entscheiden, ob sie leichter oder schwerer eintritt? Das Argument der Erfolgänderung mit der Verschiebung bedarf, um beweisend zu sein, noch eines wesentlichen Zusatzes, nämlich: der Erfolg muss ausbleiben, wenn man die der Elektrodenstellung unmittelbar anliegende Hirnpartie functionsunfähig macht. Diese Prüfung war die Hauptaufgabe unserer Versuche.

Die Versuche geschahen im Sommersemester 1874, sämtlich an Hunden mittlerer Größe und verliefen ausnahmslos ohne Störung (für die Stellung von Diploe-Blutungen bei der Schädeleröffnung erwies sich das von Dietmar\(^1\)) empfohlene Eisenchlorid-Papier sehr nützlich). Ihre Zahl betrug nur sechs; da sie alle in ihren Resultaten übereinstimmten, war kein Grund, diese grausamen Versuche noch weiter zu vermehren. Nachdem wir uns gleich das erste Mal (am ersten Versuche beteiligte sich auch Herr Prof. Huguenin) über die Lage der hauptsächlichsten Erfolgsstellen orientirt hatten, wurde in allen Versuchen nur mit einer einzigen derselben, nämlich der für das Hinterbein, experimentirt\(^2\)). Wir fanden die Lage derselben zwar jedesmal (für eine gegebene Reizstärke) streng begrenzt, aber bei den einzelnen Individuen nicht

2) In einigen Fällen haben wir deutlich constatirt, dass die Erfolge der Reizung anfangs viel unregelmässiger sind als später; diese Erscheinung würde, wenn sie sich als Regeln herausstellte, für die Deutung nicht ohne Interesse sein.
unbedeutend variirend. Die zur Erreichung des Erfolges nöthigen Stromstärken waren sowohl bei constanten als bei Inductionsströmen überraschend gross; stets brachten sie auf der Zunge sehr erhebliche Empfindungen hervor, und der constante Strom auf der Hirnoberflächen kräftige Gasbläschenentwicklung. Bei einer Batterie von 9 kleinen Grennet'schen Elementen musste der Nebenschliessungswiderstand mindestens 1000 Einheiten des du Bois'schen Rheochoords (circa \(6\frac{1}{2}\) Siemens'sche Einh.) betragen (Electrodendistanz \(1-1\frac{1}{2}\) Mm.); beim Inductionsapparat (mit 1 Daniell) mussten die Rollen stets theilweise über einander geschoben sein. — Verstärkung der Ströme vergrösserte jedesmal den wirksamen Bereich; an den Grenzen desselben und bei sehr starken Strömen auch in der Mitte, verwischten sich in solchen Fällen häufig die Resultate, indem noch andere Bewegungen hinzukamen. Stromprüfende Froschschienen, deren Nerven der Hirnrinde angelegt waren, zuckten in beträchtlichen Entfernungen.

Wir erwarteten eine sehr schnelle Vergänglichkeit der Erfolge bei der angeblich oberflächlichen Lage des Organs\(^1\), von dem der Luftzutritt nicht abgehalten werden konnte, waren aber überrascht, dass die Erfolge sich stundenlang in voller Promptheit erhielten. Wir sahen die Stelle häufig den eigenthümlichen Faltenglanz, der die Eintrocknung verrath, annehmen, ohne Beeinträchtigung der Versuche. An äusserste Empfindlichkeit nervöser und besonders gangliöser Apparate gegen alle Einflüsse gewöhnt, sahen wir hierin einen Fingerzeig, dass das fragliche Organ wenigstens schwerlich der äussersten Rindenschicht angehört. Hierdurch kühner gemacht, ätzten wir die vorher genau umschriebene Erfolgspalte mittels eines Glasstabes, in einem Falle mit starker Salpetersäure, in einem anderen mit Essigsäure, die mit etwas Blutlaugensalz versetzt war. Auch nach diesen Aetzungen und selbst nach wiederholten Säureauftra-

\(^1\) Hitzig muss sich die Lage seiner Centra an der alleräussertesten Oberfläche vorstellen; sonst könnte man seine Angaben vom Ueberwiegenden der Anode nicht verständlich finden. Nur bei solcher Lage kann die Stromrichtung eine gewisse Rolle spielen. Für Zellen oder Fasern, die auch nur 1 Mm. von der Oberfläche entfernt ins Parenchym eingebettet liegen, müsste man schon die seltsamsten Annahmen über anatomische Orientiran machen, um zu begreifen, dass ihnen die Richtung eines durch sie hindurchgehenden Stromes nicht gleichgültig sein sollte. Uebrigens war bei den Versuchen, die diese Resultate gaben, die Spannweite der Electroden offenbar sehr gross.
gungen blieb der Erfolg durchaus bestehen, und ohne dass eine Verstärkung der Reize notwendig wurde. Die Section lehrte, dass die Aetzung, soweit man macroscopisch urtheilen konnte, nur etwa das äussere Drittel der Dicke der grauen Substanz zerstört hatten (von der nicht Eiweiss coagulirenden Essigsäure hatten wir ein tieferes Eindringen erwartet als von der Salpetersäure, und hatten erstere mit Blutaugensalz versetzt, um auf dem Schnitt mittels Eisenchlorids die Tiefe des Eindringens constatiren zu können). Wenn nun auch vermuthet werden durfte, dass nach grober Zerstörung des ässeren Drittels auch der von innen angrenzende, wenige Millimeter dicke Rest dieses so feinen Gewebes seine physiologischen Leistungen eingebüsst habe, so war es doch unsere Aufgabe, auch diesen Rest mit voller Sicherheit zu zerstören. In allen übrigen Versuchen wurde deshalb in die Versuchsstelle normal gegen die Oberfläche eine schneidende Messingblechröhre von 6—7 Mm. Durchmesser (aus einem Korkbohrersatz) bis zu einer Tiefe von 1—1½ Cm. eingetrieben und wieder herausgezogen. Nach Stillung der Blutung wurden wiederum die Electroden auf die Oberfläche des umschnittenen, aber noch in der Tiefe wurzelnden Hirncylinders aufgesetzt; immer noch war der Erfolg vorhanden, jedoch musste der Reiz ein wenig verstärkt werden. Jetzt wurde der Cylinder ganz herausgenommen; die Höhlung füllte sich mit Blut, welches bald coagulirte. Auch jetzt aber konnte man die Bewegungen ohne merkliche Reizverstärkung, ja sogar in einem Falle mit geschwächtem Reize, hervorrufen, wenn man die Electroden in die Höhle versenkte oder sie auf die umgebende Hirnoberfläche aufsetzte. Beim Einsenken in die Höhle bemerkte man häufig, dass Andrücken der Electroden an eine bestimmte Seite derselben den Erfolg begünstigte, so dass es durchaus den Anschein hatte, als ob das zu erregende Organ nicht unter, sondern neben der Höhle seinen Sitz habe.

Wir sind weit entfernt, den Werth neu gefunden der Thatsachen zu unterschätzen; aber wir können in den Versuchen von Frisch und Hitzig nur das als Thatsache erkennen, dass elektrische Reizung bei Aufsetzung der Electroden auf gewisse Gyri bestimmte motorische Erfolge hat. Der von den Verfassern und vielen Andern hieraus

1) Durch eine Nachlässigkeit ist das Datum der Tötung nicht notirt worden.
Ueber electriche Reisversuche an der Grosshirnrinde.

Folgende Thatsache, die uns bei unzer Versuchen auffiel, ist an sich schon ausreichend, die Hitzig'sche Lehre von den motorischen Rindencentren gänzlich umzustossen. Wir haben jedesmal den Oberflächenbezirk, dessen Reizung Zuckung des entgegengetsetzten Hinterbeins gab, für die Minimalstromstärke auf's Genaueste abgegrenzt. Seine absolute Grösse war in allen Fällen ziemlich dieselbe. In einigen Fällen aber ging durch diesen Bezirk ein kleiner Sulcus hindurch, in anderen nicht. Da dieser Sulcus sehr weit in die Tiefe reicht, also seinen Wänden ein sehr beträchtliches Feld grauer Substanz anliegt, so muss man im Sinne der Hitzig'schen Lehre entweder annehmen, dass das Rindenfeld für das Hinterbein in den Fällen, wo der Sulcus hindurchgeht, um so ungemein viel vergrössert ist als die eingefaltete Rinde beträgt, oder dass die letztere nicht dazu gehört, das motorische Feld also in diesen Fällen durch einen grossen Bezirk von anderer Function
unterbrochen ist. Beide Annahmen sind so gut wie unmöglich. Gar keine Schwierigkeiten bietet dagegen die erwähnte Thatsache, wenn man die ganzen Erfolge von Erregung tiefer Theile ableitet; das wirksame Oberflächenfeld hat dann mit der Entwicklung und Einfaltung der Rinde gar nichts zu thun.

In den mitgetheilten Thatsachen liegen übrigens auch noch einige andere Gründe, um den Sitz der betr. Apparate in der Hirnrinde unwahrscheinlich zu finden. Welche Vorstellung soll man sich von motorischen Apparaten machen, deren Wegfall in etwa 14 Tagen, zu einer Zeit, wo von Regeneration unmöglich die Rede sein kann und auch der Augenschein jeden Gedanken daran verhindert; anscheinend spurlos wieder ersetzt wird? Das Verhalten der Thiere erklärt sich viel besser durch die Annahme, dass tiefer gelegene Theile durch die Nähe der Verletzung und eine von ihr sich ausbreitende entzündliche Veränderung vorübergehend in ihren Funktionen gestört sind.

Schliesslich kann, so lange nicht ein stricler Beweis für die corticale Lage der erregten motorischen Theile erbracht ist, auch noch folgendes Argument gegen dieselbe wenigstens in zweiter Linie erwähnt werden. Wenn, woran doch kaum ein Zweifel sein kann, die Hirnrinde das Organ der psychischen Funktionen ist, so ist es kaum denkbar, dass noch auf dieser höchsten Stufe der centralen Repräsentation einzelne motorische Gebiete in so grober Weise abgegrenzt vertreten sein sollten. Die Fäden, welche die Muskeln oder grössere motorische Complexe in Action setzen, müssen hier, sollte man meinen, in unübersehbarer Weise verwickelt sein, wenn sie in unzähligen Combinationen mit allen Theilen der sensiblen Peripherie verknüpft sein sollen. Freilich kann diese nächstliegende Vorstellung durch jede neue Entdeckung umgestossen oder wesentlich berichtigt werden; aber gerade darum ist jede Thatsache, die hier mitspricht, von so enormer, ich möchte sagen mehr als physiologischer Wichtigkeit, dass wir an ihren Grundlagen die strengste Kritik zu üben berechtigt und verpflichtet sind.

Ich schliesse mit der Behauptung, dass die Versuche von Fritzsch und Hitzig, so interessant und schätzbar sie sind, zu keinerlei Schlüssen hinsichtlich der Functionen der Grosshirnrinde berechtigen.
Nachtrag.

1) Bei diesem Versuche wurden ausschliesslich constante Ströme benutzt. Bei 9 kleinen Grenneta mussten etwa 400 Einheiten des du Bois' schen Rheochords als Nebenschliessung eingeschaltet werden. Die Electroden- distance war etwas grösser als früher (2'/4 Mm.). In diesem Falle wurde wiederum (s. oben) constatirt, dass ein Sulcus den wirksamen Bezirk (Minimalreiz) in zwei (ungleich grosse) Theile theilte.
Ein Beitrag zur Kenntniss des Hämoglobins.

Nach Versuchen von stud. med. Th. Steger
mitgetheilt von L. Hermann.

(Aus dem physiologischen Laboratorium in Zürich.)

Um den Einfluss der Zerstörung durch Hitze zu untersuchen, musste das Blut in 80—90° warmes, evacuirtes Wasser eingeleitet werden, und zwar so, dass keine merkliche Gasentwicklung vor Zerstörung des Hämoglobins eintreten konnte. Die Quecksilberpumpe wurde zu diesem Behufe mit dem Pflüger'schen bisquitförmigen Schaumgefass (ohne Einschaltung von Trockenapparaten) verbunden und an dessen unteres Ende, in welches bei unserm Apparat die Blutkugel mit Pokrowsky'schem Hahn passt, statt dieser mittels eines Kautschukschlauchs ein Allongenrohr angefügt, das nach zweimaliger rechtwinkliger Biegung in den Hals eines starken geräumigen Gaskolbens hineinführte. Durch den Kautschukstöpsel dieses Kolbens ging noch ein zweites bis an den Boden reichendes Rohr, das aussen mittels eines sehr kurzen mit Klemme versehenen Kautschukschlauchs mit dem Halse eines geräumigen Trichters verbunden

2) Dies Archiv I. 361.
Ein Beitrag zur Kenntnis des Hämoglobin.

Ich führe nun die Versuche mit ihren Resultaten kurz an.

a. Versuche mit arteriellem Blut.

1. Versuch. 100 Com. arterielles defibrinirtes Rindablut. Das erhaltenene Gas betrug 33,9 Com. und enthielt

Kohlensäure	87,5 Gaspot.	29,7 Blutpot.
Sauerstoff	8,1	2,8
Stickstoff	4,4	1,5

2. Versuch. 100 Com. arterielles defibrinirtes Rindablut. Gesammtgas 26,8 Com.

| Kohlensäure | 75,9 Gaspot. | 19,8 Blutpot. |
| Sauerstoff und Stickstoff | 24,1 | 6,3 |

Kohlensäure	68,4 Gaspot.	18,5 Blutpot.
Sauerstoff	22,4	6,1
Stickstoff	9,2	2,5

4. Versuch. 100 Com. arterielles defibrinirtes Rindablut. Gesammtgas 26,4 Com.

| Kohlensäure | 69,4 Gaspot. | 18,3 Blutpot. |
| Sauerstoff und Stickstoff | 30,6 | 8,1 |

Kohlensäure	78,7 Gaspot.	17,97 Blutpot.
Sauerstoff	16,0	3,66
Stickstoff	5,3	1,21

b. Versuche mit Kohlensydblut.

Das mit Kohlensyd gesättigte Blut wurde im 6. Versuch vor dem Einlassen mit Luft geschüttelt, um das einfach absorbirte Kohlensydgas
möglichst zu entfernen. Im 7. Versuch unterblieb dies. Das weitere Verfahren war ganz wie beim Sauerstoffblut.

<table>
<thead>
<tr>
<th>Kohlensäure</th>
<th>78,5 Gaspct.</th>
<th>22,6 Blutpt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kohlenoxyd</td>
<td>5,82</td>
<td>1,7</td>
</tr>
<tr>
<td>Sauerstoff</td>
<td>4,31</td>
<td>1,2</td>
</tr>
<tr>
<td>Stickstoff</td>
<td>11,45</td>
<td>3,3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kohlensäure</th>
<th>85,9 Gaspct.</th>
<th>27,3 Blutpt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kohlenoxyd</td>
<td>5,4</td>
<td>1,8</td>
</tr>
<tr>
<td>Sauerstoff</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Stickstoff</td>
<td>8,2</td>
<td>2,8</td>
</tr>
</tbody>
</table>

c. Versuch mit Stickoxydblut.

Da Herr Steger am Schlusse des Sommersemesters die Arbeit abschliessen genöthigt war, so hat Herr B. Luchsinger die Güte gehabt, noch einen Versuch mit Stickoxydblut anzustellen.

<table>
<thead>
<tr>
<th>Kohlensäure</th>
<th>77,7 Gaspct.</th>
<th>17,1 Blutpt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stickoxyd und Stickstoff 23,3</td>
<td>4,9</td>
<td></td>
</tr>
</tbody>
</table>

Interessant ist nun, dass auch vom Kohlenoxyd und Stickoxyd,
welches an Blut gebunden ist, durch plötzliches Erhitzen der grösste Theil in feste Verbindungen übergeht. Vor den Untersuchungen von Donders¹, Zuntz²) und Podolinski³), welche die Aus-treibbarkeit dieser Gase durch die gewöhnlichen Evacuirungsmittel dargethan haben, würde man diese Thatsache auf Rechnung ihrer festen Haftung am Hämoglobin gesetzt haben. Jetzt aber ist man genöthigt anzunehmen, dass auch diese Gase mit einem der Zersetzungsporducte des Hämoglobins analog dem Sauerstoff eine feste Verbindung eingehen. Das Verhalten des letzteren kann also nicht, wozu vielleicht Mancher geneigt war, so aufgefasst werden, als ob der Sauerstoff nur von einem oxydationsbedürftigen Zersetzungsporduct gleichsam abgefangen würde, da dasselbe Zersetzungsporduct auch für Kohlenoxyd und Stickoxyd Affinitäten äussert.

Über den Luftdruck als mechanisches Mittel zur Fixation des Unterkiefers gegen Oberkiefer im ruhenden Zustand.

Von

Dr. Joh. Mesger
in Amsterdam.

Der Unterkieferknochen ist durch die an ihn sich inserirenden Muskeln nahezu in einem Aequilibrium, und zwar derartig in demselben gehalten, dass bei Contraction einzelner Muskelgruppen die bekannte Drehung und Verschiebung folgen. Ein vollständiges Gleichgewicht ist jedoch nicht lediglich durch den Tonus der Muskulatur bedingt, und zumal muss aus rationellen Gründen, wie aus experimentell leicht zu gewinnenden Erfahrungen das sonst geleherte „Aufgehängtsein der Mandibula an den Kaumuskeln“ ausgeschlossen werden. Während man ohne jede subjective Beschwerde stundenlang

¹) Dies Archiv V. 24.
²) Ebendaselbst V. 584.
³) Ebendaselbst VI. 553.
den Mund geschlossen halten kann und dabei sicher nicht fühlt, dass ein durch constantes Ziehen angestrengter Temporalmuskel vorhanden, wird das unangenehme Bewusstsein eines solchen Thatsandes leicht hervorgerufen, wenn man versucht, bei selbst minimal geöffneten Lippen und völlig gleichmässig erschlaffter Muskulatur nur fünf Minuten lang zu athmen, wobei der Unterkiefer mit schwachem Zug auf die genannten Muskeln wirkt. Ungleicher stärker wird natürlich das Gefühl der Anstrengung, oder richtiger die Dehnung im Temporalmuskel, wenn man durch Anhängen schon eines geringen Gewichtes den Unterkiefer beschwert.

Selbst bei strengem Vorsatz, die Muskulatur im erschlafften Zustand zu erhalten, tritt schnell Ermüdung ein, kommen unwillkürliche Contractionen des dann länger gedehnten Muskels vor. — Ein ferneres stets zu beobachtendes Vorkommniss ist es, dass man sofort, wenn man bei geschlossenem Munde den Unterkiefer vom Oberkiefer entfernen will, die Wangenschleimhaut zu beiden Seiten zwischen die Zahnreihen beider Kiefer sich einstülpen fühlt und Speichelerguss in den Mund erfolgt. Bei weiterem Öffnen der Zahnreihen plazten die Lippen mit hörbarem Geräusch auseinander und die eingestülpte Schleimhautfalte glättet sich wieder. Bei allem kann die Respiration durch die Nase dauernd erfolgen, ohne dass Aenderung in den beobachteten Umständen eintritt; die Zunge schliesst vollständig den Weg des Luftstromes von dem eigentlich erst künstlich herzustellenden Cavum oris ab. — Der hermetische Abschluss der Wandungen, die im gegebenen Falle ein Cavum oris bilden können, vom Respirationsweg durch die Zunge erfolgt in der Weise, dass dieselbe, welche bei geöffnetem Munde auf dem Boden der Mundöhle in transversaler und sagittaler Richtung gerundet lag, etwas mit der Spitze nach vorn und oben geht, sich genau in die durch obere Zahnreihe (oder bei Zahnlücken durch die innere Lippenfläche), Processus alveolaris des Oberkiefers und Palatum durum gebildete Höhlung anlegt, die Zungenwurzel sich zu beiden Seiten etwas hebt, an die hinteren Zähne und entsprechende Partie der Oberkiefer anpasst. Das einfachste Raisonnement sagt uns, dass nun ohne Dehnung und belästigende Zerrung unserer Muskeln der Mund geschlossen bleiben kann. Die untere Zungenfläche ruht auf dem Rande des Unterkiefers, und wird nunmehr die ganze Zunge selbst nebst ihrer Unterlage von Luftdruck getragen.
Ueber den Mechanismus des Saugens.

Nachschrift zum vorigen Artikel.

Von

F. C. Donders.

Den vorstehenden Aufsatz sandte mir Dr. Mezger zur Einstichnahme zu, mit dem Ersuchen, denselben geeigneten Orts zu publiciren. Ich erklärte mich gern dazu bereit, denn die darin entwickelte Vorstellung schien mir richtig und wirklich belangreich. Sie gab Veranlassung, dass im hiesigen Laboratorium noch einige Untersuchungen angestellt wurden, und diese findet man, mit Zustimmung von Dr. Mezger, dessen Betrachtungen hier zugefügt.

Während der Mund auf die gewöhnliche Weise geschlossen ist, lässt sich ein plattes Mundstück, das durch ein elastisches Rohr mit einem Manometer verbunden ist, zwischen Lippen und Zähnen über die Zunge hinführen, bis in die Nähe des weichen Gaumens. Leichter noch gelingt das, wenn einer der Oberkieferzähne fehlt. Dabei nun überzeugt man sich stets, dass in dem Raume zwischen der Zunge, die gegen den harten Gaumen anliegt, und dem weichen Gaumen, der über der Zungenwurzel ausgespannt ist, ein negativer Druck von 2 bis 4 Millimeter Quecksilber besteht. Mit einer gefärbten wässrigen Flüssigkeit weist der Manometer höhere Werthe an, aber, auch bei kleinen Dimensionen, doch nicht im Verhältniss zu dem geringeren specifischen Gewicht, ein Beweis, dass der saugende Raum wenig Umfang hat. Die Athembewegung geht dabei regelmässig weiter durch die Nase, ohne direct auf den Manometer zu wirken: man kann sich leicht hiervon überzeugen, indem man bei geschlossener Nase höheren Ein- und Ausathmungsdruck erzeugt. Weiter kann man ein nach der Form der Zunge gebogenes Mundstück längs der Zungenwurzel tiefer einführen und so bestimmen, wo die Öffnung des Mundstücks bis in den Respirationstrum durchgedrungen ist, was weiter nach hinten und unten ist, als man vermuten sollte: hier liegt also der weiche Gaumen über die Wurzel der Zunge nach unten ausgespannt.

An zweiter Stelle kann man das Mundstück zwischen Lippen und Zähnen unter die Zunge einführen. Sorgt man, dass dabei all die weitere Muskelwirkung ausgeschlossen ist, dann zeigt der Manometer durchaus keine Veränderungen, — höchstens einen kaum merklichen negativen Druck: die Wahrheit ist, dass hier dann so gut wie kein Raum vorhanden ist. Die Zunge schliesst nun beiderseits gegen die Zahnfortsätze an; der vorderste Theil der Zunge, die mit ihrer oberen Fläche dem harten Gaumen anliegt, berührt mit der unteren Fläche den Boden der Mundöhle, während die Spitze und weiter die Ränder sich längs der Zähne erstrecken, gegen welche an der anderen Seite die Lippen sich anschliessen. Man kann nun

Bei geschlossenem Mund nun fehlt unter gewöhnlichen Umständen, wie wir sahen, der vordere Saugraum so gut wie ganz. Doch bemerkt man, wenn man nun die Lippen von einander entfernt, einen schwachen Laut von der eindringenden Luft, so dass sich wegen der Adhaesion der Lippen ein Raum bildete, bevor sie von einander wichen. Es gelingt nun nach einiger Übung weiter, während man die Zunge gegen den Gaumen anlegen lässt (die natürliche Bewegung würde jetzt das Losziehen der Zunge sein), den Unterkiefer etwas nach unten zu ziehen, und man hört dann einen zweiten Laut beim Unterbrechen der Adhaesion zwischen Unterfläche der Zunge und Boden der Mundhöhle.

Die beiden Saugräume wirken unter Umständen auch gleichzeitig, während sie durch die Zunge getrennt bleiben. Diese kommt u. a. vor, wenn man im Bereich des vorderen Saugraums localisirt.

H. Prächt, Archiv f. Physiologie. Bd. X.
zu saugen beabsichtigt. So kann man an jedem Zahn, an jeder Stelle der Innenfläche der Lippen saugen u. s. w.

Ueber die Zusammensetzung einer als Chylus aufzufassenden Entleerung aus der Lymphfistel eines Knaben.

Von

Dr. Hensen;
Prof. der Physiologie in Kiel.

Auf der hiesigen Privatklinik von Prof. Esmarch kam ein Krankheitsfall eigenthümlicher Art zur Beobachtung. Ueber Untersuchungen, welche bei dieser Gelegenheit von mir angestellt wurden, wünsche ich in dem Archiv für Physiologie zu berichten, weil das
Zusammensetzung einer Entleerung aus der Lymphfistel eines Knaben.

Interesse der Beobachtung weit mehr auf unserem Gebiete, als auf dem der Pathologen liegt und deshalb, weil für sehr unwahrscheinlich gehalten werden muss, dass in besserer Weise wie auf dem Wege der Beobachtung an nicht völlig gesunden Individuen, etwas über den Wechsel in der Beschaffenheit des menschlichen Chylus in Erfahrung zu bringen ist.

Wenn dies, wie es scheint, alle Fälle sind, in denen Flüssigkeitsabfluss aus dem Ductus thoracicus wahrscheinlich war, wenn selbst die letzten Kriege weitere mir unbekannt gebliebene Fälle solcher Art gebracht haben, so ist die Hoffnung, auf diesem Wege physiologisch verwertbares Material zu erhalten, kaum berechtigt.

Es kommt jedoch in den Tropen eine eigenthümliche Erkrankung des Scrotums vor 5), die, als Vorläufer der Elephantiasis betrachtet, sich dadurch auszeichnet, dass auf der Oberfläche des Scrotums weisse Knöten entstehen, die angestochen eine milchige Flüssigkeit, und zwar zuweilen in grosser Menge entleeren.

Ein Fall dieser Art ist es, der, von meinem Collegen Esmarch mir bereitwilligst so weit thunlich, zur Verfügung gestellt, das Material zu einer Anzahl Analysen lieferte, welche theils als neues

2) Hoffmanni opera. Suppl. II. Pra. II. 1704.
4) Sepulchretum et Anatomia practice Lib. IV. Sect. III. 1700.
Material, theils zur Anregung erneuter Untersuchungen hier mitgetheilt werden.

Ein Knabe von 10 Jahren, Brasilianer, hatte am Praeputium eine Oeffnung, aus welcher, nach Ablösung eines kleinen verklebenden Schorfs, sich eine milchweise Flüssigkeit entleerte. Der Hodensack war, ohne nennenswerthe vergrössert oder sonst entartet zu sein, in dem oben erwähnten Zustand. Der Fall wird wohl anderweit ge

nauer beschrieben werden, hier sei nur erwähnt, dass die Flüssigkeit aus einem sondirbaren Gang trat und, wie Compressionsversuche ergeben, von der Wurzel des Penis her zur Fistel kam. Die Diagnose ging dahin, dass eine Lymphgefäßfistel vorliege, welche durch erweiterte Gefässe und degenerirte Drüsen mit chylusführenden Stäm

men zusammenhänge. Begründen liess sich diese Diagnose einerseits durch die Beschaffenheit des Sekretes, das, wie wir sehen werden, wohl kaum etwas anderes sein kann, als Lympe mit starkem Chylusgehalt und ferner dadurch, dass anderweitige Sektionsbefunde vorliegen, welche das Vorkommen der vermutheten Erweiterungen ergaben. (Gjorgjevic l. c.)

Die Experimente, welche ich anstellen konnte, bestanden in Aenderung der Diät. Ich konnte jedoch den Knaben nicht persönlich überwachen und da er sonst völlig wohl war und nicht dauernd im Zimmer gehalten werden konnte, ist nicht dafür einzustehen, in wie vollkommenem Grade das eine Mal die Fettentziehung, das an
dere Mal die Fettzufuhr bewirkt worden ist.

Die Flüssigkeit war in der Regel durch Blutkörperchen schwach rosenroth gefärbt. Diese, deren Menge übrigens ziemlich wechselnd war, senkten sich in 12 bis 36 Stunden und wurden auf diese Art von der zu analysirenden Flüssigkeit getrennt.

Gerinnsel fanden sich regelmässig ein, dieselben waren weiss, von rothen Flecken durchsetzt, ungemein weich und gewöhnlich nicht compact, sondern sie hatten die Form von Säcken, welche weisse Flüssigkeit baren. Die Gerinnsel enthielten viele weisse Blutkörperchen. Rees¹), der menschlichen Chylus analysirt hat, hebt gleichfalls die grosse Zartheit der Gerinnungen hervor.

In der Flüssigkeit selbst waren die Lymphkörperchen sparsam, nach Essigsäurezusatz traten sie zwar in etwas grösserer Menge

hervor, aber nicht viel reichlicher, wie dies in der gleichen Menge Blut der Fall gewesen sein würde. Im Uebriegen fanden sich keine größeren Bestandtheile, aber das Ganze war überfüllt mit gleichmässig vertheilten, staubförmigen Körnchen, genau so, wie es im Chylus beobachtet wird. Dieselben traten bei Behandlung mit Essigsäure mehr zusammen, es bildeten sich Gerinnungen und nach einiger Zeit traten Fett tropfen auf. Sie verschwanden bei andauerndem Schüttern mit Aether und letzterer nahm dabei Fett auf, kurz sie waren emulsionirtes Fett.

Es schien am zweckmäßigsten, das dargebotene Material für eine Reihe quantitativer Analysen auszunutzen, dadurch ward dann aber Stoff und Zeit so sehr in Anspruch genommen, dass die qualitative Analyse darunter gelitten hat. Die Analyse wurde nach der von Hoppeseyler (Handbuch der chemischen Analyse) für die Untersuchung seröser Flüssigkeiten angegebenen Methode ausgeführt, also zuerst mit Alkohol bis zur vollendeten Gerinnung versetzt, dann mit Aether gemischt. Die Eiweissfällung musste jedoch nachträglich im Aetherextractionssapparat sorgfältig entfettet werden, da das einfache Auswaschen mit heissem Aether nicht genügte. Das Eiweiss, welches sich stark rosenroth färbte, ward durch die Extraction ziemlich fest, dadurch ward die Möglichkeit, es völlig mit Wasser auszuwaschen, etwas beschränkt, so dass Reste löschlicher Salze daran haften geblieben sein mögen. Die Bereitung des Alkohol- und
Wasserextracts bot sonst keine Schwierigkeiten. Die Prüfung auf Leicithin gab viermal völlig negative Resultate, daher ward sie später unterlassen). Ebenso unterblieb in der Mehrzahl der Analysen die Bestimmung des Cholesterins. Seine Menge erwies sich nämlich als nicht beträchtlich, die Gewinnung aber als unter den gegebenen Verhältnissen, relativ zum Werth der Bestimmung zu zeitraubend.

Die Resultate ergaben sich wie folgt:

Tabelle I.

Analyse der Flüssigkeit aus der Fistel des Praeputium.
Berechnet auf 100 Theile Flüssigkeit.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Quantität in Gramm</th>
<th>Gesammt-Analyse</th>
<th>Eiweiss und dessen Asche</th>
<th>Wasserextract und Asche</th>
<th>Alkoholextract und Asche</th>
<th>Fett & Cholesterin</th>
<th>Bemerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Asche</td>
<td>0.7946</td>
<td>0.0983</td>
<td>0.6003</td>
<td>0.1005</td>
<td>Abs. 6 bis 8 Uhr.</td>
</tr>
<tr>
<td>3</td>
<td>189</td>
<td>org. Subst. 5.0657</td>
<td>2.531</td>
<td>0.1477</td>
<td>0.132</td>
<td>2.153</td>
<td>Sp. G. 1.0179 fortwährend fettarme Diät.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Asche</td>
<td>0.858</td>
<td>0.163</td>
<td>0.583</td>
<td>0.112</td>
<td>Aufgef. v. 10 1/4 bis 11 Uhr. Juni 25.</td>
</tr>
<tr>
<td>4</td>
<td>138</td>
<td>org. Subst. 5.111</td>
<td>3.308</td>
<td>1.070</td>
<td>0.113</td>
<td>0.532</td>
<td>Sp. G. 1.0146. Fettreihe Diät um 1 Uhr</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Asche</td>
<td>0.962</td>
<td>0.123</td>
<td>0.740</td>
<td>0.089</td>
<td>Mittig. Aufgef. 6 bis 7 Uhr. Juni 26.</td>
</tr>
</tbody>
</table>

1) Rees l. c. S. 83 bemerkt schon, dass die Asche des Fettes keinen Phosphor enthalten habe.
Zusammensetzung einer Entloesung aus der Lymphfistel eines Knaben. 99

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Quantität in Gramm</th>
<th>Gesammt-Analyse</th>
<th>Eiweiß und diesen Asche</th>
<th>Wasserextract und Asche</th>
<th>Alkoholextract und Asche</th>
<th>Fett und Cholesterin</th>
<th>Bemerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>6</td>
<td></td>
<td>1,8717</td>
<td>0,4993</td>
<td>0,1299</td>
<td>?</td>
<td>Sp.G.1,0158. 4 U. 15 bis 5 U. 15. Juni 27. Die Fistel hatte sich zugesetzt.</td>
</tr>
<tr>
<td></td>
<td>Asche</td>
<td></td>
<td>0,6432</td>
<td>0,190</td>
<td>0,4922</td>
<td>0,021</td>
<td>0,0665</td>
</tr>
<tr>
<td></td>
<td>H₂O</td>
<td></td>
<td>98,3196</td>
<td>Summe 2,7404</td>
<td>0,8193</td>
<td>0,1216</td>
<td>0,6517</td>
</tr>
<tr>
<td></td>
<td>129</td>
<td></td>
<td>5,8854</td>
<td>5,150</td>
<td>0,1014</td>
<td>0,070</td>
<td>2,514</td>
</tr>
<tr>
<td></td>
<td>org. Subst.</td>
<td></td>
<td>0,8111</td>
<td>0,0846</td>
<td>0,6536</td>
<td>0,0729</td>
<td>3,6206</td>
</tr>
<tr>
<td></td>
<td>Asche</td>
<td></td>
<td>98,3465</td>
<td>Summe 2,514</td>
<td>0,7162</td>
<td>0,1168</td>
<td>0,6595</td>
</tr>
<tr>
<td></td>
<td>Asche</td>
<td></td>
<td>0,8111</td>
<td>0,0846</td>
<td>0,6536</td>
<td>0,0729</td>
<td>3,6206</td>
</tr>
<tr>
<td></td>
<td>H₂O</td>
<td></td>
<td>91,7504</td>
<td>3,6206</td>
<td>0,7162</td>
<td>0,1168</td>
<td>0,6595</td>
</tr>
<tr>
<td></td>
<td>org. Subst.</td>
<td></td>
<td>1,0895</td>
<td>0,1791</td>
<td>0,6592</td>
<td>0,0512</td>
<td>3,2076</td>
</tr>
<tr>
<td></td>
<td>Asche</td>
<td></td>
<td>91,6048</td>
<td>3,2076</td>
<td>0,7162</td>
<td>0,1168</td>
<td>0,6595</td>
</tr>
<tr>
<td></td>
<td>H₂O</td>
<td></td>
<td>92,2249</td>
<td>3,2076</td>
<td>0,7162</td>
<td>0,1168</td>
<td>0,6595</td>
</tr>
<tr>
<td>14</td>
<td>99</td>
<td></td>
<td>7,0589</td>
<td>3,3011</td>
<td>0,6756</td>
<td>0,0686</td>
<td>Sp. G. 1,0148. Aufges. 5 bis 6 1/2 Uhr. Juni 29.</td>
</tr>
<tr>
<td></td>
<td>org. Subst.</td>
<td></td>
<td>0,7162</td>
<td>0,1168</td>
<td>0,5585</td>
<td>0,0409</td>
<td>2,8186</td>
</tr>
<tr>
<td></td>
<td>Asche</td>
<td></td>
<td>92,2249</td>
<td>2,8186</td>
<td>0,7162</td>
<td>0,1168</td>
<td>0,5585</td>
</tr>
<tr>
<td></td>
<td>org. Subst.</td>
<td></td>
<td>0,7243</td>
<td>0,1548</td>
<td>0,5024</td>
<td>0,0671</td>
<td>2,6755</td>
</tr>
<tr>
<td></td>
<td>Asche</td>
<td></td>
<td>92,5348</td>
<td>2,6755</td>
<td>0,7243</td>
<td>0,1548</td>
<td>0,5024</td>
</tr>
<tr>
<td></td>
<td>org. Subst.</td>
<td></td>
<td>0,8157</td>
<td>0,1194</td>
<td>0,6380</td>
<td>0,0688</td>
<td>1,2147</td>
</tr>
<tr>
<td></td>
<td>Asche</td>
<td></td>
<td>92,5739</td>
<td>1,2147</td>
<td>0,8157</td>
<td>0,1194</td>
<td>0,6380</td>
</tr>
<tr>
<td></td>
<td>H₂O</td>
<td></td>
<td>93,1070</td>
<td>1,2147</td>
<td>0,8157</td>
<td>0,1194</td>
<td>0,6380</td>
</tr>
<tr>
<td>17</td>
<td>190</td>
<td></td>
<td>5,8812</td>
<td>3,9196</td>
<td>0,2069</td>
<td>0,1078</td>
<td>Sp. G. 1,0166. 4 bis 11 Uhr Mrgs. Juni 30.</td>
</tr>
<tr>
<td></td>
<td>org. Subst.</td>
<td></td>
<td>0,8834</td>
<td>0,1890</td>
<td>0,5974</td>
<td>0,0409</td>
<td>1,2597</td>
</tr>
<tr>
<td></td>
<td>Asche</td>
<td></td>
<td>92,3334</td>
<td>1,597</td>
<td>0,8834</td>
<td>0,1890</td>
<td>0,5974</td>
</tr>
<tr>
<td></td>
<td>H₂O</td>
<td></td>
<td>93,1100</td>
<td>1,597</td>
<td>1,0834</td>
<td>0,1890</td>
<td>0,5974</td>
</tr>
<tr>
<td>18</td>
<td>41</td>
<td></td>
<td>8,1100</td>
<td>3,6332</td>
<td>0,6587</td>
<td>0,0934</td>
<td>Sp. G. 1,0158. Viel Rahmen abgesondert. 11 bis 12 Uhr. Juni 30.</td>
</tr>
<tr>
<td></td>
<td>org. Subst.</td>
<td></td>
<td>0,8228</td>
<td>0,1167</td>
<td>0,6244</td>
<td>0,0817</td>
<td>3,6888</td>
</tr>
<tr>
<td></td>
<td>Asche</td>
<td></td>
<td>91,077</td>
<td>3,6888</td>
<td>0,8228</td>
<td>0,1167</td>
<td>0,6244</td>
</tr>
<tr>
<td>19</td>
<td>57</td>
<td></td>
<td>7,6150</td>
<td>3,6437</td>
<td>0,2219</td>
<td>0,0584</td>
<td>Sp. G. 1,0147. 12 bis 1 Uhr. Juni 30.</td>
</tr>
<tr>
<td></td>
<td>org. Subst.</td>
<td></td>
<td>0,7153</td>
<td>0,1343</td>
<td>0,5547</td>
<td>0,0263</td>
<td>3,6910</td>
</tr>
<tr>
<td></td>
<td>Asche</td>
<td></td>
<td>91,6697</td>
<td>3,6910</td>
<td>0,7153</td>
<td>0,1343</td>
<td>0,5547</td>
</tr>
</tbody>
</table>

Die Aschenbestandtheile wurden gesammelt, und da die Filter nahezu aschenfrei waren, zu einer Gesammtanalyse verwandt. Dieselbe will ich hier noch geben, obgleich ihr Resultat natürlich nicht so genau sein kann, als wenn von vornherein die genügende Menge zu einer Aschenbestimmung hätte entnommen werden können.
Dr. Hensen:

Tabelle II.
100 Theile Asche enthalten lösliche Salze 96.580
unlösliche do. 3.420

Die Salze waren:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>K₂O</td>
<td>1.949</td>
<td>SO₄</td>
<td>1.655</td>
</tr>
<tr>
<td>Na₂O</td>
<td>3.200</td>
<td>Cl</td>
<td>3.133</td>
</tr>
<tr>
<td>Na</td>
<td>20.513</td>
<td>81.626</td>
<td>Na</td>
</tr>
<tr>
<td>Na₂O</td>
<td>19.603</td>
<td>CO₃</td>
<td>15.911</td>
</tr>
<tr>
<td>CaO</td>
<td>0.568</td>
<td>MgO</td>
<td>0.451</td>
</tr>
<tr>
<td>MgO</td>
<td>0.256</td>
<td>CaO</td>
<td>0.282</td>
</tr>
<tr>
<td>CaO</td>
<td>0.235</td>
<td>Fe₂O₃</td>
<td>0.199</td>
</tr>
<tr>
<td>MgO</td>
<td>0.199</td>
<td></td>
<td>0.233</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>0.531</td>
<td></td>
<td>0.492</td>
</tr>
</tbody>
</table>

Ob Schwefelsäure in der Flüssigkeit wirklich sich fand, ist zu prüfen unterlassen. Die Kohlensäure rührt wesentlich von der Verbrennung her.

Zur besseren Übersicht des Verhaltens der organischen Substanzen habe ich noch einige Quotienten berechnet.

Setzt man die Summe der organischen Substanzen = 100, so ergibt sich:

Tabelle III.

<table>
<thead>
<tr>
<th>Analyse Nr.</th>
<th>2.</th>
<th>3.</th>
<th>4.</th>
<th>5.</th>
<th>6.</th>
<th>7.</th>
<th>8.</th>
<th>10.</th>
<th>11.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eiweiss:</td>
<td>68.4</td>
<td>50</td>
<td>64.8</td>
<td>78.1</td>
<td>80.3</td>
<td>62.9</td>
<td>61.9</td>
<td>50</td>
<td>53.9</td>
</tr>
<tr>
<td>Wassereextrakt:</td>
<td>8.7</td>
<td>2.9</td>
<td>20.9</td>
<td>4.3</td>
<td>8.8</td>
<td>22.1</td>
<td>3.5</td>
<td>4.4</td>
<td>1.8</td>
</tr>
<tr>
<td>Alkoholextrakt:</td>
<td>0.4</td>
<td>2.6</td>
<td>2.2</td>
<td>8.6</td>
<td>2.7</td>
<td>4.9</td>
<td>3.0</td>
<td>0.8</td>
<td>1.2</td>
</tr>
<tr>
<td>Fett:</td>
<td>31.7</td>
<td>42.5</td>
<td>16.4</td>
<td>12.7</td>
<td>12.9</td>
<td>9.4</td>
<td>31.8</td>
<td>45.8</td>
<td>43.1</td>
</tr>
<tr>
<td>Cholesterin:</td>
<td>0.8</td>
<td>2.0</td>
<td>1.7</td>
<td>1.1</td>
<td>0.8</td>
<td>0.7</td>
<td>0.8</td>
<td>1.0</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Tabelle III.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Eiweiss:</td>
<td>49.1</td>
<td>49.8</td>
<td>46.8</td>
<td>56.8</td>
<td>55.0</td>
<td>67.2</td>
<td>44.9</td>
<td>47.8</td>
</tr>
<tr>
<td>Wassereextrakt:</td>
<td>4.5</td>
<td>3.8</td>
<td>12.3</td>
<td>2.7</td>
<td>11.0</td>
<td>3.6</td>
<td>3.5</td>
<td>2.9</td>
</tr>
<tr>
<td>Alkoholextrakt:</td>
<td>1.4</td>
<td>2.5</td>
<td>1.0</td>
<td>1.0</td>
<td>2.4</td>
<td>1.9</td>
<td>1.1</td>
<td>0.8</td>
</tr>
<tr>
<td>Fett:</td>
<td>45.0</td>
<td>43.9</td>
<td>39.9</td>
<td>39.7</td>
<td>21.6</td>
<td>27.3</td>
<td>45.5</td>
<td>48.5</td>
</tr>
<tr>
<td>Cholesterin:</td>
<td>45.0</td>
<td>43.9</td>
<td>39.9</td>
<td>39.7</td>
<td>21.6</td>
<td>27.3</td>
<td>45.5</td>
<td>48.5</td>
</tr>
</tbody>
</table>

Setzt man die Summe der Salze = 100, so ergibt sich folgende Tabelle:

Tabelle IV.

<table>
<thead>
<tr>
<th>Analyse Nr.</th>
<th>2.</th>
<th>3.</th>
<th>4.</th>
<th>5.</th>
<th>6.</th>
<th>7.</th>
<th>8.</th>
<th>9.</th>
<th>10.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eiweiss:</td>
<td>418</td>
<td>2995</td>
<td>344</td>
<td>554</td>
<td>434</td>
<td>201</td>
<td>443</td>
<td>221</td>
<td>486</td>
</tr>
<tr>
<td>Wassereextrakt:</td>
<td>62</td>
<td>16.4</td>
<td>111</td>
<td>29</td>
<td>17.8</td>
<td>70.7</td>
<td>24.9</td>
<td>58.9</td>
<td>45.5</td>
</tr>
<tr>
<td>Alkoholextrakt:</td>
<td>2.7</td>
<td>15.4</td>
<td>11.8</td>
<td>25.3</td>
<td>14</td>
<td>15.5</td>
<td>20.6</td>
<td>15.4</td>
<td>8.6</td>
</tr>
<tr>
<td>Summe ohne Fett:</td>
<td>477.7</td>
<td>326.8</td>
<td>466.8</td>
<td>575.3</td>
<td>465.8</td>
<td>287.2</td>
<td>485.2</td>
<td>295.3</td>
<td>540.1</td>
</tr>
<tr>
<td>Fett:</td>
<td>224</td>
<td>251</td>
<td>54</td>
<td>79.2</td>
<td>69.1</td>
<td>29.9</td>
<td>227</td>
<td>417</td>
<td></td>
</tr>
<tr>
<td>Cholesterin:</td>
<td>5.4</td>
<td>11.9</td>
<td>9.3</td>
<td>7.0</td>
<td>4.5</td>
<td>2.1</td>
<td>5.6</td>
<td>10.3</td>
<td></td>
</tr>
<tr>
<td>Summe</td>
<td>707.7</td>
<td>559.7</td>
<td>590.1</td>
<td>661.5</td>
<td>539.4</td>
<td>319.2</td>
<td>721.1</td>
<td>967.4</td>
<td></td>
</tr>
</tbody>
</table>
Zusammensetzug einer Entleerung aus der Lymphfistel eines Knaben. 101

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Eiweiss</td>
<td>885</td>
<td>449</td>
<td>834</td>
<td>461</td>
<td>627</td>
<td>448</td>
<td>451</td>
<td>442</td>
<td>509</td>
</tr>
<tr>
<td>Wassereextrakt</td>
<td>85,7</td>
<td>41,7</td>
<td>25,8</td>
<td>122</td>
<td>24,6</td>
<td>75,4</td>
<td>23,8</td>
<td>88,3</td>
<td>31,0</td>
</tr>
<tr>
<td>Alkoholextrakt</td>
<td>8,5</td>
<td>18</td>
<td>16,8</td>
<td>9,4</td>
<td>10,1</td>
<td>16,1</td>
<td>12,4</td>
<td>11,4</td>
<td>8,1</td>
</tr>
<tr>
<td>Summe ohne Fett</td>
<td>429,2</td>
<td>503,7</td>
<td>376,6</td>
<td>592,4</td>
<td>561,7</td>
<td>639,5</td>
<td>487,2</td>
<td>586,7</td>
<td>546,1</td>
</tr>
<tr>
<td>Fett</td>
<td>307</td>
<td>414</td>
<td>294</td>
<td>393</td>
<td>369</td>
<td>149</td>
<td>184</td>
<td>448</td>
<td>516</td>
</tr>
<tr>
<td>Cholesterin</td>
<td>736,3</td>
<td>917,7</td>
<td>670,6</td>
<td>985,4</td>
<td>680,7</td>
<td>683,5</td>
<td>671,2</td>
<td>984,7</td>
<td>1064,1</td>
</tr>
</tbody>
</table>

Tabelle V.

Auf 100 Theile Eiweiss kommen:

<table>
<thead>
<tr>
<th>Analyse Nr.</th>
<th>2.</th>
<th>3.</th>
<th>4.</th>
<th>5.</th>
<th>6.</th>
<th>7.</th>
<th>8.</th>
<th>9.</th>
<th>10.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wassereextrakt</td>
<td>15,1</td>
<td>5,8</td>
<td>32,3</td>
<td>5,6</td>
<td>4,1</td>
<td>35,2</td>
<td>5,6</td>
<td>26,6</td>
<td>9,4</td>
</tr>
<tr>
<td>Alkoholextrakt</td>
<td>0,7</td>
<td>5,2</td>
<td>3,4</td>
<td>4,9</td>
<td>3,3</td>
<td>7,7</td>
<td>4,6</td>
<td>6,9</td>
<td>1,8</td>
</tr>
<tr>
<td>Fett und Cholesterin</td>
<td>55,6</td>
<td>89,0</td>
<td>18,8</td>
<td>16,5</td>
<td>16,9</td>
<td>15,9</td>
<td>52,4</td>
<td>88,0</td>
<td></td>
</tr>
<tr>
<td>Summe</td>
<td>71,4</td>
<td>100</td>
<td>54,5</td>
<td>27</td>
<td>24,3</td>
<td>58,8</td>
<td>62,6</td>
<td>99,2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Wassereextrakt</td>
<td>3,2</td>
<td>9,3</td>
<td>7,7</td>
<td>26,5</td>
<td>4,7</td>
<td>16,8</td>
<td>5,3</td>
<td>18,9</td>
<td>6,1</td>
</tr>
<tr>
<td>Alkoholextrakt</td>
<td>2,2</td>
<td>2,9</td>
<td>5,0</td>
<td>2,1</td>
<td>1,9</td>
<td>3,6</td>
<td>2,8</td>
<td>2,8</td>
<td>1,6</td>
</tr>
<tr>
<td>Fett und Cholesterin</td>
<td>79,8</td>
<td>92,1</td>
<td>88,4</td>
<td>85,3</td>
<td>70,2</td>
<td>33,3</td>
<td>40,8</td>
<td>101,0</td>
<td>101,1</td>
</tr>
<tr>
<td>Summe</td>
<td>85,2</td>
<td>104,8</td>
<td>101,1</td>
<td>113,9</td>
<td>76,8</td>
<td>55,7</td>
<td>48,9</td>
<td>122,6</td>
<td>106,8</td>
</tr>
</tbody>
</table>

Die Analyse des menschlichen Chylus von Rees (l. c.) giebt:

Wasser 90,48
Albumin und Fibrin . 7,08
Wassereextrakt . . . 0,56
Alkoholextrakt . . . 0,52
Asche 0,44
Fett 0,92

Diese Analyse, entnommen dem Chylus eines Hingerichteten, der vorher nur wenig genossen hatte, weicht erheblich von meinen und den sonst bekannten Analysen ab. Die Masse war abgedampft worden, ward darauf pulverisiert und extrahirt, die Extracte verbrannt. Der Albumingehalt ist der höchste, den man kennt, der Salzgehalt ist der niedrigste, es wird nichts darüber gesagt, ob der Aschengehalt des Eiweiss bestimmt worden ist. Auch der Alkoholextrakt ist sehr gross. Es ist zu vermuten, dass die Art des analytischen Verfahrens, von welcher keine grosse Genauigkeit erwartet werden kann, theilweise die Abweichung der Resultate bewirkt hat.
Die Unregelmässigkeiten, welche in dem vorliegenden Fall die Quantitäten der Entleerung zeigen, erklären sich einigermaßen durch äussere Umstände. Die Fistelöffnung incrustede sich zuweilen und liess dann nur eine so geringe Menge von Flüssigkeit durch, dass es nöthig ward, sie wieder zu erweitern; letzteres ist nicht immer rechtzeitig geschehen. Die Stärke der Entleerung hing ferner von der Haltung ab, in welcher der Knabe vor und während der Entleerung verweilte, hatte er gesessen, so war die Entleerung im Allgemeinen grösser als wenn er gelegen hatte. Aus diesen Gründen eignen sich die vorliegenden Zahlen nicht für betreffende Schlüsse, es ist höchstens zu bemerken, dass nach Nr. 14 das Maximum per Stunde 99 Gr. war, 24 Kilo (das Gewicht des Knaben) lieferten nach Schmidt 1) in maximo 91,2 Gr. Chylus beim Pferd.

Die Zusammensetzung der gewonnenen Flüssigkeit ist auffallend veränderlich, jede durch die Analyse getrennte Kategorie von Stoffen scheint unabhängig von den anderen Stoffen variiren zu können.

\[(100 - b) : a - b = 100 : x\]

wo b den Fettgehalt und a die Menge der festen Stoffe bedeutet, so

schwankt der Wasser gehalt nur zwischen 94.57 und 96.6 pCt., also noch um 2 pCt.

Der Eiweiss gehalt excl. Faserstoff liegt zwischen 1,7 und 3,9 pCt. im Mittel beträgt er 3,15 pCt. und es ist zu bemerken, dass er in 15 Analysen unter den 18 sich über 3 pCt. hält. Die sonst bekannten Werthe schwanken zwischen 1,9 und 6,1 pCt. nur Rees hat, l. c., 7,1 pCt. gefunden.

Wenn das Fett in emulgirtem Zustande von einem Körper umhüllt ist, der durch Alkohol unlöslich wird, so muss die Masse dieses Körpers sehr gering sein gegen den übrigen Eiweiss gehalt, denn dieser variiert ersichtlich völlig unabhängig von der Menge des Fetts. Tab. III.

Das Verhältniss zwischen Eiweiss und dessen Asche ist durchgehend von grosser Unregelmässigkeit, als Maximum gibt Nr. 9
auf 1,87 Eiweiss 0,238 Salz als Minimum; Nr. 8 3,149 Eiweiss auf 0,061 Salz, d. i. 12.7 und 1,95\%, der betreffende Quotient ist also 6,5. Der Gedanke wird nahe liegen, diese Unterschiede auf ein unge- nügendes Auswaschen zu schieben, allein die Fällung durch Ver- mischen der Flüssigkeit mit Alkohol gestattet schon nicht, dass viel Salz im Eiweiss mechanisch zurückgehalten werde und da mir ferner die Unregelmässigkeiten gleich auffielen, weil ich die Ana- lysen jedesmal nach ihrer Vollendung berechnete, wandte ich auf das Auswaschen alle Sorgfalt. Allerdings muss hervorgehoben werden, dass die Form des Coagulums, nachdem es mit Aether extrahirt worden, für die Auslaugung mit Wasser nicht besonders günstig war, und dass das Eiweiss, welches stets organische Sub- stanz an das Waschwasser abgab, bei tagelang fortgesetzter Aus- laugung sich stärker zu lösen und faulig zu werden begann. Ich musste mir daher in dieser Richtung eine Grenze stellen, die nicht notwendig mit der völligen Auslaugung von anhängenden Salzen zusammenhing. Ich bin jedoch genötigt, wegen der sehr grossen Differenzen im Salzgehalt, die sich aus den oben angegebenen Um- ständen nicht erklären, zu schliessen, dass verschiedene Eiweiss- modificationen in wechselnder Menge vorhanden gewesen seien. Die Sache erfordert jedenfalls noch weitere Untersuchung.

Bei weitem am stärksten hat der Fettgehalt geschwankt, nämlich zwischen 0,28 und 3,69 \%, d. i. um das 13,2fache. Der stärkste Fettgehalt, welcher sich angegeben findet, ist mit 3,60\% von Rees 1) beim Esel beobachtet. Das Fett liess sich völlig farb- los gewinnen und bestand aus einem bei Zimmertemperatur flüssigen Antheil, der leicht löslich in Alkohol war und sich nach einigen Tagen gelblich färbe, und einem krystallinisch sich ausscheidenden Fett.

Der Wechsel im Fettgehalt würde nur geringes Interesse be- anspruchen können, wenn nicht der Versuch gemacht worden wäre, durch Wechsel der Nahrung auf denselben Einfluss zu gewinnen. Die fettarme Diät war allerdings nicht ganz fettfrei zu machen, denn dies wäre nicht durchzuführen gewesen, sondern sie bestand nur aus Fruchtsuppen, Mehlspeisen und Gemüslen mit möglichst geringer Fettzuthat. Der Erfolg dieser Diät zeigte sich sogleich in einem Absinken von 2,25 \% auf 0,62 \%, war also genügend aus-

gesprochen. Anders war es mit der darauf eintretenden fettreichen Diät, welche in fettem Fleisch, viel Milch und Butter bestand. Es folgte am Abend nach der ersten fettreichen Mahlzeit ein Sinken des Fettgehalts auf 0,28 % bei freilich sparsamer Gesammtentleerung, die Flüssigkeit war zwar noch weiss, aber merklich durchscheinender; am folgenden Tage erst stieg der Fettgehalt auf 1,6, dann 2,7, endlich 3,35 %. Nachdem am 28. Mittags die letzte fettreiche Kost gegeben war und die gewöhnliche, hier im Lande stets ziemlich fette Diät gegeben wurde, sank zwar der Fettgehalt am 29. wieder ab und war am 30. Morgens nur 1,2 %, um darauf nach dem Frühstück bis auf das überhaupt erreichte Maximum zu steigen.

Die Menge des Cholesterin schwankt zwischen 0,018 und 0,102 %,
also beinahe um das sechsfache, verhältnismässig zu den Extracten und zum Fett sind diese Schwankungen gering. Man ist wohl ge- nöthigt, das Cholesterin als Verunreinigung des Fettes anzusehen 1), dann ist es merkwürdig, dass bei dem steten intermediären Kreislauf dieses Stoffes sich nirgends im Organismus Anhäufungen desselben gestalten, sondern schliesslich doch Alles durch Galle und Darm entleert wird. Uebrigens ist die Menge des Fettes nicht maassgebend für die Menge des Cholesterins, denn es findet sich z. B. bei 2,15 Fett 0,1 Cholesterin, bei 2,68 Fett 0,064 davon.

Röhrig 2) hat zwar den Nachweis geliefert, dass im Blut sich

2) l. c. S. 2.
fettsaure Alkalien nicht als solche halten können, sondern zu fettsauren Erden verwandelt sich ausscheiden; es ist jedoch unzweifelhaft, dass die ersteren dennoch in geringer Menge im Chylus vorkommen. Darin liegt jedoch nicht nothwendig ein Widerspruch gegen Röhrig's Angaben, denn diese Seifen könnten das emulgierte Fett begleitet haben und auf diese Art der Fällung durch Kalk und Magnesia entgangen sein.

Die Gesammmenge des organischen Alkoholextracts war in den einzelnen Analysen sehr wechselnd, sie schwankte etwa um das 9fache, von 0,021 bis 0,183; sie machte 0,4 bis 4,9% der organischen Substanzen aus; ihre quantitativen Veränderungen scheinen etwas mit den Schwankungen des gesamten Salzgehalts zusammengehangen zu haben, denn in Tab. IV unterliegt ihre Menge verhältnismässig geringeren Schwankungen, 2,7: 25,3.

2) Der Chylus ein Ferment, Dansig 1864.
gegen den, welche die sogleich aufgekochte Vergleichsflüssigkeit er-
gab, fand sich die Menge des neugebildeten Zuckers. Dieselbe
war in einem Fall 0,16 Gr. für 100 chylöser Flüssigkeit, in welcher
sich gegen 0,01 Gr. Zucker fand, in einem zweiten Fall 0,025 Gr.;
hier liess sich aus der aufgekochten Flüssigkeit überhaupt kein
Zucker darstellen. Die stark fetthaltige Flüssigkeit war ein sehr
ungeeignetes Object, um das Vermogen Fett zu emulgiren, zu prüfen,
ich kann nur berichten, dass eine Zerlegung der Neutralfette nicht
bemerkbar war, da in den ersten 24 Stunden eine Säuerung nicht
auftrat und dass selbst bei Eintritt der Fäulniss sich die Emulsion
so vollkommen erhielt, dass keine Ausscheidung makroskopischer
Fett tropfen bemerkbar ward.

Die Menge der organischen Substanzen des Wasserextracts
war für eine genauere Untersuchung zu gering, ich möchte doch
bemerken, dass man wohl nur durch Dialyse zu Resultaten kommen
wird, dieses Verfahren aber dadurch, dass die Masse beim Ab-
dampfen in einer Temperatur von ca. 60° sich bräunt, erschwert wird.

Die Menge des Extracts beträgt 1,04 bis 0,1014 pCt., schwankt
also um das 10,5fache und erweist sich völlig unabhängig von dem
Gehalt der Flüssigkeit an anderen Substanzen. Auffallend sind die
Schwankungen von Stunde zu Stunde, vgl. Analyse Nr. 13 bis 19.

Die Menge der vereinigten Extracte beträgt zwischen 1,183
bis 0,171 pCt. Das Maximum ist verhältnismässig hoch, da die
Extractivstoffe des Bluts in der Regel 0,6 pCt. nicht überschreiten
und die der menschlichen Lymphede etwa den gleichen Betrag aus-
machen. Rees 1) findet zwar für den Esel im Chylus 0,332 + 1,233
= 1,565 pCt., in der Lymphed 0,240 + 1,319 = 1,559 pCt. Extract,
aber diese Zahlen weichen so sehr von allen sonst bekannten An-
gaben, namentlich auch von den beim Pferde erhaltenen, ab, dass
sie nicht ohne Weiteres zur Vergleichung dienen können.

Der Salzgehalt im Mittel aus 19 Analysen ist 0,768 pCt.
und liegt zwischen 0,643 und 1,09 pCt., variiert also um das 1,7fache.
Die Schwankungen verlaufen selbstständig, d. h. sie zeigen weder
Beziehungen zu den Aenderungen der einzelnen organischen Be-
standtheile (höchstens ein wenig zum Alkoholextract wegen der Fett-
seifen), noch zu deren Gesammttheit, wie sich aus Tab. IV ergibt.
Die procentigen Veränderungen sind verhältnismässig gering, denn

1) Über Chylus und Lymphede l. c.
die Summe der organischen Bestandtheile ohne Fett variirt gleichfalls 1,7 mal Tab. III, und wenn auf 100 Theile Salz gerechnet wird, noch 2,1 mal.

Aus der Analyse der Asche, Tab. II, ergiebt sich das Verhaltniss zwischen Natron 22,8 und Kali 1,95 wie 11,7 : 1, in den Analysen Schmidts vom Pferde wie 19 und 10,3 : 1.

Bemerkenswerth ist die Menge des Eisens. Ich glaubte das Eisen überhaupt auf die Blutkörperchen beziehen zu dürfen, aber die Rechnung gestattet dies nicht. Die Blutkörperchen senkten sich nämlich leicht und vollkommen und setzten sich mit scharfer Grenze gegen den Chylus ab. Die aufgefangene Flüssigkeit war anfänglich durch sie mehr oder weniger rosa gefärbt, ward aber, nachdem sie sich gesenkt hatten, milchweiss, und es genügte schon eine sehr geringe Menge von Blut, um die weisse Farbe zu stören. Ich nahm zur Analyse nur völlig weissen Chylus und bin der Ansicht, dass in diesem höchstens 5 pCt. der ursprünglich dem Chylus beigemischten Blutkörperchen könne vorhanden gewesen sein. Nun betrug der aus Blutkörperchen, Fibrin und Chylus bestehende, jedoch möglichst von letzterem Bestandtheile getrennte, Absatz aus 248 Grm. Chylus trocken 1,18 Grm. Rechne ich diese Masse als reine Blutkörperchen, so entspricht sie einer Beimengung von etwa 3,4 Gr. frischen Bluts zu 100 Gr. chylöser Flüssigkeit. In dem Blute 0,7878 pCt. Asche angenommen und in 100 Theilen Asche 8,5 Theile Eisenoxyd gerechnet, würden 100 Theile Lymphe, wenn das Blut darin belassen worden wäre, neben 0,768 Gr. Asche noch etwa 0,0022 pCt. Eisenoxyd mehr in der Asche enthalten haben oder 100 Gr. Asche etwa 0,3 pCt. Eisenoxyd mehr als darin gefunden ist. Da nun trotz dieser Entfernung von 95 pCt. dieser Blutkörperchen aus der chylösen Flüssigkeit die Asche 0,53 pCt. an Eisen enthält, muss geschlossen werden, dass dieser Eisengehalt der chylösen Flüssigkeit eigenthümlich war. Kurz gesagt, ich meine dafür einstehen zu können, dass dieser Eisengehalt nicht an einen Farbstoff gebunden gewesen ist. Nach der Analyse würden 16 Gr. Chylus Eisen genug für 1 Gr. Blut geben.

Man hat, glaube ich, in neuerer Zeit das Vorkommen des Eisens im Chylus auf die Beimischung von Blut bezogen, die in der That von den älteren Autoren nicht genügend gewürdigt worden ist, und daher die Sache weniger beachtet, wie sie verdienen dürfte. Es existiren jedoch bereits eingehendere Angaben über diesen Gegen-

E. Pfurtscheller, Archiv f. Physiologie. Bd. X.

Rees giebt an, dass das Eisen sich im Wasserextract finde, doch berichtet er vom Esel²), dass zum Unterschied von der gleichzeitig aufgefangenen Lymphpe das »todtweisse« Eiweiss des Chylus eine beträchtliche Proportion von Eisenoxyd enthalten habe.

In Bezug auf die Deutung der gewonnenen Flüssigkeit glaube ich mich nunmehr kurz fassen zu können. Es wird eine definitive Entscheidung darüber, was die Flüssigkeit gewesen sei, erst durch die Sectionen gewonnen werden können, aber die Analyse spricht entschieden für die Ansicht, dass aus dem Darmkanal resorbierte Flüssigkeiten einen ansehnlichen Antheil des Secrets ausmachten, auch stimmt sie gut mit anderweit gemachten Chylusanalysen. Eine andere Erklärung des Sachverhalts wüsste ich nicht zu geben.

Eine allgemeine Bemerkung über die Fettresorption findet hier vielleicht die passende Stelle.

Der Mensch, dessen Verdauungsorgane sonst in manchen Hinsichten nicht besonders befähigt zu sein scheinen, oder doch in Folge säcularisirter Gewohnheiten der civilisirten Welt auf wohl vorbereitete Speisen angewiesen sind, steht in Bezug auf das Resorptionsvermögen des, einer besonderen Vorbereitung kaum fähigen Fettes den Thieren nicht nach. Ich denke, wenn 3,69 pCt. Fett in dieser chylösen Flüssigkeit gefunden sind, wird der Fettgehalt in den Mesenterialgefässen gewiss erheblich höher, etwa auf 5 pCt. anzuschlagen sein, so dass mit 1 Kilo Chilus schon 50 Gr. Fett aufzusaugen wären.

Es ist bis jetzt kein Fall sicher gestellt, in welchem bei anderen Classem der Wirbelthiere emulsionirtes Fett in Lymphgefässen gefunden worden wäre; mindesten sind die positiv lautenden Angaben davon äusserst spärlich. Duménil will einen Grünespecht geschossen haben, der Chylusgefäss zeigte, aber, fügt Milne Edwards³), dem ich diese Angaben entnehme, hinzu, es sei wahr-

2) Froriep, Neue Notizen l. c. 880.
scheinlich, dass es sich um Nerven gehandelt habe. Howson (Works p. 147) versichert, dass bei den Crocodilen der Chylus weiss sei, und Duvernoy giebt gleiches für eine Trigonocephalus-art an; endlich hat Leydig ¹) bei Tipa dorsigera in den Mesenterylumphgefassen grauweisige krümliche Masse aus Punktsubstanz und zahlreichen Fettkugelchen verschiedener Grösse bestehend, gefunden, aber es ist nicht angegeben, ob das Präparat einem frischen Thier entnommen war, was für diese, die Tropen bewohnende Species übrigens nicht wahrscheinlich ist.

Ich will keineswegs in Abrede stellen, dass eine genaue Untersuchung noch eine wirkliche Emulsionsresorption, wenn ich als solche die Resorption gleichmässig und ungemach feiner Fettkugelchen bezeichnen darf, bei den niederer Wirbelthieren wird finden lassen, jedoch zur Zeit steht unsere Kunde so, dass zwar Mesenterylumphgefässe in reicher Zahl bei den niederer Wirbelthierklassen nachgewiesen sind, diese aber selbst bei Vögeln, bei denen doch Pancreasdrüse und Leber so stark entwickelt sind, für die Fettresorption eine bis jetzt nicht bemerkte, also keine so hervorragende Rolle spielen, wie bei den Säugethieren.

Ich würde diese bekannte Sachlage nicht erwähnt haben, wenn nicht daraus eine Schlussfolgerung sich ergäbe, die für die Frage der Abstammung des Fetts im Thierkörper vielleicht einen Gewinn in Aussicht stellt.

Dies an sich werthlose morphologische aperçu gewinnt durch

¹) Lehrbuch der Histologie S. 419.
eine physiologische Betrachtung etwas an Werth und zwar abgesehen von der Frage, ob die Emulsionsresorption sich streng auf die Sänger beschränkt oder nicht.

Es ist nämlich schwer zu verstehen, wie resorbirtes Neutralfett angesetzt werden kann, wenn dasselbe in unemulgiirter Form resorbirt wird. In diesem Falle kann das Blut aus dem Darm höchstens so viel Fett aufnehmen, dass es sich damit sättigt. Der Theil desselben, welcher zum Fettgewebe kommt, wird mit anderem Blute gemischt sein, wird die Lungen passirt haben, wird also nicht mehr so gesättigt sein können, wie das Blut der Pfortader. Es wird also eher noch Fett aus den Fettzellen aufnehmen, als solches dort deponiren. Soll also auf diese Weise wirklich Neutralfett aus dem Darm in die Zellen gelangen, so müssen noch anderweitige Processe und Kräfte zu Hilfe genommen werden. Dagegen kommt, wenn emulgiirtes Fett ins Blut ergossen wird, ein stark mit Fett übersättigtes Serum an die Fettzellen und es ist die Abgabe von Fett an diese, wenn auch nicht in allen Einzelheiten, doch im Allgemeinen leicht verständlich, insoweit nämlich man überhaupt annehmen darf, dass die Fettzellen Fett als solches aus den Säften aufnehmen vermögen.

Die Säugethiere haben demnach, so weit ersichtlich, die Möglichkeit, resorbirtes Fett direct anzusetzen und diese Möglichkeit dürfte z. B. für die Cetaceen und Pinnipedia, welche sich der starken Wärmeentziehung durch das Wasser dauernd zu erwehren haben, von hoher Wichtigkeit sein. Bei der zweiten warmblütigen Classe, den Vögeln, kommt der Fall einer dauernden und vollkommenen Benutzung der Haut mit Wasser überhaupt nicht vor, beim Tauchen bleibt unter den Federn Luft.

Die Möglichkeit einer indirechten Ablagerung resorhirter Fette, sei es, dass dieselben als Seifen aufgenommen werden, sei es, dass sie als Neutralfette sich anderweit gebildetem Fett beimischen, soll hier nicht erörtert werden.

Aus der interessanten Arbeit von Röhrig 1) über die Fettaufnahme bei Hunden mit unterbundenem Ductus thoracicus kann leider nicht so gut auf die Aufnahme der resorhirten emulgiirten Fette geschlossen werden, wie es für die oben niedergelegten Ansichten zu wünschen wäre. Röhrig hat nämlich nur des emulgierten Fettes

1) l. c.
als an dem häufig vorkommenden chylösen Chylus kenntlich, im Allgemeinen Erwähnung gethan, aber nicht das Verschwinden des chylösen Serum registriert. Da nicht chylöses Serum, so viel mir bekannt, die Regel bildet, darf man wohl annehmen, dass auch in seinen Versuchen, die freilich einen sehr hohen Fettgehalt ergaben, das Serum später kein emulgirtes Fett mehr zeigte. Jedenfalls verschwindet diese Form des Fetts, ehe der Fettgehalt des Serums minimal wird, könnte man also die Verzehrung des emulgirten Fettes allein in Rechnung ziehen, so würde sich eine relativ raschere Aufnahme desselben ergeben, als diejenige ist, welche Röhrig fand. Dabei ist demnach die Möglichkeit, dass durch Zerfall noch anderweit Fettsubstanz im Blute entstanden sein könnte, nicht mit berücksichtigt.

Über die Sumpfgasgährung.

Von

Dr. Leo Popoff aus St. Petersburg.

(Aus dem Laboratorium des Herrn Prof. Dr. Hoppe-Seyler zu Strassburg i. E.)

1) Nouveau bulletin de la société philomatique 1814. T. IV. Note sur les gaz intestinaux de l'homme sain.
2) Recherches pour servir à l'histoire de la digestion. Paris 1815.
3) Recherches sur les gaz de l'estomac et des intestins de l'homme à l'état de maladie. Gazette med. 1833.
4) Sitzungsberichte der Wiener Akademie. Math-naturwissenschaftliche Classe, Bd. 42. 1860. Die Gase des Verdauungsschlauches etc.
5) Ebendaselbst Bd. 44. Beiträge zur Kenntniss der Darmgase.
Bestandtheil der Dickdarmgase bei Lebenden ist und zwar in ziemlich grosser Menge (bis zu 55,96 pCt.). Carius 1) und Ewald 2) haben dieses Gas als Bestandtheil jener Gase gefunden, die sich bei Magenerweiterung und Pylorusstenose häufig entwickeln 3).

Bei unserer gegenwärtigen Unkenntniss über die Entwicklung des Sumpfgases in der Natur und im tierischen Körper werden experimentelle Untersuchungen die erste Basis für Erklärungen erst gewinnen müssen. Bis jetzt ist diese Frage vernachlässigt worden, und die sehr wenigen darüber bekannten Forschungen haben zu keinen positiven Resultaten geführt. So glaubte Planer (op. c.), welcher das Sumpfgas in einer Leiche fand, bei lebenden Thieren aber nicht entdecken konnte, dass dieses Gas ein Zersetzungprodukt der Faecalmassen sei, ein Process, der beim lebenden nor-

1) Ueber Buttersäuregärührung im Magen etc. Verhandl. des naturhist. Vereins zu Heidelberg IV.

2) Ueber Magengärührung etc. Reichert’s und du Bois-Reymond’s Archiv 1874. Hefl 2.

Ueber die Sumpfgasgärung.

Da es nicht möglich ist, diesen Process in seinem ganz einfachen Erscheinene und bei ganz klaren Bedingungen vor sich gehen zu sehen, so stellten wir uns hier auf Veranlassung und unter gütiger Leitung des Herrn Prof. Dr. Hoppe-Seyler die Aufgabe, die Entwicklung dieses Gases unter Verhältnissen zu studiren, unter denen eine reichliche Menge derselben vorhanden und zugleich die Entwicklung der Beobachtung leicht zugänglich war,

3) Kolbe’s Journal für praktische Chemie. Bd. X.
und wo die Bedingungen seiner Entstehung bis zu einem gewissen Grade variirt werden konnten.

Eine Untersuchung in dieser Richtung schien uns um so interessanter, als sie eine wichtige hygieinische Seite hat. Denn sie führt uns zur Erkenntnis jener noch in Dunkel gehüllten Prozesse, welche in Sumpfen und stehenden Gewässern vor sich gehen, und denen man die Veranlassung verschiedener Erkrankungen (Sumpfieber etc.) von Menschen und Tieren Schuld giebt.

Bei der Menge von Fragen, welche uns bei dieser Arbeit vorlagent, müssen wir uns vorerst klar zu werden suchen: 1) welche Gasgemenge ein solcher Schlamm unter verschiedenen Bedingungen entwickelt, 2) welche Stoffe dabei eine Zersetzung erleiden, d. h. welche die Quelle der Entwicklungsursachen, 3) was schliesslich der ursächliche Moment einer derartigen Gasentwicklung ist.

Die Lösung dieser Fragen versuchten wir auf dem Wege zu erreichen, dass wir 1) unter verschiedenen Bedingungen die Prozesse selbst untersuchten, welche in dem Schlamm verlaufen, und 2) diesen Schlamm auf verschiedene ihm zugemengte Substanzen einwirken liessen.

Die Lösung obiger Fragen ist gleich schwierig wie wichtig, und die hier mitzuteilenden Resultate können allerdings nur als ein Anfang ihrer Bearbeitung hingestellt werden.

Die Versuche mit dem Schlamm wurden in folgender Weise ausgeführt:

Als Versuchsmaterial diente, wie bereits gesagt, Schlamm aus der Ill in Strassburg, der an solchen Stellen aufgenommen wurde, wo Schleusen in dieselbe einmünden, wo also sehr verschiedenartige Stoffe angeschwemmt werden. Diese Masse hatte Brei- oder Masseähnlichkeits, besass ein schmutziggraues Ansehen und entwickelte einen eigen- thümlichen Geruch, der öfters dem von Faecalmasse ähnlich war. Die Reaction derselben war meist neutral oder kaum merklich al- kalisch. Sobald sie vom Flusse her in das Laboratorium gebracht
Ueber die Sumpfgasgärung.

Nachdem wir auf die beschriebene Weise die Kolben vorgerechtet hatten, wurde das Ende des Gasleitungsröhres in ein mit

2) Um bei Platzveränderung oder anderen Manipulationen Luftsutritt zu verhindern, ist es praktisch, die Gasleitungsröhre nahe ihrem äusseren Ende zweimal zu biegen, so dass also in diesen Winkeln eine Quantität Quecksilber oder Wasser bleibt, die dann einen Verschluss des Gases im Kolben gegen atmosphärische Luft bildet.
Quecksilber gefülltes Gefäss getaucht und das entwickelte Gas auf gewöhnliche Weise gesammelt. Die Versuche selbst wurden im Winter und bis zum Ende des Sommers ausgeführt.

Was die äusseren Eigenschaften des Gases betrifft, so ist es farblos, fast ohne Geruch oder erinnert in sehr geringem Grade

Die eudiometrischen Untersuchungen lieferten die in folgender Tabelle zusammengestellten Resultate. Es ist hierbei zu bemerken, dass der Schlamm, vom Tage der Einfüllung in die Rolben an gerechnet, 3½ Wochen stand blieb, und zwar am ersten Tage bei 17°, die folgenden bei 7—10°. Die ersten zwei Analysen wurden von den Gasportionen gewonnen, welche unmittelbar auf einander erhalten wurden. Die folgenden aber wurden dann gewöhnlich in Zwischenräumen von 2 bis 4 Tagen erhalten und untersucht.

<table>
<thead>
<tr>
<th>CO₂</th>
<th>CH₄</th>
<th>O</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>11.75</td>
<td>248</td>
<td>4.71</td>
</tr>
<tr>
<td>2.</td>
<td>12.62</td>
<td>5.68</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>54.99</td>
<td>39.03</td>
<td>0</td>
</tr>
<tr>
<td>4.</td>
<td>55.81</td>
<td>42.54</td>
<td>0</td>
</tr>
<tr>
<td>5.</td>
<td>56.00</td>
<td>42.70</td>
<td>0</td>
</tr>
<tr>
<td>6.</td>
<td>45.9</td>
<td>54.1</td>
<td>0</td>
</tr>
<tr>
<td>7.</td>
<td>48.8</td>
<td>56.6</td>
<td>0</td>
</tr>
</tbody>
</table>

Wie diese Analysen ergeben, wurde die Luft, welche sich im Kolben befand, theils mit den Gasen mechanisch ausgetrieben, theils aber giebt sie ihren Sauerstoff an die sich zersetzende Masse ab, welche dieses Gas sehr begierig absorbiert, so dass in der Zeit, wo sich noch beträchtliche Mengen von Stickstoff im Gasgemisch vorhanden (35.98 pCt.), der Sauerstoff schon verschwunden war. War dann die Luft gänzlich ausgepresst, so traten nur Kohlensäure und Sumpfgas auf. Lenken wir unsere Aufmerksamkeit auf die Quantitätsverhältnisse, so finden wir, dass zu Anfang der Gasentwicklung, wo noch Luft vorhanden ist, die Kohlensäure prévalirte; dies steht vielleicht mit der Sauerstoffabsorption im Zusammenhang, wenn auch nicht ganz proportional. Mit dem Verschwinden der Luft aber (nämlich des Sauerstoffs) näherten sich die Quantitäten der Kohlensäure und des Sumpfgases dem Verhältniss 1:1 mit geringem Vorherrschen des Sumpfgases.

Diesen Zersetzungsprozess organischer Stoffe, der sich durch Entwicklung von Kohlensäure und Sumpfgas charakterisirt, wollen wir vorläufig, der offenbaren Ähnlichkeit der Erscheinungen wegen,
als Gährung bezeichnen, und es wird die weitere Schilderung die Rechtfertigung dieser Bezeichnung ergeben.

Die Vermuthung lag an sich nahe, dass diese Gasentwicklung auf einem fermentativen Process beruhte, und die nächste Analogie würde die Buttersäuregährung ergeben, aber wenn man den Process als einen fermentativen auffassen will, ist zunächst der Körper aufzusuchen, welcher einer Gährung unterliegt; hier bot sich eine nicht geringe Schwierigkeit, insofern in den Abfällen, welche diesen Schlamm zusammensetzten, alle möglichen Stoffe vermutet werden können. Nichtsdestoweniger zeigt das constante Auftreten dieser Gährung, dass es sich um Stoffe handeln muss, welche constante Bestandtheile dieses Schlammes sind, und am nächsten lag die Annahme, dass es entweder die Cellulose selbst oder ein aus ihr zunächst gebildetes Umwandlungsproduct sei, aus dessen Spaltung CO₂ und CH₄ erhalten würden. Cellulose kann übergeführt werden in Traubenzucker, und man könnte sich vorstellen, dass der Traubenzucker oder die Cellulose selbst unter Aufnahme von 1 Mol. H₂O in CO₂ und CH₄ abgespalten würde.

\[C₆H₁₀O₅ = 3CO₂ + 3CH₄ \]
\[C₆H₁₀O₅ + H₂O = 5CO₂ + 3CH₄ \]

Man könnte auch nach der Gleichung

\[2(C₆H₁₀O₅) = 5CO₂ + 5 CH₄ + 2C \]

Verwitterung von Hanf- und Leinenfaser und Holz könnte als Oxydationsprocess gedeutet werden, aber ihre Lösung in den faulenden Kartoffeln, auf welche Mitscherlich zuerst hingewiesen hat, kann wohl nur als Gährungsvorgang gedeutet werden, wenn auch der Process der Umwandlung selbst nicht bekannt ist. Es ist sonach jedenfalls die Cellulose nicht ohne Weiteres als einer fermentativen Umwandlung nicht fähig zu betrachten. Endlich, obgleich a priori kaum die Vermuthung nahe lag, dass als Substrat der Zersetzung in unserm Falle (wo bios Kohlensäure und Sumpfgas entwickelt wird) die stickstoffhaltigen Substanzen dienen konnten, so war es doch bei den Experimenten in der That nicht überflüssig, sich zu überzeugen, ob diese Substanzen einen unmittelbaren Antheil an den betreffenden Erscheinungen haben. Unter diesen Umständen mussten wir zunächst bestimmen, ob die genannten Stoffe in der gährenden Masse vorhanden waren, und wenn dies der Fall war, welche Veränderung sie durch die Gährung erleiden. Die Untersuchung ergab nun, dass die Masse, welche Sumpfgas und Kohlensäure lieferte, keine zuckerartigen Substanzen enthielt; weder vor noch nach andauernder Gährung gelang es uns, eine Reaction in alkalischer Lösung auf Kuperoxid zu erhalten, auch mikroskopisch konnten wir uns nicht hinlänglich überzeugen, dass in der Gärungs substanz Stärke vorhanden gewesen wäre, wenigstens nicht in merk licher Quantität. Ausser einigen amorphen Substanzen, welche, wie die weiteren Untersuchungen zeigten, der anorganischen Natur angehört, fanden sich noch eine Menge Krystalle vor, welche aus kohlensauren Salzen bestanden (sie lösten sich in Essigsäure und entwickelten dabei viel Gas). Der Hauptbestandtheil aber der untersuchten Masse bestand aus Fasern und Fetzen von Cellulose und aus einer sehr grossen Anzahl von mikroskopischen Organismen. Der beträchtlichen Quantität und der Rolle nach, die man diesen Organismen zuschreibt, müssen wir sie etwas ausführlicher betrachten. Die Hauptmasse dieser Organismen, die fast das ganze Gesichtsfeld des Mikroskopes einnahmen, gehörte der Form nach zu jenen, die von Co h n 1) Zoogloea genannt wurde, und unter diesen herrschten besonders die Kugelbacterien, Micrococcus, vor. Die meisten von diesen Micrococcen waren rot, gelb, grün, blau, violett gefärbt;

Die mikroskopischen Untersuchungen wurden unter gütiger Beihilfe des Herrn Prof. von Recklinghausen ausgeführt, dem ich an dieser Stelle hierfür meinen warmsten Dank ausspreche.

Bemerkenswerth ist das Verhalten obiger Organismen während der Dauer der Gährung; waren sie schon in der gährenden Masse in grosser Menge vorhanden, so vermehrten sie sich bei lange dauernder Gährung so ungeheuer, dass es für das unbewaffnete Auge ein Leichtiges war, sie wahrzunehmen. Ein Kolben, der im Monat Januar zur Gährung aufgestellt war, zeigte im März auf seinen oberen Schichten an einigen Stellen rosa- und violettrothe, an einigen tiefer gelegenen eine dunkelgrasgrüne Färbung; mit der Zeit nahm diese Färbung so sehr zu, dass im Juli der grösste Theil des Niederschlags der gährenden Masse eine dunkelgrasgrüne Farbe zeigte, hingegen der obere Theil des Kolbens und besonders der Boden desselben (also oberhalb des Gasraumes) wurde von einer intensiv rothen und violettrothen Masse überzogen. Die mikroskopische Untersuchung lehrte, dass diese Färbung von oben beschriebenen Pigmentmicrococcen abhängig war, besonders von Micro-

2) Wir halten es nicht für überflüssig, zu bemerken, dass das Pigment sich nicht nur aussen in der die Organismen verbindenden Substanz befindet, wie dies meist angenommen wird, sondern auch im Körper der Organismen selbst, was besonders bei den grünen der Fall ist.
coecus prodig. Diese sehr bedeutende Vermehrung solcher mikro-
skopischen Organismen, die ganz mit der Kohlensäure- und Sumpf-
gasentwicklung Schritt hielt, durfte einen gewissen wechselseitigen
Zusammenhang vermuten lassen und konnte einen Ausgangspunkt
der Untersuchung über die Entwicklung von diesen Gasen abgeben.
Gewiss wäre es von grossem Interesse, wenn wir die Ver-
änderungen der Cellulose, besonders quantitativ verfolgen könnten,
aber hier zeigen sich sehr erhebliche und nur langsam zu über-
windende Schwierigkeiten. Die mikroskopische Beobachtung ergiebt
ein Gewirr von Formen, ebenso complicirt ist die chemische Zu-
sammensetzung. Wir versuchten deshalb zunächst darüber Auf-
schluss zu erhalten, ob die löslichen oder die unlöslichen organischen
Stoffe des Schlammes während des Verlaufs der Gährung eine quan-
titative Verminderung erfahren. Es wurde eine Portion Schlamm
hiernach in zwei Theile geteilt nach sorgfältiger Mischung; der eine
Theil wurde sofort auf festen Rückstand, in Wasser lösliche und
 unlösliche, organische und anorganische Stoffe untersucht. Der andere
Theil wurde in derselben Weise nach längerer Gährung behandelt,
wobei sich folgende auf den festen Rückstand als 100 bezogene
Werthe ergaben:

Versuch I.

<table>
<thead>
<tr>
<th>Vor der Gährung</th>
<th>Nach der Gährung</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ca. 5 Mon. bei 7—17°).</td>
<td></td>
</tr>
<tr>
<td>a) organische Stoffe:</td>
<td></td>
</tr>
<tr>
<td>lösliche 1.96</td>
<td>2.18</td>
</tr>
<tr>
<td>unlös. 31.10</td>
<td>28.25</td>
</tr>
<tr>
<td>Sa. 33.06</td>
<td>Sa. 30.43</td>
</tr>
<tr>
<td>b) anorganische Stoffe:</td>
<td></td>
</tr>
<tr>
<td>lösliche 2.38</td>
<td>1.71</td>
</tr>
<tr>
<td>unlös. 64.59</td>
<td>67.96</td>
</tr>
<tr>
<td>Sa. 66.92</td>
<td>Sa. 69.57</td>
</tr>
</tbody>
</table>

Versuch II.

<table>
<thead>
<tr>
<th>Vor der Gährung</th>
<th>Nach der Gährung</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ca. 21/4 Mon. bei 20—30°).</td>
<td></td>
</tr>
<tr>
<td>a) organische Stoffe:</td>
<td></td>
</tr>
<tr>
<td>lösliche 8.80</td>
<td>2.46</td>
</tr>
<tr>
<td>unlös. 27.10</td>
<td>27.02</td>
</tr>
<tr>
<td>Sa. 35.90</td>
<td>Sa. 29.48</td>
</tr>
<tr>
<td>b) anorganische Stoffe:</td>
<td></td>
</tr>
<tr>
<td>lösliche 9.80</td>
<td>2.58</td>
</tr>
<tr>
<td>unlös. 54.81</td>
<td>67.94</td>
</tr>
<tr>
<td>Sa. 64.11</td>
<td>Sa. 70.52</td>
</tr>
</tbody>
</table>

infolge dessen muss während der Dauer der Gährung mit der Zeit der Stickstoff zunehmen. Im vorliegenden Falle kann das Verhalten des Stickstoffes bis zu einem gewissen Grade 'darauf hindeuten, dass die stickstoffhaltigen Substanzen kaum bei dem betreffenden Gährungsprozesse ein Substrat der Zersetzung bilden können.

Früher sahen wir, dass bei dem Gährungsprozesse eine beträchtliche Entwicklung von Organismen zu Stande kommt. An dieses Factum anknüpfend und um den Gährungsprozess selbst etwas mehr zu charakterisieren, wird es nicht ohne Interesse sein, hier über die Temperaturerscheinungen, die während der Gährung zur Beobachtung kamen, Mittheilung zu machen.

Zu diesem Behufe wurden nachstehende Versuche auf folgende Weise angestellt: Es wurde ein zweihalsiger Kolben genommen, der etwa 1500 Cctm. fasste, und gerade so wie die bereits erwähnten Kolben gefüllt, nur wurde in dem seitlichen Hals ein auf 10° Grade eingetheiltes Thermometer mittelst eines Kautschukpropfes eingeschaltet. Mit einem andern Thermometer, das mit jenem vorher verglichen war, wurde die Temperatur ausserhalb des Kolbens bestimmt. Der Kolben wurde in den Keller gebracht, wo sich die Temperatur so ziemlich gleich blieb. Obgleich sie nun etwas niedrig war (ca. 6—7° C.), ging dennoch die Gährung schon am zweiten Tage vor sich. Verschiedene Temperaturbestimmungen ausser- und innerhalb des Kolbens, die 2 Monate lang fast täglich ausgeführt wurden, ergaben, dass innerhalb des Kolbens stets ein Plus von Wärme vorhanden war. Anfangs war dieser Temperaturunterschied weniger ausgesprochen 0,2—0,4°, am Ende des zweiten Monats aber, wenn die äussere ca. 5° erreichte, zeigte sich die innere um 0,9—1° höher. Diese Wärmeentwicklung in dieser gährenden Substanz, welche sich nachweisen liess, trotzdem dass stets durch die Entwicklung von Gas eine Abgabe von Wärme vorhanden sein musste, stellte diesen Process in Analogie mit der Alcoholgährung, und es ist gewiss nicht uninteressant in dem Prozesse der Sumpfgasbildung, bei welchem jede Oxydation vollkommen ausgeschlossen war und nur molekulare Umwandlungen geschehen konnten, eine Quelle der Wärmeentwicklung zu finden und ebenso wie bei der Alcoholgährung lebende Organismen bei diesen Umwandlungen betheilig zu sehen.

So wie dies bei den bekannten Gährungsprozessen allgemein der Fall ist, zeigt auch bei der Sumpfgasbildung die Höhe der Temperatur eine bedeutende Einwirkung.

K. Pfäger, Archiv f. Physiologie. Bd. X.
Die Versuche in dieser Richtung waren folgende: Der Kolben, 1500 Ccitr. fassend, war in früher bezeichneten Art in einem Lokale aufgestellt, wo die Temperatur ziemlich constant war und die Tageschwankungen nicht mehr als 1—2° C. betrug. Wenn die Gährung in vollem Gange war, sammelten wir die gebildeten Gase in einem Cylinder (von 1000 Ccitr. Inhalt), der mit einer gesättigten Steinsalzlösung ¹) gefüllt war. Die Zeit, in welcher sich dieser mit Gas füllte, diente uns nun als Mass des Gährungsganges bei verschiedenen Temperaturen. Das Niveau der Salzlösung ausserhalb wurde bei allen Versuchen gleich hoch erhalten, die Barometerschwankungen, die wir dabei auch in Betracht zogen, waren so minimal, dass sie kaum der Beachtung bedürfen, umso mehr, als nicht selten das Resultat der Versuche gerade das Gegentheil von dem ergab, was man nach den Aenderungen des Barometerstandes hätte erwarten dürfen. Diese Beobachtungen erwiesen, dass der Cylinder bei einer Temperatur von 6—8° in einer Zeit von 15 Tagen gefüllt wurde, steigerte man dieselbe von 8 auf 10°, so war die Füllung schon am 7. Tage erreicht, also ergab eine Temperatursteigerung um ca. 2° eine zweimal grössere Gasmenge.

¹) Salzlösung wurde deshalb angewandt, um die Absorption von Gasen, besonders der Kohlensäure, die von Wasser in ziemlich grosser Menge absorbirt wird, möglichst zu verhindern.
Ueber die Sumpfgährung. 187

bis 50° gebracht, jetzt füllte sich das Rohr nach 5 Stunden. End-
lich wurde der Kolben unmittelbar nach diesem Versuch einer noch
höheren Temperatur von 50 bis 55° ausgesetzt und darauf in einem
Zimmer bei 20 bis 25° bei Seite gestellt. Weder an diesem, noch
im Verlaufe der folgenden 4 Tage wurde eine Gasentwicklung wahr-
genommen. Bei dem früher erwähnten Fall, wo eine Temperatur
von 38 bis 40° C. eingewirkt hatte, war der umgekehrte Fall zu
beobachten. Der Kolben war unter denselben Verhältnissen in das
nämliche Zimmer, in die gleiche Temperatur gebracht worden (20
bis 25°), die Gährung aber ging fort und war eine sehr lebhafe.

Wenn wir diese Versuche miteinander vergleichen, so sprechen
sie ohne Zweifel dafür, dass der Process der Sumpfgährung zunimmt
und zwar sehr auffällig mit der Temperatursteigerung. Diese Zu-
nahme aber hat ihre Grenze, über diese hinaus lässt der Process
bis zum schliesslichen Erlöschen nach. Der höchste Grad von Gas-
entwicklung wurde bei ca. 40° beobachtet. Von ca. 45° ab lässt
sich eine Abschwächung desselben constatiren, und bei 50 bis 55°
hörte er völlig auf.

Zu diesem letzteren Resultate sind wir auch bei anderen Ver-
suchen gekommen, die wir zu dem nämlichen Zwecke anstellten.
Um nämlich die Temperatur zu bestimmen, bei welcher die Gährung
aufhört, füllten wir einige Glashühren (50 Ccm. Inhalt) mit Gäh-
Rungsmaterial, dann haben wir dieselben eingeschmolzen und sie
darauf längere Zeit (1 bis 2 Stunden) unter verschiedene Tempe-
ratur gebracht, 135°, 110°, 100°, 75° und 55°. Nach Erkaltung
der Röhren wurden sie unter Quecksilber geöffnet und in diesem
aufgestellt. Es zeigte sich, dass in keiner dieser Röhren auch nach
längerer Beobachtung (1 Monat) eine Gasentwicklung zu Stande
kam 1). Das Verhalten der Sumpfgährung zur Temperatur ist ganz

1) In einigen Röhren, welche nämlich den höchsten Temperaturen aus-
gesetzt wurden (180 u. 100°), konnte man nach Einstellen in die Quecksilber-
wanne eine geringe Zunahme des Gases bemerken; wenn wir kein grosses
Gewicht auf die zufällige geringe Temperaturerhöhung des Zimmers und auf
zufällige Verunreinigung des Quecksilbers legen wollen, so müssen wir aber
der Über der Gährungsmasse befindlichen Luft Rechnung tragen; stand über
der Gährungsmasse eine gewisse Luftmenge, deren Sauерstoff, wie wir schon
früher zeigten, sehr begierig von dieser Masse absorbiert wird, so konnte
dies recht wohl, besonders bei höherer Temperatur, eine Quelle für die Ent-
wicklung von Kohlensäure sein, die auch im Verhältniss zum absorbierten
analog dem Verhalten anderer Gärungsprozesse dieser Art, wie z. B. Alcohol-Buttersäuregärung, denn hier wie dort wirkt eine Temperatur von 50 bis 55° vernichtend. (Hoppe-Seyler, A. Mayer, Pashuten). Diese Thatsache steht auch merkwürdiger Weise in Analogie mit der Wirkung dieser Temperaturgrade auf die Entwicklung niedriger Organismen, nämlich der Bacterien, indem nach den Untersuchungen von Hoppe-Seyler*, Cohn und Horvath* die Temperatur von etwas niedriger als 60° hinreicht, um die Keime dieser Organismen zu tödten*).

Ueber den Einfluss niedriger Temperatur auf den Gärungsprozess können wir das Ergebniss nur eines Versuches mittheilen; die gefrorene Masse wurde unmittelbar nach dem Aufthauen in den Kolben gebracht, sie zeigte sich alsbald ebenso gut gärungsfähig wie eine nicht gefrorene Masse.

Bei der Betrachtung des Temperatureinflusses auf die Gärung tritt uns noch eine Frage entgegen, ob nämlich die Veränderung der Temperatur auch eine Veränderung in der Zusammensetzung der entwickelten Gase herbeizuführen im Stande ist. Es wäre denkbar, dass bei höherer Temperatur die Gärung etwas anders vor sich ginge und ebenso die bei niedriger Temperatur entwickelten Gase ein anderes Verhalten annehmen wie jene; hieran reiht sich noch eine Frage, die wir bis jetzt nicht berührten: Wie wirkt auf die Zusammensetzung der Gase die Gärungsduer ein?, bleibt das Gemisch immer dasselbe, oder treten mit der Zeit Veränderungen auf?

Aus den oben aufgeführten Gasanalysen ersehen wir, dass in den letzten Gasportionen die Quantität von Sumpfgas etwas zu prävaliren beginnt über die Quantität der Kohlensäure. Die Beobachtung zeigte, dass diese Zunahme von Sumpfgas mit der Gährung

Sauerstoff vielleicht in grösserer Quantität erscheinen kann, wie dies a. B. von Planier im Verdauungskanal der Thiere gefunden wurde (3:1). Eine Entwicklung von Gasbläschen in der Mitte der Masse, wie das auch gewöhnlich der Fall war, konnte nicht bemerkt werden.

3) Merkwürdiger Weise ist es dieselbe Temperaturgrenze, welche der contractilen Substanz des Protoplasmas tierischer und pflanzlicher Geweben Leben und Contractilität raubt. (Kühne, Max Schultze, Sachs).
rungsdauer stieg, und zwar bei niedriger Temperatur allmählig, bei höherer ziemlich rasch. Die jetzt folgenden Analysen ergeben, dass das Gasgemisch, aus einem und demselben Kolben erhalten, von denen die oben angeführten Zahlen gewonnen wurden, nach $2^{1/2}$ Monaten (vom Gährungsbeginn ab gerechnet) nachstehendes war:

Analyse 1.

<table>
<thead>
<tr>
<th>Kohlensäure</th>
<th>34.67 pCt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sumpfgas</td>
<td>65.33</td>
</tr>
</tbody>
</table>

Analyse 2.

<table>
<thead>
<tr>
<th>Kohlensäure</th>
<th>34.33 pCt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sumpfgas</td>
<td>65.67</td>
</tr>
</tbody>
</table>

Dieses Gasgemisch erhielt sich lange Zeit, so dass die nach einem Monat angestellte Analyse sehr nahe stehende Zahlen ergab. Viel schneller ging die Zunahme von Sumpfgas im Sommer vor sich, wenn die Zimmertemperatur 22 bis 30° erreichte. Das zu dieser Jahreszeit erhaltene Gas, welches 3 Wochen nach Anstellen des Versuches zweimal untersucht wurde, gab folgende Resultate:

Analyse 1.

<table>
<thead>
<tr>
<th>Kohlensäure</th>
<th>31.44 pCt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sumpfgas</td>
<td>68.56</td>
</tr>
</tbody>
</table>

Analyse 2.

<table>
<thead>
<tr>
<th>Kohlensäure</th>
<th>26.24 pCt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sumpfgas</td>
<td>73.76</td>
</tr>
</tbody>
</table>

Bald nach diesen Analysen wurde dem Kolben Luftzutritt gestattet und dieser nacher in bekannter Weise geschlossen. Das Gas, welches nun gesammelt und gleich zweimal nacheinander untersucht wurde, bestand aus:

Analyse 1.

<table>
<thead>
<tr>
<th>Kohlensäure</th>
<th>16.77 pCt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sumpfgas</td>
<td>11.54</td>
</tr>
<tr>
<td>Wasserstoff</td>
<td>1.77</td>
</tr>
<tr>
<td>Sauerstoff</td>
<td>3.68</td>
</tr>
<tr>
<td>Stickstoff</td>
<td>66.26</td>
</tr>
</tbody>
</table>

Analyse 2.

<table>
<thead>
<tr>
<th>Kohlensäure</th>
<th>18.73 pCt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sumpfgas</td>
<td>27.20</td>
</tr>
<tr>
<td>Wasserstoff</td>
<td>0.42</td>
</tr>
<tr>
<td>Sauerstoff</td>
<td>0.00</td>
</tr>
<tr>
<td>Stickstoff</td>
<td>53.65</td>
</tr>
</tbody>
</table>
Die Portionen des Gases, welches hierauf 3 Wochen später (vom Luftzutritt ab gerechnet) gewonnen wurde, ergaben folgendes:

| Kohlensäure | 15.84 pCt. |
| Sumpfgas | 84.86 |

Hier beginnt also das Praevaliren des Sumpfgases sehr bald, und es zeigt auch dann noch ein beträchtliches Plus, wenn der Stickstoff in grösserer Menge vorhanden ist, wo er mehr als die Hälfte des Gemisches ausmacht (53.65 pCt.). Was den Wasserstoff betrifft, so ist seine Quantität sowohl hier als auch bei einem andern Versuch so gering und das Gas so bald wieder verschwunden, dass sein Auftreten ganz accidentell neben der Sumpfgärung sein kann. Auf diese Wasserstoffbildung kommen wir bei einer späteren Gelegenheit noch einmal zurück. Jenes Gas, welches bei ca. 40° am 5. Tage gewonnen wurde (wie dies bei obigem Versuche im Luftbade der Fall war), enthielt:

Kohlensäure	35.59 pCt.
Sumpfgas	51.87
Stickstoff	18.24

Diese Resultate zusammengenommen, führen zu dem Schlusse, dass die Zusammensetzung des entwickelten Gasgemisches bei höherer Temperatur sehr schnell dieselbe Aenderung erfährt, welche bei minderer Temperatur erst bei langer Dauer der Gährung sich beobachten lässt 1). Eine ausreichende Erklärung dieser Erscheinung kann man wohl noch nicht geben, doch ist zu beachten, dass mit der Dauer der Gährung sich immer mehr Organismen ausbilden, und diese Entwicklung von niederem Organismen in der höheren Temperatur nachweisbar bei weitem schneller erfolgt, wenn wir auch noch nicht sagen können, ob und wie diese Micrococccen etc. sich bei der Bildung des Sumpfgasses und der Kohlensäure betheiligen. Sicher ist nachgewiesen, dass die gährende Masse sehr begierig Sauерstoff absorbirt (s. die oben angeführte Analyse), und vielleicht spielen bei dieser Absorption diese Organismen gerade eine Rolle, und wenn man die Anschauung Pasteur's 2), dass die Hefenpilze aus Sauер-

1) Ueber den Einfluss der Gährungsdauer auf die Menge des sich entwickelnden Gases wurden genaue Versuche nicht angestellt, man konnte ihn jedoch leicht nach den gesammten Beobachtungen abschätzen und erkennen, dass die Gasentwicklung mit der Zeit allmählich steigt.

2) Lehrbuch der Gärungscchemie von A. Mayer 1874, pag. 144.
stoffsbedürfniss die Alcoholgährung zu Stande bringen, hier in Verwendung brächte, so könnte man recht wohl auch vermuten, dass hier ein Reducirungsprocess im Grossen vor sich gehe, und auch solche beständige Substanzen, wie Kohlensäure und Wasser, eine Zersetzung erleiden könnten. Dass in der That in Massen, wie Schlamm, grossartige Reduktionsprozesse vor sich gehen, ist eine bekannte und unzweifelhafte Erfahrung. Ob dies aber direct von Organismen abhängig gemacht werden darf, bedarf noch des weiteren Beweises.

Ahnliche Erscheinungen, wie wir sie soeben betrachteten, kommen auch noch unter anderen Verhältnissen zu Stande, nämlich bei der Einwirkung gewisser Substanzen auf diesen Gährungsprozess, auf die wir jetzt eingehen wollen.

Versuch 1. Am 19. Mai wurde sehr lebhaft gährrender Schlamm in 4 Röhren eingebracht. Nr. 1 wurde allein mit 35 Ccmm Schlamm gefüllt, Nr. 2 mit einer Cyankaliumlösung (1 Ccmm 1 pCt. Lösung zu 35 Ccmm.}
Schlamm). Nr. 3 mit Carbonsäurelösung in derselben Quantität und Concentration bei gleicher Menge Schlamm. Nr. 4 mit salpetersaurem Strychnin (1 Cctm. einer 0,6 pCt. Lösung zu 36 Cctm. Schlamm). In dem mit Cyankaliun versetzten Rohre bemerkte man eine sehr geringe grünliche Färbung; nach 2 Tagen erschienen in allen Röhren Gasblasen, mit Ausnahme derjenigen, in der sich Cyankaliun befand. In dem Rohre, wo Strychnin war, entwickelte sich das Gas etwas reichlicher als in dem anderen; am 25. Mai hatte sich in diesem Rohre eine grosse Menge Gas angesammelt, nahezu 1/2 derselben, in den anderen Röhren befand sich viel weniger, und die nicht versetzte Masse in Nr. 1 zeigte kaum merklich mehr Gas als die mit Carbonsäure versetzte. In dem Rohr mit Cyankaliun ist gar kein Gas vorhanden.

Der Versuch mit Sauerstoff wurde so ausgeführt, dass zwei 50 Cctm. fassende Röhren verwendet wurden, die eine davon enthielt ausser der gährenden Substanz 1/4 Vol. Luft, die andere aber ausser jener 1/4 Vol. Sauerstoff; bei längerer Beobachtung (nahezu 2 1/2 Wochen) entwickelte sich in dem Rohr, das reinen Sauerstoff enthielt, weniger Gas als in jenem, wo Luft vorhanden war.

Ähnliche vergleichende Versuche überzeugten uns, dass fast alle Substanzen, die wir hier einwirken liessen, eine hemmende Wirkung auf die Sumpfgährung anstuben, nur das Strychnin schien diesen Process schneller vor sich gehen zu lassen 1). Der vernichtenden Wirkung nach nimmt das Cyankaliun die erste Stelle ein, auf dieses folgt Chinin, chlorosaures Kali, Chloroform, Atropin und Curare. Allerdings ergiebt dies nicht eine bestimmte Scala der Stärke der Wirkung dieser Stoffe auf die Sumpfgährung, um so

1) Eine ähnliche aber nicht so intensive Wirkung hatte auch das Pikrotoxsin (1 Cctm. gesättigter Lösung auf 40 Cctm. Gährungsmasse). Da aber hiermit nur 1 Versuch angestellt wurde, so sind wir nicht berechtigt, daraus bestimmte Schlüsse zu ziehen.
weniger, als die Lösungen nicht dieselbe Contraction hatten und einige Stoffe in Substanz verwendet wurden, wie Chloroform 1), aber nach dem Ergebniss der Versuche sind sie in dieser Reihenfolge zu ordnen.

Für einige Stoffe, z. B. Chloroform, wurde es nachgewiesen, dass mit der Quantität des Stoffes auch die Stärke der Wirkung zunimmt, so tritt z. B. bei einer Quantität von 1 Cctm. Chloroform auf 40 Cctm. Gährungsmasse die hemmende Wirkung bereits auf, bei 2 Cctm. ist diese schon um Vieles prägnanter, so dass nur eine kleine Quantität Gas erschien; wurden 4 Cctm. zugesetzt, so blieb die Gasentwicklung ganz aus, obgleich die Versuchsdauer etwa 2 Monate betrug.

Hinsichtlich der auffallenden Wirkung des Strychnins 2) kann zunächst die wichtige Frage aufgeworfen werden, ob die entwickelten Gase nicht etwa durch eine Zersetzung des Strychnin selbst geliefert seien. Um hierüber Aufschluss zu erhalten, wurde eine Portion Schlamm auf oben beschriebene Art mit Strychnin vermischt, und die grosse Menge Gas, die sich nach kurzer Zeit gebildet hatte, der Analyse unterworfen. Es wurde gefunden:

| Kohlensäure | 18.88 pCt. |
| Sumpfgas | 81.12 |

Dieses Gas unterscheidet sich also nicht von dem, welches gewöhnlich bei der Sumpfgärung gewonnen wurde, nur ist dabei hervorzuheben, dass hier das Sumpfgas bedeutend über die Kohlensäure prevalirt, und dies steht mit den Versuchen in vollkommener Analogie, wo die Gährungsdauer eine sehr lange war, oder besonders wo diese unter höherer Temperatur stattfand (ohne Luft), wobei sich auch die Quantität des Sumpfgases, wie wir sahen, vergrösserte. Hier wollen wir nicht eine eingehende Untersuchung über die Ursache dieser Erscheinung anstellen, lassen es ebenso dahingestellt, ob diese Ursache bei diesen drei Fällen eine und dieselbe ist, berühren aber den Umstand noch, dass die Wirkung des Strychnins

1) Die Concentration wurde schon früher mitgetheilt. Für chlorosures Kali 1,8 pCt., für Atropin 1,25 pCt.

auf Sumpfgährung, oder besser gesagt, auf Sumpferment sehr ähnlich ist mit der Wirkung desselben auf lebende Organismen, indem sie sich im Nervenmuskelsystem dadurch merklich macht, dass dasselbe in einen beständigen Thätigkeitzustand versetzt wird (Krämpfe, Tetanus). Da uns eine solche Analogie vor Augen liegt, steht natürlich die Frage nahe, ob sich diese noch weiter ausdehnen lässt; so könnte man z. B. die Frage aufwerfen, ob das Strychnin, in grossen Dosen gebraucht, auch die Gährung zu hemmen im Stande ist, wie der thierische Körper durch solche zu Grunde geht. Zur Erörterung dieser Fragen wurden zweierlei Versuche angestellt:

I. Es wurde zum gährenden Schlamm eine grössere Quantität Strychnin (4—6 Cc. in, gesättigter Lösung auf 40 Cc.) zugesetzt, die Folge davon war, dass eine sehr auffällige Abschwächung der Gährung eintrat.

Die Resultate dieser Versuche ergeben, dass die angeführte Analogie der Strychninwirkung auf den thierischen Organismus und das Ferment der Gährung ziemlich weit sich verfolgen lässt, ausserdem sprechen die Versuche gegen die früher bereits als unwahrscheinlich bezeichnete Zersetzung des Strychnins, weil mit der vermehrten Dosis auch eine Vermehrung der Gasentwicklung zu erwarten war, was sich aber in der That ganz umgekehrt verhielt): Wir haben oben gesehen, dass die Untersuchungen von Gährungsmassen in der Form, wie dies gegenwärtig möglich ist, nicht

2) Die Gegenwart von unsersetzt Strychnin liess sich leicht durch Versuche an Fröschen nachweisen, einfach durch einen wasserigen Auszug des betreffenden Materials.
im Stande sind, mit Bestimmtheit zu zeigen, welche Stoffe bei diesem Prozesse der Gährung Zersetzungen eingehen, und als Quelle der Entwicklung von Kohlensäure und Sumpfgas zu betrachten sind. Um der Lösung dieser Fragen etwas näher zu kommen, haben wir noch andere Wege eingeschlagen.

Mit sehr kleinen Mengen Schlamm, oder ohne solchen, wurden gewisse Substanzen der Gährung unterworfen und beobachtet.

Was die Auswahl dieser Substanzen betraf, so liessen wir uns theils durch die Erfahrungen leiten, welche wir bei früheren Versuchen gemacht hatten, und die zunächst dagegen sprachen, dass stickstoffhaltige Substanzen sich an dieser Gährung betheiligten, theils wandten wir uns aus Rücksicht auf die chemische Zusammensetzung und das verbreitete Vorkommen an Orten, wo sich die Sumpfgasgährung einstellt, besonders den Kohlehydraten zu. Was die zuckerartigen Substanzen anbelangt, so wissen wir, dass ihre Zersetzung, soweit die bisherigen Untersuchungen reichen, in ganz anderer Weise vor sich geht; nachweisen konnten wir diese in unserem Schlamm nicht, trotzdem aber suchten wir der grösseren Genauigkeit wegen auch in dieser Richtung uns zu sichern.

Die Art und Weise der Versuche war die nämliche, wie wir sie früher bei der Schlammgährung beschrieben haben, nur wurden diesmal häufig kleinere 100 bis 200 Ccmt. enthaltende Kolben gebraucht, oder statt dieser Glasröhrchen von 25 bis 45 Ccmt. Inhalt. Bei der ersten Versuchsreihe war immer etwas Luft im Kolben vorhanden, so dass die Gährung, wenn sie überhaupt eingetreten wäre, immer unter Luftgegenwart vor sich gehen musste, die Röhren hingegen wurden mit dem Versuchsmaterial ganz gefüllt, und dann über Quecksilber gestülpt, so dass die Gährung nicht mit Luft in Berührung kommen konnte. Hier wie da, wo diese beiden Versuche angestellt wurden, konnte man keinerlei Differenzen nachweisen. Der Schlamm wurde, wenn er als Ferment diente, in Portionen zu 10 und 15 Tropfen bis zu 2 und 3 Ccmt. ausschliesslich einiger später zu erwähnender Fälle zugesetzt. Folgendes sind nun in Kürze die Resultate:

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wasserstoff</td>
<td>17.49 "</td>
</tr>
<tr>
<td>Stickstoff</td>
<td>15.59 "</td>
</tr>
</tbody>
</table>

Nach 2 Tagen fand sich

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kohlensäure</td>
<td>87.5 p.Ct.</td>
</tr>
<tr>
<td>Wasserstoff</td>
<td>12.5 "</td>
</tr>
</tbody>
</table>

Nach der Gährung zeigte das Fluidum stark saure Reaction. Ähnliche Resultate der Gasproduktion, wie Kartoffel, lieferen auch Pferdefleisch, zu dem etwas Schlamm als Ferment gefügt wurde.

Ein etwas anderes Resultat stellte sich bei den Versuchen mit Heu, mit Ochsenmageninhalt und mit der Cellulose heraus (letztere stellten wir uns dabei aus Kartoffeln dar). Ein grosser Kolben mit Heu gefüllt wurde mit Wasser übergossen, das nach 5 Tagen erhaltene Gas bestand nur aus Kohlensäure und Wasserstoff (bei Luftgegenwart), 3 Tage später aufgefangesenes enthielt:

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wasserstoff</td>
<td>87.16 "</td>
</tr>
<tr>
<td>Sumpfgas</td>
<td>0.88 "</td>
</tr>
<tr>
<td>Stickstoff</td>
<td>42.68 "</td>
</tr>
</tbody>
</table>

Eine noch einige Tage nachher untersuchte Gasportion (die Gasentwicklung ging fort) ergab nur Kohlensäure und Wasserstoff.

Von dem Ochsenmageninhalt werden zwei Portionen genommen, von denen die eine sofort nach Aufschneiden des Pansens in den Kolben gebracht wurde, die andere erst einen Tag später. In beiden Fällen entwickelten sich die Gase, besonders im zweiten, etwas langsamer; nach 10 Tagen wurde die erste Portion untersucht, sie bestand aus:

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kohlensäure</td>
<td>82.25 p.Ct.</td>
</tr>
<tr>
<td>Wasserstoff</td>
<td>6.58 "</td>
</tr>
<tr>
<td>Sumpfgas</td>
<td>1.00 "</td>
</tr>
<tr>
<td>Stickstoff</td>
<td>60.29 "</td>
</tr>
<tr>
<td>Sauerstoff</td>
<td>Spuren</td>
</tr>
</tbody>
</table>
Die nächste Analyse des Gases aus demselben Kolben zeigte etwa dasselbe Verhältniss, nämlich:

<table>
<thead>
<tr>
<th>Kohlensäure</th>
<th>39.62 pCt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wasserstoff</td>
<td>10.00 "</td>
</tr>
<tr>
<td>Sumpfgas</td>
<td>0.96 "</td>
</tr>
<tr>
<td>Stickstoff</td>
<td>49.42 "</td>
</tr>
</tbody>
</table>

Die zweite Portion gährte, wie schon erwähnt, mit weniger Energie, und das nur einmal analysirte Gas bestand nur aus Kohlensäure und Wasserstoff.

Die Versuche mit Cellulose wurden auf zweierlei Art vorgenommen: 1) untersuchten wir Cellulose, die wir aus roher Kartoffel erhielten, 2) experimentierten wir mit schwedischem Papier 1).

Die Cellulose aus Kartoffel verfertigten wir, indem Stücke derselben fein zerrrieben wurden, dann entfernten wir durch öfteres Decantiren mit destilliertem Wasser das Stärkemehl, der zurückbleibende Rest, in dem sich noch Amylon vorfinden konnte, wurde darauf noch durch vielfach wiederholtes Kochen und nachfolgender Speichelbehandlung bearbeitet, dann so lange mit destilliertem Wasser behandelt, bis dieses keine Zuckerreaction mehr gab und die feste Substanz nichts von Stärke nachwies. Jodtinctur färbte diese Substanz nach einiger Zeit schwach bräunlich. Mikroskopisch bestand sie fast nur aus Cellulosefasern. Stärkemehlkörnchen (sehr kleine, nicht charakteristische Klümpchen) traf man sehr selten an. Diese Masse mit etwas destilliertem Wasser angerührt, wurde in 2 Kolben (ca. 100 Cctm.) zur Gährung hingestellt. Zu einem dieser Kolben setzten wir etwas Schlamm (Nr. 1), zum andern aber nichts (Nr. 2). Ausser diesen beiden wurde noch ein ähnlicher (ohne Ferment) aufgestellt, wo das Material einer noch mehrmaligen Einwirkung von Kochen und Speichel unterzogen wurde (Nr. 3). In Nr. 1 erschien schon am folgenden Tage die Gährung, ging aber langsam von Statten. In Nr. 2 begann die Gährung einen Tag später, war aber etwas lebhafter, so dass das Gas früher aufgesammelt und analysirt werden konnte. Es bestand aus:

<table>
<thead>
<tr>
<th>Kohlensäure</th>
<th>47.30 pCt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wasserstoff</td>
<td>34.72 "</td>
</tr>
<tr>
<td>Sumpfgas</td>
<td>6.54 "</td>
</tr>
<tr>
<td>Stickstoff</td>
<td>11.44 "</td>
</tr>
</tbody>
</table>

Das Gas einige Tage später aus demselben Kolben untersucht, ergab nur Kohlensäure und Wasserstoff. Auch das von Nr. 3 erhaltenen Gas zeigte ein ähnliches Resultat. Die erste Portion enthielt:

- Kohlensäure 17.75 pCt.
- Wasserstoff 14.52 "
- Sumpfgas 3.66 "
- Stickstoff 64.27 "
- Sauerstoff Spuren.

Die zweite Portion bestand (außer dem Stickstoff der Luft) bloss aus Kohlensäure (24.72 pCt.) und Wasserstoff (29.67 pCt.). Im Kolben Nr. 1 ging die Gasentwicklung sehr langsam vor sich, so dass erst nach 2½ Monaten eine genügende Menge gewonnen worden war, deren Zusammensetzung folgende war:

- Kohlensäure 71.82 pCt.
- Wasserstoff 26.69 "
- Sumpfgas 0.87 "
- Stickstoff 0.82 "

¹) Dies können wir nicht direct von jener Portion behaupten, wo Cellulose mit Ferment versetzt war, und wo die Gährung sehr langsam ging, indem eben nur eine Portion Gas gewonnen werden konnte.

³) Außer den aufgeführten Versuchen über die Wirkung verschiedener
Unserem Versuche zeigte es sich, dass wir unmittelbar nach Eröffnung des Kolbens eine saure Reaction vorfanden, die meist auch ziemlich stark ausgesprochen war.

<table>
<thead>
<tr>
<th>Kohlensäure</th>
<th>39.85 pCt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sumpfgas</td>
<td>6.19</td>
</tr>
<tr>
<td>Wasserstoff</td>
<td>0.40</td>
</tr>
<tr>
<td>Stickstoff</td>
<td>53.56</td>
</tr>
</tbody>
</table>

Aus dem letzten Versuche geht hervor, dass in dem Kolben, in welchem sich Schlamm und Papier befand, das Papier in Gährung überging, und aus ihm die Gasentwicklung zu Stande kam. Einen ganz analogen Versuch stellten wir in grossem Massstab an. Wir nahmen 8 Bogen schwedisches Papier und 20 Cctm. sehr verdünnten Schlammes, brachten beide in einen 2000 Cctm. haltenden Kolben und stellten ihn in einem Zimmer auf, wo sich dieTempe-

Substanzen auf die Sumpfgasgährung haben wir noch hinsichtlich dieser Thatsachen einige andere gemacht, indem wir zu gährendem Schlamm verschiedene Mengen von Salz und Essigsäure oder Alkalien (Natronlaug) brachten; bei einem gewissen Zusatze von Alkali oder Säure (die Menge ist noch zu bestimmen) zeigte es sich, dass die Gährung still stand.
ratur zwischen 22 und 26° erhielt, vorherrschend war eine Temperatur von 24°. Nach 3 Tagen konnte man bereits eine Gasentwicklung beobachten, die Gährung war aber etwas träge, und erst nach 2 Wochen konnte so viel Gas gesammelt werden, als zur Analyse genügte. Sie ergab:

- Kohlensäure 25.70 p.Ct.
- Sumpfgas 14.42 „
- Wasserstoff 14.36 „
- Stickstoff 45.52 „

Das einige Tage später erhaltene Gas setzte sich zusammen aus:

- Sumpfgas 26.91 „
- Wasserstoff 3.40 „
- Stickstoff 43.64 „

Noch später gesammeltes enthielt:

- Kohlensäure 34.07 p.Ct.
- Sumpfgas 87.12 „
- Wasserstoff 1.06 „
- Stickstoff 27.76 „

Wir lernen daraus, dass mit der Dauer der Gährung die Quantität des Wasserstoffs ab-, die des Sumpfgases aber zunimmt. Die Quantität dieses letzteren kommt der Quantität der Kohlensäure ziemlich nahe. Die Reaction der Flüssigkeit zeigte sich bei Eröffnung des Kolbens, nach nahezu 3 monatlicher Versuchsdauer als neutral. Die Unterschiede der Resultate bei diesem Versuche mit Papier und dem mit der Cellulose, die wir selbst aus Kartoffeln anfertigten, lassen sich dadurch erklären, dass, wie bekannt, bei der Umwandlung von Stärke in Zucker auch unter den günstigsten Verhältnissen nur die Hälfte des Stärkemehls in Zucker übergeht (Musculus und Andere), die andere Hälfte aber andere Produkte (Dextrin etc.) liefert, die allerdings ganz andere Zersetzungsin als die Cellulose erfahren können.

Den letzten Versuch mit der Cellulose führten wir auf folgende Art aus: In einem ca. 200 Cettm. haltenden Kolben, der wie die schon früher geschilderten hergerichtet war, brachten wir gewöhnliches Filtrirpapier, übergossen es mit Brunnenwasser und fügten nun ganz minimale Mengen jener rothen Micrococen hinzu, die sich an den Wänden und dem Boden des Kolbens befanden, der etwa 6 Monate mit Schlamm gestanden hatte, und von dem schon früher
die Rede war. Eine Beimischung von Schlammtheilchen war kaum merklich, die auf das Papier gebrachten Organismen, wie gesagt, ganz minimal. Nach 4 Tagen war das Papier an einigen Stellen röthlich gefärbt, diese Färbung ging von kleinen dunklen Punkten aus und verbreitete sich nach allen Richtungen. Gleichzeitig bemerkte man eine Verminderung des Volumens der im Kolben zurückgebliebenen Luft, was sich durch das Aufsteigen des Quecksilbers im gasleitenden Rohre aussprach. Eine Woche später war die rothe Färbung vermehrt, aber auch einige grünliche Stellen wurden sichtbar, allmählich nahm diese grüne Färbung zu und herrschte schliesslich vor. Die Gährung kam 8 Tage nach Anstellen des Versuches zu Stande, ging aber ziemlich langsam vor sich, so dass erst nach einem Monat eine hinreichende Menge Gas aufgefangen werden konnte 1). Es enthielt:

Kohlensäure 19.29 pCt.
Sumpfgas 17.91 „
Wasserstoff 32.76 „
Stickstoff 30.04 „

Etwa nach 2 Monaten wurde der Kolben geöffnet, die Flüssigkeit hatte eine neutrale Reaction und einen etwas dem Schwefelwasserstoff ähnlichen Geruch. In der Flüssigkeit schwammen grünlich gefärbte Flocken, diese hatten auch das Papier völlig durchtränkt, und konnten durch Abspülen mit Wasser nicht entfernt werden. Mikroskopisch untersucht erwiesen sich diese als Micrococcen-Massen ganz ähnlich wie Monas prodigiosa, nur eben grün gefärbt. Auch die Flüssigkeit enthielt sehr grosse Mengen dieser Organismen, die, wenn sie vereinzelt waren, eine lebhafe Bewegung zeigten, indem sie tanzende, seltner geradlinige Bewegungen ausführten (Stäbchen-Bacterien), das Pigment durchsetzte die Organismen selbst, was daraus erhellt, dass die umgebende Flüssigkeit farblos war, und einzelne isolirte Organismen unterscheiden sich sehr gut durch ihre Färbung. Die andern Organismen, die wir in den früheren Versuchen auffanden, wie Sarcine und Diatomeen, konnten nur sehr selten bemerkt werden. Micrococcus prodigiosus aber und andere verwandte Pigment-Micrococcen, blaue, violette und besonders

1) Diese langsam gehende Entwicklung der Gährung mit ziemlich rasch verlaufender Entwicklung der Organismen spricht bis zu einem gewissen Grad dafür, dass die Vermehrung der Organismen allein für sich und an sich kaum als Ursache der Gährung anzusehen ist.

E. Pfäger, Archiv f. Physiologie. Bd. X.
gelbe (die auch öfters in den Faeces von Menschen vorkommen) traten hier in grosser Anzahl auf.

I. Kohlensäure 76.18 pCt.
 Sumpfgas 5.99 „
 Wasserstoff 17.88 „

II. Kohlensäure 91.06 pCt.
 Sumpfgas 6.58 „
 Wasserstoff 2.42 „

Eine Lösung von Traubenzucker (10 pCt.) mit einer kleinen Menge Schlamm gemischt entwickelte in dem einen Falle (Versuch im Kolben) während 1½ Monate kein Gas, die Reaction der Flüssigkeit war unterdessen sehr sauer geworden. Eine 6 pCt. Lösung aber im luftabgeschlossenen Glasrohre, die gleichfalls mit etwas Schlamm vermischt worden war, entwickelte ziemlich viel Gas, ähnlich wie Gummi 1), und es bestand aus:

Kohlensäure 52.45 pCt.
Wasserstoff 47.55 „

Die Reaction der Flüssigkeit zeigte sich sauer.

Von den Salzen organischer Säuren, die wir auf ihre Fähigkeit unter Einfluss des Sumpfgärungserments sich zu zersetzen untersuchten, ist zunächst zu nennen ameisensaurer Kalk. Die Resultate, die wir mit diesem Salze erzielten, waren gleiche bei Gährung im Glasrohre (also ohne Luft), sowie im Kolben, also bei Luftgegenwart. In beiden Fällen beginnt die Gährung ziemlich bald, sie erschien am 2. oder 3. Tage und geht dann ziemlich lebhaft weiter fort. Dabei wurde eine Trübung der Flüssigkeit und ein Beschlag der Wände des Versuchsgefäßes auffällig. Das daraus gewonnene Gas bestand fast nur aus Wasserstoff; die Kohlensäure

1) Die Versuche wurden gerade so wie mit der Gummilösung ange stellt, gleiches Rohr, gleiche Mengen Schlamm.
Ueber die Sumpfgasgährung.

war in sehr geringer Quantität vorhanden, einige Gasanalysen ergaben aus dem Kolben:

1. Portion: Kohlensäure 2.27 pCt.
 Wasserstoff 65.73 "
 Stickstoff 32.00 "

 Wasserstoff 86.02 "
 Stickstoff 11.64 "

Aus dem Glasrohr:

 Kohlensäure 1.08 pCt.
 Wasserstoff 98.92 "

Wenn also die Bildung von Kohlensäure von Schlamm abhängig wäre, so hätten wir es bloß mit Wasserstoffentwicklung zu thun. Für eine solche Annahme spricht die geringe Quantität Kohlensäure, welche in dem Glasrohre erhalten wurde, im Vergleich zu der im Kolben gefundenen. Dieses Factum werden wir später noch einmal berühren.

Stellen wir jetzt die Resultate zusammen, die wir auf die Frage: Welche Substanzen sind es, die für sich oder in Gegenwart von Sumpferment Sumpfgas geben können, gewonnen haben, so kommen wir zu folgenden Thatsachen:

1) Traubenzucker, Fleischzucker, sowie auch Amylon enthaltende Kartoffeln entwickeln weder mit, noch ohne Schlammferment Sumpfgas.

2) Substanzen, die verhältnismässig grosse Mengen von Cellulose enthalten, sind fähig auch ohne Zufügung von Schlammferment Sumpfgas zu ersengen (Heu, Ochsenmageninhalt).

8) Cellulose, aus Kartoffel bereitet, besitzt die Eigenschaft, sowohl mit als ohne Schlammferment Sumpfgas zu entwickeln. Zu dieser Sumpfgasentwicklung (Sumpfgährung) ist besonders die reine Cellulose (schwedisches Papier) geneigt, von ihr erhält man die Resultate viel reiner und constanter, als von der, welche man aus Kartoffel gewinnt, in der noch viele andere Produkte vorhanden sind.

4) Das Sumpfgas kann auch ein Product der Gährung von solchen Sub-

1) Diese Versuche wollen wir später noch weiter fortführen.
stanzun sein, die mit der empirischen Formel der Cellulose ganz identisch sind und im Allgemeinen dem chemischen Verhalten nach ihr sehr nahe stehen, wie es z. B. das Gummi arabicum gezeigt hat.

5) Von den Säuren organischer Säuren, die dem Sumpfgas nahe stehen, wie z. B. die essige und ameisens. Salze, gelang es uns nicht unter den vorliegenden Bedingungen eine Sumpfgärung zu erzeugen.

Die Resultate unserer Versuche sprechen klar für sich selbst, und schliessen auch den Einwurf aus, dass das Sumpfgas aus der Substanz, die wir als Ferment benutzten, gebildet wurde. Denn erstens gewannen wir Sumpfgas von solchen Substanzen (Heu, Ochsenmageninhalt, Kartoffel-Cellulose), denen kein Ferment zugesetzt worden war, zweitens gaben nicht alle Substanzen, zu welchen wir Schlamm als Ferment brachten, eine Gährung, und war dies der Fall, so entwickelten sie nicht alle Sumpfgas (Kartoffel, Fleisch, Traubenzucker, ameisens. Kalk). In dem Sinne des Einwurfs aber müsste man überall das nämliche Resultat bei allen den Substanzen erwarten, denen wir Schlamm beifügten, weil die Versuche meist ganz parallel und mit derselben Quantität Schlamm ausgeführt wurden. So z. B. Zucker und Gummi, Fleisch und Papier u. s. w. In gewissen Fällen konnte man immer auch bei wiederholter Untersuchung Sumpfgas nachweisen, wogegen bei anderen stets negative Resultate erhalten wurden.

Wenn wir es als bewiesen ansehen können, dass zur Entwicklung des Sumpfgases hauptsächlich die Cellulose und dann auch jede Substanzen, die ihr, ihrer chemischen Zusammensetzung nach, nahe stehen, wie z. B. Gummi, dienen, wird es verständlich, dass auch in der Natur das Sumpfgas an solchen Orten auftritt, wo eine grosse Menge pflanzlicher Reste, die ja der Hauptsache nach aus Cellulose bestehen, angehäuft werden, wie in Stümpfen, Mooren, Flussufern, Kohlenlagern etc., wo die Zersetzung von Cellulose in grossartigem Maassstabe vor sich geht. Hierdurch wird auch noch der Umstand erklärt, dass im Ernährungsschlauch der höheren Thiere und beim Menschen so häufig die Entwicklung von Sumpfgas zu Stande kommt und besonders unter gewissen Verhältnissen. Nachdem nämlich die Elemente, aus denen die pflanzliche Nahrung besteht, durch Einwirkung verschiedener Verdauungssäfte gewisse Metamorphosen erlitten hatten und durch Absorption in den Kreislauf übergegangen waren, besteht die Hauptmasse der unverdaulten Stoffe aus Cellulose, die nun ihrerseits unter günstigen Verhältnissen Gelegenheit

Der Auffassung, dass der beschriebene Zersetzungsprozess von der Cellulose ausgeführt werde, kann die allgemeine Ansicht, dass sie eine sehr resistentte, schwer veränderliche Substanz sei, nicht widersprechen. Die Fakten, welche wir hier vortraten, zeugen nur dafür, dass diese stabile organische Substanz unter gewissen Verhältnissen doch auch einer charakteristischen Zersetzung fähig ist 1).

An dieser Stelle wollen wir nicht auf eine ausführliche Betrachtung der Frage eingehen, auf welche Weise die Zersetzung vor sich gehe und welche chemischen Vergleiche hier zulässig seien, denn gegenwärtig besitzen wir noch nicht so eingehende Kenntnisse, dass wir diesen Prozess ganz genau darstellen könnten 2). Auch die Frage werden wir bei Seite lassen, warum und auf welche Weise bei unserer letzten Versuchsreihe neben dem Sumpfgas Wasserstoff erhalten wurde. Für uns ist der Umstand wichtig, dass der Prozess der Sumpfgärung in seiner typischen Erscheinung — bei Sumpfgärung — gewöhnlich ohne Wasserstoff-Entwicklung vor sich geht. Das ungewöhnliche und nur spurenweise Auftreten von Wasserstoff in den Fällen, wo es auch bei der Schlammgärung zur Beobachtung kam, konnte kaum dadurch zu Stande kommen, dass hier ein wenig Buttersäuregärung mit einherging, wie dies ohne Zweifel bei den Versuchen der letzten Reihe der Fall war 3). Viel wahr-

1) Ueber die Zersetzungsfähigkeit der Cellulose handelte, wie früher erwähnt, schon Mitscherlich. Im Jahre 1850 hat er nämlich nachgewiesen, dass Cellulose unter Einwirkung eines gewissen Ferments, das sich beim Faulen der Kartoffeln entwickelt, eine noch nicht bestimmte Zersetzung erleidend, gelöst wird. Dasselbe wurde auch von ihm bei der Kartoffelkrankheit beobachtet. (Bericht über die zur Bekanntmachung geeigneten Verhandlungen der königl. preuss. Akademie der Wissensch. in Berlin, März 1850.)

2) Bis zu der Zeit, wo die Versuche genauere Thatsachen zeigen werden, liegen gegenwärtig zunächst die Möglichkeiten vor, die wir oben besprochen haben. (S. Seite 120).

3) Die Reaction dieser Flüssigkeit, nach verdorbener Butter riechend,
scheinlicher ist dies durch einen ganz anderen Process bedingt, der
mehr Verwandtschaft mit der Sumpfgährung hat, nämlich der Pro-
cess der Gährung, welchem ameisensaure Salze durch Gegenwart
von Sumpfferment unterliegen, auf den wir hier noch etwas näher
eingehen müssen.

Oben haben wir, dass durch die Einwirkung des Sumpfgas-
fermentes auf ameisensauren Kalk fast ausschliesslich Wasserstoff
entwickelt wird mit nur minimaler Beimischung von Kohlensäure.
In Anbetracht, dass die Ameisensäure verhältnismässig leicht unter
Wasserstoffentwicklung in Oxalsäure umgewandelt werden kann,
lag auch in unserem Falle die Vermuthung nahe, dass ein solcher
Process vorliege, entsprechend der Gleichung:

$$\text{CH}_2\text{Ca} | \text{O}_2 = \text{CaCO}_3 + \text{H}_2$$

Andererseits konnte man auch hier eine Bildung von kohlen-
sauren Salzen vermuten, weil Wasserstoff zur Ameisensäure sich
verhält wie das Sumpfgas zur Essigsäure, und das wir ganz be-
stimmt wissen, dass unter denselben Bedingungen essigsaur Salze
in Kohlensäure und Sumpfgas zersetzt werden, unter denen ameisen-
saure Verbindungen Wasserstoff und Kohlensäure geben, so kann
man auch in unserem Falle annehmen, dass die Ameisensäure ent-
 sprechend dieser Spaltungsrichtung zerlegt werde:

$$\text{CH}_2\text{Ca} | \text{O}_2 + 2\text{H}_2\text{O} = \text{CHO}_2\text{Ca} + 2\text{H}_2$$

Die weitere Untersuchung zeigte, dass hier in Wirklichkeit
dieser letztere Process stattfindet. Die Trübung und der Nieder-
schlag, die sich bei Gährung von ameisensaurem Kalk bildeten, und über
die wir oben sprachen, lösen sich in Essigsäure und scheiden dabei
grosse Quantitäten von Gas aus, so dass es auf der Hand liegt,
dass wir es mit einem kohlensauren Salz zu thun haben.

Hiermit beschliessen wir die Darstellung der Resultate, welche
wir bei der Untersuchung der Sumpfgährung bekommen haben, und
halten es für unsere angenehme Pficht, an dieser Stelle Herrn Prof.
Hoppe-Seyler, auf Veranlassung und unter Leitung dessen
wir diese Versuche gemacht haben, unsern besten Dank-auszusprechen.

war in diesen Fallen, worauf wir schon früher aufmerksam machten, sehr
sauer, während der Schlamme immer neutrale oder schwach alkalische Re-
action zeigte.
Existirt eine Verschiedenheit in der Reaction der Nerven gegen den galvanischen Strom, je nachdem die Kette mit der Kathode oder Anode geschlossen oder geöffnet wird?

Von

Dr. H. Engesser.

(Experimentararbeit aus dem physiol. Institut zu Freiburg i. B.)

In seinen Untersuchungen über die Erregbarkeit des Grosshirns fand Hitzig¹), dass beim Schliessen der Kette ein Unterschied in den beiden Electroden existire zu Gunsten der Anode, indem bei minimalen Stromstärken nur durch Kettenschluss mit der Anode Zuckungen ausgelöst würden.

Die Versuche wurden so angestellt, dass von den beiden als Electroden dienenenden Platindrähten auf dem Erregungszentrum in einer Entfernung von 2—3 Mm. bald mit dem einen, bald mit dem andern die Kette geschlossen wurde; — dabei hatte H. gefunden, dass, wenn er mit der Anode die Kette schloss, bei geringerer Stromstärke Zuckungen auftraten, als wenn die Schliessung mit der Kathode erfolgte. — Hitzig bezieht nun dieses Verhalten der beiden Electroden zu einander auch auf den Nerven, indem er a. a. O.²) sagt, dass sich bei Reizung des Gehirns die beiden Electroden umgekehrt verhalten wie bei den peripheren Nerven.

Von einschlägigen Beobachtungen und Untersuchungen ist in der Literatur nur wenig verzeichnet, darunter gehört eine Beobachtung Ermann's³), welche er bei Gelegenheit seiner Untersuchungen über die unipolare Leiter mit Froschschenkeln machte; er hielt dieselben in der Hand und berührte damit den einen Pol einer Säule, während der andere Pol mit dem Erdboden in Verbindung stand; dabei erfolgten lebhafte Zuckungen, gleichgültig,

ob er den positiven oder negativen Pol direct mit den Froschenkeln in Berührung brachte.

Ferner müssen hier die Untersuchungen Brenner's1) erwähnt werden, welche er über dieselbe Frage am gesunden Menschen mit unverletzten Hautdecken anstellte, und deren Resultat war: »dass es für den Modus der Reaction gewisser Nerven gleichgültig ist, an welchem Theil der Kette die Schliessung und Öffnung bewirkt werde, und insbesondere, dass es nicht den geringsten Unterschied macht, ob Schliessung und Öffnung durch die eine oder die andere Electrode ausgeführt werde«.

Diese beiden Beobachtungen beziehen sich aber nur auf den von seinen natürlichen Hüllen umgebenen Nerven; — da es sich jedoch bei den Untersuchungen Hitzig's um eine directe Reizung des freigelegten Gehirns handelt, fragliches Verhältniss beider Electroden aber noch nie meines Wissens am freipräparirten Nerven einer eingehenden Untersuchung unterzogen worden ist, sondern stets als selbstverständlich angenommen wurde, dass ein Unterschied nicht existire, so versuchte ich durch eine Anzahl von Experimenten am blöslegenden Ischiadicus des Frosches die Frage zu beantworten, ob ein Unterschied im Sinne Hitzig's am freigelegten Nerven nachweisbar ist, je nachdem die Kette mit der Kathode oder Anode geschlossen oder geöffnet wird; mit andern Worten, ob das Pflüger'sche Zuckungsgesetz und das Gesetz der Erregbarkeit am absterbenden Nerven eine Modification in besagter Weise erleide.

Die Versuche wurden an dem freipräparirten Ischiadicus des Frosches gemacht, welcher in dem Pflüger'schen Apparate mit feuchter Kammer befestigt wurde, an dessen Myographion die von Funke angegebene und in Pflüger's Archiv beschriebene Verschiebevorrichtung behufs gleichmässiger Aufzeichnung auf die be rustete Glastafel angebracht war.

Als Stromquelle dienten 1 — 6 Grove'sche Zink-Platin-Elemente, deren Strom durch ein Rheochord abgestuft wurde — von dem Rheochord wurde der Nervenkreis abgezweigt, in den, um möglichst minimale Stromstärken zu erzielen, Widerstände eingeschaltet wurden, bestehend in Gläsrohren von 0,5 Cm. Lichtweite

1) Brenner: Untersuchungen und Beobachtungen auf dem Gebiete der Electrotherapie. II. Bd. 2. Abthlg. 1869, pag. 63, 64.
und von zusammen 80 Cm. Länge, welche mit 4 pCt. Kochsalzlösung und bei einem Versuche mit destilliertem Wasser gefüllt waren.

Als Electroden benutzte ich z. Th. die unpolarisirbaren Engelmann'schen, z. Th. als es sich herausstellte, dass es auf die Versuchsresultate keinen Einfluss hatte, fein zugespitzte und blank gefeilte Kupferdrähte.

Zur Erlangung möglichst brauchbarer Versuchsresultate musste darauf geachtet werden, dass in jedem Einzelversuche bei Schliessung mit Kathode und Anode die durchflossene Nervenstrecke die gleiche war, was sich von freier Hand nicht mit vollständiger Sicherheit ausführen liess; — deshalb wurde in einer Anzahl von Versuchen Schliessung und Öffnung der Kette abwechselungsweise mit Kathode und Anode im metallischen Theile bewerkstelligt, während die Electroden unbeweglich an dem Nerven angelegt blieben; — bei der grösseren Anzahl von Versuchen aber, bei denen ich Schliessung und Öffnung durch directes Anlegen und Abnehmen des Electroden am Nerven selbst ausführen wollte, suchte ich mir dadurch die nöthige Sicherheit zu verschaffen, dass ich die Electroden an zwei Holzstäben befestigte, welche durch schwer bewegliche Scharniere mit sehr schweren Stativen verbunden waren in der Weise, dass sie nur in einer verticalen Ebene bewegt werden konnten; dadurch war die Möglichkeit geboten, immer mit jeder Electrode die gleiche Stelle des Nerven zu treffen.

Bei den einzelnen Versuchen wurde ein ganz bestimmter Turnus eingehalten in Betreff des Oeffnens und Schliessens mit Kathode und Anode, der sich durch folgende Formel ausdrücken lässt:

\[\text{KaS AnO AnS KaO} \]

d. h. zuerst wurde die Anode (An) an den Nerven angelegt, dann durch Anlegen der Kathode die Kette geschlossen (KaS); hierauf durch Entfernen der Anode geöffnet (AnO) — nach kurzer Zeit durch Anlegen der Anode wieder geschlossen (AnS) und schliesslich durch Entfernern der Kathode mit Öffnung der Kette (KaO) der Turnus beendet. In der gleichen Weise wurde bei einer Anzahl anderer Versuche der umgekehrte Turnus eingehalten:

\[\text{AnS KaO KaS AnO} \]

Die Versuche wurden mit constanten auf- und absteigenden Strömen angestellt.

Als Resultat der ersten Versuchsreihe ergab sich sowohl bei
metallischer Schliessung und Oeffnung als auch bei directem An-
legen der Electroden am Nerven auch für die minimalsten Strom-
stärken das Pflüger'sche Zuckungsgesetz ohne alle Mo-
dification, d. h. es war kein Unterschied nachweisbar,
ob die Kette mit der Kathode oder Anode geschlossen
or geöffnet wurde.

Eine andere Versuchsreihe wurde angestellt zur Erörterung
der Frage, ob das Gesetz der Erregbarkeit im absterbenden Nerven
etwa eine Veränderung erleide, je nachdem die Kette mit der Ka-
thode oder Anode geschlossen und geöffnet wurde.

Auch diese Versuche wurden für constante auf- und abstei-
gende Ströme gemacht; die Versuchsmethode war wesentlich die
gleiche, ebenso wurde auch derselbe Turnus im Oeffnen und Schliessen
mit beiden Electroden eingehalten, wie bei der ersten Versuchsreihe.

Das Resultat war, dass es bei allen Versuchen dieser Reihe
gleichgültig war, mit welcher Electrode die Schliessung
und Oeffnung der Kette bewirkt wurde, d. h. es stellte
sich als Resultat das Rosenthal'sche Gesetz von der Ab-
nahme der Erregbarkeit im absterbenden Nerven ohne
alle Modification heraus.

Schliesslich stellte ich auch eine Reihe von Versuchen an nach
den Principien der Brenner'schen am gesunden Menschen mit un-
verletzten Hautdecken.

Als Stromquelle diente eine constante Batterie, Simens-Hals-
ke'scher Elemente, von Hirschmann und Krüger in Berlin.
Zu Versuchsnerven wurden gewählt die Rami externi beider NN.
accessorii Willisi — die NN. ulnares und peronaei. Die Versuche
waren mit verschiedenen Stromstärken angestellt, um möglichst
alle Stufen der Brenner'schen Zuckungsformel durchzuprüfen.

Die Versuche bestätigten sämtlich die von Brenner an-
gestellten (l. c.): es war kein Unterschied nachweisbar, ob
die Kette mit der Kathode oder Anode geschlossen und
geöffnet wurde.

Als Gesammtresultat meiner Versuche gilt mithin, dass ein
Unterschied in der Wirkung der beiden Electroden, wie ihn Hitzig
bei directer Reizung des Gehirns gefunden hat, für die peripheren
Nerven, und zwar sowohl für die freipräparirten Froschnerven, als
auch für die von ihren natürlichen Hüllen bedeckten Nerven des
gesunden Menschen nicht existire, dass es vielmehr gleichgültig
sei, ob mit der Kathode oder Anode die Kette geschlossen und ge-
öffnet wird.

Schliesslich ergreife ich noch die Gelegenheit, Herrn Professor
Funke, sowie auch dem Herrn Dr. Lutscheninger für ihre
freundliche Unterstützung meinen Dank auszusprechen.

Erklärung in Betreff des Eiweissharns.

Von

H. Senator, in Berlin.

In seiner in Bd. IX, Heft 10 und 11, Seite 526 dieses
Archivs erschienenen Arbeit: »Ueber die Eiweissverbindungen des
Blutserums und des Hühnereweisses« bemängelt A. Heynsius
meine Untersuchungen über den Paraloglobulingehalt des Harns
bei verschiedenen Formen der Albuminurie (Virchow’s Archiv,
LX, S. 476 ff.), weil ich niemals die Reaction des untersuchten
Harns, ausser desjenigen bei acuter Nephritis, angegeben hätte, da
es doch unmöglich wäre, dass saurer Harn durch Behandlung mit
Kohlensäure ebenso viel Paraglobulin lieferte, wie alkalischer.

In meiner Abhandlung habe ich wiederholt die Reaction
der untersuchten Harnarten erwähnt und theilweise aus besonderen
Gründen sogar eingehender besprochen. Ausser dem, was dort über
den Harn bei acuter Nephritis gesagt wird, heisst es

1) auf Seite 485: »Bei den 5 Fällen von Stauungshyperämie
der Nieren, in denen der Harn die bekannten Eigenschaften des Stauungsharns zeigte« ... und auf S. 495
werden diese den Pathologen bekannten Eigenschaften für
Nicht-Pathologen aufgezählt, wie folgt: »Das Secret der
Nieren wird statt reichlicher spärlicher und concentrirter,
ist stark sauer etc.

2) Ueber den Urin bei chronischem Blasencatarrh sage
ich auf S. 489: »Der frisch entleerte Urin ... war stets
schwach sauer und zeigte etc.
3) Endlich werden die Eigenschaften des Harns bei Amyloidentartung der Knäuelgefäße S. 501 aufgezählt mit den Worten: »Der Harn ist abnorm leicht und blass, schwach sauer« etc. und weiterhin wird in mehreren Zeilen noch einmal der schwach sauren Reaction des Harns gedacht.

1) Diffusionsversuche, welche ich schon vor langer Zeit mit eiweisshaltigem Harn anstellte, geben eine viel zu geringe Ausbende und müssten viele Tage lang angestellt werden, wobei man vor Zersetzung nicht sicher ist.
Erklärung in Betreff des Eiweissharns.

Concentration mit so viel Wasser verdünnte, dass er ein spec. Gewicht von 1,003—1,002 oder selbst noch weniger erreichte, so dass ich also aus allen Harnen eine annähernd gleich schwach concentrierte Lösung herstellte, ein Umstand, auf welchen jetzt auch Heynsius Gewicht legt.

Es bleibt mir nur noch übrig, dem Leser das Urtheil zu unterbreiten, welches Herr A. Heynsius über mich fällt, weil er die von mir zum Ueberfluss gemachten Bemerkungen über die Reaction des Harns ignorirt hat. Herr Heynsius bezeichnet mich als einen »Autor, dem der Stand der Frage offenbar nicht hinsichtlich bekannt war, als er sich an die Untersuchung wagte« und fügt hinzu, dass »man so etwas von mir doch nicht erwarten sollte«.

Eine neue Methode zur Harnsäurebestimmung.

Von

A. P. Fokker, Dr. med. in Goes (Holland.)

Es ist eine bekannte Sache, dass es eigentlich keine gute, zuverlässige Methode gibt, um Harnsäure quantitativ zu bestimmen. Das alte Verfahren, die Harnsäure durch Salzsäure auszuscheiden, und das abgewaschene Präcipitat zu wagen, ist nicht nur ungenau, sondern auch in vielen Fällen ganz unanwendbar. Ofters doch giebt Salzsäure gar keine Absetzung von Krystallen, wo Harnsäure
in beträchtlicher Menge da ist. Mir ist es wenigstens öfters ver-
gangen, dass sich in einem spontan sedimentirenden Harn, wo
das Sediment durch Erwärmen wieder gelöst war, auf Zusatz von
Salzsäure entweder gar keine Harnsäure absetzte, oder die Ab-
setzung erst nach mehreren Tagen stattfand, oder auch dass sich
statt Harnsäure ein Gemisch von Harnsäure und harnsauren Salzen
bildete, welche letztere sich, indem sie sich den Wänden des Becher-
glases stark anhefteten, nicht in Harnsäure umsetzten und beim
Filtriren durch ihre äusserste Feinheit nicht durch das Filter zu-
rückgehalten werden konnten. Ofters auch fand ich nach einer
Harnsäurebestimmung im Filtrate, das zufälliger Weise auf meinem
Arbeitstische stehen geblieben war, eine zweite Absetzung von Kry-
stallen, ein Beweis, dass die erste gewiss unvollständig war.

Auch andern Untersuchern scheint die Unbrauchbarkeit der
gewöhnlichen Methode aufgefallen zu sein. Fand ja Salkowski¹),
dass Salzsäure aus jedem Urin die Harnsäure nur sehr unvoll-
ständig zur Ausscheidung bringt, und schlägt eine Methode vor, um,
nachdem dieselbe in bekannter Weise durch Salzsäure ausgeschieden,
die gelöst gebliebene Harnsäure im Filtrate aufzufinden, und geben
Naunyn und Rees²) an, dass, namentlich beim Diabetes, die
gewöhnliche Methode nicht ausreicht. Die von diesen Untersuchern
gemeinsamen besseren Methoden (Fällung mit Silber- oder Quecksilber-
lösung, Zerlegung durch Schwefelwasserstoff etc.) sind indessen zu
umständlich, um zu täglichen Harnsäurebestimmungen, besonders zu
clinischen Zwecken Anwendung zu finden.

Es ward mir, da ich die Pathologie der Harnsäureausscheidung
am Krankenbette verfolgen wollte, bald klar, dass ich, um zuver-
lässige Resultate dabei zu erzielen, anfangen musste, mir ein besseres
Verfahren zur Harnsäurebestimmung zu finden. Dies gelang mir
nach einigen vergeblichen Versuchen ziemlich gut, indem ich eine
Methode fand, die, wenn auch nicht vollkommen fehlerfrei, bei Ver-
gleichung mit der alten viel genauere Resultate giebt. Diese Meth-
ode gründet sich auf die Unlöslichkeit des sauren harnsauren
Ammons.

Was die Verbindungen der Harnsäure mit Ammon und deren
Eigenschaften angeht, scheint noch Zweifel zu herrschen. Neu-

2) Centralblatt 1870.
Eine neue Methode zur Harnsäurebestimmung.

bauer erwähnt, dass es ein saures harnsaures Ammon giebt, das namentlich in alkalischen Harnen vorkomme, in heissem Wasser löslich, sich aber beim Erkalten wieder ausscheide. Kühne be- schreibt dasselbe Salz, »das nur als saures Salz existire«, als fast unlöslich. Hoppe-Seyler aber fand im Widerspruch mit den genannten Autoren, dass harnsaures Ammon in 1600 Theile kaltem Wasser löslich sei; er giebt aber nicht an, wie er die Löslichkeit des harnsauren Ammons bestimmt habe, und darauf kommt Alles an.

Beide Ansichten sind zum Theil richtig; es giebt aber zwei harnsaure Ammonsalze, ein normales Salz und ein saures. Ersteres bildet sich, wenn Harnsäure mit Ammoniak im Ueberschuss erhitzt wird, ist aber eine sehr lockere Verbindung, die an der Luft durch Verdunstung schon Ammoniak verliert und in saures Salz übergeht. Als ich 0,100 Harnsäure mit 100 CC. Wasser und 5 CC. Ammoniak auf dem Wasserbade erhitzte und 24 Stunden in ein kühles Zimmer stellte, fand ich 0,087 Harnsäure zurück, was mit Beachtung des zur Zurückbildung des harnsauren Salzes in Harnsäure unvermeidlichen Versuchsfehlers ungefähr mit der durch Hoppe-Seyler gefundenen Löslichkeit übereinstimmt.

Das saure Salz muss stets auf indirektem Wege erhalten werden; es bildet sich immer, wenn Harnsäure und Ammonsalze in einer alkalischen Lösung zugegen sind. Man erhält es deshalb sehr leicht durch Auflösung von Harnsäure in phosphorsaure Alkalien und Zusetzung von Salmiaklösung. Um die Löslichkeit dieses sauren Ammonsalzes zu bestimmen, löste ich verschiedene Quantitäten reiner, getrockneter Harnsäure in verdünnten Lösungen von phosphorsauren Alkalien, setzte Salmiaklösung zu und bestimmte nach 24 Stunden die ungelöst gebliebene Harnsäure. Diese Versuche gaben indessen nicht ganz übereinstimmende Resultate:

<table>
<thead>
<tr>
<th>Harnsäure</th>
<th>Wasser</th>
<th>Salmiaklösung</th>
<th>Zurückgefunfen</th>
<th>Verlust</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.100</td>
<td>120 CC.</td>
<td>5 CC.</td>
<td>0,0920</td>
<td>6 pCt.</td>
</tr>
<tr>
<td>0.100</td>
<td>100</td>
<td>5</td>
<td>0,0980</td>
<td>7</td>
</tr>
<tr>
<td>0.074</td>
<td>100</td>
<td>15</td>
<td>0,0720</td>
<td>2</td>
</tr>
<tr>
<td>0.090</td>
<td>100</td>
<td>15</td>
<td>0,0820</td>
<td>7</td>
</tr>
<tr>
<td>0.100</td>
<td>100</td>
<td>15</td>
<td>0,0950</td>
<td>4,5</td>
</tr>
<tr>
<td>0.080</td>
<td>100</td>
<td>15</td>
<td>0,0720</td>
<td>6</td>
</tr>
<tr>
<td>0.092</td>
<td>105</td>
<td>15</td>
<td>0,0835</td>
<td>7</td>
</tr>
</tbody>
</table>

1) Neubauer und Vogel 1872 p. 112.
2) Physiol. Chem. 1888.
Die bei diesen Versuchen nicht zurückgefundene Harnsäure ist vielleicht gelöst, vielleicht auch nur durch einen Versuchsfehler verloren gegangen. Wenn man doch Harnsäure mit Salmiaklösung behandelt, wandelt sich ein Theil, wahrscheinlich durch Dissociation, in harnsaures Ammon um; man erhält also auf dem Filter ein Gemisch von harnsaurem Ammon und Harnsäure und muss ersteres natürlich vor der Wägung in Harnsäure übergeführt werden, wobei nothwendig ein Verlust stattfindet, welcher in Controlversuchen, wo bestimmte Mengen Harnsäure auf dem Filter behandelt und abgewaschen wurden, von 2 bis 4 Mgr. betrug.

Da sich aber nicht bei jedem Versuche die absolute Grösse dieses Fehlers ermitteln liess, glaubte ich die Löslichkeit des sauren harnsauren Ammons nur auf indirektem Wege feststellen zu können. Ich löste dazu Harnsäure durch Kali oder phosphorsaures Natron in Wasser, zertheilte die Lösung in zwei gleiche Theile, setzte zu beiden Salmiaklösung, zu einem von beiden 100 CC. Wasser, und meinte, durch Wägung der mit Salzsäure behandelten Niederschläge in einer Portion so viel weniger zurückfinden zu müssen, als die 100 CC. Wasser gelöst hatten.

<table>
<thead>
<tr>
<th>Harnsäurelösung</th>
<th>Gelöst durch</th>
<th>Salmiaklösung</th>
<th>Wasser</th>
<th>Zurückgefundene</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 CC.</td>
<td>KHO</td>
<td>10 CC.</td>
<td>100 CC.</td>
<td>0.015</td>
</tr>
<tr>
<td>20 "</td>
<td>KHO</td>
<td>10 "</td>
<td>100 CC.</td>
<td>0.014</td>
</tr>
<tr>
<td>50 "</td>
<td>Na₂HPO₄</td>
<td>5 "</td>
<td>100 CC.</td>
<td>0.045</td>
</tr>
<tr>
<td>50 "</td>
<td>Na₂HPO₄</td>
<td>15 "</td>
<td>100 CC.</td>
<td>0.046</td>
</tr>
<tr>
<td>50 "</td>
<td>Na₂HPO₄</td>
<td>5 "</td>
<td>15 "</td>
<td>0.0490</td>
</tr>
<tr>
<td>50 "</td>
<td>Na₂HPO₄</td>
<td>15 "</td>
<td>100 CC.</td>
<td>0.0415</td>
</tr>
<tr>
<td>50 "</td>
<td>KHO</td>
<td>5 "</td>
<td>15 "</td>
<td>0.1005</td>
</tr>
<tr>
<td>50 "</td>
<td>KHO</td>
<td>15 "</td>
<td>100 CC.</td>
<td>0.0996</td>
</tr>
<tr>
<td>50 "</td>
<td>Na₂HPO₄</td>
<td>5 "</td>
<td>15 "</td>
<td>0.0820</td>
</tr>
<tr>
<td>50 "</td>
<td>Na₂HPO₄</td>
<td>15 "</td>
<td>100 CC.</td>
<td>0.0815</td>
</tr>
<tr>
<td>50 "</td>
<td>Na₂HPO₄</td>
<td>5 "</td>
<td>15 "</td>
<td>0.0835</td>
</tr>
<tr>
<td>50 "</td>
<td>Na₂HPO₄</td>
<td>5 "</td>
<td>50 CC.</td>
<td>0.0825</td>
</tr>
</tbody>
</table>

Aus dieser Tabelle ergiebt sich die absolute Unlöslichkeit von saurem harnsauren Ammon in Wasser bei kalter Witterung.

Auf diese Eigenschaft der Harnsäure, dass sie mit Ammoniak in alkalischer Lösung eine unlösliche Verbindung bildet, gründet sich meine Methode zur quantitativen Bestimmung derselben, eine Methode, die auch mutatis mutandis für Harn brauchbare Resultate giebt.
Eine neue Methode zur Harnsäurebestimmung.

Ausführung.

100 CC. der durch kohlensaure oder phosphorsaure Salze alkalisch gemachten Flüssigkeit versetzt man mit 10 CC. gewässerter Salmiaklösung und lässt sie einige Stunden ohne Umrühren ruhig stehen. Bald, je nach dem Harnsäuregehalt der Flüssigkeit, hat sich in 2 bis 6 Stunden, bei sehr verdünnten Lösungen noch länger, die gesamte Harnsäure-Ammonverbindung grösstentheils am Boden, theils auch an den Wänden und an der Oberfläche als ein feinkörniges Pulver abgesetzt. Man bringt jetzt die Flüssigkeit und nachher das Sediment mit einer Feder auf ein kleines (ungefähr 3 Centimeter Radius) vorher mit \(\frac{1}{10} \) Salzsäure behandeltes und gewogenes Filterchen, was bei einiger Übung in 1 bis 2 Viertelstunden leicht gelingt. Nachdem die Flüssigkeit abgelaufen ist, steckt man die Röhre des Trichters in einen, eine enghalsige Flasche genau schliessenden durchbohrten Kork, damit man Behufs Umwandlung des Urats in Harnsäure das Precipitat auf dem Filter mit Salzsäure behandeln kann und füllt jetzt Trichter und Filter, letzteres bis zu \(\frac{1}{2} \) Centimeter vom Rande vorsichtig mit \(\frac{1}{10} \) Salzsäure, lässt es einige Stunden ruhig stehen, entfernt darauf den Trichter aus dem Kork, lässt ablaufen, wäscht mit destillirtem Wasser bis zum Schwenden der sauren Reaction, trocknet und wägt. Nach dieser Methode findet man nie weniger, öfters etwas mehr Harnsäure, wie mit der gewöhnlichen Methode mit Salzsäure, wie sich aus folgender Tabelle ergiebt:

<table>
<thead>
<tr>
<th>Harnsäure gelöst durch</th>
<th>mit Salmiak</th>
<th>mit Salzsäure</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Na}_2\text{HPO}_4)</td>
<td>0.107</td>
<td>0.105</td>
</tr>
<tr>
<td>idem</td>
<td>0.110</td>
<td>0.105</td>
</tr>
<tr>
<td>" bis</td>
<td>0.109</td>
<td>0.106</td>
</tr>
<tr>
<td>idem</td>
<td>0.100</td>
<td>0.089</td>
</tr>
<tr>
<td>idem</td>
<td>0.083</td>
<td>0.080</td>
</tr>
<tr>
<td>" bis</td>
<td>0.088</td>
<td>0.079</td>
</tr>
<tr>
<td>idem</td>
<td>0.188</td>
<td>0.187</td>
</tr>
<tr>
<td>(\text{Na}_2\text{HPO}_4 + \text{KHO})</td>
<td>0.182</td>
<td>0.125</td>
</tr>
<tr>
<td>idem bis</td>
<td>0.183</td>
<td></td>
</tr>
<tr>
<td>idem</td>
<td>0.184</td>
<td>0.170</td>
</tr>
<tr>
<td>" bis</td>
<td>0.181</td>
<td>0.172</td>
</tr>
<tr>
<td>(\text{K}_2\text{PO}_4 + \text{KHO})</td>
<td>0.079</td>
<td>0.071</td>
</tr>
<tr>
<td>(\text{Na}_2\text{HPO}_4 + \text{Na}_2\text{CO}_3)</td>
<td>0.101</td>
<td>0.094</td>
</tr>
<tr>
<td>idem</td>
<td>0.023</td>
<td>0.024</td>
</tr>
</tbody>
</table>

Die Ursache, warum aus Lösungen von Harnsäure durch die neue Methode mehr gefunden wird, wie mit der alten, kann nicht.

E. Pflüger, Archiv f. Physiologie. Bd. X.
der Gehalt an gelösten Salzen sein, da ich experimentell gefunden habe, dass ein verschiedener Gehalt an phosphorsauren oder kohlensauren Alkalien das Resultat der Bestimmung je nach der einen oder anderen Methode nicht beeinflusst.

Nach meinen Bestimmungen giebt die Präcipitation einer Harnsäurelösung durch Salzsäure sehr unbestimmte Resultate. Zwar wird allgemein angenommen (Neubauer, Stadion, Zabelin 1) u. A.), dass 100 CC. Wasser 4,5 Mgr. Harnsäure lösen, und habe ich öfters Bestimmungen gemacht, die damit übereinstimmten; ein anderes Mal aber fand sich viel mehr gelöst, und habe ich im Gegensatz einmal das Filtrat zum Trocknen eingedampft und nur eine sehr zweifelhafte Murexid-Reaktion erhalten.

Meistens giebt das Filtrat einer Harnsäurebestimmung durch Salzsäure, mit kohlensaurem Natron übersättigt, und mit Salmiaklösung versetzt, eine abermalige Trübung von saurem harnsauren Ammon. In einzelnen Fällen war dies aber nicht der Fall, und scheint es mir auch deshalb, dass die Absetzung von Harnsäure nach Salzsäurezusatz von verschiedenen Umständen abhängig sei, und bei verschiedener Concentration und Menge der zugesetzten Salzsäure verschieden sein kann.

Beim Harn verfährt man zur Harnsäurebestimmung mit Salmiak in folgender Weise:

Gewöhnlich hat sich der grösste Theil des Sedimentes auf dem Boden des Becherglases abgesetzt, und gelingt es sehr leicht, dasselbe, nachdem die obenstehende Flüssigkeit abfiltrirt ist, ohne Verlust auf den Filter zu bringen. Bisweilen ist es fester an der Wand des Glases geklebt, doch ist es auch dann bei einiger Uebung

Eine neue Methode zur Harnsäurebestimmung.

nicht besonders schwierig, mit einer Feder dasselbe gänzlich auf den Filter zu sammeln.

Ebenso, wie bei der Bestimmung aus wässerigen Lösungen, wird auch beim Harne durch die neue Methode gewöhnlich etwas mehr Harnsäure gefunden.

Der grosse Vorteil dieser Methode ist aber der, dass öfters aus Harnen, die mit Salzsäure gar keine oder nur eine sehr geringe Ausscheidung geben, mit Salmiak eine bedeutende Menge Harnsäure bestimmt wird.

Was die Ursache dieser Erscheinung sei, ist mir noch nicht klar geworden; wahrscheinlich ist eine Verbindung der Harnsäure mit einem andern organischen Harnbestandtheil da, eine Verbindung, die nicht durch Salzsäure, sondern leicht durch Ammoniak gelöst wird.

Ein zweiter wesentlicher Vorteil ist auch noch der, dass man in Albumin enthaltenden Harn nicht vorher zu enteiweisen braucht, zumal, da dies in vielen Fällen gar nicht durch Kochen gelingt, und die Entfernung des Albumins durch Alkohol zu kostbar und ziemlich zeitraubend ist.

Was die Resultate der Bestimmung im Harne angeht, gibt folgende Tabelle eine Vergleichung beider Methoden:

<table>
<thead>
<tr>
<th>100 CC.</th>
<th>mit Salmiak</th>
<th>corrigierte Zahl</th>
<th>mit Salzsäure</th>
<th>Bemerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nachtharn</td>
<td>0.083</td>
<td>0.049</td>
<td>0.028</td>
<td></td>
</tr>
<tr>
<td>idem</td>
<td>0.064</td>
<td>0.070</td>
<td>0.080</td>
<td></td>
</tr>
<tr>
<td>Vormittagsharn</td>
<td>0.078</td>
<td>0.094</td>
<td>0.007</td>
<td></td>
</tr>
<tr>
<td>idem</td>
<td>0.043</td>
<td>0.059</td>
<td>0.009</td>
<td></td>
</tr>
<tr>
<td>bis</td>
<td>0.041</td>
<td>0.057</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nachmittagsharn</td>
<td>0.089</td>
<td>0.055</td>
<td>0.006</td>
<td></td>
</tr>
<tr>
<td>Nachtharn</td>
<td>0.089</td>
<td>0.055</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>Gesammtharn</td>
<td>0.021</td>
<td>0.037</td>
<td>0.015</td>
<td>Alle diese Harne von einem gesunden Manne v. 34 Jahren.</td>
</tr>
<tr>
<td>idem</td>
<td>0.013</td>
<td>0.029</td>
<td>0.006</td>
<td>Altes Weib.</td>
</tr>
<tr>
<td>Nachtharn</td>
<td>0.046</td>
<td>0.062</td>
<td>0.008</td>
<td></td>
</tr>
<tr>
<td>Nachtharn</td>
<td>0.098</td>
<td>0.114</td>
<td>0.070</td>
<td></td>
</tr>
<tr>
<td>Gesammtharn</td>
<td>0.044</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nachtharn</td>
<td>0.057</td>
<td>0.073</td>
<td>0.043</td>
<td>Mann von 40 Jahren.</td>
</tr>
<tr>
<td>Harn</td>
<td>0.082</td>
<td>0.098</td>
<td>0.055</td>
<td></td>
</tr>
<tr>
<td>Nachtharn</td>
<td>0.029</td>
<td>0.045</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>idem</td>
<td>0.014</td>
<td>0.080</td>
<td>0.008</td>
<td></td>
</tr>
</tbody>
</table>
Dr. A. P. Fokker:

<table>
<thead>
<tr>
<th>100 CC.</th>
<th>mit Salmiak</th>
<th>corrigierte Zahl</th>
<th>mit Salzsäure</th>
<th>Bemerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesammtharn</td>
<td>0.017</td>
<td>0.083</td>
<td>0.015</td>
<td>Sedimentirend. Harn.</td>
</tr>
<tr>
<td>idem</td>
<td>0.059</td>
<td>0.076</td>
<td>0.042</td>
<td>Alle diese Harn von</td>
</tr>
<tr>
<td>idem</td>
<td>0.015</td>
<td>0.081</td>
<td>0.007</td>
<td>einer 50jährige Frau.</td>
</tr>
<tr>
<td>idem</td>
<td>0.048</td>
<td>0.064</td>
<td>0.040</td>
<td></td>
</tr>
<tr>
<td>Nachtharn</td>
<td>0.010</td>
<td>0.026</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>idem</td>
<td>0.015</td>
<td>0.081</td>
<td>0.006</td>
<td>Weib von 42 Jahren.</td>
</tr>
<tr>
<td>idem</td>
<td>0.012</td>
<td>0.028</td>
<td>0.007</td>
<td></td>
</tr>
<tr>
<td>idem</td>
<td>0.013</td>
<td>0.029</td>
<td>0.004</td>
<td>Sedimentirend.</td>
</tr>
<tr>
<td>idem</td>
<td>0.048</td>
<td>0.064</td>
<td>0.046</td>
<td></td>
</tr>
</tbody>
</table>

In der vergleichenden Tabelle ist für die Bestimmung mit Salzsäure keine, für die neue Methode aber wohl eine Correction angebracht.

Bei der alten Methode ist dies nicht üblich, wird allgemein angenommen, dass, wenn man nach der Heintz'schen Vorschrift arbeitet, in den zur Abwaschung benutzten 30 CC. Wasser und dem Filtrate genau so viel Harnsäure gelöst bleibt, als ein Plus an Farbstoff erhalten wird, obschon Stadion in genügender Weise darthat, dass dies nicht richtig sei.

Bei der Methode mit Salmiak aber ist eine Correction nothwendig, und zwar muss man für je 100 CC. Harn, worin man nach der angegebenen Weise die Harnsäure bestimmt, 14 Mgr. zuzählen, wodurch der Unterschied zwischen den Resultaten beider Methoden ungleich bedeutender wird. Ich werde gleich zeigen, wie ich zu dieser Zahl kam.

In Harnen aber, wo Salzsäure eine ergiebige Absetzung von Krystallen erhielt, gibt das alkalisch gemachte und mit Salmiaklösung versetzte Filtrat keine weitere Absetzung von saurem harnsauren Ammon. Nur wenn das Filtrat einer Harnsäurebestimmung nach einer oder der anderen Methode in Fäulniss übergegangen ist,
zeigt sich öfters eine Trübung von harnsaurem Ammon; eine Er-
escheinung, die beweist, dass der Harn nach der Bestimmung noch
Harnsäure enthält, welche wir aber hier übergehen können. Sta-
dion kam in seiner öfters zitierten Abhandlung zu der sonderbaren
Annahme, dass die unreine Harnsäure viel löslicher sei als die reine;
während er für letztere eine Löslichkeit von 4,5 Mgr. auf 100 CC.
Wasser annimmt, glaubt er aus seinen Experimenten mit Verdünnung
von Harn schliessen zu dürfen, dass in 100 CC. Wasser sich 11 Mgr.
unreine Harnsäure lösen würden. Dass dies unrichtig sei, beweisen
folgende Experimente. Es wurde unreine, durch Salmiak aus Harn
erhaltene gefärbte Harnsäure durch Kali gelöst und in 25 CC. dieser
Lösung mit und ohne Zusatz von 100 CC. Wasser durch Salmiak
wieder bestimmt.

Harnsäurelösung	NH₄Cl	H₂O	Zurückgefunden
I. { 25 CC. | 5 CC. | — | 0.089
{ 25 | 15 | 100 CC. | 0.091
II. { 25 | 5 | — | 0.084
{ 25 | 15 | 100 CC. | 0.080

Die erste Lösung enthielt gefärbte Harnsäure aus unverdünnten,
die letzte aus mit 1 oder 2 Volum. Wasser verdünnten Harnen.

Zwar wurden immer ein paar Milligramm mehr in den unver-
dünnten Lösungen bestimmt. Bedenkt man aber, dass bei den ver-
dünnten Lösungen 5mal mehr Flüssigkeit filtrirt werden musste,
und dass beim Filtrieren leicht etwas verloren geht, so meine ich
zur Annahme berechtigt zu sein, dass der unreine harnsäure
Ammoniak in Wasser ebenso unlöslich ist wie der reine. Die Sache
verhält sich aber so, dass saures harnsaures Ammon sich in Harn,
auch in verdünntem Harn löst, wie folgende Tabelle beweist:

<table>
<thead>
<tr>
<th>Harn</th>
<th>Spec. Gewicht</th>
<th>Wasser zugefügt</th>
<th>Harnsäure erhalten durch Salmiak</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 CC.</td>
<td>1020</td>
<td>—</td>
<td>0.0440</td>
</tr>
<tr>
<td>100 „</td>
<td>1020</td>
<td>100 CC.</td>
<td>0.0340</td>
</tr>
<tr>
<td>100 „</td>
<td>1014</td>
<td>—</td>
<td>0.0205</td>
</tr>
<tr>
<td>100 „</td>
<td>1014</td>
<td>100 CC.</td>
<td>0.0180</td>
</tr>
<tr>
<td>100 „</td>
<td>1022</td>
<td>—</td>
<td>0.0660</td>
</tr>
<tr>
<td>100 „</td>
<td>1022</td>
<td>100 CC.</td>
<td>0.0815</td>
</tr>
<tr>
<td>100 „</td>
<td>200 „</td>
<td>—</td>
<td>0.0485</td>
</tr>
<tr>
<td>100 „</td>
<td>200 „</td>
<td>100 CC.</td>
<td>0.0815</td>
</tr>
<tr>
<td>100 „</td>
<td>2016</td>
<td>—</td>
<td>0.1160</td>
</tr>
<tr>
<td>100 „</td>
<td>2016</td>
<td>100 CC.</td>
<td>0.0180</td>
</tr>
<tr>
<td>100 „</td>
<td>1086</td>
<td>—</td>
<td>0.0460</td>
</tr>
<tr>
<td>100 „</td>
<td>1086</td>
<td>100 CC.</td>
<td>0.0845</td>
</tr>
<tr>
<td>100 „</td>
<td>200 „</td>
<td>—</td>
<td>0.0240</td>
</tr>
<tr>
<td>100 „</td>
<td>200 „</td>
<td>100 CC.</td>
<td>0.0615</td>
</tr>
<tr>
<td>100 „</td>
<td>1025</td>
<td>—</td>
<td>0.0250</td>
</tr>
</tbody>
</table>
100 CC. verdünnten Harns lösten je 10, 7 1/2, 11 1/2, 8, 15 1/2, 11 1/2, 10 1/2, 13 Mgr. harnsaures Ammon, also durchschnittlich 11 Mgr. Diese Zahl hatte Stadion auch gefunden für die unreine Harnsäure, und ist es darum sehr begreiflich, warum Salmiak im Filtrat einer Harnsäurebestimmung durch Salzsäure gewöhnlich keine Trübung mehr erzielt. Auch gibt uns diese Zahl das Mittel, die Correction für die gelöst gebliebene Harnsäure anzubringen. 100 CC. Harn mit 5 CC. kohlensaurer Natronlösung, 10 CC. Salmiaklösung und 15 CC. Wasser zur Auswaschung der Phosphate geben 130 CC. verdünnten Harns, welche 14 Mgr. harnsaures Ammon lösen.

Zwar ist es möglich, dass die Menge des mit der Harnsäure verbundenen Farbstoffes je nach der Farbe des Harns verschieden sein kann. Allein man hat bei der Methode mit Salmiak die Gewissheit, dass der erhaltene Farbstoff innig mit der Harnsäure verbunden ist, während bei der Bestimmung mit Salzsäure nebenbei auch andere Farbstoffe, Indican, gefällt werden können.

Auch durch die Methode mit Salzsäure wird nur der Gehalt an gefärbter Harnsäure ermittelt, und ist bis jetzt keine Methode bekannt geworden, um gleich den Gehalt an reinen Harnsäure zu bestimmen. Ausserdem kommt auch im Harne nur gefärbte Harnsäure vor, und würde, wenn nur der Beweis vorlag, dass die Harnsäure-Farbstoffverbindung eine constante Zusammensetzung hatte, wie aus dem oben Angeführten wahrscheinlich ist, seine Bestimmungen allen Zwecken entsprechen.

Bald hoffe ich über Untersuchungen berichten zu können, wo ich die Menge des mit der Harnsäure niedergeschlagenen Farbstoffes zu bestimmen versuche.

Schliesslich erwähne ich noch, dass der Harnstoff nicht die Ursache ist, warum das in Wasser unlösliche harnsaure Ammon sich in Harnsäure löst.
Notiz, die reflexhemmenden Mechanismen betreffend.

Von

J. Setschenow.

In einem vor Kurzem erschienenen Artikel "Über die Fortpflanzungsgeschwindigkeit der Erregung im Rückenmark" 1) discutiert Herr E. Cyon unter Anderem die Frage, ob meine vermittels der Türk’schen Methode der Hautreizung am Frosche gewonnenen Resultate die Existenz der reflexhemmenden Mechanismen zu beweisen im Stande sind, und kommt zu einem negativen Schlusse. Ferner gelangt er auf Grund seiner eigenen Versuche zu der Ansicht, dass dasjenige, was ich als Hemmungsvorgang betrachtete, wahrscheinlich als Verlangsamung der Übertragungszeit der Erregung aufzufassen ist.

Im Interesse der Sache erlaube ich mir einige Bemerkungen gegen beide Schlussfolgerungen des Herrn Cyon zu machen.

Die Existenz der reflexhemmenden Mechanismen hält er durch meine Versuche deshalb für unbewiesen, weil 1) die Türk’sche Methode, seiner Meinung nach, nicht die Reflexstärke, sondern die Zeit misst, welche ein Reiz gebraucht, um von der Haut durch’s Rückenmark zu den Muskeln zu gelangen, d. h. die Fortpflanzungsgeschwindigkeit des Reizes durch die peripheren und centralen Nervenstücke (l. c. S. 396); und 2) weil ich keine Versuche angeführt habe, aus denen man folgern, wie sie könnte, dass in Folge einer Reizung mittlerer Hirntheile die Reflexe in der That schwächer werden.

Die sonderbare Auffassung des Sinnes der Türk’schen Methode von Seite des Herrn Cyon kann ich mir um so weniger erklären, als er selbst, und zwar in derselben Abhandlung, einige Zahlen für die Leitungsgeschwindigkeit in den centralen Nervenmassen des Frosches angeführt hat. Hätte er nur seine eigenen Zahlen mit denjenigen zusammengestellt, welche bei Reizung der Haut nach der Türk’schen Methode gewöhnlich erhalten werden, so wäre er gewiss zu dem Schlusse gekommen, dass die Türk’sche Methode am

allerwenigsten geeignet ist, die Leitungsgeschwindigkeit des Reizes durch die Nervenmassen zu messen. Letztere Größe schwankt in der That in den Versuchen des Herrn Cyon zwischen 0,008 — 0,019 Sec., dagegen beträgt die Zeit, welche bei der Türk’schen Reizung gemessen wird, immer einige volle Secunden. Ferner ist die Reizungsdauer in der Türk’schen Methode von der Stärke der Reizung in so hohem Grade abhängig, dass man diese Dauer durch Abschwächung der Säure ganz sicher verziehen kann. Eine solche Abhängigkeit der Leitungsgeschwindigkeit von der Reizungsstärke ist, so viel ich weiss, unbekannt.

Somit ist die Cyonsche Auffassung des Sinnes der Türk’schen Methode unrichtig.

Hiermit erweist sich der erste Schluss des Herrn Cyon als vollkommen grundlos.

Deutsche Zeitschrift für Thiermedizin und vergleichende Pathologie

Soeben erschienen:

Verlag von F. C. W. Vogel in Leipzig.

Kreisthierarzt Adam in Augsburg, Obermarstallthierarzt Albrecht in Berlin, Prof. Bruckmüller in Wien, Dr. Baguign in Zürich, Prof. Dammann in Eldena, Dr. Esser in Göttingen, Privatdocent Graff in München, Medicinalrat Günther in Hannover, Prof. Hahn in München, Dr. Harms in Hannover, Privatdocent Harz in München, Prof. Kehrer in Giessen, Prof. Klebs in Prag, Prof. Köster in Bonn, Dr. Krabbe in Kopenhagen, Hofthierarzt Lyttin in Karlsruhe, Dr. Lustig in Hannover, Prof. Pagenstecher in Heidelberg, Prof. Perls in Giessen, Prof. Pfing in Giessen, Dr. Probstmayr in München, Doc. Rabe in Proskau, Dir. Schmidt in Frankfurt, Medicinalassessor Schuster in Jena, Prof. Semmer in Dorpat, Prof. Stockfleth in Kopenhagen, Obermedicinalrat Straub in Stuttgart, Prof. Vogel in Stuttgart, Prof. Wehenkel in Brüssel, Prof. Wirtz in Utrecht, Prof. Zahn in Wien, Director Zenger in Zürich, Landesthierarzt Zündel in Strassburg, Prof. Zürr in Leipzig, Prof. Zunts in Bonn.

Redigirt von

Dr. O. Bollinger, und L. Frank,
Prof. an der Universität und Prof. a. d. Thierarzneischule u. landw. Abth. des Polytechnicums in München.

Ersten Bandes erstes Heft.

„Die Deutsche Zeitschrift für Thiermedizin und vergleichende Pathologie“ erscheint in zwanglosen Heften, von denen 6 Einen Band bilden.

Preis Eines Bandes 9 Mark.

BIBLIOTHEK

Abteilung I:

Werke und Zeitschriften über die gesammt Medizin.

Katalog VII. (679 Nrn.)

Abteilung II:

Zeitschriften.

Katalog IX. (1526 Nrn.)

Antiquariat R. Bader & Co. in Freiburg i. Baden.

(S. Bader — Eug. Stoll.)
In unserem Verlag ist eben erschienen:

Kurzes Lehrbuch
der
Anorganischen Chemie
wesentlich für
Studirende auf Universitäten und polytechnischen
Lehranstalten sowie auch zum Selbstunterricht.

Von
Professor Dr. V. v. Richter.

Mit 62 Holzschnitten und 1 Spectraltafel.

Preis 7 Mark.

Vorliegendes Lehrbuch kommt einem lebhaft empfundenen
Bedürfniss entgegen. Es ist ein Lehrbuch im wahren Sinne des
Wortes und giebt dem Anfänger ein auf streng wissenschaftlicher
Grundlage beruhendes klares und deutliches Bild der neunen Chemie.
Es kann Allen bestens empfohlen werden, welche das Be-
dürfniss fühlen, die Resultate und philosophischen Grundlagen der
jetzigen Chemie kennen zu lernen. Seine wissenschaftliche Ten-
denz kennzeichnet sich durch die Widmung, welche der Begründer

Die Verlagsbuchhandlung
MAX COHEN & SOHN (Fr. Cohen) Bonn.

Verlag von August Hirschwald in Berlin.

Soeben erschienen:

Lehrbuch
der
speciellen Chirurgie
für Aerzte und Studirende
von
Dr. Fr. Koenig,
ord. Professor der Chirurgie und Director der chirurg. Klinik in Rostock.

In zwei Bänden.
I. Band. gr. 8. Mit 81 Holzschnitten. 1875. 14 M.
(Durch alle Buchhandlungen zu beziehen.)
Inhalt.

Ueber das Verhaltenisolirter glatter Muskeln bei elektrischer Reizung. Von A. Gruenhagen und cand. med. SAMKOWY in Königsberg i. Pr. (Hierzu 3 Curvenzeichnungen.) ... 165

Nachwort zum Vorstehenden. Von A. Gruenhagen ... 172

Ueber die Erregung und Hemmung der Thatigkeit der nervösen Centralorgane. Von Dr. A. Freusberg, Assistent am physiologischen Institut der Universität Strassburg ... 174

Ueber das Auftreten von Gallenfarbstoff im Harn. Von F. Hoppe-Seyler ... 208

Mittheilungen aus dem Laboratorium für angewandte Chemie der Universität, Erlangen. Von Dr. A. Hilger.

1. Ein Beitrag zur chemischen Zusammensetzungs seröser Transsudate ... 211

2. Zur Kenntniss der Mineralbestandtheile der Echinodermen und Tunicaten ... 212

Fortgesetzte Untersuchungen über die Beziehungen zwischen Polarisation und Erregung im Nerven. Von L. Hermann. (Aus dem physiologischen Laboratorium in Zürich.) ... 215

Ueber die quantitative Bestimmung des Eiweisses in tierischen Flüssigkeiten. Von A. Heynsius ... 239

Ueber Cholecyanin und Choletelin. Nachschrift zu Heinsius' und Campbell's Abhandlung. Von A. Heynsius ... 246

Von nachstehenden Zeitschriften suchen wir complete Exemplare, einzelne Serien, Jahrgänge, Bände und Hefte und zahlen dafür die höchstmöglichen Preise. Gefällige Anerbietungen erbitten wir direct per Post, worauf sofort Antwort erfolgt:

Annalen der Chemie von Liebig.
Annalen der Physik von Poggendorff.
Centralblatt für die medic. Wissenschaften.
Jahresbericht über die Fortschritte der Chemie.
Journal für Mathematik von Crelle.

Buchhandlung Max Cohen & Sohn in Bonn.
Ueber das Verhalten isolirter glatter Muskeln bei electrischer Reizung.

Von

A. Gruenhagen und cand. med. Samkowy

in Königsberg i. Pr.

(Hierzu 3 Curvenzeichnungen.)

Bei der Fortsetzung unserer Versuche über die eigenthümlichen Bewegungsvorgänge, welche glatte und quergestreifte Musculatur unter dem Einfluss verschiedener Temperaturgrade erkennen lassen 1), bemühten wir uns, zunächst Abschluss darüber zu erlangen, ob die in Folge der Erwärmung bei vielen Muskeln eintretende Verkürzung der speziell als Muskellcontraction bekannten Erscheinung verwandt sei, oder ob sie als eine Erscheinung ganz besonderer Art aufgefasst werden müsse.

Die Schnelligkeit, mit welcher die Zusammenziehung der meisten quergestreiften Muskeln einem elektrischen, mechanischen oder chemischen Reize folgt, und die Langsamkeit, mit welcher relativ hohe Wärmegrade selbst bei plötzlicher Einwirkung den früher beschriebenen Contractionszustand auslösen, lassen dem Anscheine nach wenig Analogieen zwischen beiden Processen vermuten. Dagegen nöthigt wiederum die von Schmulewitsch nachgewiesene That- sache, dass die mechanische Leistungsfähigkeit quergestreifter Froschmoduskeln bei einer Erwärmung bis auf 30—33° C. unverkennbar steigt, dass also die von der Wärme im Muskel geleistete Arbeit sich mit derjenigen anderer Reizursachen summirt, einen inneren Zusammenhang zwischen den Folgen der Wärmewirkung und denjenigen der bekannten Muskelreize anzunehmen. Ausserdem kommt der erwähnte Unterschied in der Verlaufs geschwindigkeit beider Prozesse für das verwandte Gewebe der glatten Musculatur, dessen Contractionen bekanntlich langsam entstehen und vergehen, ganz oder fast ganz in Fortfall.

1) Dieses Arch. Bd. 9, p. 399.

E. Pflüger, Archiv f. Physiologie. Bd. X.
Auf diesem Punkte unserer Ueberlegung angelangt, schien sich
uns zugleich ein neues Feld für Versuche an glatten Muskeln zu
eröffnen, welches wir um so lieber betraten, als das genannte Ge-
webe bisher nur selten dem directen Experimente zugänglich ge-
macht worden ist.

Die Zahl der glatten Muskeln, mit welchen wir uns beschäf-
tigt haben, ist vorläufig nur gering, und beschränkt sich fast aus-
schliesslich auf den Sphinxter pupillae des Kaninchens und der Katze;
nur ein Mal haben wir Gelegenheit genommen, auch den musculus
rectococcyeus des Kaninchens, und den Sphinxter pupillae des Rindes
in den Kreis unserer Untersuchungen zu ziehen. Was die Ein-
richtung unserer Experimente betrifft, so entsprach dieselbe im
Ganzen der früher schon beschriebenen; nur hatten wir die Glas-
hähkchen, welche bisher zur Auffangung der extirpirten Muskeln
benutzt worden waren, durch solche aus feinstem Platindrähte er-
setzt und ferner den Metalldeckel des inneren Glasefässes sowohl
als auch den Hebel des Schreibapparates in passender Weise mit
Drahtklemmen versehen, um die Enden eines Schlittemapparates
daran befestigen, und durch die zwischen den Platinhähkchen aus-
gespannten Muskeln zu beliebigsten Zeiten elektrische Ströme ent-
senden zu können. In Bezug auf die Muskeln selbst hielt wir
es für zweckmässig, die intramusculären Nervenenden wenigstens in
einigen Fällen möglichst auszuschliessen, und deshalb auch die
Sphinxtern stark atropinisirter Augen unsern Versuchen zu unter-
werfen, zumal dabei die Frage zum Austrag gebracht werden musste,
ob das Atropin die eigene Erregbarkeit der Muskelsubstanz, ebenso
wie die der Nervenenden vernichtet.

Die Ergebnisse, zu welchen wir gelangten, waren in Kurzem
diese:

Der atropinisirte sowohl wie der nicht atropinisirte Sphinxter
pup. des Kaninchens- und Katzenauges verhalten sich Tempeatur-
einflüssen gegenüber vollständig gleich, d. h. sie verkürzen sich
innerhalb gewisser Temperatur-Grenzen bei jedem Ansteigen, ver-
längern sich innerhalb derselben Grenzen bei jedem Abfall der
Temperatur 1).

1) Die Belastung der Muskeln muss bei allen Versuchcn mög-
liehst gering sein, weil ohne diese Vorsicht die Wärmeverkürzung nur klein
ausfällt und bei weiterer Zunahme der Temperatur in das Gegenteil um-
Über das Verhalten isolirter glatter Muskeln bei electricischer Reizung. 167

Bei electricischer Reizung lassen beide, gleichgültig, ob vergiftet oder nicht, deutlich erkennen, dass sich Wärme- und Electricitäts-
wirkung gegenseitig unterstützen. Denn mit grosser Bestimm-
heit zeigt sich, dass die Geschwindigkeit, mit welcher die Spitze des
Zeichenhebels an der berussten Tafel bei allmäßlicher Erwärmung
des Muskels emporgehoben wird, einen beträchtlichen, bleibenden
Zuwachs erfährt, sobald der Inductionskeils geschlossen wird. Ein
ganz gleiches Verhalten, nur in sehr vergrössertem Maassesstabe, be-
obachtete man auch am Sphincter pup. des Rindes. Hier kann zu
einer gewissen Zeit, wenn die contrahirende Wirkung der Wärme
noch nicht merklich geworden ist, aber bei weiterer Temperatur-
steigerung unfehlbar eintreten würde, zweifellos constatirt werden,
dass der in Aussicht stehende Vorgang durch den Einbruch der
reizenden Ströme einen Anstoss erhält, welcher stetig fortwirkend
nunmehr auch ohne Beihilfe der Electricität und bei constanter
Temperatur eine mächtige Verkürzung auslöst.

Etwas anders gestaltet sich die Sache, wenn man die aufge-
hängten Muskeln electrisirt, nachdem das Maximum der Wärme-
contraction schon eingetreten oder doch nahezu erreicht worden ist.
In diesem Falle differiren die Erscheinungen bei verschiedenen Thier-
arten und bei verschiedenen Muskeln desselben Thieres in vielfacher
Hinsicht.

Der Sphincter pupillae des Kaninchens beantwortet jede
Reizung, auch wenn er einem stark atropinisirten Auge entnommen
worden ist, mit einer deutlich ausgesprochenen Contraction. Dies-
selbe wird jedesmal gefolgt von einer ebenso deutlichen Erschlaffung,
bei welcher der Stift des Schreibhebels tief unter die ursprüng-
liche Nulllinie herabsinkt.

Nicht selten, namentlich bei starken Reizen, tritt anstatt der
erwarteten Verkürzung sofort eine Verlängerung des Muskels ein;
letztere erfolgt regelmässig, wenn man an Stelle von Inductions-
schlägen den constanten Strom einer kräftigen, galvanischen Batterie
(40 Pincus'sche Elemente) momentan in den Muskeln einbrechen lässt.

Die Wirkungen der electricen Reizungen gelangen in allen
Fällen um so schneller zur Erscheinung, je näher die Temperatur
des isolirten Muskels der normalen Bluttemperatur liegt. Die Grösse

schlägt. Ungünstigsten Falls kann sie sogar ganz ausbleiben und von vorn-
berein durch eine Dehnung des Muskels ersetzt werden.
der Contraction bleibt bei gleicher Intensität der Reizung und bei gleicher Belastung (0,08 Grm.) unverändert, gleichviel, ob die Erregung bei 32° oder bei 170 C. stattfindet.

Der Sphincter pup. der Katzen verhält sich höchst eigen-
thümlich. Es gelingt äußerst schwer bei galvanischer Reizung eine Verkürzung desselben zu beobachten. In der Regel erfolgt das Gegen-
theil — eine der Reizstärke proportioneale Verlängerung. Nur im nicht atropinisirten Zustande sehen wir bisweilen, bisher noch niemals im atropinisirten, der jederzeit eintretenden Senkung des Schreibhebels eine schwache Hebung desselben vorangehen. Diese Zunahme der Muskellänge ist nun kein Ermüdungsphänomen, sondern eine dem gewöhnlicher wahrzunehmenden Contraction-
Vorgänge anderer Muskeln analoge Reaction der irritable Substanz von entgegengesetztem Zeichen. Denn ebenso wie der normalen Muskelcontraction die Erschlaffung, so folgt unmittelbar auf die beschriebene Längenzunahme des Katzen-Sphincter nach Entfernung des Reizes eine spontane Rückkehr zur früheren verkürzten Form. Wir entnehmen hieraus, dass dem Irissphincter der Katze ein doppeltes Vermögen innenwohnt. Das eine verleiht ihm die Fähigkeit er-
regenden Einflüssen durch Contraction, das andere durch »Elonga-
tion« (active Erschlaffung) zu entsprechen. Das Atropin scheint die Energie des ersteren herabzusetzen, diejenige des letzteren un-
behelligt zu lassen. In Bezug auf den Sphincter pup. der Kaninchen
ergibt sich, dass die so auffällige, übermässige Erschlaffung, welche jeder Contraction folgt, nicht als reines Ermüdungsphänomen ange-
sehen werden darf, sondern als Ausdruck des zweiten, anfänglich
durch die Contraction verdeckten Reaktionzustandes der »Elonga-
tion« aufgefasst werden muss.

Keine Spur einer »Elongation« findet sich im Sphincter
pup. des Rindes. Wenn hier, sei es durch Erwärmung, sei es durch Electricität, der erste Anstoss gegeben worden ist, so steigert sich die einmal eingeleitete Verkürzung auch nach Entfernung der Reizursache bis zum erreichbaren Maximum und bleibt fortan dauernd
destehen.

Der Musculus recto-coccygeus des Kaninchens endlich
reagirt auf electriche Reizung den gewöhnlichen Vorstellungen über
tionsströme eine allmählich wachsende Verkürzung, welche einige Zeit nach
Unterbrechung der tetanisirenden Ströme auf ihrem Höhepunkte ver-
Ueber das Verhalten isolirter glatter Muskeln bei electricischer Reizung. 169

harrt, dann aber langsam schwindet und dem früheren Ruhezustande Platz macht. In höherer Temperatur verläuft der geschilderte Prozess rascher als in niederer.

Ein zweites Ergebniss unserer Untersuchungen betrifft die Natur der Atropinwirkung auf das Auge.

Hierüber ist durch frühere Arbeiten des einen von uns festgestellt worden, dass der Oculomotorius während des Bestehens der Atropinmydriasis keinen Einfluss auf den Irisspincter besitzt, und selbst bei directer, electricischer Reizung keine Pupillenverengerung auslöst. Diese Thatsache war jedoch mehrfacher Deutung fähig. Denn ihre Ursache konnte sowohl in einer Lähmung der Nervenenden des Oculomotorius als auch in einer solchen der Muskeln besucht werden, möglicherweise in beiden der gedachten Möglichkeiten gleichzeitig zu finden sein.

Wir haben gesehen, dass directe Reizung des Sphincter pupillae wenigstens beim Kaninchen auch im atropinisirten Zustande von einer deutlichen Verkürzung gefolgt wird. Hieraus ergiebt sich, dass bei diesen Thieren, welche sich übrigens durch eine relativ grosse Indifferenz dem betreffenden Alcaloide gegenüber auszeichnen, die mydriatische Wirkung des Atropin sicher nur auf einer Paralyse peripherer Oculomotorius-Stücke beruht. Fraglich bleibt jedoch,
ob derselbe Schluss auch für die Irisphincteren der Katzen und anderer Säugethiere Gültigkeit besitzt. Bei ersteren wenigstens ist es uns bisher nicht geglückt, durch elektrische Reizung eine deutliche Contraction des isolirten Pupillensphincter nach seiner Ver-
giftung mit Atropin zu erzielen.

Als drittes Resultat unserer Beobachtungen heben wir hervor, dass die Lebensfähigkeit der von uns benutzten Muskeln nach Tödtung des Versuchsthieres keineswegs rasch erlischt, sondern stundenlang erhalten bleibt. Die Präparation derselben erfordert deshalb keine grosse Eile. Zur Erweckung der vitalen Functionen bedarf es keines künstlichen Blutstromes, eine verhältnissmässig geringfügige Erwärmung genügt, um die beschriebenen Reactions-
erscheinungen stundenlang wahrnehmen zu können.

In Bezug auf die Frage endlich, welche den Ausgangspunkt dieser ganzen Untersuchung bildete, und die eventuelle Beziehung zwischen der Muskelcontraction im gewöhnlichen Sinne des Wortes und der durch Wärme bedingten zum Gegenstande hatte, entscheiden wir uns dahin, dass beide Vorgänge verwandter Natur sind, und die Wärme somit für bestimmte Muskelarten und innerhalb gewisser Temperaturgrenzen als ein Reizmittel, wie etwa die Electricity, anzusehen ist. Zur Erleichterung der Übersicht fügen wir dem Gesagten drei Curvenzeichnungen bei, welche von den elektrisch gereizten Muskeln aufgeschrieben worden sind.

\[\text{Curve 1.}\]

Curve I rührt von einem atropinisirten Kaninchensphincter her, welcher 1—2 St. nach erfolgtem Tode extirpirt worden war. Zwischen 18—21° C. hob sich die Zeichenspitze allmählich, der Wärmecontraction des Muskels entsprechend. Bei A erfolgte die erste Tetanisierung, und mit ihr ein beschleunigtes Steigen des Hebels ohne nachträgliche Senkung (e. o.). Nachdem das Maximum der
Ueber das Verhalten isolirter glatter Muskeln bei elektrischer Reizung. 171

Verkürzung bei B erreicht worden war, wurde die berusste Trommel, auf welcher der Muskel zeichnete, gedreht, und nach Fixierung der selben bei a von Neuem gereizt. Sofort trat eine erneute Verkürzung des Sphincter ein, angegeben durch die Linie ax, und nach Beseitigung der Reizung die der Erschlaffung entsprechende, übermässige Verlängerung x, y. In gleicher Weise wie bei a wurde in b, c, d, e verfahren und in Folge der »Elongation« die Treppenlinie der Gesammtcurve erhalten.

Curve II.

Curve III.

Curve III gehört dem Musculus recto-coccygeus des Kaninchen an. aA, bB, cC geben die Hubhöhen des bei a, b und c electrisirten Muskels, ab, c und d die entsprechenden Abfälle bei der Erschlaffung desselben an.
Nachwort zum Vorstehenden.

Von

A. Grünhagen.

Den klarsten Einblick in das geschilderte Verhältniss gewinnt man, wenn man an extirpirten Kaninchenaugen die Cornea abgetragen hat und den Irisphincter mit einer feinen Schere sorgfältig im ganzen Umkreise seiner Insertion ablöst. Hierbei beobachtet man jedesmal, dass sich der isolirte Muskelring auf der glatten Wölbung der Linsenkapsel alsbald enge zusammenzieht, während die Ciliarportion der Iris im Gegenteile kräftig nach der Sclera hin zurückweicht, und führt mit diesem einfachen Versuche den direkten Beweis, dass die elastischen Spannungen der Ciliar- und Pupillar-Region der Iris in antagonistischer Beziehung zu einander stehen. Zugleich erhält man aber durch den gleichen Versuch auch noch über eine andere Frage Aufschluss, über die bisher noch immer rätselhafte Rolle nämlich, welche dem Trigeminus in Hinsicht auf die Pupillenbewegung, zunächst allerdings nur im Kaninchen-Auge (wie es scheint auch im Froschauge), zukreitet ist.

Bekanntlich verursacht Reizung des Trigeminus bei Kaninchen eine starke Myosis, welche nach dem, was wir über die Bewegungskräfte der Iris gesehen haben, entweder durch eine gesteigerte, elastische Spannung des Sphincter oder durch eine herabgesetzte der Ciliarportion der Iris bedingt sein kann. Der Einfluss des Trigeminus auf die Pupillenweite wird durch Atropin nicht aufgehoben, wie derjenige des Oculomotorius; die langsame Entstehung und das langsame Vergehen der Trigeminus-Myosis stehen in geradem Gegensatze zu dem schnellen Auftreten und Verschwinden der in Folge von Oculomotorius-Reizung auftretenden Pupillenenge. Wer also zur Erklärung der myotischen Wirkung des Trigeminus eine
Ueber die Erregung und Hemmung der Thätigkeit
der nervösen Centralorgane.

Von

Dr. A. Freusberg,
Assistent am physiologischen Institut der Universität Strassburg.

Ich ergreife diese Gelegenheit, um Herrn Professor Goltz beim Scheiden meinen tiefen Dank auszusprechen für die vielfache von ihm erhaltene Belehrung und für das Interesse, mit dem er meine in seinem Laboratorium ausgeführten Versuche begleitete und förderte.

I. Wie wir den Erregungsvorgang eines peripheren Nerven als denselben ansehen, mag er durch elektrische oder chemische oder mechanische oder irgend eine andere Reizung verursacht sein, und wie wir den Contraktionsvorgang beim Muskel als den gleichen ansehen, mag er durch Reizung des zugehörigen Nerven oder durch directe Applikation des Reizes auf den Muskel hervorgebracht sein,

II. Die einzelnen Centren sind durch die gleichen Reize verschiedenen leicht erregbar. Gewisse Centren (»automatische« Centren) sind ganz besonders empfindlich für die im Blute, d. h. in dessen Gehalt an Stoffwechselprodukten, vorhandene Reizursache. Eben wegen ihrer hohen Erregbarkeit bildet schon das normale Blut einen hinlänglichen Reiz, um sie in beständiger Thätigkeit zu erhalten. Ebenso ist jedes einzelne Centrum vorwiegend reizbar durch einzelne bestimmte sensible Nerven, und zwar durch diejenigen, welche ihre Endausbreitung in dem von ihm beherrschten Organ haben. Die schwache Reizung eines sensiblen Nerven ruft die Thätigkeit nur desjenigen Innervationscentrums hervor, mit welchem der gereizte Nerv in der bezeichneten nächsten physiologischen — und der Regel nach auch anatomischen — Verknüpfung steht. Auf leises Drücken einer Pfote bewegt der decapitirte Frosch nur das getroffene Bein; sanftes Reiben des Praeputium löst im isolirten Lendenmark beim Hunde reflektorisch Erection aus; das Athmungszentrum ist für die Reizung des Lungenvagus so empfindlich, dass schon die durch die Ausdehnung der Lunge bewirkte Erregung desselben reflektorisch bei der Regulation der Athembewegungen eine Rolle spielt u. s. w.

III. Wenn die Reizursache wächst, so breitet sich die Wirkung auch auf andere, als das zumeist empfängliche Centrum aus. Wie hat man sich diese centrale Verbreitung der Reizwirkung zu denken?
Offenbar so: die einzelnen Centren und vor Allem die einander benachbarten sind unter sich in vielfacher nervöser Verbindung, sind anatomisch noch viel weniger als physiologisch genau zu umgrenzen. Wenn nun ein Centrum von einem Reiz getroffen wird, so bricht sich seine Erregung nicht bloss durch die nach Aussen offentheilende Pforte Bahn, wählt nicht bloss die zum peripheren Organ gehenden, etwa motorischen Nerven, sondern ergreift ganz ebenso die zu andern Centralapparaten führenden nervösen Verbindungsbahnen. Ja, man darf es vielleicht nicht einmal für ausgemacht halten, dass eine centrale Erregung die austretenden peripheren Nerven in dem Grade vor den intracentralen Bahnen bevorzugt, ersteren einen so viel stärkeren Impuls giebt als den letzteren, wie es aus dem Verhalten auf schwache Reize hervorzugehen scheint. Eine schwache sensible Reizung löst ja im Centralorgan die Innervation eines correspondirenden peripheren Nerven aus, ohne dass uns eine thätigkeitserregende Wirkung jenes Reizes auf die nicht unmittelbar betheiligten centralen Heerde ersichtlich wäre. Indess wenn eine starke Erregung eines Centrums sich intracentral auf andere Centren verbreitet, dann ist nicht abzusehen, warum dieselben intracentralen Bahnen nicht auch die schwächere Erregung eines Centrums benachbarter Centren signalisiren sollten. Dass diese nicht mit äusserlich sichtlicher Thätigkeit antworten, ist verständlich. Denn der Umsetzung einer einem Centralorgan zugeleiteten in eine von ihm ausgehende Nervenerregung stehen ja innerhalb des Centralorgans grössere Widerstände entgegen, als die Erregung eines peripheren Nerven an dessen Endorgan vorfindet.

Die centrale Ausbreitung der Reize ist ein neuer Grund für das oben Gesagte, dass nicht spezifische Reflexübertragungsapparate existiren, die mit der anderweitig erregten Thätigkeit eines Centrums nichts zu schaffen haben, oder dass verschiedene Reize verschiedene, von einander unabhängige und einzeln für sich z. B. durch Vergiftungen veränderliche Angriffspunkte auf ein Centrum besitzen; vielmehr ergreift jeder Reiz das von ihm getroffene Centrum in allen seinen Theilen, selbst in seinen zu andern Centren führenden Verbindungsbahnen.

Die centrale Ausbreitung eines Reizes mit zunehmender Stärke hat nicht bloss Statt bei den sensiblen Reizen, sondern auch bei den vom Blute ausgehenden. Der physiologische Gehalt des Blutes an Stoffwechselprodukten erregt das Atmungszentrum sur physio-
logischen Thätigkeit, d. h. es gerathen auf diesen Reiz bestimmte Muskeln in Thätigkeit. Nimmt der Reiz zu, besteht Dyspnoe, so erhalten nicht nur dieselben Muskeln stärkere, sondern es erhalten jetzt auch benachbarte Muskelgruppen Impulse, die auxiliären Respirationsmuskeln wirken mit. Mit weiter wachsendem Reiz ergreift die Erregung stets mehr Innervationszentren, immer weiter verbreitet sich die Thätigkeit, bis schliesslich bei der Erstickung die gesamte Körpermuskulatur in Krampf gerath.

In immer weiter greifendem Umfang ergreift hier der Reiz das Centralorgan und ergreift die verschiedenen Innervationsheerde desselben, je nach ihrer Empfänglichkeit für diesen Reiz, verschieden rasch zu dem Grade, dass Thätigkeit erfolgt.

Doch ist dieser Vorgang darin von der centralen Ausbreitung der Wirkung sensibler Reize verschieden, dass hier nicht bloss von den bereits bis zur Thätigkeitsauslösung gereizten Centren die übrigen indirekt Signale erhalten, dass vielmehr das venöse Blut auch für die letzteren, überhaupt für alle Theile des Centralorgans ein direkter Reiz ist, für den dieselben nur verschieden empfänglich sind.

Auch bei der Irradiation der durch starke sensible Reize geweckten Reflexe könnte man an eine direkte Reizung aller beteiligten Centren denken. Wenn z. B. der decapitirte Frosch auf Quetschen der Vorderbeine ausser Bewegungen der Vorderbeine auch solche der Hinterextremitäten macht, so könnte man glauben, sensible Bahnen führten vom Arm das Rückenmark hindurch direkt zu den Bewegungszentren der Hinterbeine. Wenn aber schon unsere Kenntniss der anatomischen Verhältnisse es höchst unwahrscheinlich scheinen lässt, dass jeder Punkt der Körperoberfläche mit jedem entfernt gelegenen Innervationscentrum in direkter nervöser Verbindung ohne dazwischengeschobene Ganglienzellen stehe, so spricht dagegen noch ein physiologischer Grund. Denn es wäre dann nicht verständlich, warum auf einen schwachen sensiblen Reiz nur der nächste, nicht aber die entfernteren Innervationsheerde in Thätigkeit gerathen. Dieses Verhalten ist aber sehr wohl verständlich, wenn, um bei dem angeführten Beispiel zu bleiben, alle sensiblen Nerven des Armes in der Nähe ihres Eintritts ins Rückenmark in Ganglienzellen ihr Ende finden, und wenn erst durch Vermittlung dieser Ganglienzellen die Reizung der Vorderpfote dem hintern entfernten Abschnitt des Rückenmarks zugeleitet wird.
Denn diese Einschaltung von Ganglienzellen in die von dem Ort der Reizung zum reflectorisch erregten Innervationszentrum führende nervöse Verbindungsbahn bildet eine Hemmniss, die erst eine sehr beträchtliche Reizung durchbrechen kann.

IV. Hierin liegt auch die Erklärung für die schon angeführte Erscheinung, dass die Reizung eines sensiblen Nerven am leichtesten die Erregung des anatomisch entsprechenden centrifugalen, etwa motorischen Nerven hervorrut. Jenes Innervationscentrum wird eben durch einen Reiz am frühesten in Thätigkeit versetzt werden, mit welchem der gereizte sensible Nerv in directe Verbindung tritt; und verhältnismässig unwirksam wird eine sensible Reizung für die diejenigen Innervationscentren sein, die erst indirect, von dem zunächst erregten Reflexcentrum her, in Mitregung versetzt werden.

V. Die Thätigkeit der Centren des Rückenmarks richtet sich nur nach der Intensität, Zeitdauer und Ausbreitung, nicht nach der Qualität der ihnen zugehenden sensiblen Reize, wie es nach manchen
Reflexbewegungen des enthirnten Frosches scheinen könnte. So sind Wischbewegungen eines solchen Thieres nicht spezifisch für die chemische Reizung; denn sie bleiben aus — gehen in hastigere Bewegungen über — bei starker chemischer Reizung und erfolgen anderseits auf schwache, anhaltende und genügend ausgebreitete mechanische Reize, z. B. Bürstchen der Haut.

VI. Wenn mehrere Reizursachen, die einzeln für sich ein und dasselbe Innervationscentrum zur Thätigkeit anregen, gemeinschaftlich vorhanden sind, so summiren sich ihre Wirkungen.

Dieser Fall tritt ein:

a) wenn die sensiblen Nerven, die zu einem bestimmten Centrum führen — also in der Regel die über das von dem betreffenden Centrum beherrschte Organ sich ausbreitenden sensiblen Nerven — gleiche oder verschiedenartige Reize gleichzeitig oder in rascher Folge erfahren.

Wenn man einen decapitirten Frosch in gleichlen Zeiträumen (von mindestens 5 Minuten) mit der Pfote in schwach angesäuertes Wasser taucht, so wird derselbe die Pfote stets nach einer gleich langen Zeit (mit dem Metronom gemessen) zurückziehen; diese Reflexzeit bleibt sehr lange constant, wenn man nach jeder Reizung die Pfote von der Säure durch Abspülen reinigt. Taucht man mit oder ohne inzwischen erfolgendes Abpülen dieselbe Pfote zwei- oder mehrmal rasch hintereinander ein, so wird diese nachfolgende Reizung von einem um mehrere Metronomschläge früher erfolgenden Zurückziehen der Pfote beantwortet, als die erste und die nach längerer Pause wiederholte Reizung. Ebenso tritt die Reflexbewegung auf diesen chemischen Reiz erheblich früher ein, wenn dem Eintauchen in die Säure eine selbst schwache, kaum zur Reflexauslösung genügende mechanische Reizung unmittelbar vorhergeht. Erfolgt z. B. der Reflex constant nach 10 Metronomschlägen, so bedarf es deren nur 6, wenn vor dem Eintauchen eine schwache sensible Reizung voraufging (wobei natürlich der chemische Reiz erst dann applicirt werden darf, wenn die durch den mechanischen Reiz eventuell hervorgebrachte Bewegung abgelaufen), und nach einer Ruhepause bedarf es wieder der ursprünglichen Zeit (10 Schläge) zum Wirksamwerden der chemischen Reizung. — Zieht ein Frosch beide Pfoten gleich rasch aus der Reizflüssigkeit, so vermag man mit einem Male eine gewaltige Differenz hervorzubringen, indem man durch die
Schwimmhaut des einen Fusses eine Nadel steckt; die doppelt gereizte Pfote ist jetzt die rascher reagierende. — Beim Hund genügt oft beim freien Hinabhängemlassen des Hinterkörpers die dadurch veranlasste Spannung und Zerrung, um im isolirten Lendenmark Reflexbewegungen auszulösen 1); bei Hunden, bei denen diese Erscheinung nicht auftrat, sah ich vielmals jene Bewegungen in beiden Beinen im unmittelbaren Anschluss an die Durchschneidung des einen N. ischiadicus am Oberschenkel auftreten und wenige Tage lang bestehen; der Reiz der Nervendurchschneidung genügt für sich allein nicht zur Auslösung dieses Reflexes; denn derselbe fehlte bei allen andern Körperstellungen; aber gerade bei dem Herabhängen des Hinterkörpers summiren sich der durch die Zerrung der Extremitäten und der durch die frische Wunde gesetzte Reiz, um, was diese Reize einzeln nicht vermögen, die Bewegungscentren der Hinterbeine zur Tätigkeit zu erregen.

Die Summirung der Wirkung schwacher gleichsinniger Reize ist im Grunde dieselbe Erscheinung, wie jene, dass eine starke Reizung kräftiger wirkt, als eine schwache Reizung desselben Nerven, sowie jene, dass rasch intermittirende Reize (Inductionsstrom, Kitzeln) wirksamer sind, als gleich starke Reize von momentaner Dauer oder von anhaltend gleichmäßiger Einwirkung.

b) Eine Summirung der Reizwirkung tritt ferner ein, wenn eine sensible Reizung vermöge ihrer Heftigkeit oder vermöge ihrer Erstreckung auf ein grosses (Haut-) Gebiet das Centralorgan in weiter Ausbreitung, also wenn dieselbe eine Reihe einzelner Innervationsheerde zur Tätigkeit reizt, und wenn nun auf einen dieser Innervationsheerde ein neuer anderer Reiz wirkt.

Dieses Verhalten, so einfach und selbstverständlich es scheint, bedarf einer genaueren Besprechung. Wie stimmt dasselbe überein mit der Thatsache, dass die Reflexe durch gleichzeitig auf das Centralorgan einwirkende sensible Reize gehemmt werden? Ich hoffe zu zeigen, dass hier kein Widerspruch besteht, dass vielmehr ganz bestimmte Regeln sich feststellen lassen, nach denen in einem Falle die Wirkung eines sensiblen Reizes durch einen zweiten sensiblen Reiz unterdrückt, im andern Fall verstärkt wird.

Wundt*) stellt die Regel auf: »Diejenigen sensorischen Ele-

1) Dieses Archiv IX S. 864 ff.
2) Physiologische Psychologie S. 175.
mente, welche in gleicher Höhe und auf derselben Seite liegen, ver-
stärken, wenn sie miteinreget werden, den Reflexvorgang; allen andern
könnt in höherem oder geringerem Grade die hemmende Wirkung zu.
Dies ist vollkommen zutreffend, so lange die beiden Reize an Stärke
nicht zu sehr verschieden sind. Dass aber diese Regel keine all-
gemeine Gültigkeit hat, werden wir aus den sogleich beizubringenden
Beweisen für den oben aufgestellten Satz und aus der späteren Be-
sprechung der Reflexhemmung erkennen; wir werden zugleich sehen,
 dass nicht in dem anatomischen Verhältniss zweier gereizten sen-
siblen Nerven, sondern in der physiologischen Wirkung jedes einzelnen
der gleichzeitigen Reize das Gesetz zu finden ist, nach welchem die-
selben sich bald verstärken, bald hemmen.

Ich verdanke Herrn Dr. Tarachanoff die Kenntniss eines vom
ihm herrührenden, bisher nicht erklärten Versuches, der mich das
oben Ausgesprochene zuerst vermuten ließ, und dessen Verfolgung
diese Vermuthung zur Gewissheit, wie ich glaube, erhob. Dieser
Versuch 1), den Herr Tarachanoff mir zeigte und zur Verfügung
stellte, ist Folgender: Man bestimmt mit dem Metronom die Zeit,
die vergeht, bis ein enthirnter Frosch die Pfote aus dem ungeschärften
Wasser zurückzieht. Dann wird der Vorderkörper (Kopf, Arme,
Brust) in Eis eingepackt — am bequemsten sieht man dem Thier
ein mit Eisstückchen gefülltes Beutelchen über den Kopf. Jetzt
zieht der Frosch die von Neuem eingetauchte Pfote sehr viel früher
und schneller aus der Flüssigkeit, macht auch ohne weitere Beizung
 einige Beinbewegungen. Sehr rasch nach der Entfernung des Eisens
ist der ursprüngliche Zustand wieder hergestellt, die Pfote verharrt
während der anfänglichen grossen Zahl von Metronomschlägen in
der Säure, bevor sie zurückgezogen wird. Eine neue Eisbeinpackung
reduziert die Reflexzeit von Neuem u. s. f. Während der Kälte-
wirkung geschehen die Reflexbewegungen nicht bloß früher, sondern
auch heftiger als vor derselben.

Wie erklärt sich dieser Versuch? Mit einer allgemeinen Ab-
kühlung des Thieres hat die Erscheinung nichts zu schaffen. Denn
 dieser bewirkt ja im Gegentheil ein Trägerwerden des Organismus;
und dann tritt ferner die reflexerhöhende Wirkung so rasch nach
der Eisbepackung ein, dass von einer allgemeinen Abkühlung nicht

1) Veröfentlicht in dem Bulletin de l'académie Impér. de sciences de
St. Pétersbourg 1871 Février.

N. Pfäuger, Archiv f. Physiologie. Bd. X. 18
die Rede sein kann. Ich halte folgende Erklärung für allein zutreffend. Der heftige Kältereiz, obwohl nur von einem beschränkten Hautgebiet dem Centralorgan zugeführt, breitet sich in diesem von den zunächst erregten Heerden aus auch auf die übrigen Centren aus und bringt sie zur Erregung. Wirklich macht die Erregung der Innervationscentren der Hinterextremitäten sich geltend in einigen zu Beginn der Kälteeinwirkung ohne einen neuen Reiz aus- geführten Beinbewegungen. Dass diese nachher ausbleiben, rührt nur von dem gleichmässigen, nicht intermittierenden Charakter des Reizes, schliesst nicht aus, dass nicht ihren centralen Innervationsheerden vom vorderen unmittelbar gereizten Abschnitt des Rückenmarks her gewaltige Erregungen zuströmen. Gesellt sich jetzt zu diesem, für sich allein wenig wirksamen Impuls ein zweiter, von einem sensiblen Reiz der Pfote herrührender, dann summirt sich die Wirkung beider auf die Bewegungscentren, die Reflexbewegung erfolgt als eine verstärkte; und diese Verstärkung ist die hochgradigste: ein Frosch, bei dem der chemische schwache Reiz eine Zeitdauer von 15 Metronomschlägen braucht, um im Centralorgan eine Bewegung auszulösen, zieht unter jenem gleichzeitigen Einfluss des Kältereizes die Pfote schon beim zweiten Metronom zurück.

Reflexzeiten wieder gültig. Jetzt wird der Frosch gleichzeitig mit der Pfote in die schwache Säure getaucht und am Rücken, sei es auf derselben oder auf der entgegengesetzten Seite, mit der starken Säure gereizt: der Frosch beginnt jetzt schon beim ersten oder zweiten Metronomschlag die heftigsten, zappelnden Reflexbewegungen. Nach einer Pause bedarf es wieder 10, beziehungsweise 4 Metronomschläge, bis die beiden Reize, einzeln angewandt, wirksam werden, und der Versuch kann von Neuem angestellt, die Summierung der Wirkung von Neuem erzielt werden.

Ein enthirnter Frosch zieht die Pfote nach 12 Metronomschlägen aus dem angesäuerten Wasser. Nun tauche ich nur den Vorderkörper in eine 4 prozentige Kochsalzlösung, spüle mit Wasser ab, um die Reflexbewegungen aufhören zu machen, und tauche sofort die Pfote wieder in die Säure. Sie wird nach 8 Metronomschlägen herausgezogen (bei stärkerer Concentration der Kochsalzlösung rascher). Nach einer Pause tauche ich den ganzen Frosch wieder in die Kochsalzlösung, spüle ihn ab und tauche sofort wieder die Pfote in die Säure; sie wird nach zwei Metronomschlägen heftig daraus entfernt. Nachher ist die ursprüngliche Erregbarkeit wieder da, und lässt sich von Neuem durch das Kochsalzbad so hochgradig und sicher steigern.

Wir sehen: die Reflexbewegungen der Hinterextremitäten des decapitirten Frosches geschehen mit verstärkter Schnelligkeit und Intensität, wenn die Innervationscentren dieser Bewegungen durch einen auf beliebige Weise an beliebiger Stelle einwirkenden, das Centralorgan in weiter Ausdehnung ergreifenden Reiz einen gleichzeitigen Impuls zur Thätigkeit erfahren. Auch wenn diese Thätigkeit schon aufgehört, der Reiz schon beseitigt ist, so ist doch das Centralorgan noch nicht zur vollständigen Ruhe zurückgekehrt, und die nachklingende Erregung desselben summirt sich mit dem durch einen neuen, seitens der sensiblen Nerven des Beines dem Innervationscentrum zugeleiteten Reflexreiz zu verstärkter Thätigkeit.

c) Eine Summierung der Reizwirkung findet Statt, wenn das
ganze Centralorgana von einem gemeinsamen, vom Blute ausgehenden Reize betroffen wird und nun auf dasselbe ein sensibler Reiz einwirkt. — Als ich eine Anzahl Warmblüter nach Durchschneidung des Rückenmarks am letzten Brustwirbel durch Einschneiden der Carotiden verbluten liess oder durch Compression der Trachea erstickte, stellte sich, im Gegensatz zu älteren Angaben, heraus, dass auch im Hinterkörper Bewegungen — wenn man will Krämpfe — eintraten, dass also die Zersetzungsprodukte des Stoffwechsels für die Centren des Rückenmarks in derselben Weise einen Reiz bilden, wie für die Medulla oblongata. Zugleich fand ich, dass bei Hunden noch vor dem Auftreten dieser Krämpfe und dass bei Kaninchen (bei denen die Krämpfe ganz unbedeutend ausfallen können) unter dem Einfluss jener vom Blute ausgehenden Reizung sensibler Reize weit leichter und energischer als zuvor Reflexe auslösten, und zwar sowohl Bewegungen der Beine und des Schwanzes, als Erektion, je nach der Stelle der sensiblen Reizung. Das entsprechende Verhalten constatirte ich auch bei decapitirten verblutenden Fröschen. Also wenn von Bestandtheilen des Blutes ein Centralorgan gereist wird, wohi der Grad des Reizes noch zu gering sein darf, um für sich allein schon eine ersichtliche Thatigkeit zu bewirken, und wenn nun eine sensible Reizung hinzukommt, so summirt sich ihre Wirkung zu einer verstärkten Reflexthatigkeit.

Ja, um dieses Verhalten zu zeigen, braucht man nicht einmal zur Erstickung und Verblutung zu greifen. Uspensky u. A., zu-letzt ich, haben gezeigt, dass die Ueberarterialisation des Blutes, der Zustand der Apnoe, auch im unvergifteten Thiere die Reflexthatigkeit hinhält. Also schon im physiologischen Organismus muss zu einer sensiblen Reizung der geringe Reiz der stets im Blute vorhandenen Stoffwechselprodukte sich hinzugesellen, wenn eine Reflexthatigkeit erfolgen soll.

VII. Beachten wir wohl die Ergebnisse aus dem Gesagten. Es wirkt auf das Centralorgan irgend ein Reiz, durch sensible Nerven zugeführt oder durch Zustände des Blutes bedingt; dieser Reiz bewirkt entweder für sich allein eine bestimmte Thatigkeit, erregt ein bestimmtes Centrum, oder er lässt nach Auslösung der Thatigkeit das betreffende Centrum in einem gewissen Zustand der Erregung, von dem es erst nach einiger Zeit zum Ruhezustande zurückkehrt; oder er ist für sich allein zu schwach, um eine Thatigkeit auszulösen, was er aber bei einer etwas grösseren Stärke thun würde;
zu diesem Reiz gesellt sich ein zweiter, anderer Reiz, der gleichfalls dieselbe Thätigkeit erzeugen, dasselbe Innervationscentrum anzusprechen geeignet ist: das Resultat ist, dass eine stärkere Thätigkeit des Centrums erfolgt, als jedem einzelnen der Reize entspricht. Also die Reizung eines Innervationscentrums steigert die Erregbarkeit desselben für jede neue Reizung desselben, welcher Art sie sei. Mit andern Worten: Die Steigerung der Erregbarkeit und der Zustand der Thätigkeit eines Centralorgans sind wesensgleiche, nur gradweise verschiedene Aenderungen seines innern Zustandes.

Eine einmal ausgeführte willkürliche oder reflektorische Thätigkeit findet die folgenden Male leichter Statt. Worauf beruht diese »Übung«? Warum fällt man in ein und denselben Lapsus linguæ oder calamii, hat man ihn einmal gemacht, in den nächsten Minuten so leicht zum wiederholten Male? Weil es noch andere Zustände des Centralorgans giebt, als die grob ersichtlichen der Ruhe und Thätigkeit, weil vielmehr der eine in den andern durch Zustände wachsender und abklingender Erregung übergeht. Dieser nachwirkende geringe Zustand von Erregung disponirt ein Centrum dahin, dass es auf einen ihm zugehenden Impuls leichter reagirt, durch Summirung der Reizvorgänge, als vorher; er bewirkt die an-
geführte scheinbare Ablenkung eines Willensimpulses von seiner Bahn, indem ein durch die vorangegangene Thätigkeit erregbarer Ganglienheerd auf den Impuls eher reagirt, als unerregbarere, dem der Impuls eigentlich galt.

Wer hat nicht schon an sich die unter Umständen recht ungemeine Erfahrung gemacht, dass ein mechanischer Insult, ein Stoss oder Schlag, wenn er der Winterkälte ausgesetzte Hautstellen trifft, einen ungewöhnlich heftigen, lange anhaltenden Schmerz hervorruft? Viele Schwärmerige sollen dann ein Gespräch am Besten verstehen, wenn gerade Geräusche, z. B. Wagengeräusche, stattfinden, Geräusche, die ein gesundes Ohr an der deutlichen Wahrnehmung der Stimme beeinträchtigen, die aber für sich allein nicht genügen, im kranken Ohr eine Wahrnehmung zu bewirken. Gewiss darf man bei solchen Beobachtungen gleichfalls an eine Summierung der Wirkung verschiedener dieselben Nerven treffender Reize denken.

Bei der Reizung des isolirten Lendenmarks bei Hunden mit Induktionsströmen sah ich, wenn kurz vorher der eine Ischiadicus durchschnitten war, beim jedesmaligen Einbrechen und Aufhören des Reizes nur das betreffende verwundete Bein in Zucknungen gerathen, während das gesunde bei derselben Stromstärke ruhig verharrte; es wirkten hier auf das Innervationszentrum des verwundeten Beines zwei Reize — der eine von der Peripherie her, der andere direkt — die jeder für sich nicht zur Thätigkeitssauslösung hinreichten.

Dass eine Summierung der Reizwirkungen nicht bloss in den centralen, sondern auch in den peripheren nervösen Vorrichtungen Platz greift, beweist die Beobachtung »Ueber die Reaktion gelähmter Gefäßmuskeln«, die Hitzig veröffentlichte 1).

Im Verbreitungsbezirk des N. axillaris rief bei Lähmungen dieses Nerven dieselbe elektrische Behandlung, die an jeder gesunden Hautstelle eine Hautrothung erzeugte, im Gegenteil ein vollständiges Weiss- und Anämischwerden hervor, erst auf ganz ausserordentlich starke elektrische Reizung hin stellte sich Röthung, zugleich mit quaddelartigem circumscriptem Exanthem ein. Diese selbe Wirkung brachte aber auch ein, für sich allein angewandt von der ersteren Wirkung gefolgt der Reiz, wie ein labiler constanter Strom hervor, wenn unmittelbar vorher die betreffende Hautparthie

1) Berl. klin. Wochenschr. 1874 Nr. 80.
mit andern Reizen — stabilen Strom, mechanischem Insult, Be-
pinselung mit concentrirter Kochsalzlösung — Reizen, die für sich
allein zur Erzeugung der Röthung nicht genügten, behandelt war.

VIII. Unter dem aufgestellten Gesichtspunkte rückt Manches
in der Wirkungsweise toxischer Substanzen dem Verständnisse näher.
Ich stehe nicht an, zu glauben, dass die reflexerhöhende Wirkung
des Strychnins darauf beruht, dass das ganze Centralorgan in allen
seinen Theilen vom Strychnin gereizt wird. Und zwar ist dieser
durch Strychnin erzeugte Erregungszustand der centralen Heerde
gar nicht einmal ein specifischer und andersartiger, als der durch
sozusagen physiologische Reize hervorgebrachte. Denn

1) eine Steigerung der Erregbarkeit sahen wir auch auf die
physiologischen Reize entstehen, und sie ist ebenso die Wirkung
einer Menge anderer Gifte. Bei diesen wird blos die allgemein
reflexerhöhende Wirkung oft verdunkelt durch die überwiegende
Wirkung auf bestimmte einzelne Innervationscentren.

2) Ebenso entsteht der als für Strychnin so charakteristisch
geltende Tetanus zuweilen auch durch die andern Reize. Nicht nur
kann man durch eine hinlänglich starke elektrische Reizung des
Ischiadicus beim unvergifteten enthärnten Thier Tetanus hervorrufen,
sondern ich sah eine Reihe kräftiger Winterfrösche — Sommer-
frösche sterben ja oft unter spontanem Tetanus — nach lange fort-
gesetzter elektrischer Reizung des Ischiadicus in einen, der Strych-
ninvergiftung bis ins Kleinsthe ähnlichen Zustand fallen, der bis zu
dem am nächsten Tage eintretenden Tode anhielt.

Bei jeder Berührung oder Erschütterung, und auch ohne solche
brach ein heftiger Streckkrampf aus; auch jenes, dem Strychnin-
tode voraufgehende Stadium blieb bei diesen unvergifteten Fröschen
icht aus, in welchem nur in grösseren Pausen mit oder ohne sen-
sible Reizung ein leichter Krampfanfall sich einstellt, nach welchem
die Erregbarkeit für einige Zeit ganz erloschen, das Thier schein-
to dt ist. — Ebenso merkwürdig und beweisend ist, was mir bei der
schwachen Vergiftung enthärnter Frösche mit Digitalis und Nicotin
je einmal begegnete, dass ein solcher Frosch einige Tage nach der
Vergiftung bei Berührung in einen langen andauernden Tetanus fiel.

Also das Strychnin, in gehöriger Dosis, reizt das ganze Central-
organ in einer an sich nicht specifischen Weise, aber in so hohem
Grade, dass unter dem Hinzutreten eines zweiten Reizes das Central-
organ mit der der heftigsten Erregung entsprechenden Thätigkeit,
mit dem tetanischen Krampfanfall antwortet, einer Erregung und Thätigkeit, die die höchste Erschöpfung des Centralorgans nach sich führt. Dieser hinzutretende zweite Reiz nun wird gegeben einerseits von der venösen Beschaffenheit des Blutes; von der Summierung dieser beiden Reize rühren die ohne äussere Einwirkung auftretenden und auch nach der Durchschneidung des Rückenmarks im Hinterkörper nicht ausbleibenden Strychninkämpfe. Dass bis zu einem gewissen Grade der im Gehalt des Blutes an physiologischen Stoffwechselprodukten bestehende Reiz sich zu der Strychninwirkung auf das Centralorgan hinzugesellen muss, um die letztere als Thätigkeit in die Erscheinung treten zu lassen, beweist der Einfluss der künstlichen Respiration auf die Strychninkämpfe. — Andere Male sind es Reizungen sensibler Nerven, die zur Reizwirkung des Strychnins, auf das Centralorgan sich summirend, die gewaltigen Reflexkrämpfe auslösen.

Die erregbarkeitssteigernde Wirkung des Strychnins (und entsprechend wirkender Gifte) finde ich also darin begründet, dass dasselbe für sich allein schon jene Aenderung des innern molekularen Zustandes der Centralorgane bewirkt, die wir als Zustand der Reizung bezeichnen, und die wir in gleicher Weise durch andere genügend starke Nervenreize herbeiführen können. Ein hinzu kommender Reiz wird diesen Zustand der Reizung verdoppeln, daher so exessiv gesteigerte Thätigkeiten bewirken. Der hauptsächlichste Unterschied zwischen der Wirkung des Strychnins und anderer Gifte, wie Picrotoxin, Nicotin und ähnliche, scheint mir der zu sein, dass das Strychnin nicht wie jene auf einzelne Centren eine überwie gende und massgebende Einwirkung entfaltet, sondern alle Centren des gesammtten Centralorgans in einem ziemlich gleich hohen Grade affizirt.

Bei diesen Anschauungen wird es mir verständlich, warum mein Bemühren stets vergeblich sein musste, beim strychninisirten enthirnten Frosch einen durch Reizung der Hinterpfote hervorge rufenen Reflexkranz durch einen an den Vorderpfoten angebrachten Reiz (und umgekehrt) zu unterdrücken, entsprechend der auf solche Weise zu erzielenden Hemmung der Reflexbewegungen des nicht vergifteten Thieres. Jeder sensible Reiz trifft eben auf ein Centrum, welches schon durch das Strychnin zur Thätigkeit angeregt ist, und so muss durch die Summierung dieser gleichsinnigen, aus zwei Quellen stammenden Erregung nicht eine Hemmung, sondern eine Verstärkung der Thätigkeit hervorgehen.
In Rücksicht auf die Wirkung toxischer Substanzen muss ich den oben aufgestellten drei Kategorien von Summierung mehrerer Reize eine vierte hinzufügen. Nämlich eine Summierung der Wirkung tritt ein, wenn durch das Blut zwei Reizursachen einem Centralorgan zugeführt werden; wie dies vorhin für das Strychnin und die Produkte der Gewebstersetzung besprochen wurde.

IX. Wir haben gleichzeitig auf ein Centralorgan wirkende Reize ihre Wirkung summiren gesehen. Wir wissen aber auch, dass gleichzeitig einwirkende Reize hemmend auf einander einwirken. Wann und unter welchen Bedingungen findet eine solche Hemmung statt, und wie ist sie zu erklären?

Setschenow fand, dass, wenn man bei Fröschen, die der Hemisphären beraubt sind, die Lobi optici und Medulla oblongata electricisch oder chemisch reizt, die Reflexbewegungen der Thiere unterdrückt werden, und mindestens eine längere Zeit verstreicht zwischen der Application eines sensiblen Reizes und der Ausführung einer Bewegung. Er schloss daraus, dass in diesen Hirntheilen bestimmte Centren liegen mit der Aufgabe und Fähigkeit, die Reflexe zu hemmen. — Man hat später auch gefunden, dass beim Säugenthiere die electriche Reizung des Gehirns die Reflexe zu verlangsam verwirkt. Da es aber hier nicht gelang, einzelne bestimmte Stellen ausfindig zu machen, denen diese Eigenschaft zukommt, so war hierdurch nichts weiter experimentell festgestellt, als was man aus der gewöhnlichsten Beobachtung, seit man Reflexe kennt, wusste, nämlich, dass das Gehirn einen hemmenden Einfluss auf das Zustandekommen von Reflexen auszuüben vermag.

Nach dieser Theorie, die die Steigerung der Reflexerregbarkeit durch Decapitation, als durch den Wegfall der Hemmungszentren sehr einfach erklärt, mussten sensible Reize dadurch reflexhemmend wirken, dass sie eben jene Hemmungszentren in Erregung versetzten.

Man glaubte sich zu der Annahme solcher Reflexhemmungszentren um so mehr berechtigt, weil man sie in Analogie bringen zu dürfen glaubte mit dem Hemmungszentrum der Herzbewegung, mit der Hemmungswirkung des Splanchnicus auf die Darmbewegungen. Wirklich hatte dieser Vergleich einige Berechtigung. Das Regulationszentrum des Herzens ist ja ein Hemmungszentrum nur in Bezug auf die automatischen Herzganglien, ist an und für sich ein Erregungszentrum, d. h. ertheilt dem Vagus Innervationen,
die an sich nicht abweichen von den Impulsen, die andere Nerven von andern Centren erhalten. Erst die Eigenschaft der Herzganglien, die erhaltene Nervenerregung mit Verlangsamung ihrer eigenen Thätigkeitssauslösung zu beantworten, macht das Vaguscentrum zum Hemmungscentrum. Ebenso würde es mit den Reflexhemmungsentren Setschenow's sein; die von ihnen ausgehenden aktiven Erregungen würden in den betroffenen Ganglienzellen die Thätigkeitssauslösung verlangsamen oder vollständig hemmen. Der Unterschied läge nur darin, dass das Vaguscentrum auf Ganglienzellen, die im peripheren Organ liegen, die Reflexhemmungsentren auf die Innervationsheerde des Rückenmarks, aber gleichwohl auf subordinierte Centren ihre Wirkung ausübten.

Diese Theorie, nach der die Reflexhemmung auf die Thätigkeit besonderer im Gehirn gelegener Hemmungsentren abgeleitet wurde, musste fallen gelassen und mindestens modifiziert werden, als Herzen und Schiff nachwiesen, dass jede mechanische und chemische Reizung des Rückenmarks in seiner untern Partie eine Herabsetzung der Reflexvorgänge im vorderen Theile des Markes hervorbringe, und dass ferner auch beim vollständig des Gehirns und des verlängerten Markes beraubten Frosch die Reizung sensibler Nerven die Reflexerregbarkeit für andere Reize unterdrücke. Sie glaubten eine Üeberreizung und Ermüdung des Centralorgans annehmen zu müssen, wogegen, wie Nothnagel mit Recht hervorhebt, der Umstand spricht, dass man auch bei ganz schwachen sensiblen Reizen und kurzdauernder Einwirkung eine Reflexhemmung beobachten kann: ich kann dieses letztere vollständig bestätigen. Ebensowenig befriedigend ist die Erweiterung, die Setschenow seiner Theorie gab, nämlich dass überall, im Centralorgan und auch im Rückenmark, besondere Reflexhemmungsentren angebracht seien. Solche Centren im Rückenmark kann man nicht mehr, wie die hypothetischen Hemmungsentren im Gehirn, als übergeordnete, sondern nur als nebengeordnete Apparate neben den Reflexübertragungsentren des Rückenmarks gelten lassen; damit müssen sie die jene stützende Analogie mit dem Herzregulationscentrum ein. Und wenn man erwägt, welche Complication man durch die Annahme solcher Centren, mögen sie im Gehirn oder im Rückenmark gesucht werden, in das Verständniss der Function und des Leitungsvorganges im Centralorgan einführt, anstatt das Verständniss zu erleichtern, die Anschauungen zu vereinfachen — denn jeder sen-
sible Reiz müsste ja nicht nur ein entsprechendes Reflexübertragungs-
sondern auch alle Reflexhemmungszentren erregen können, und von
den Gesetzen, nach denen bald die einen, bald die andern erregt
werden, wüssten wir erst recht noch nichts! — so wird man an
die Existenz solcher spezifischen Hemmungszentren nicht glauben,
so lange die Möglichkeit einer anschaulichen und einfachen Er-
klärung vorhanden ist.

Darum sind die von Göltz zuerst bei der Analyse des von
ihm gefundenen Quackversuches gemachten Erläuterungen über die
Reflexhemmung so viel ansprechender. Er führte als ein experi-
mentelles Gesetz aus, „dass ein Centrum, welches einen bestimmten
Reflexakt vermittelt, an Erregbarkeit für diesen einbüsst, wenn es
einwirkend von irgend welchen andern Nervenbahnen aus in Erre-
gung versetzt wird“; er sieht also ab von spezifischen Hemmungs-
vorrichtungen, verlegt den Grund der Hemmung in Zustands-
änderungen der Reflexübertragungszentren selbst. Demgegenüber hält Nothnagel in seiner Arbeit „über den klonischen
Kampf“ 1) an den spezifischen reflexhemmenden Apparaten im Rücken-
mark fest, sich stützend auf neue Versuchsresultate. Ich werde
hierauf sogleich näher eingehen, nachdem ich vorher, auf dem Boden
der Göltz’-schen Ausführungen weiterbauend, den Vorgang der
Reflexhemmung besprochen haben werde.

X. Ich habe gesagt: „Diejenigen Reize verstärken gegenseitig
ihre Wirkung auf ein bestimmtes Centrum, welche, jeder für sich,
dessen Thätigkeit erzeugen“. Dem füge ich hinzu: Diejenigen
Reize unterdrücken die Wirkung eines andern Reizes,
welche für sich allein andere Centren zur Erregung
und Thätigkeit bringen.

Sehr rein und klar stellt sich die Sache dar beim Göltz’-
schen Quackversuch. Das sanfte Streicheln der Rückenhaut eines
des Grosshirns beraubten Frosches erweckt reflektorisch ein lautes
schnarrendes Quacken; dieses bleibt aus, wenn man gleichzeitig die
Hinterpfote z. B. durch Umschnürung, reizt, also einen Reiz an-
bringt, der eine Fortbewegung, bei solchen Fröschen allerdings meist
nur einen Satz, hervorzurufen pflegt. Umgekehrt macht bei der
Einzelwirkung dieser Reize das Thier auf das Streicheln des Rückens
keine Ortsbewegung, giebt bei der Reizung der Pfote in der Regel

1) Virchow’s Archiv XXXIV.
keinen Laut von sich. Also wirken zwei sensible Reize, die jeder für sich eine andere Tätigkeit auslösen, ein anderes Centrum erregen. Die Folge ist, dass der schwächere Reiz, hier das Reiben der Rückenhaut, von der Auslösung seiner Wirkung abgehalten wird, während der stärkere Reiz, je nach seiner Stärke, die ihm zustehende Wirkung, hier die Bewegung der Hinterextremitäten, entweder hervorruf oder dafür zu schwach ist, resp. nach Hervorrufung der Tätigkeit zu schwach ist, sie nochmals zu erzeugen, aber hinlänglich stark nachwirkt, um die Reizung und Tätigkeit des andern Centrums unterdrückt zu erhalten.

Die intrazentrale Verbindung der beiden hier in Betracht kommenden Stellen des Centralorgans, also des Knotenpunktes für die Innervation des Exspirations- und Stimmapparates und des Knotenpunktes für die Innervation der Hinterextremitäten ist aber keine einseitig auf Hemmungswirkungen beschränkte. Denn beim unversehrten Thier kann der Stimmapparat durch sensible Reize, die den Hinterkörper treffen, in Tätigkeit versetzt werden (Schmerzensschrei), und diesen centralen Mechanismus und die nervösen Verbindungen, die die Auslösung des Stimmreflexes vom Hinterkörper aus ermöglichen, ruft die Exstirpation des Grosshirns offenbar nicht. Nach diesem Eingriff wird nun die mechanische Fähigkeit nicht mehr zur physiologischen Tätigkeit, und zwar deshalb, weil, wenn einmal ein den Hinterkörper treffender sensibler Reiz so stark ist, dass er auf die vorderen Theile des Centralorgans tätigkeitserregend übergreift, er dann in diesem zunächst andere Leistungen, vor Allem Ortsbewegungen, auslöst, was um so weniger auffallen kann, als auch der unversehrte Frosch überhaupt nicht leicht und sicher zum Schreien zu bringen ist.

Anderseits ist das Quacken beim grosshirns beraubten Frosch nicht ein für jede Reizung der Rückenhaut zutreffender Reflex; es erfolgt nur bei dem sanften Reiz des Streicheln. Sowie man einen starken Reiz auf die Rückenhaut applizirt, gleichgültig ob in geringer oder weiter Ausbreitung, so geschehen statt des Quackens allgemeine Körperbewegungen, Bewegungen auch der Hinterbeine. Ferner werden wir von schwachen auf den Vorderkörper wirkenden Reizen eine Hemmung auf die Reflexe des Hinterkörpers stattfinden sehen.

Also ist die funktionelle Verknüpfung der beiden genannten
Ueber d. Erregung u. Hemmung d. Thätigkeit d. nervösen Centralorgane. 183

Punkte des Centralorgans eine doppelsinnige, eine nach beiden Seiten erregende und hemmende.

Dazu kommt noch, dass das Reflexquacken nicht bloß durch die Reizung der Hinterpfoten, sondern auch durch die Quetschung der Vorderpfoten oder der Rumpfhaut, und durch die starke mechanische oder chemische Reizung derselben Hautstelle, deren sanftes Reiben eben das Quacken erzeugt, unterdrückt und gehemmt wird, während diese Reize zugleich, wie gesagt, Extremitätenbewegungen hervorrufen. — Daraus lernen wir bezüglich des Quackversuches Folgendes:

1) Wir haben es nicht mit specifisch hemmenden Reizen oder mit einseitig hemmend wirkenden nervösen Leitungsbahnen, Verknüpfungen und Apparaten zu thun.

2) Das Verhältniss ist nicht ein solches, dass auf der einen Seite die Reizung sensibler Nerven, die weit von dem durch einen andern Reiz erregten Reflexapparat sich in’s Rückenmark einsenken, hemmend auf dessen Reflexakt wirkt, und dass auf der andern Seite die Reizung der in der gleichen Höhe und anatomischen Lage stehenden sensiblen Nerven ihre Reflexwirkung gegenseitig verstärkt; vielmehr sehen wir,

3) dass im Centralorgan diejenigen Reize hemmend auf die durch einen andern Reiz hervorgerufene Thätigkeit einwirken, welche, für sich allein, die Thätigkeit anderer Innervationscentren ansprechen.

Ich habe soeben angeführt, dass die schwache sensible Reizung der Haut des Vorderkörpers hemmend einwirkt auf die Reflexe der Hinterextremitäten. Tarchanoff und ich 1) haben gezeigt, dass ein Frosch die Pfote später aus der angesäuerten Flüssigkeit zieht, wenn man ihn mit den Fingern an der Brust festhält, als wenn man ihn an einer durch den Oberkiefer gelegten Fadenschlinge frei hängen lässt. Eine gleiche Verminderung der Reflexbewegungen der Hinterbeine sah ich bei schwacher chemischer Reizung der Rückenhaut. Die Hemmung dieser Reflexe durch Umschnürung der Vorderpfoten, von Lewisson zuerst beschrieben, ist bekannt. Ferner, wenn man einen Frosch an einem Hinterbein verwundet, so wird die durch gleich grosse mit Säure benetzte Papierstückchen ausgeführte Reizung der Bauchhaut auf derselben Seite später mit

1) Dieses Archiv IX. S. 387.
Contraction der Bauchmuskeln beantwortet, als auf der andern Seite oder als vorher auf der gleichen Seite.

Wie verhält sich aber dem gegenüber das unter VI b Angegebene, dass ein auf den Vorderkörper wirkender sehr heftiger Reiz die Reflexbewegungen der Hinterextremitäten befördert? Wie erklärt sich diese entgegengesetzte Wirkung einer schwachen und starken Reizung derselben Hautstelle? Ich kann das nur darauf beziehen, dass eine solche starke Reizung das ganze Centralorgan und auch die Bewegungszentren der Hinterextremitäten zur Thätigkeit erregt und dadurch ihre Erregbarkeit steigert; dass hingegen ein schwächerer Reiz nur die zunächst betroffenen Centren im vorderen Rückenmarksabschnitt erregt, deren Erregung eben die Wirkung anderer Reize auf andere Centren beeinträchtigt.

Aus dem Gesagten ist zu schliessen, dass ein hemmend wirkender sensibler Reiz — etwa beim Quackversuch die Umschnürung oder Quetschung einer Pfote — auch seinseits in seiner erregenden Wirkung beeinträchtigt und geschwächt wird durch eben die von ihm gehemmte Thätigkeit; der auf die Rückenhaut wirkende schwache Reiz wird durch die Reizung der Pfote an seiner Reflexwirkung vollständig gehindert; aber zugleich wirkt er seinseits herabsetzend auf die durch diese Reizung der Pfote hervorgerufenen Reflexe, so dass diese schwächer ausfallen müssen. — In der That ist es mir bei allen Thieren stets so vorgekommen, als sei die Reflexhemmung immer eine gegenseitige, als schwäche der unterdrückte Reflexreiz die dem unterdrückenden Reiz zustehenden Reflexactionen.

XI. Ich wende mich jetzt zur Hemmung der im isolirten Lendenmark beim Hunde ausgelösten Reflexe 1).

Die Zerrung, die beim senkrechten Herabhängen die Hinterextremitäten durch den Zug ihres eigenen Gewichts erfahren, genügt, um pendelnde Bewegungen auszulösen. Sie halten ein, wenn man den Schwanz kneift, während die starke Reizung des Schwanzes ihrerseits ausser Bewegungen seiner selbst auch Beinbewegungen bewirkt. Jene Pendelbewegungen der herabhängenden Hinterbeine hören ferner auf, — die Beine verharren während dieser Zeit still in bestimmter Stellung — wenn die Anfüllung der Harnblase einen Reiz auf die Blasennerven ausübt, der reflektorisch eine Harmenteilung bewirkt. Die natürliche Reizung der Blasennerven hemmt

1) Vergl. dieses Archiv IX. Reflexbewegungen beim Hunde.
also die auf einen geringfügigen Reiz erfolgenden Beinbewegungen. Die gerade im Gang befindliche Blasencontraction wird aber zum Aufhören gebracht, wenn man eine Pfote quetscht, was seinerseits Reflexbewegungen der Beine verursacht — wie eben gesagt, schwächere Bewegungen, soweit dies taxirt werden kann, als dieselbe Reizung dann hervorbringt, wenn nicht der andere, unterdrückt werdende Reiz von der Blase her dem Centralorgan zugeht. Anderseits erzeugt ein starker rascher Druck auf die Blase (vielmehr Blasengegend) Reflexbewegungen der Beine. Endlich ist sicher auch die anatomische und mechanische Fähigkeit, d. h. die erforderlichen nervösen Verbindungsbahnen vorhanden, um durch Reizung der Beinnerven die Blasencontraction reflectorisch anzuregen; wenigstens ist diese bei manchen Hunden von der Haut der äussern Oberschenkelseite aus ebenso leicht anzuregen, wie durch Reiben des Dammes, und bei Fröschen habe ich Tags nach der Decapitation oft die elektrische Reizung das N. ischiadicus und auch das Quetschen der Pfote von Harnentleerung begleitet gesehen. Dass beim Quetschen der Pfote diese Reflexbahn beim Hunde nicht ersichtlich betreten kann, beweist ebensowenig ihr Nichtvorhandensein, und ist ebenso in der überwiegenden Thätigkeit anderer Centren begründet, wie wir es beim Stimmreflex des Frösches gesehen, der trotz vorhandener anatomischer Möglichkeit durch die Reizung des Beines nicht zur Erscheinung gebracht wird. Man beachte überhaupt, wie alles beim Quackversuch und seiner Hemmung Gesagte auf das hier Besprochene übertragbar ist.

Das sanfte Reiben der Vorhaut ruft beim Hunde, auch wenn das Rückenmark durchschnitten ist, reflectorische Erection hervor, wobei die Beine aus ihren Pendelschwingungen, wie bei der Blasenentleerung, in eine bestimmte Ruhestellung übergehen, wobei also eine Hemmung auf die Bewegungszentren der Beine stattfindet. Die Erection schwindet, sobald man die Pfote oder den Schwanz kneift, was deren Bewegungen hervorruft. Hier kann man noch sagen: Die gereizten sensiblen Nerven senken sich in einer andern Höhe ins Lendenmark ein, daher die Hemmung. Aber wie stimmt zu solcher anatomischer Begründung der Hemmung die Thatsache, dass die durch sanftes Reiben der Vorhaut erzeugte Erection durch elektrische Reizung und durch mechanische Quetschung der Vorhaut zum augenblicklichen Schwinden gebracht wird? Hier haben wir
wieder die entgegengesetzte Wirkung der schwachen und starken Reizung der gleichen Hautstelle.

Nun, jene starke Reizung der Vorhaut erweckt Reflexbewegungen der Beine, gerade wie das Quetschen der Pfote: daher wirkt sie, wie dieses, hemmend auf das Erectionscentrum.

Die Tatsache ist höchst merkwürdig. So gut wie der schwache Reiz, trifft doch auch der starke zunächst und zumeist das dem Vorgang der Erection vorstehende Centrum, und die Centren der Muskelbewegungen sind erst die an zweiter Stelle betroffenen und erregten; dennoch unterbleibt die Thätigkeit des ersteren zu Gunsten der Thätigkeit der Bewegungszentren. Warum bewirkt nicht die starke Reizung der Vorhaut gerade so, wie die schwache Reizung, umgekehrt Erection und Hemmung der Extremitätenbewegung? Ich möchte das damit in Zusammenhang bringen, dass die motorischen Centren im Rückenmark entschieden anatomisch (an Grösse und Ausbreitung) und funktionell aber die den vegetativen Vorgängen vorstehenden Centren überwiegen. Wenn einmal ein Reiz geeignet ist, sie zu erregen, dann gerathen auch gleich mehr Ganglienzellen in Thätigkeit (um mich schematisch, aber doch vielleicht der Wirklichkeit nahe kommend, auszudrücken), als einem vegetativen Vorgang, z. B. der Erection überhaupt vorstehen, oder vielleicht kann man besser sagen: die Thätigkeitserregung der motorischen Centraltheile besteht in einem die der andern Centren übertreffenden Kraftverbrauch und Kraftzerlegung. Das verschafft ihnen dann das Uebergewicht. In entsprechender Weise kann man sich, um darauf zurückzukommen, vorstellen, dass eine sensible Reizung der Pfote, die an sich geeignet wäre, beim hirnlosen Frosch reflectorisches Quacken, im isolirten Lendenmark des Hundes Blasencontraction anzuregen, zu gleicher Zeit den ganzen motorischen Centralapparat in eine so überwältigende Erregung versetzt, dass ihr gegenüber jene betreffenden Centren, wenn nun einmal das Centralorgan diese zweierlei Thätigkeiten nicht gleichzeitig zu leisten vermag, nicht zur Wirksamkeit gelangen können.

An den angezogenen Fall von Reflexhemmung könnte man leicht mit einigem Schein von Berechtigung anknüpfen, um, die Herzen'sche Theorie aufnehmend, die Reflexhemmung in einer Ueberreizung und Ermüdung beruhen zu lassen. Man könnte nämlich sagen: das Centrum der Erection im Lendenmark ist nach Ausweis des Zustandes seines peripheren Organs durch den geräumen
sensible Reiz des Reibens der Vorhaut in seine volle Thätigkeit
und in den maximalen Erregungszustand versetzt worden. Darum
muss eine jetzt ausgeführte starke Reizung derselben Hautstelle
eine Ueberreizung desselben Centrums, und damit eine Erschaffung
bewirken. — In dieser Auffassung würde aber das Wort »Ueber-
mündung« wieder einmal recht sich in seinem zweifelhaften Werthe
einer Ausrede zeigen. Denn wie stimmt es zu ihrer Annahme, dass
niemals die starke Reizung der Vorhaut die vorher nicht bestehende
Erection erzeugt, und dass sofort nach dem Aufhören der starken
Reizung das sanfte Reiben die Erection wieder hervorruft? Die
Uebermündung müsste doch die Reizung überdauern. Ja, oft
stellt sich die durch die starke Reizung gehemmte Erection (und
Blasencontraction) beim Aufhören des Reizes sofort von selbst, d. h.
ohne neuen gelinden Reiz wieder ein. Wie will man das durch
Uebermündung, und wie will man es anders erklären, als dass die
Wirkung und Nachwirkung des starken Reizes dann im Erections-
trum zur Geltung kommt, sobald sie ihren erregenden Einfluss auf
die Bewegungszentren eingebüsset?

Mit weit mehr Recht könnte man den Satz aufstellen, dass die
»pathischen« Reize die »taktilen« an ihrer Wirkung hemmen. In-
dess diese Eintheilung der Reflexreize kränkt daran, dass man im
einzelnen Fall nicht weiss, ob ein Reiz ein pathischer oder taktiler
ist. Immerhin trifft, mag man die pathischen Reize definiren als
solche, welche im intakten Thier schmerzerregend wirken würden,
oder als solche, deren Reflexwirkung nicht zur gereizten Stelle in
bestimmter, ausschliesslicher Beziehung stehe (Danilewsky),
jene Aufstellung für manche Fälle von Reflexhemmung zu. Aber
sie ist nicht umfassend genug. Einerseits hemmt der taktile Reiz
des sanften Berührens grosser Hautflächen die durch geringe Reize
hervorgerufenen Beinbewegungen beim Frosch und Hund; andererseits
steigern, wie sub VI erörtert, auch entschieden pathische Reize die
Reflexerregbarkeit.

Kurz, ich glaube nicht, dass das Gesetz der Reflexhemmung
sich gegenwärtig genauer präzisiren lässt, als dahin, dass diejenigen
Reize auf die von andern Reizen erzeugten Reflexe hemmend wirken,
welche, andere Innervationszentrums erregend, eine andere Thätigkeit
des Organismus auslösen. Das Centralorgan wägt die ihm zuge-
gehenden Anregungen zu verschiedenen Thätigkeiten gleichsam ab,
und lässt die Stärkedifferenz der beiden Reize in Wirksamkeit

K. Pfäger, Archiv f. Physiologie. Bd. X. 14
treten, so dass die Wirkung des stärkeren Reizes eine solche ist, als ob er allein mit der der Differenz der Reize gleichen Stärke auf das Centralorgan einwirkte. Bei gleichen Reizzähren ist dann die äussere Thätigkeit gleich Null.

XII. In dem Vorigen sahen wir die den Körperbewegungen vorstehenden Centren gleichsam in einem Oppositionsverhältniss stehen zu den Centren anderer, besonders vegetativer Funktionen. Die Thätigkeitserregung von Centren der einen Gruppe schloss die gleichzeitige Thätigkeit der andern Centren aus. Im gleichen Verhältniss sahen wir auch die Innervationscentren des Vorder- und des Hinterkörpers, speciell die Centren für die Vorder- und für die Hinterextremitäten beim decapitirten Frosche stehen. Während, wenn die letzteren durch einen Reiz in Erregung versetzt wurden, ein zweiter hinzutretender gleichfalls auf die Hinterextremitäten wirkender Reiz die Wirkung verstärkt, tritt eine Hemmung ein, wenn von zwei gleichzeitigen Reizen der eine nur die Bewegungscenentre der Vorderextremitäten, der andere nur die Bewegungscenentre der Hinterextremitäten erfasst. Hier steht überall der ganzen centrale Innervationsapparat für die Hinterextremitäten den übrigen motorischen und den sonstigen Centren als Ganzes gegenüber. Wir werden jetzt gerade an diesem Innervationsapparat der Hinterextremitäten weitere Hemmungsscheinungen verfolgen. Auch durch sensible Reizung der Hinterextremitäten lassen sich Reflexbewegungen derselben unterdrücken. Widerspricht das nicht allem Vorgetragenem, und besonders dem schon erwähnten Umstand, dass die auf die Hinterextremitäten gleichzeitig wirkenden Reize ihre Reflexwirkung auf dieselben summiren?

Die Schwierigkeit schwindet, wenn wir dem Begriff und der Bedeutung eines Centrums näher treten. Ein Centrum ist die Summe der unter einander und mit der Nachbarschaft eng verbundenen Ganglienzellen, welche ein bestimmtes Organ oder einen Apparat innerviren, und mit ihm in nächster sensibler Verbindung stehen.

Man darf einem Centrum noch die weitere Eigenschaft zuschreiben, dass alle seine centralen Elemente stets zusammen erregt und thätig werden. Aber dieser Begriff des Centrums kann verschieden weit gefasst werden, dem entsprechend, dass die einzelnen Centren nicht anatomisch scharf zu umgrenzen und physiologisch zusammengehörige Funktionen nicht von einander zu trennen sind. So kann man beim Centrum der Athemmuskeln nur an die normal

Bei dieser Auffassung werden wir das oben Gesagte auch hier vollständig zutreffend finden.

Herzen fand, dass beim decapitirten Frosch die Reizung des Ischiadicus die Reflexerregerbarkeit des andern Beins herabsetzt; dem gegenüber hob Setschenow hervor, dass bei starker Reizung die Reflexerregerbarkeit des andern Beines gesteigert ist. Ich erkläre dies so: Wenn ein Reiz nur das rechtsseitige Bewegungscentrum zur Thätigkeit bringt, so beeinträchtigt diese die Wirkung eines geringeren anderen Reizes auf das linkseitige Centrum; wenn ein Reiz aber stark genug ist, beide Centren, auch das anderes Centrum zu erregen, so findet ein zweiter dieses treffende Reiz einen bessern, schon vorbereiteten Boden.

Dasselbe ergiebt sich aus den Versuchen, die ich in dieser Richtung anstellte.

Ich prüfte die Reflexzeiten bei Fröschen in Pausen von 5 Min. nach der Türk'schen Methode. Die Reizflüssigkeit enthielt 1/5 Pct. Schwefelsäure. Viele Frösche zogen beim Eintauchen beider Pfoten beide gleichzeitig zurück. Jetzt wurde nur eine Pfote eingetaucht, bei Beginn der Reflexbewegung sofort in Wasser abgepult, und dann sofort die andere Pfote eingetaucht. Dabei wird stets die zuerst eingetauchte Pfote später zurückgezogen, als die erste. Der erste Reiz hatte wegen seiner raschen Entfernung sich nicht auf das anderes Centrum erstrecken können, wirkte aber in dem gleichseitigen, zur Thätigkeit gebrachten Centrum noch nach, so dass die Reizung der andern Pfote und des andern Centrum in ihrer Wirk-
samkeit eine Beeinträchtigung erfuhr. Wurden später die Pfoten in umgekehrter Reihenfolge gereizt, so wurde nur die vonhin verspätet reagierende Seite die rascher thätige. Die Differenz betrug 2—5 Metronomenschläge (100 l. d. Min.). — Bei neuem gleichzeitigen Eintauchen beider Pfoten fand entweder gleichzeitiges oder auf der zuletzt gereizten Seite ein früheres Zurückziehen statt. — War vorher in die Erregbarkeit der Pfoten constant eine ungleiche, so liess sich derselbe Erfolg um so deutlicher machen. Das beim Eintauchen beider Pfoten regelmässig zuerst bewegte Bein, z.B. das linke, wurde erst nach einer grössern Zahl von Metronomschlägen überhaupt, und wurde insbesondere später als die rechte Pfote herausgezogen, wenn man die letztere zuerst einzeln eintauchte. — Ob nur eine, oder ob beide Pfoten zugleich eingetastet werden, macht keinen constanten erheblichen Unterschied in der Reizzeit. —

Wenn man die rechte Pfote eintaucht und die Säure nicht abspült, so geräth auch das linke Bein in Bewegung. Ist dieses wieder zur Ruhe gekommen, und taucht man es nun gleichfalls in die Flüssigkeit, so wird es nicht, wie in den vorigen Versuchen, nach längerer, sondern nach kürzerer Zeit herausgezogen, als das zuerst gereizte rechte Bein. Ebenso, wenn man gleichzeitig mit dem Eintauchen der einen Pfote auf die andere einen gehörig starken chemischen oder mechanischen Reiz wirken lässt, wird die eingetauchte rascher und heftiger bewegt, als jedem einzelnen der Reize entspricht; es tritt dann dieselbe Wirkung ein, als wenn auf das gleiche Bein zwei Reize wirken würden. Das Eintauchen in die Säure erregt eben jetzt keine neue Thätigkeit, kein anderes Centrum, sondern trifft ein schon ohnehin gereiztes Centrum: daher die Summirung, keine Hemmung der Wirkungen.

Auf die bemerkenswerthe bekannte Thatsache muss ich noch eingehen, dass der Frosch die Pfote nicht aus dem angesäuerten Wasser zieht, so lange man die andere Pfote mechanisch quetscht; und ganz gehörig quetscht; hier also scheinen die soeben gegebenen Thatsachen und Erörterungen ihre Widerlegung zu finden. Wenn man die Sache genau ansieht, wird man statt der Widerlegung eine Stütze für das Behauptete sehen. Nicht die gleichmässig, sondern die intermittirend wirken der Reize sind die für die Nerven wirksamen Quetscht man beim enthirnten Frosch eine Pfote, so macht er anfangs einige Bewegungen, dann hängt das nicht gereizte Bein schlaff
berab, und ist in diesem Stadium auch durch andere, auf dasselbe
direct einwirkende sensible Reize nicht zur Bewegung zu bringen;
sowie man nun die gequetschte Pfote los lässt, erfolgen mächtige
Bewegungen aller Extremitäten. Also der mechanische, noch so
grobe Insult ist nur bei seinem plötzlichen Eintreten und bei seinem
Aushören ein starker, das Centralorgan in weiter Ausbreitung er-
greifender Reiz; so lange er gleichmässig fortbesteht, ist er ein
schwacher Reiz, der nur das nächste centrale Innervationsgebiet
erregt, was dann die Unfähigkeit der andern Centren zu reflektori-
scher Erregung zur Folge hat.

Ein entsprechendes, hierher gehöriges Verhalten lässt sich
auch für die Reflexbewegungen des Hundes auffinden. Die beim
Herabhängen des Hinterkörpers durch die vom Muskelgefühl auf-
gefasste Zerrung erregten reflektorischen Pendelbewegungen der
Beine hören, sobald man eine Pfote festhält, auch im andern Beine
auf; kneift man aber die Pfote, so werden sie verstärkt, und zwar
gleichfalls in beiden Beinen.

So klar zu Tage tretend und belehrend in mancher Beziehung
die vom isolirten Lendenmark des Hundes ausgelösten Reflexe in
ihrer Erregung und Hemmung sind, so stehen sie doch gerade in
dem hier behandelten Punkte denen des Frosches an Deutlichkeit
nach. Einmal fehlt es an einem Mittel, geringere Hemmungen
und Beeinträchtigungen der Erregbarkeit so, wie es beim Frosch
ausführbar ist, am Hunde genau zu messen. Sodann aber möchte
ich glauben, dass bei den Hunden, die hier in Betracht kommen,
etwas andere Verhältnisse vorliegen. Bei ihnen ist das Rückenmark
schon vor längerer Zeit durchschnitten, mit den Fröschen experi-
mentirte ich wenige Stunden nach der Decapitation. Auch wenn
Frösche die fast unblutige Enthirnung durch Einstich hinter der Me-
dulla oblongata längere Zeit überleben, so genügen in den späteren
Tagen viel geringere Reize als im Anfang, um alle Extremitäten
in Bewegung zu setzen. Zugleich geschehen die Bewegungen wieder
mit einer gewissen Coordination, so dass geringe Ortsbewegungen,
Uberschlagen u. ähnl., wieder ermöglicht werden. Auf die ent-
sprechende Veränderung möchte ich beim Hunde die geringere Deut-
llichkeit der Hemmung der Bewegungen der Beine durch auf sie
einwirkende Reize beziehen. Entschieden vervollkommnen sich nach
der Durchschneidung des Rückenmarks allmählich die motorischen
Centren, zwar nicht an Stärke, aber an Feinheit ihrer Leistungen.
Ausgeschlossen von der regulirenden Beeinflussung seitens des Gehirns erlangen die Bewegungszentren der Beine durch die oftmalige Uebung die Fähigkeit, die sie treffenden sensiblen Erregungen dahin zu verarbeiten, dass die Selbstregulierung der Beinbewegungen, die ich wahrscheinlich gemacht zu haben glaube 1), und die auch schon im intacten Organismus besteht, einen höheren Grad der Ausbildung erlangt. So hat man es nicht mehr sowohl mit einzelnen Innervationszentren einzelner Beinmuskel, sondern mit dem zusammengehörigen Innervationssystem beider Beine zu thun, in welchem es durchaus nicht ausgeschlossen, sondern nur im Einzelnen trotz aller Wahrscheinlichkeit schwerer nachzuweisen ist, dass ein Reiz, indem er eine Leistung hervorbringt, eine andere in ihrem Zustande kommen hemmt.

XIII. Nunmehr kann ich zur Besprechung von Nothnagel's "reflexhemmenden Vorrichtungen" im Rückenmark übergehen. Nothnagel reizte beim decapitirten Frosch den Ischiadicus elektrisch und fand Bewegungslosigkeit und Aufhören der Reflexerregbarkeit im andern Bein. Wenn er nach 24 Stunden wieder reizte, so machte das andere Bein nicht nur auf Berührung Reflexbewegung, sondern verfiel in Folge der Ischiadicusreizung selbst reflektorisch in heftige klonische Zuckungen. Er schliesst daraus, dass im Rückenmark reflexhemmende Vorrichtungen vorhanden sind, die sehr rasch und viel früher als die reflexübertragenden absterben.

Setschenow beschreibt schon früher bei der Anstellung solcher Versuche andere Erfolge; ebenso kam ich bei ihrer Wiederholung zu andern Resultaten. Eine solche Verschiedenheit scheint mir nur daraus erklärl. dass die Versuchsergebnisse nicht von unfehlbarer Constanz sind — und das sind sie hier wegen der verschiedenen Erregbarkeit verschiedener Frösche — und dass jedem Beobachter, sobald er nach den ersten Versuchen sich ein Urtheil zu bilden beginnt, andere Umstände unwillkürlich als die Hauptsache sich aufdrängen.

Ich habe Nothnagel's Beschreibung vielfach zutreffend gefunden, sah aber so viel Abweichendes und Hinzuzufügendes, dass dieses mir nicht als Ausnahme erscheinen kann. Das Verhalten, welchem ich oft genug begegnete, um es als das typische anzusehen, ist Folgendes: Wenn man beim Frosche 1/4—2 Stunden nach

1) Dieses Archiv IX. S. 375 ff.
der Decapitation einen Ischiadicus mit dem Inductionsstrom reizt, so tritt bei einer gewissen, im Allgemeinen schwachen, jedoch für verschiedene Frösche verschiedenen Stromstärke eine Beugung beider Beine ein; gleich darauf erlöscht die Wirksamkeit des Reizes auf die andere Seite, das intakte Bein hängt wieder schlaff herab und ist in diesem Stadium schwer oder gar nicht durch mechanische Reizung zu einer Reflexbewegung zu bringen; manchmal fehlt die voraufgängige Beugung, oder geht eine durch einen voraufgehenden Reiz veranlasste Beugung bei Beginn der schwachen electricen Reizung der andern Seite sofort zurück. — Lässt man jetzt sofort durch Verschieben der sekundären Rolle einen stärkeren — mittelstarken bis starken — Strom einbrechen, so fährt das soeben un-thätige intakte Bein sogleich in Beugestellung, macht nach einiger Zeit einige langsame mittlere Streckungen und Beugungen, dann einige gewaltsame klonische Zuckungen, die übergehen in tetanische Streckung. Wenn jetzt der Strom aufhört, besteht oft der Krampf noch eine Weile fort; der Frosch behält nach diesen Vorgängen und nach einem vortübergehenden Zustand der Erschöpfung eine erhöhte Erregbarkeit, die, wenn nach einigen Stunden dasselbe Verfahren wieder eingeleitet wird, sich so steigert, dass er ganz das Bild eines strychninisirten Frosches bis zum Tode bietet (siehe oben). Aber auch ohne dass man es zu dieser äussersten Tätigkeit hat kommen lassen, besitzt der Frosch, wenn nach einigen Stunden oder am andern Tage der Versuch wiederholt wird, meist eine gesteigerte Erregbarkeit, so dass geringere Stromstärken hinreichen, um die angegebenen Reflexerscheinungen hervorzubringen. Allerdings fehlten einzelne Male am ersten Tage die klonischen Zuckungen; sie fehlten aber ebenso oft am zweiten Tage; beide Fälle, auf Un-tauglichkeit der Frösche beruhend, sind zu vernachlässigen. Die Hauptsache ist, dass unmittelbar nacheinander, und zuweilen sogar in mehrmaliger Wiederholung die schwächere Ischiadicus-Reizung eine Reflexhemmung, die stärkere Reizung eine Reflexthätigkeit der andern Seite hervorrief, dass also in einem verschieden raschen Absterben reflexhemmender und übertragender Apparate die Erklärung nicht liegen kann.

Die verschiedenen Abweichungen will ich nicht aufführen, und nur noch erwähnen, dass zuweilen Frösche, die auf mechanische Reizung einer Pfote sehr schwache Refluxe machen, nach einer mittelstarken Reizung des Ischiadicus stärkere allgemeine Reflex-
erregbarkeit besitzen; ferner, dass bei manchen Fröschen am ersten oder zweiten Versuchstage die Reflexhemmung durch Ischiadicus-Reizung nur undeutlich oder gar nicht auftritt. Bei solchen Fröschen kann man aber, wenn man sie nach der Türk'schen Methode prüft, vom Vorderkörper her noch eine beträchtliche Herabsetzung der Reflexbewegungen der Hinterbeine constatiren. Also hat man es auch hier nicht mit dem Absterben reflexhemmender Apparate zu thun; vielleicht darf ich mich auf das oben Aufgestellte beziehen, dass die den Beinbewegungen vorstehenden Centren durch die reflektorische Uebung mehr den Charakter eines einheitlichen Centrums erlangen, in ihrer Zusammengehörigkeit gestärkt werden.

Stellen wir die Resultate, auf die es hier ankommt, zusammen, so finden wir in diesen Versuchen dasselbe Verhalten wieder, wie wir es bei den andern Versuchseu sahen. Beim Eintritt einer schwachen Reizung, und, was ich noch nachträglich erwähnen muss, und auch Not h n a g e l erwähnt, noch stärker bei ihrem plötzlichen Aufhören macht das andere Bein Reflexbewegungen; die Wirkung erstreckt sich also über den Ursprungsheerd des gereizten Ischiadicus hinaus auf andere Bewegungscentren. So lange der Reiz andauert, bleibt nur dasselbe Bein gebeugt, das andere unversehrte hängt bewegungslos herab und ist auch durch sensible Reizung nicht zu Reflexbewegungen zu bringen, weil eben das Centrum des gereizten Ischiadicus thätig und zwar allein thätig ist. — Wirkt aber ein stärkerer Strom auf den Ischiadicus, so erstreckt sich seine Wirkung weithin im Centralorgan. Zuerst macht das andere Bein einige schwache Bewegungen, dann arbeiten die Arm- und Rumpfmuskeln, und schliesslich erfolgen die heftigsten Entladungen seitens des gesunden Beines; zugleich ist seine Thätigkeit, weil sein centraler Heerd ohnehin schon erregt wird, jetzt durch einen neuen, sich hinzugesellenden Reiz zu verstärken, seine Reflexerregbarkeit ist erhöht.

Die Annahme besonderer reflexhemmender Vorrichtungen im Rückenmark ist demnach nur unter der gezwungenen, unerwiesenen Voraussetzung möglich, dass eine schwache Reizung sie erregt und eine starke Reizung sie ausschaltet. Mir scheinen die Tatsachen viel besser verständlich aus der merkwürdigen Eigenschaft des Centralorgans, die es nicht gestattet, dass verschiedene seiner einzelnen Gebiete gleichzeitig durch verschiedene Ursachen thätig werden.

XIV. In der gleichen Weise möchte ich die, der Aufstellung
besonderer reflexhemmender Apparate in der Medulla oblongata und
den Lobis opticis (Setschenow) zu Grunde liegenden Versuchs-
resultate deuten. Ein auf jene Stellen des Centralorgans allein
einwirkender Reiz setzt die Erregbarkeit aller andern Stellen zur
Thätigkeit herab, nicht in Folge einer spezifischen Eigenschaft jener
gereizten Heerde, sondern dem allgemein für das Centralorgan
geltenden Gesetz zuzufolge. Ich habe an anderer Stelle hervorge-
hoben, dass die heftige Reizung der automatischen Centren, z. B.
b bei der Erstickung und Verblutung im Stande ist, die reflektorische
Thätigkeit und Erregbarkeit der übrigen centralen Heerde zu hemmen,
so lange dieselbe Reizursache die übrigen Centren in sehr viel ge-
ringerem Grade erregt, und möchte hier den Umstand, dass der
der Med. obl. beraubte Frosch eine höhere Reflexerregbarkeit auf-
weist, als vor ihrer Exstirpation beziehen auf die stete vom Blute
aus angeregte Thätigkeitserregung der automatischen Centren.

Ferner möchte ich glauben, dass diese selbe Erscheinung,
nämlich dass jede, auf irgend eine Weise erzeugte Reizung einer
Stelle des Centralorgans die Thätigkeit aller andern Stellen des-
selben beeinträchtigt, eine Rolle spielt bei der nach der Durch-
schneidung des Rückenmarks bestehenden Unerregbarkeit desselben
für sensible Reize. Beim Frosche dauert nach jenem Eingriff dieses
Stadium nur ganz kurze Zeit, beim Hunde, vielleicht auf die ent-
zündliche Reizung der Wunde zu beziehen, mehrere Tage. Un-
zweifelhaft wirken aber hier auch andere Verhältnisse mit, wie daraus
hervorgeht, dass bei einem decapitirten Frosch die Abschneidung
eines weiteren Stückes vom Centralorgan die Reflexerregbarkeit der
Hinterextremitäten nicht wieder herabsetzt; danach scheint in der
That, beim Frosch wenigstens, jene erste vorübergehende Unerreg-
barkeit die Folge der durch die Durchschneidung bewirkten heftigen,
kampfhaften, eine Ermüdung zurücklassenden Thätigkeit. Doch ist
auch zu beachten, dass die Entfernung des Gehirns und verlängerte
Markes für das Bewegungszentrum der Hinterbeine ein schwerer
wiegender Eingriff sein muss, als die Wegnahme eines entfernten
Stückes Rückenmark; bedeutet doch erstere die Ausschaltung über-
geordneter, letzteres die Ausschaltung nebengeordneter Apparate. —
Beim Hunde dauert, wie gesagt, jenes Stadium geringer Erregbar-
keit längere Zeit, obwohl im Moment der Rückenmarkdurchschnei-
dung durchaus nicht so heftige, kampfhafte Bewegungen des Hin-
terkörpers eintreten, als beim Frosch und Kaninchen.

Man könnte das durch allerlei Hypothesen sich veranschaulichen und etwa so sich ausdrücken, dass das centrale Verbreitungs- und Erregungsgebiet eines sensiblen Reizes eine positive Zustandsände- rung erleidet, — erhöhte Erregbarkeit zeigt —, der gegenüber alle übrigen, vom Reiz nicht erregten Theile des Centralorgans sich negativ verhalten — in einen Zustand verringrigerter oder aufgehobener Erregbarkeit gerathen; und dass die plötzliche Entstehung und Ausgleichung dieser Zustandsänderung beim Eintritt und Verschwinden des Reizes eine allgemeine Thätigkeitserregung des ganzen Centralorgans mit sich führt. Aber damit ist gar nichts anzufangen, weil, wie wir gesehen, die starke Reizung derselben Hautstellen, deren taktile Reizung reflektorisch Quacken oder Erection hervorruft, diese Vorgänge unterdrückt und während ihrer Einwirkung nicht von Neuem erwecken lässt. Ich sehe darum von jeder Erklärung als vorderhand unmöglich ab und halte darum nicht minder für erwiesen und allgemein maassgebend die Eigenschaft des Rückenmarks, dass jede Leistung irgend einer Thätigkeit die Erregung einer andern Thätigkeit beeinträchtigt, während sie die Erregung der gleichen Thätigkeit erleichtert; mit andern Worten, dass jede Reizung beliebiger Centren diese erregbarer macht und zugleich die unbethäihten Centren mehr oder weniger vollkommen unfähig macht, auf ihnen zugehende andere Reize in Thätigkeit zu gerathen.
Die Thätigkeitsteilung sowohl als die Erregbarkeit eines Centrums resultirt also aus der Summe der ihm zugehenden und früher zugegangen Reize, vermindert um die Beeinflussung seitens der jeweilig durch andere Reize erzeugten Erregung anderer Centren.

So spielt die Thätigkeitshemmung durch Reize nicht blos im Rückenmark in Bezug auf die Reflexbewegungen, sondern in den Leistungen des ganzen Centralnervensystems und seiner Theile nach allen Richtungen eine wichtige Rolle. Und so erkennen wir in der Mechanik des Rückenmarks die des Gehirns, in der Mechanik des Gehirns die des Rückenmarks wieder.

Ueber das Auftreten von Gallenfarbstoff im Harn.

Von
F. Hoppe-Seyler.

In Band IX S. 566 dieses Archivs hat Herr Naunyn in Königsberg durch einige Behauptungen, die er auf keine Versuche stützt, versucht, die Resultate zu verdächtigen, welche v. Tarchanoff in mehrten Versuchen an Hunden in meinem Institute erhalten
F. Hoppe-Seyler: Ueber das Auftreten von Gallenfarbstoff im Harne. 209

Die Beziehungen dieses Farbstoffes zu dem Bilirubin sind durch Jaffe's und Maly's Untersuchungen sehr schön nachgewiesen, nur hat Maly wohl nicht Recht, wenn er glaubt, den Uebergang des Urobilin vom Darm zum Harne durch spectroscopic Untersuchung das Blutserum nachweisen zu können. Das Blutserum der Thiere, welche dunkelgefärbten Harn lassen, sieht allerdings gleichfalls dunkelgelb aus und enthält, wie ich mich überzeugt habe, aromatische Substanzen, die durch Salzsäure unter Bildung brauner Substanzen, eines aromatisch kampherähnlich riechenden Körpers (Phenol wird dabei nicht gebildet; die phenolbildende Substanz des Harns, die im Pflanzenfresserharn nie fehlt, ist im Blutserum nicht nachzuweisen), aber ohne Bildung von Urobilin zersetzt werden. Urobilin ist im Rinds- und Pferdeblut spectroscopic nicht nachzuweisen; es zeigt sich ein Absorptionsstreif auf F, aber ein zweiter mitten zwischen F und G und der Stoff, welcher diese Erscheinung hervorruft, ist wohl nichts anderes als Thudichum's Lutein. Man kann durch Fällung mit Alkohol, Abdestilliren, Ausschütteln mit Chloroform, Ansäuern mit Essigsäure und abermaliges Ausschütteln mit Chloroform diesen gelben Farbstoff abtrennen, aber er zerlegt sich beim Abdestilliren des Chloroform und an der Luft sehr leicht, giebt eine braune Masse, die bei Reduction mit Zinn und Salzsäure in Alkohol wieder hellgelb wird, aber die Spectralstreifen des Lutein nicht deutlich erkennen lässt.

Wenn man in einem hellen Hundeharne mit Salpetersäure Gallenfarbstoffreaction erhält, kann man sicher annehmen, dass sie von indigobildender Substanz herrührt, von der oft reichliche Quantitäten im Hundeharne sich finden, wie ich es in älteren Mittheilungen bereits beschrieben habe und Jaffe's Untersuchungen weiterhin nachgewiesen haben.

Herr Naunyn leugnet den hämatogenen Icterus. Was er

Mittheilungen aus dem Laboratorium für angewandte Chemie der Universität Erlangen.

Von
Dr. A. Hilger.

1. Ein Beitrag zur chemischen Zusammensetzung seröser Transsudate.

Ein sehr interessanter Fall von Achsendrehung des Ovariums, der von Dr. Röhlig in seiner Inaugural-Dissertation näher geschildert werden wird, gab Gelegenheit, da Professor Dr. Schröder mir den Inhalt der Ovarialcyste nach zwei Entleerungen zur Untersuchung übergab, interessante Beobachtungen bezüglich der chemischen Bestandtheile zu machen.

Erste Entleerung:

24 Liter einer äusserst zählen Flüssigkeit von bräunlicher Farbe und einem spec. Gewicht von 1,022. Nach mehrstündigem
Stehen zeigten sich deutliche Fibringerinnse, die mikroskopisch und chemisch mit Leichtigkeit festgestellt wurden. Die chemische Analyse zeigte das Vorhandensein der fibrinbildenden Substanzen, Serumalbumin, Paralbumin in grossen Mengen, ausserdem nach Abscheidung der Albuminate eine Kuperoxid reduzierende Substanz, schon wiederholt beobachtet (Traubenzucker?), und reichlich Salze, unter welchen Chlornatrium die hervorragendste Rolle einnimmt.

Der Gesamtgehalt an Albumin betrug 5,8 pCt.
Mucin fehlte vollständig, ebenso die sonst so häufig beobachteten Cholesterin, Harnsäure, Leucin, Tyrosin etc.

Zweite Entleerung:
16 Liter Flüssigkeit von derselben Beschaffenheit und einem spec. Gewicht von 1,02 enthielten ebenfalls wieder die Fibrin bildenden Substanzen, Paralbumin, Serumalbumin nebstd Harnstoff, der in ziemlich beträchtlichen Mengen vorhanden war (0,05 pCt.). Mucin fehlte ebenfalls, dagegen waren 2 Stoffe vorhanden, welche mit den von Eichwald jun. beschriebenen und in Ovariencysteninhalt wiederholt beobachteten Colloidstoffs und Schleimpepton übereinstimmten.

Gesamtgehalt an Albuminat en 3,72 pCt.
Das Auftreten der fibrinbildenden Substanzen einerseits, sowie andererseits das Auftreten von Harnstoff, sowie das Fehlen des Mucins scheinen mir Thatsachen zu sein, welche gerade für die Chemie der Hydroovarial-Cystenflüssigkeit von Werth sind.

In früheren Arbeiten hatte ich Gelegenheit, über die Mineralbestandtheile lebender Brachiopoden, speciell Lingula und Rynchonella 1) Mittheilungen zu machen und besonders auf den Kiesel säuregehalt der Schalen aufmerksam zu sein. Weitere Arbeiten waren dem Studium der Körperbeschaffenheit der Tunicaten 2), speciell dem Auftreten von Cellulose und Chondrin gewidmet, end-

2) Annal. d. Chem. u. Pharm. CLX 3. H.
lich war es eine Untersuchung über die schlauchartige Körperbe-
deckung der Holothurien (in dieser Zeitschrift veröffentlicht), welche
Aufschluss über die organischen Gemengtheile der Gewebe gab.

Bei diesen Untersuchungen gab sich Gelegenheit, auch auf die
Mineralbestandtheile Rücksicht zu nehmen und besonders eine Aschen-
analyse der Holothurienhaut, vor Kurzem vollendet, gibt uns"einige
interessante Aufschlüsse.

Die Kenntniss der Mineralbestandtheile des Körpers niederer
Thiere ist im Allgemeinen eine sehr dürftige und wir wissen, dass
besonders die alkalischen Erden (CaCO₃, MgCO₃, Ca₅(PO₄)₂, CaSO₄,
mit CaF₂) eine Rolle spielen neben Kieselsäure, phosphorsaurem
Eisenoxyd und Alkalien (besonders NaCl und Na₂SO₄ etc.). Welche
Funktionen den einzelnen Bestandtheilen zuzuschreiben sind beim
Lebensprocess, ob dieselben direkt aus dem Medium, in welchem
die Thiere leben, aufgenommen werden in der Form, in welcher
dieselben wiedergefunden werden, ob dieselben durch Umsetzung
im Organismus verändert wurden, darüber bewegen wir uns in den
meisten Fällen vollständig auf dem Gebiete der Hypothese. Aus diesem
Grunde sollen auch die nachfolgenden Mittheilungen nur zur Ver-
breitung der einzelnen Bestandtheile anorganischer Natur beitragen.

Über die Mineralbestandtheile des Tunicatenkörpers haben wir
bis jetzt keine Mittheilungen. Untersuchungen an Phallusien,
Salpen, Ascidien zeigten mir, dass als Mineralbestandtheile des
Körpers, besonders des Mantels, zu betrachten sind: Chlor-
atrium in Spuren, Kieselsäure in kleinen Mengen, schwefelsaurem Kalk,
phosphorsaurem Kalk und Spuren von Fe.

Die Carbonate der alkalischen Erden fehlten vollständig.

Diese Resultate sind durch direkte Untersuchung der Thiere
in wässriger und verdünnt-salzsaurer Lösung gewonnen, nicht in
der Asche, was aus dem Grunde betonenswerth ist, weil der Schwei-
felgehalt vieler Albuminate stets beim Verbrennen Schwefelsäure
liefern muss und bekanntlich die Tunicaten neben Cellulose in ihrem
Mantel auch chondrigene Substanz führen.

Bei den Echinodermen spielt der kohlensaure Kalk eine her-
vorragende Rolle bei der Skelettbildung, indem ja schon die Larven
derschiedener Echinodermen mit Kalknadeln versehen sind. Die
Verkalkungen der Gewebe im Aeusseren und Inneren treffen wir
bei den verschiedenen Unterabtheilungen, den Echiniden, Ophiuriden,
Asteroïden, Crinoiden, Holothurien, und Schlossberger theilt

E. Pfäger, Archiv f. Physiologie. Bd. X.

15
uns in seiner Thierchemie eine Analyse der Schaale eines Echinus
lividus von Brunner mit, welche uns folgende Zahlen liefert:

\[
\begin{align*}
CaCO_3 &= 86,81 \\
MgCO_3 &= 9,84 \\
CaSO_4 &= 1,38 \\
\text{Andere Salze etc.} &= 1,14 \\
\text{Org. Substanz} &= 9,33.
\end{align*}
\]

Meine Untersuchungen der Holothurienhaut zeigten mir in der
wässerigen und salzauren Lösung nachstehende Bestandtheile:

Natriumchlorid, schwefelsaures Natron, schwefel-
sauren Kalk (reichlich), ausserdem Kieselsäure, kohlensaur-
en Kalk, kohlen saure Magnesia, phosphorsauren
Kalk, Eisenoxyd.

Um einen Anhaltspunkt über die Aschenmengen der Haut zu
erhalten, wurden drei Bestimmungen der Asche verschiedener Haut-
theile vorgenommen und nachstehende Resultate erhalten:

1. \(= 5,549\) pCt. Asche,
2. \(= 4,64\) " "
3. \(= 4,41\) " "

Eine grössere Menge Lederhaut, von sehr grossen Exemplaren
stammend, wurde endlich noch eingäscht, um die Zusammensetzung
der Asche zu erfahren und zwar procentig. Das Resultat war:

100 Theile Asche enthielten:

\[
\begin{align*}
6,364 \text{ pCt. im Wasser lösliche Theile: schwefelsauren Kalk,} \\
\text{Chlornatrium und schwefelsaures Natron.} \\
93,632 \text{ in HCl. löslich: kohlen sauren Kalk und Magnesia,} \\
\text{phosphorsauren Kalk, Kieselsäure, Eisenoxyd.} \\
99,996.
\end{align*}
\]

\[
\begin{align*}
6,364 \text{ pCt. in } H_2O \text{ Lösliches:} \\
&= 4,47 \text{ Na}_2\text{SO}_4 \\
&= 0,83 \text{ NaCl} \\
&= 1,04 \text{ CaSO}_4.
\end{align*}
\]

\[
\begin{align*}
93,632 \text{ pCt. in HCl Lösliches:} \\
&= 78,96 \text{ CaCO}_3 \\
&= 12,10 \text{ MgCO}_3 \\
&= 0,98 \text{ Ca}_4(\text{PO}_4)_2 \\
&= 1,02 \text{ Fe}_3\text{O}_4 \\
&= 0,57 \text{ SiO}_2.
\end{align*}
\]

Uebersehen wir diese Resultate, so wird sofort der grosse Ge-
halt an Sulfaten auffallen in Form des Natron- oder Kalksalzes,

Auch ist das Vorhandensein von Kieselsäure und phosphorsaurem Kalk, welche beide bis jetzt noch nicht bei den Echinodermen nachgewiesen worden, erwähnenswerth.

Erlangen, im März 1875.

(Aus dem physiologischen Laboratorium in Zürich.)

Fortgesetzte Untersuchungen über die Beziehungen zwischen Polarisation und Erregung im Nerven.

Von

L. Hermann.

Die hier mitzuteilenden Untersuchungen betreffen die von mir 1) gefundene Thatssache, dass ein den Nerven durchfließender Strom unter dem Einfluss der Erregung des Nerven einen positiven Zuwachs erfährt. Da diese Thatssache eine der wesentlichsten Grundlagen für den von mir aufgestellten Satz bildet, dass die Erregung beim Uebergang zu positiver polarisirten Nervenstellen an Intensität zunimmt, beim Uebergang zu negativeren abnimmt, die sicherste Feststellung dieses Satzes aber für die Theorie der Nerventhätigkeit von entscheidender Bedeutung ist, so habe ich jene Erscheinung mit verbesserten Hulfsmitteln näher studirt, und dabei eine Anzahl Fragen erledigt, die ich früher halb oder ganz offen lassen musste.

Vor Allem war es wünschenswerth, genauer als es mir früher möglich war, festzustellen ob der beobachtete Stromzuwachs von einer im Nerven auftretenden electromotorischen Kraft oder von einer Widerstandsabnahme herrühre. Unter allen Umständen kann

man den Zuwachs wie eine Verminderung des scheinbaren Widerstands des Nerven betrachten und diese letztere nach der Wheatstone'schen Methode messen. Indem man so Beziehungen zwischen der (scheinbaren oder wirklichen) Widerstandsverminderung und der Intensität des Stromes aufsucht, gewinnt man Material, um die vorliegende Frage zu discutiren. Ist vor allem die gefundenen scheinbaren Widerstandszunahme von der Intensität des Messstroms unabhängig, so wird sie als wirkliche Widerstandsabnahme betrachtet werden können, ist dies nicht der Fall, so muss eine electromotorische Kraft im Spiele sein.

Bei diesen Versuchen wurde die Reizstärke immer constant erhalten, und zwar war sie gering, um die Ermüdung möglichst gering zu machen. In allen Fällen betrug der Rollenabstand bei Helmholz'scher Einrichtung des primären Stroms 100 mm. Um ferner den Einfluss der Ermüdung zu eliminiren, wurde in der Mehrzahl der Versuche, nachdem mit der Intensität des Messstroms in bestimmten Stufen gestiegen war, nach bekanntem Verfahren in gleichen Stufen wieder herabgegangen und aus je zwei entsprechenden Stufen der Mittelwerth genommen. Die Reizstelle war von der durchflossenener immer möglichst entfernt.

Der Messwiderstand wurde dem mittleren Widerstand der Nervenstrecke möglichst nahe gewählt, damit der Rheochonddraht (1980 mm lang) nahe seiner Mitte, wo bekanntlich die Bestimmungen am genauesten sind 1), in's Spiel kam. In der grossen Mehrzahl der Versuche bestand er aus einem Zinkvitriol-Capillarwiderstand von 87848 S.-E., der mittels eines Stöpselrheostaten auf 90,000 S.-E. ergänzt wurde 2). Die Rubrik Φ der Tabellen enthält den Werth $\frac{1}{r} - \frac{r}{r}$ (worin 1 die Länge des Rheochords = 1980 mm, r der Schieberstand in mm) mit 1000 multipliçirt; diese Werthe sind mittels einer Interpolationstabelle berechnet und daher die letzte Ziffer ungenau. Da der Messwiderstand = 90000 ist, so erhält man den Widerstand des Nervenstücks jedesmal, wenn man Φ mit 90 multipliçirt. Der Messstrom wurde (mit Ausnahme von Versuch 1)

1) Vgl. dies Archiv Bd. V. pag. 226 Anm.
2) Natürlich variirte dieser Widerstand etwas im Laufe der Zeit, blieb aber während eines Versuches hinreichend constant. Er kommt nur für die absoluten Widerstandswerthe in Betracht, die für unsere Schlüsse irrelevan sind.
von 4 kleinen Grove'schen Elementen geliefert, die einen Siemens'schen Rheostaten im Hauptkreis besassen, und wurde mittels eines du Bois'schen Rheochords abgezweigt.

Aus sehr zahlreichen Versuchsreihen, deren Resultate durchweg auf das Schönste unter einander übereinstimmen, theile ich hier eine Anzahl mit.

<table>
<thead>
<tr>
<th>Nr. d. Reihe.</th>
<th>Ort der Reizung etc.</th>
<th>Stromstärke</th>
<th>Ruhe.</th>
<th>Reizung.</th>
<th>$\Phi' - \Phi$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>r</td>
<td>Φ</td>
<td>r'</td>
</tr>
<tr>
<td>1. Reizung auf der Anodenseite.</td>
<td>1</td>
<td>679</td>
<td>1916</td>
<td>687</td>
<td>1883</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>679</td>
<td>1916</td>
<td>687</td>
<td>1883</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>698</td>
<td>1837</td>
<td>700</td>
<td>1829</td>
</tr>
<tr>
<td>Durchflossene Strecke 23 mm.</td>
<td>2</td>
<td>684</td>
<td>1895</td>
<td>691</td>
<td>1866</td>
</tr>
<tr>
<td>Strom Υ.</td>
<td>1</td>
<td>681</td>
<td>1908</td>
<td>689</td>
<td>1874</td>
</tr>
<tr>
<td>2. Anodenseite.</td>
<td>1</td>
<td>607</td>
<td>2262</td>
<td>689</td>
<td>2099</td>
</tr>
<tr>
<td>Länge d. durchfloss. Strecke 19 mm. Strom Υ.</td>
<td>4</td>
<td>610</td>
<td>2246</td>
<td>641</td>
<td>2089</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>633</td>
<td>2128</td>
<td>658</td>
<td>2009</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>640</td>
<td>2094</td>
<td>655</td>
<td>2023</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>647</td>
<td>2060</td>
<td>663</td>
<td>1986</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>650</td>
<td>2046</td>
<td>663</td>
<td>1986</td>
</tr>
<tr>
<td></td>
<td>8a</td>
<td>658</td>
<td>2082</td>
<td>660</td>
<td>2000</td>
</tr>
<tr>
<td>3. Anodenseite.</td>
<td>1</td>
<td>556</td>
<td>2695</td>
<td>563</td>
<td>2517</td>
</tr>
<tr>
<td>Streckenlänge 13 mm. Strom Υ.</td>
<td>2</td>
<td>595</td>
<td>2328</td>
<td>636</td>
<td>2118</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>614</td>
<td>2325</td>
<td>643</td>
<td>2080</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>614</td>
<td>2174</td>
<td>649</td>
<td>2051</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>633</td>
<td>2128</td>
<td>654</td>
<td>2028</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>641</td>
<td>2089</td>
<td>659</td>
<td>2005</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>651</td>
<td>2041</td>
<td>666</td>
<td>1973</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>665</td>
<td>1977</td>
<td>673</td>
<td>1942</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>668</td>
<td>2082</td>
<td>666</td>
<td>1973</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>642</td>
<td>2084</td>
<td>657</td>
<td>2014</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>635</td>
<td>2118</td>
<td>653</td>
<td>2082</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>636</td>
<td>2163</td>
<td>644</td>
<td>2075</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>614</td>
<td>2225</td>
<td>632</td>
<td>2133</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>596</td>
<td>2282</td>
<td>617</td>
<td>2210</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>558</td>
<td>2549</td>
<td>685</td>
<td>2385</td>
</tr>
<tr>
<td>4. Cathodenseite.</td>
<td>1</td>
<td>738</td>
<td>1690</td>
<td>729</td>
<td>1716</td>
</tr>
<tr>
<td>Strecke 10 mm. Strom Υ.</td>
<td>2</td>
<td>784</td>
<td>1698</td>
<td>734</td>
<td>1698</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>730</td>
<td>1712</td>
<td>734</td>
<td>1698</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>752</td>
<td>1705</td>
<td>736</td>
<td>1690</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>783</td>
<td>1701</td>
<td>737</td>
<td>1687</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>784</td>
<td>1698</td>
<td>734</td>
<td>1687</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>784</td>
<td>1698</td>
<td>734</td>
<td>1696</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>730</td>
<td>1712</td>
<td>750</td>
<td>1710</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>726</td>
<td>1728</td>
<td>730</td>
<td>1712</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>722</td>
<td>1748</td>
<td>726</td>
<td>1728</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>709</td>
<td>1793</td>
<td>709</td>
<td>1793</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>709</td>
<td>1798</td>
<td>702</td>
<td>1821</td>
</tr>
<tr>
<td>Nr. d. Reihe.</td>
<td>Ort der Reizung etc.</td>
<td>Stromstärke</td>
<td>Ruhe.</td>
<td>Reizung.</td>
<td>Φ' - Φ</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------------</td>
<td>-------------</td>
<td>-------</td>
<td>----------</td>
<td>--------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>r</td>
<td>r'</td>
<td>Φ'</td>
</tr>
<tr>
<td>5. Cathodesite.</td>
<td>Strecke 12 mm.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>790</td>
<td>1506</td>
<td>785</td>
<td>1522</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>765</td>
<td>1538</td>
<td>765</td>
<td>1538</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>756</td>
<td>1619</td>
<td>758</td>
<td>1612</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>749</td>
<td>1648</td>
<td>750</td>
<td>1640</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>747</td>
<td>1651</td>
<td>750</td>
<td>1650</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>731</td>
<td>1708</td>
<td>733</td>
<td>1701</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>1715</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>705</td>
<td>1809</td>
<td>706</td>
<td>1805</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>703</td>
<td>1817</td>
<td>704</td>
<td>1817</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>707</td>
<td>1801</td>
<td>707</td>
<td>1801</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>710</td>
<td>1789</td>
<td>7094</td>
<td>1787</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>715</td>
<td>1769</td>
<td>714</td>
<td>1778</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>723</td>
<td>1789</td>
<td>718</td>
<td>1758</td>
</tr>
<tr>
<td>6. Cathodesite.</td>
<td>Strom Ψ.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>654</td>
<td>2028</td>
<td>650</td>
<td>2046</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>635</td>
<td>2118</td>
<td>637</td>
<td>2109</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>630</td>
<td>2145</td>
<td>634</td>
<td>2128</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>628</td>
<td>2155</td>
<td>632</td>
<td>2133</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>627</td>
<td>2168</td>
<td>630</td>
<td>2143</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>623</td>
<td>2179</td>
<td>625</td>
<td>2168</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>620</td>
<td>2194</td>
<td>623</td>
<td>2179</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>616</td>
<td>2215</td>
<td>617</td>
<td>2210</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>612</td>
<td>2345</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>594</td>
<td>2334</td>
<td>594</td>
<td>2334</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>598</td>
<td>2359</td>
<td>598</td>
<td>2359</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>596</td>
<td>2392</td>
<td>597</td>
<td>2317</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>594</td>
<td>2384</td>
<td>596</td>
<td>2322</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>598</td>
<td>2311</td>
<td>600</td>
<td>2300</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>597</td>
<td>2317</td>
<td>600</td>
<td>2300</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>595</td>
<td>2328</td>
<td>599</td>
<td>2306</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>574</td>
<td>2450</td>
<td>574</td>
<td>2450</td>
</tr>
<tr>
<td>Reizung an der</td>
<td>Anodenseite.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>655</td>
<td>2023</td>
<td>665</td>
<td>1977</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>618</td>
<td>2204</td>
<td>624</td>
<td>2174</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>620</td>
<td>2194</td>
<td>625</td>
<td>2168</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>613</td>
<td>2230</td>
<td>616</td>
<td>2215</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>622</td>
<td>2184</td>
<td>623</td>
<td>2179</td>
</tr>
<tr>
<td>7. Anodenseite.</td>
<td>Strom Ψ.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>734</td>
<td>1698</td>
<td>763</td>
<td>1595</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>762</td>
<td>1626</td>
<td>782</td>
<td>1532</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>762</td>
<td>1698</td>
<td>781</td>
<td>1556</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>759</td>
<td>1608</td>
<td>776</td>
<td>1582</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>763</td>
<td>1655</td>
<td>782</td>
<td>1532</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>768</td>
<td>1776</td>
<td>782</td>
<td>1532</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>772</td>
<td>1565</td>
<td>782</td>
<td>1532</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>782</td>
<td>1582</td>
<td>789</td>
<td>1509</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>800</td>
<td>1475</td>
<td>801</td>
<td>1472</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>768</td>
<td>1513</td>
<td>795</td>
<td>1490</td>
</tr>
</tbody>
</table>

1) Die Scala wandert bei ruhendem Nerven im Sinne beständiger Zunahme des Widerstandes, so dass die Erregungsschwankung nicht zu constatiren ist. Die notirten Ruhewiderstände sind nur herausgegriffen.
Beziehungen zwischen Polarisation und Erregung im Nerven.

<table>
<thead>
<tr>
<th>Nr. d. Reihe</th>
<th>Ort der Reizung etc.</th>
<th>Stromstärke</th>
<th>Ruhe.</th>
<th>Reizung.</th>
<th>$\Phi - \Phi$</th>
<th>Mittelwerth</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>r</td>
<td>Φ</td>
<td>r'</td>
<td>Φ'</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>1588</td>
<td>774</td>
<td>1519</td>
<td>-37</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>1588</td>
<td>765</td>
<td>1589</td>
<td>-49</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>1622</td>
<td>755</td>
<td>1561</td>
<td>-61</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>1640</td>
<td>750</td>
<td>1585</td>
<td>-55</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>1669</td>
<td>742</td>
<td>1602</td>
<td>-67</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>1717</td>
<td>729</td>
<td>1640</td>
<td>-77</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>1942</td>
<td>673</td>
<td>1797</td>
<td>-145</td>
</tr>
<tr>
<td></td>
<td>Cathodenseite.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strecke 19 mm.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strom \uparrow</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>1509</td>
<td>789</td>
<td>1552</td>
<td>+ 43</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>1588</td>
<td>785</td>
<td>1595</td>
<td>+ 7</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>1619</td>
<td>756</td>
<td>1619</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>1638</td>
<td>762</td>
<td>1638</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>1647</td>
<td>748</td>
<td>1647</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>1669</td>
<td>742</td>
<td>1662</td>
<td>-7</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>1701</td>
<td>783</td>
<td>1692</td>
<td>-9</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>1735</td>
<td>724</td>
<td>1723</td>
<td>-7</td>
</tr>
<tr>
<td></td>
<td>Cathodenseite.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strecke 19 mm.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strom \downarrow</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>1701</td>
<td>690</td>
<td>1901</td>
<td>+21</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>1904</td>
<td>704</td>
<td>1901</td>
<td>-12</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>1854</td>
<td>694</td>
<td>1841</td>
<td>-13</td>
</tr>
<tr>
<td></td>
<td>Reizung verstärkt (Roll.-Abst. 0).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>1805</td>
<td>706</td>
<td>1805</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>1813</td>
<td>704</td>
<td>1797</td>
<td>-16</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>1813</td>
<td>704</td>
<td>1901</td>
<td>-12</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>1854</td>
<td>694</td>
<td>1841</td>
<td>-13</td>
</tr>
<tr>
<td></td>
<td>Anodenseite.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strom \downarrow</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>1676</td>
<td>740</td>
<td>1578</td>
<td>-98</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>1779</td>
<td>715</td>
<td>1705</td>
<td>-74</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>1750</td>
<td>720</td>
<td>1690</td>
<td>-60</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>1750</td>
<td>720</td>
<td>1694</td>
<td>-56</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>1743</td>
<td>722</td>
<td>1701</td>
<td>-42</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>1743</td>
<td>722</td>
<td>1705</td>
<td>-38</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>1720</td>
<td>728</td>
<td>1694</td>
<td>-26</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>1720</td>
<td>728</td>
<td>1694</td>
<td>-26</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>1890</td>
<td>736</td>
<td>1855</td>
<td>-25</td>
</tr>
<tr>
<td></td>
<td>Anodenseite.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strom \downarrow</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cathodenseite,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>aber bei absteigendem Strom</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Reizstelle am peripherischen Nervenendes)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>1588</td>
<td>673</td>
<td>1797</td>
<td>-61</td>
</tr>
</tbody>
</table>

1) Wanderung wie in Versuch 5.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>r</td>
<td>φ</td>
<td>r'</td>
<td>φ'</td>
</tr>
<tr>
<td>8</td>
<td>818</td>
<td>822</td>
<td>1409</td>
<td>-9</td>
<td>-0.6</td>
<td>-0.6</td>
</tr>
<tr>
<td>9</td>
<td>869</td>
<td>860</td>
<td>1802</td>
<td>-5</td>
<td>-0.4</td>
<td>-0.4</td>
</tr>
<tr>
<td>7</td>
<td>884</td>
<td>884</td>
<td>1874</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>619</td>
<td>620</td>
<td>1415</td>
<td>-3</td>
<td>-0.2</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>610</td>
<td>613</td>
<td>1455</td>
<td>-9</td>
<td>-0.6</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>804</td>
<td>809</td>
<td>1447</td>
<td>-16</td>
<td>-1.1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>800</td>
<td>806</td>
<td>1456</td>
<td>-19</td>
<td>-1.3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>783</td>
<td>791</td>
<td>1503</td>
<td>-26</td>
<td>-1.7</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>740</td>
<td>760</td>
<td>1640</td>
<td>-36</td>
<td>-2.1</td>
<td></td>
</tr>
</tbody>
</table>

11. Anodenseite. Strom aufsteigend (Reizung am peripherischen Ende). Strecke 16 mm.

<table>
<thead>
<tr>
<th></th>
<th>Ruhe.</th>
<th>Reizung.</th>
<th>$\varphi' - \varphi$</th>
<th>Mittelwerth.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1050</td>
<td>886</td>
<td>1075</td>
<td>101</td>
</tr>
<tr>
<td>2</td>
<td>1015</td>
<td>950</td>
<td>1086</td>
<td>101</td>
</tr>
<tr>
<td>3</td>
<td>1005</td>
<td>970</td>
<td>1021</td>
<td>101</td>
</tr>
<tr>
<td>4</td>
<td>996</td>
<td>988</td>
<td>1016</td>
<td>988</td>
</tr>
<tr>
<td>5</td>
<td>990</td>
<td>1000</td>
<td>1000</td>
<td>990</td>
</tr>
<tr>
<td>6</td>
<td>982</td>
<td>1016</td>
<td>990</td>
<td>982</td>
</tr>
<tr>
<td>7</td>
<td>975</td>
<td>1030</td>
<td>979</td>
<td>975</td>
</tr>
<tr>
<td>8</td>
<td>973</td>
<td>1035</td>
<td>974</td>
<td>973</td>
</tr>
<tr>
<td>9</td>
<td>955</td>
<td>1073</td>
<td>959</td>
<td>955</td>
</tr>
<tr>
<td>10</td>
<td>945</td>
<td>995</td>
<td>982</td>
<td>945</td>
</tr>
<tr>
<td>11</td>
<td>940</td>
<td>1106</td>
<td>948</td>
<td>940</td>
</tr>
<tr>
<td>12</td>
<td>935</td>
<td>1117</td>
<td>943</td>
<td>935</td>
</tr>
<tr>
<td>13</td>
<td>932</td>
<td>1124</td>
<td>940</td>
<td>932</td>
</tr>
<tr>
<td>14</td>
<td>930</td>
<td>1129</td>
<td>941</td>
<td>930</td>
</tr>
<tr>
<td>15</td>
<td>899</td>
<td>1202</td>
<td>915</td>
<td>899</td>
</tr>
</tbody>
</table>

Anmerkung zu den Tabellen. Die Nummern der Stromstärke haben folgende Bedeutung:
in Versuch 1: in Versuch 2 — 4: in Versuch 5 — 13:
1 1 Dan. N 1000 dB. 4 Grove W 100 3. N 100 dB. 4 Grove W 100 3. N 100 dB.
2 " voll " 100 200 " 100 300
3 4 Grove " 100 300 " 100 500
4 " 100 500 " 100 700
5 " 100 1000 " 100 900
6 " 70 1000 " 70 900
7 " 40 1000 " 40 900
8 " 10 1000 " 10 900
9 " 0 voll " 0 voll

1) Scaleinwanderung im Sinne beständiger Widerstandsverminderung, aber so langsam dass der Einfluss der Erregung bestimmbar ist.

2) Scaleinwanderung im Sinne beständiger Widerstandsannahme, so schnell dass der Einfluss der Thätigkeit nicht zu constatiren ist.

3) Langsame Scaleinwanderung im Sinne beständiger Widerstandsannahme.
Beziehungen zwischen Polarisation und Erregung im Nerven. 231

Hierin bedeutet \(W \) Widerstand im Hauptschleife, \(N \) Nebenschliessungswiderstand, \(S \) Siemens'sche Einheiten, \(d\) kleinste Scalenteile des du Bois'schen Rheocords (156 \(\text{d} \text{B} = 1 \text{S} \)).

Aus den bisher mitgetheilten Versuchen geht hervor, dass bei Reizung auf der Anodenseite des Stromes ausnahmslos der scheinbare Widerstand bei der Erregung abnimmt, und zwar um so weniger je stärker der Strom ist. Die Abnahme der Werthe \(\Phi' - \Phi \) mit steigender Stromstärke ist nicht Folge einer Abnahme des Ruhewerths \(\Phi \), denn sie tritt auch in den Prozentzahlen ein, und findet sich auch da, wo der Ruhewerth \(\Phi \) mit der Stromstärke zunimmt (hierüber s. unten), wie in Versuch 11. Sie ist auch nicht Folge einer Ermüdung des Nerven, denn sie findet sich auch in den mit Eliminirung der Ermüdung gefundenen Prozentzahlen der letzten Rubrik der Tabellen. Sie beweist also, dass die scheinbare Widerstandsanahme nicht auf einer wirklichen Widerstandsveminderung, sondern auf einer bei der Erregung auftretenden, dem Strome gleichsinnigen electromotorischen Kraft beruht.

Woher rührt diese Ausnahme bei Reizung auf der Cathodenseite sehr schwacher Ströme? Man könnte zunächst an eine electrotische Wirkung der abwechselnd gerichteten erregenden Inductionsströme denken. Solche Ströme wirken bekanntlich, auch wenn sie durch die Helmholtz'sche Einrichtung möglichst gleichartig sind, in Folge des Ueberwiegens des Aelectrotonus über den Catelectrotonus so, als ob die nächste Elektrode des Reizstromes eine Anode wäre, d. h. sie bewirken auf beiden Seiten der

1) Bei dieser Gelegenheit sei erwähnt, dass der Widerstand der Electroden für sich etwa 2500 S.-E. betrug, also gegen den der Nervenstrecke (90,000—180,000 und mehr) fast verschwand. Jeder Cm. Nerv hatte etwa einen Widerstand von 70,000—150,000 S.-E., wobei allerdings zu bemerken ist, dass die zu diesen Versuchen benützten Frösche kaum Mittelgrösse hatten.
Reizstrecke einen nach der Reizstrecke hin gerichteten electrotonischen Strom, wenn letztere nahe genug und die Reizströme stark genug sind. Nun ist erstens in unsern Versuchen die Reizstrecke von der durchflossenen stets mindestens 15 mm. entfernt, zweitens die Reizung sehr mässig. Vor Allem aber würde dieser Einfluss bei Reizung auf der Cathodenseite des Stromes einen dem Strome gleich gerichteten Zuwachs hervorbringen, also den scheinbaren Widerstand vermindern, umgekehrt bei Reizung auf der Anodenseite ihn vergrössern. Wir finden aber gerade im Gegenteil bei den schwachen Strömen, wo überhaupt dieser Einfluss merklich werden könnte, im ersteren Falle stets Vergrösserung, im zweiten Verminderung des scheinbaren Widerstandes durch die Reizung. Es ist also klar, dass der electrotonische Einfluss der Inductionsströme bei unsern Versuchen überhaupt nicht in Betracht kommt.

Nachdem durch besondere Versuche der Verdacht ausgeschlossen war, dass etwa die erwähnte Ausnahme gar nicht in einem Verhalten des Nerven selbst, sondern in den Electroden ihren Grund habe, blieb nur noch eine Möglichkeit übrig, nämlich dass es sich um eine Einmischung der negativen Schwankung des Nervenstroms handele. In den Versuchen 1—9 geschah nämlich durchweg die Reizung am centralen Nervenende 1), und die durchflossene Strecke nahm etwa die Mitte des Nerven ein. In den Versuchen mit Reizung auf der Anodenseite war also der Nerv absteigend, bei Reizung auf der Cathodenseite aufsteigend durchflossen. Die durchflossene Strecke enthielt aber wegen der Stümpe der abgeschnittenen Nervenäste eine aufsteigend gerichtete electromotorische Kraft, deren Einfluss auf den scheinbaren Widerstand nach bekanntem Prinzip um so grösser sein musste, je schwächer der Strom. In der Rube musste offenbar diese Kraft den scheinbaren Widerstand bei absteigendem Strome vergrössern, bei aufsteigendem verkleinern; mit andern Worten in den Versuchen 1, 2, 3, 7, 9 (Reizung auf der Anodenseite des absteigenden Stromes) musste der Widerstand des ruhenden Nerven scheinbar mit zunehmender Stromstärke abnehmen, in den Versuchen 4, 5, 6, 8 dagegen (Reizung auf der Cathodenseite des aufsteigenden Stromes) mit zunehmender Stromstärke zu nehmen. Dies wird nun der aufmerksame Leser schon von selbst

1) Dies ist nämlich das Natürlichere, weil so alle Fasern des Nerven mit erregt werden.
in der Rubrik \(\Phi \) der Tabellen bemerkt haben\(^1\)). — Die negative Schwan kung des Stromes der Nervenstämpe muss nun bei der Erregung umgekehrt eine Zunahme des scheinbaren Widerstandes bei aufsteigendem, eine Abnahme bei absteigendem Strome bewirken, und da dieser Einfluss ebenfalls um so stärker ist, je schwächer der Strom, so erklärt sich auf das Befriedigendste die oben erwähnte Ausnahme, dass nämlich bei den schwächsten aufsteigenden Strömen die Reizung (auf der Cathodenseite) statt der erwarteten Widerstandsabnahme eine Widerstandszunahme hervorbringt\(^2\).

Dass nun diese Erklärung die richtige ist, d. h. dass die erwähnte Widerstandszunahme nicht an der Reizung auf der Cathodenseite, sondern an der Reizung bei aufsteigendem Strome haftet, wird vollkommen bestätigt durch die Versuche 10 und 11, wo die Reizstelle an das peripherische Nervenende verlegt war, die Cathodenreizung also bei absteigendem (dem Nervenstrom entgegengesetzt gerichteten), die Anodenreizung bei aufsteigendem Strome stattfand. Hier zeigen, umgekehrt gegen vorher, die Ruhewerthe \(\Phi \) im Cathodenreizungsversuch 10 eine Abnahme mit steigender Stromstärke, im Anodenreizungsversuch 11 eine Zunahme. Die Ausnahme aber (positive Werthe von \(\Phi' - \Phi \) bei schwachen Strömen) tritt hier überhaupt nicht ein; sie könnte nach unserer Erklärung nur in Versuch 11 eintreten, fehlt aber, weil das Hauptphänomen, die scheinbare Widerstandsabnahme, bei Reizung auf der Anodenseite überhaupt stärker ist als bei Reizung auf der Cathodenseite (s. unten), und daher nur im letzteren Falle durch den Einfluss der negativen Schwan kung des Nervenstromes übercompensirt werden kann. Die Versuche 10 und 11 zeigen auf das Schönste, dass für beide Reiz-

\(^1\) Man wird finden, dass in den Versuchen, wo der Widerstand mit der Stromstärke zunimmt, er beim Wiederzurückgehen der Stromstärke nicht wieder ganz auf den ursprünglichen Werth zurückgeht. Ein Grund hiervon liegt höchstwahrscheinlich in einer gewissen Eintrocknung des Nerven, besonders an den Elektroden (vgl. dies Archiv Bd. VI. pag. 334. Anm. 2).

\(^2\) In den Versuchen 1, 2, 3, 7, 9 ist demnach die Verminderung des scheinbaren Widerstandes bei der Reizung durch den Einfluss der Nervenstromschwankung etwas verstärkt; aber dieser Einfluss ist geringer als der entgegengesetzte in den Versuchen 4, 5, 6, 8; denn wie ich Bd. VI. p. 332 dieses Archivs dargethan habe, ist der widerstandsvernehmende Einfluss einer entgegengerichteten Kraft grösser als der widerstandsvermindernde derselben Kraft, wenn sie dem Strome gleichsinnig ist.
lagen das Gesetz gilt, dass die Reizung den scheinbaren Widerstand des Nerven vermindert, und zwar um so weniger je stärker der Strom.

Ich theile noch einige Versuche mit, um zu zeigen welchen Einfluss der volle Längsquerschnittstrom des Nerven und dessen negative Schwankung auf den scheinbaren Widerstand des Nerven ausübt. Die durchflossene Strecke lag hier am einen, die Reizstelle am andern Ende des Nerven. In jedem Versuch wurde die Stromrichtung gewechselt und zwar, um nicht die eine durchweg zu begünstigen, so, dass einmal der aufsteigende Strom vor dem absteigenden, das nächstmal umgekehrt angewandt wurde, wie es die kleingedruckten Ordnungszahlen der Rubrik o angeben.

Der Einfluss des Nervenstroms und seiner negativen Schwankung ist in dieser Tabelle (p. 225) sehr schön zu erkennen. Man sieht nämlich erstens, dass der scheinbare Widerstand desselben Nervenstückes bei gleicher Stromstärke viel größer ist in der rechten als in der linken Tabellenhälfte. Der Unterschied ist um so größer, je schwächer der Strom; und bei der Stromstärke 1 hat Φ rechts einen etwa doppelt so grossen Werth als links. Mit zunehmender Stromstärke kommen die beiden Werthe einander immer näher, indem sie rechts abnehmen, links zunehmen; bei der Stromstärke 8 haben sie sich in Versuch 12 beinahe erreicht, d. h. der Einfluss der electromotorischen Kraft des Nervenstroms ist bei dieser Stromstärke nahezu unmerklich. Zweitens sieht man auf der linken Seite, wo die negative Schwankung des Nervenstroms dem Messstrom entgegengesetzt ist, bei den schwachen Strömen bis zur Intensität 5, bei der Reizung eine scheinbare Vergrösserung des Widerstandes eintreten, die dann erst in die regelmässige Abnahme übergeht.

Zum Ueberfluss habe ich noch mehrere Versuche angestellt, in welchen zwei Nerven zusammengelegt wurden und zwar so, dass das centrale Ende des einen und das peripherische des andern zusammenlagen; die Zuleitung des Stromes geschah in der Mitte; so wurde erreicht, dass die Ströme der Nervenaststümpfe in der durchflossenen Strecke sich gegenseitig nahezu compensirten. In der That varirte in Folge dessen der Ruhe widerstand Φ fast gar nicht mit der Stromstärke. Dagegen war der Einfluss der negativen Schwankung dieser Stumpfströme dadurch nicht ausgeschlossen, weil bei Reizung am einen Ende des Doppelnerven nur die Stümpfe
<table>
<thead>
<tr>
<th>No. der Reihe</th>
<th>Ort der Reizung etc.</th>
<th>Strom (d. Nvstr. gleichsinnig; Reizg. auf Cathodenseite)</th>
<th>Strom (d. Nvstr. entgegen; Reizg. auf Anodenseite)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Ruhe</td>
<td>Reizung</td>
</tr>
<tr>
<td></td>
<td></td>
<td>r</td>
<td>φ</td>
</tr>
<tr>
<td>12.</td>
<td>Reizung am centralen, Ableitung am peripherischen Ende. Strecke 19 Mm.</td>
<td>1</td>
<td>1130</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>1047</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>1050</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>1008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>970</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>958</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>1105</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>1086</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>1096</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td>1086</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>1051</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
<td>1047</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
<td>1047</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>1047</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>998</td>
</tr>
</tbody>
</table>

1. Scalenwanderungen in der Ruhe.
2. Die Zahlen dieser Rubriken sind, da der Messwiderstand in Versuch 18 nur 10000 S. betrug, nicht wie sonst mit 90, sondern mit 10 zu multiplizieren, um den absoluten Widerstand zu erhalten.
des einen Nerven erregt waren, dessen centrales Ende auf der Reiz-
seite lag. Dem entsprachen auch vollständig die Erscheinungen bei
der Erregung. Ich unterlasse es, um nicht die Tabellen zu sehr
tzu häufigen, auch diese Versuchsreihen mitzuteilen.

Wir dürfen es nunmehr als in aller Strenge bewiesen ansehen,
dass die Zunahme der Ströme bei der Erregung nicht von einer
Abnahme des wirklichen Widerstands des Nerven, sondern von
einer dem Ströme gleichsinnigen electromotorischen
Kraft herrühren. (Noch ein anderer Beweis hierfür wird sich wei-
ter unten ergeben.) Diese Kraft ist vor Allem von der Intensität
der Erregung abhängig. Fast in jedem Versuch wurde am Schlusse
die bis dahin constante Reizung (100 mm. Rollenabstand) durch Auf-
schieben der secundären Spirale gesteigert, und jedesmal ohne Aus-
nehme eine beträchtliche Zunahme der Differenz $\Phi' - \Phi$ beobachtet.
Diese Versuche sind in die Tabellen nicht mit aufgenommen. — Bei
constantem Reiz ist, wie wir gesehen haben, die Abnahme des
scheinbaren Widerstands um so kleiner, je stärker der Strom.
Hieraus folgt, dass die in Rede stehende electromotorische Kraft
entweder von der Stromstärke unabhängig ist oder mit ihr wächst
(für das letztere entscheiden andere Versuche, s. unten), aber weni-
ger schnell als der Strom selbst; denn wäre sie dem Strom propor-
tional, so würde, wie sich leicht zeigen lässt, die Grösse $\Phi' - \Phi$
von der Stromstärke ebenso unabhängig sein, als wenn sie von einer
wirklichen Widerstandsabnahme herrührte 1).

b. Scheitern der Erregung an der Cathode.

Die nächste Frage, welche zu beantworten war, nachdem ich
sie früher wegen unzureichender Methode hatte offen lassen müssen,
war die, ob der positive Zuwachs des polarisirenden Stromes, der,
wie ich schon mitgetheilt habe 2) bei Reizung auf der Cathodenseite
von einer gewissen Stromstärke ab nicht mehr deutlich ist, hier
wirklich ausbleibt oder nur sehr geschwächt ist. Ich bemerke aus-
drücklich, dass die soeben mitgetheilten Versuche mit Widerstands-
messung hierüber nichts entscheiden können, einmal weil bei dieser
Methode, selbst bei der höchsten Stromstärke (9), der Stromzweig
im Nerven sehr schwach ist, da der Messdraht eine Neben-

1) Dies folgt aus den Kirchhoff'schen Sätzen in aller Strenge, wenn
der Widerstand des Rheochondrodraths gegen den der Kette sowohl, als gegen
den des Nerven und des Rheostaten verschwindend klein ist.
schliessung bildet, zweitens weil hier die scheinbare Widerstandsminderung ohnehin bei starken Strömen aus einem ganz anderen Grunde nahezu verschwindet. Unsere Frage kann also nur durch directe Beobachtung an der Boussole entschieden werden.

Mit der beschriebenen bequemen Vorrichtung wurden zunächst die schon früher mitgetheilten Resultate bestätigt. Der einfachste Fall ist der, wo sich kein Längsquerschnittsstrom einmischt. Vollkommen regelmässig zeigt sich hier von den allerschwächsten bis zu den stärksten Stromintensitäten, bei denen überhaupt noch beobachtet werden kann, die positive Erregungsschwankung der durchflossenen Strecke, wenn der Reiz auf der Anodenseite liegt. Die Reizstärke braucht nur sehr mässig zu sein; es genügt bei Daniell und Helmholz'scher Anordnung des Inductionsapparats ein Rollenabstand von 150—200 mm. Die Erscheinung ist, wie schon früher erwähnt, durchaus unabhängig von der Richtung der Inductionsschläge. Sie nimmt mit der Intensität des polarisirenden Stromes zu, und kann Werthe von 80 und mehr Scalentheilen er-

Lieg't die Reizstelle auf der Cathodenseite des Stromes, so ist bei schwachen Strömen die Erscheinung genau dieselbe; von einer gewissen Stromintensität an nimmt sie bedeutend ab und bleibt schliesslich auch bei stärkster Reizung aus. Dass schliesslich jede Spur der Schwankung ausbleibt, was früher zweifelhaft gelassen werden musste, wurde jetzt sicher constatirt. Die Erregung kann also von einer gewissen Stromstärke ab die Cathode nicht mehr überschreiten.

Zur näheren Bestimmung dieser Stromstärke graduirte ich mir meine Reduktionsvorrichtung in folgender Weise: In den Experimentirkreis wurde statt des Nerven und der Stromvorrichtung eine Thermokette von 45 Eisen-Neusilberelementen eingeschaltet, deren electromotorische Kraft ich in mehreren Versuchen zu 0,0909 Daniell bei 100° Temperaturdifferenz gefunden hatte. Der Widerstand der ganzen Kette betrug nur 0,43 S.-E., der Widerstand der Boussole 2483,3 S.-E. Sonach war die Intensität des Stromes, so wohl bei Benutzung aller 45 als bei der von nur 30 oder 15 Elementen hinreichend genau bekannt, um durch die zur Reduction der Ablenkungen nöthigen Stände des Reduktionsapparats den letzteren auf Intensitäten graduiren zu können. Um einen grösseren Spierraum zu haben, habe ich zwei Reductionsrollen, eine dickdräftige und eine feindräftige, zu beiden Seiten der Hauptrollen auf den Boussoalschlitten aufgeschoben, zwischen denen ich wählen konnte; die dickdräftige war für stärkere Ströme die geeignetere. Für beide war der Reduktionsapparat graduirt, und zwar war für die feine Rolle eine andere Thermosäule (dem eidgen. Polytechnicum gehörig) benutzt worden, aus nur einem Wismuthkupfererelement bestehend, dessen Kraft ich in mehreren Bestimmungen == 0,0045818 Dan. gefunden hatte. — Bei der Graduirung wurden mittels der Thermosäulen eine möglichst grosse Anzahl von Reductionsständen bestimmt, welche zu gegebenen Intensitäten gehörten. Bei der An-
wendung der feinen Rolle konnten zwischen diesen liegende Intensitäten leicht durch ein Interpolationsverfahren bestimmt werden, weil hier die Intensitäten des Reductionsstromes annähernd den Rheochordlängen proportional waren. Nicht so war es bei der dicke Rolle, wo die zwischenliegenden Intensitäten mehr geschätzt werden mussten. Man vergesse überhaupt nicht, dass der Hauptzweck der Reductionsverrichtung die Einstellung der Scala in's Gesichtsfeld, nicht genaue Messung war.

Es ergab sich nun vor Allem, dass die Grösse der Schwankung, wenn Reiz- und Stromintensität gegeben sind, immer bei Reizung auf der Anodenseite viel beträchtlicher ist als bei Reizung auf der Cathodenseite.

Zweitens ergab sich, dass die Intensitätsgrenze, bei welcher die Erregung an der Cathode scheitert, um so höher liegt, je stärker der Reiz. Eine starke Erregung kann also noch die Cathode passieren, wo eine schwache erlischt.

Drittens ist bei gegebener Reizstärke die Intensitätsgrenze zugleich eine Funktion der Länge des Nervenstückes, d. h. obgleich der Nerv den bei Weitem wesentlichsten Theil des Widerstands im Kreise bildet, ist doch die zur Erreichung der Grenze erforderliche electromotorische Kraft nicht wie man erwarten sollte der eingeschalteten Länge proportional, sondern wächst weniger schnell als diese.

Das Resultat dieser Versuche ist regelmässig folgendes. Hat man vor der Durchquetschung die Intensität festgestellt bei welcher die Erregung an der Cathode scheitert, also die Schwankung ausbleibt, so ist letztere nach der Durchquetschung bei gleicher Intensität wieder vorhanden, und bleibt jetzt erst bei etwas stärkerem Strome aus. Je kürzer also die Experimentirstrecke, um so höher liegt die Grenzintensität.

Noch ein wichtiger Punct ist hier zu erwähnen. Durch die Durchquetschung entstehen nämlich an beiden Seiten der gequetschten Stelle zwei Nervenströme von entgegengesetztem Sinne, welche einander aufheben. Bei der Erregung tritt aber nur an dem einen derselben, nämlich an dem auf der Seite des Reizes, negative

1) Untersuchungen über thier. Electricität II. 1. p. 340 ff. Taf. III. Fig. 109, 110.

2) Namentlich ist auch die hierzu nöthige längere Lüftung der feuchten Kammer sehr schädlich (vgl. dies Archiv Bd. VI. p. 308 Anm. 4).
Schwankung ein, deren Einfluss also zu berücksichtigen ist. Aber man sieht leicht ein, dass diese Schwankung der in unserm Versuche beobachteten entgegengesetzt gerichtet ist, dass sie also die Grenze, bei welcher der Strom die zum Verschwinden der letzteren nöthige Intensität erreicht, herabrücken muss. Da sie nun im Gegentheil hinaufgerückt ist, so ist der behauptete Einfluss der Länge der Strecke a fortiori bewiesen.

c. Weiterer Beweis, dass die Schwankung von einer electromotorischen Kraft herrührt.

Da gegen den Widerstand des Nerven bei einigermassen langer Strecke alle übrigen im Kreise verschwinden, so lassen sich die Versuche mit Verkürzung der wirksamen Strecke durch Durchquetschung auch für die oben schon erledigte Frage verwerthen, ob die positive Schwankung in der durchflossenen Strecke von einer Widerstandsabnahme oder von einer electromotorischen Kraft herrühre. Aber natürlich muss für diese Frage die Reizung auf die Anodenseite des Stromes verlegt werden, damit nicht die Störungen welche die Cathode der Erregung in den Weg legt, auf die Resultate Einfluss gewinnen. Nimmt in Folge der Durchquetschung nur die Hälfte der durchflossenen Strecke an der Erregung Theil, so werden wir, wenn die Schwankung nur Folge einer Widerstandsabnahme ist, zu erwarten haben, dass dieselbe nach der Unterbindung nur etwa halb so gross ist als vorher. Ist nämlich w der Widerstand des ganzen Nervenstücks, e die electromotorische Kraft der Kette, und werden die übrigen Widerstände im Kreise vernachlässigt; wird ferner der Widerstand des Nerven durch die Er-

1) Dies Archiv Bd. VI. p. 316 f.
2) Dies Archiv Bd. VII. p. 317.
regung um \(\frac{1}{n} \) seines Wertes vermindert, so ist vor der Unterbindung
die Intensität in der Ruhe \(i = \frac{E}{w} \)

und die Intensität während der Erregung \(i' = \frac{n}{n-1} \frac{E}{w} \)
also der Betrag der Schwankung \(i' - i = \frac{E}{(n-1)w} \)

Wird nun durch Unterbindung die an der Erregung teilnehmende Nervenstrecke um \(\frac{1}{m} \) ihrer Länge verkürzt, so ist nach der Unterbindung
die Intensität in der Ruhe \(i = \frac{E}{w} \)
und die Intensität während der Erregung \(i'' = \frac{E}{w} \frac{mn}{m(n-1) + 1} \)
also der Betrag der Schwankung \(i'' - i = \frac{E}{w} \frac{m-1}{m(n-1) + 1} \).

Ist z. B. \(n = 10, m = 2 \), so ist \(i' - i = \frac{E}{9w} \), \(i'' - i = \frac{E}{19w} \),
also die Schwankung nach der Unterbindung um mehr als die Hälfte geringer.

Ist dagegen die Schwankung Folge einer von der Erregung herrührenden electromotorischen Kraft, so wird sie nach der Unterbindung nur um so viel kleiner werden, als die Polarisation durch die Verkürzung der Strecke bei gleichbleibender Intensität des Stromes geschwächt wird (s. oben). Da diese Schwächung aber weit entfernt ist proportional der Verkürzung zu sein, so ist allerdings eine Schwächung der Schwankung in Folge der Unterbindung in der Mitte, aber bei Weitem nicht um die Hälfte zu erwarten.

Zahlreiche Versuche haben nun ergeben, dass bei Reizung auf der Anodenseite die Durchquetschung der (24—40 mm. langen) durchflossenen Strecke in ihrer Mitte, die Schwankung nur höchst unbedeutend vermindert, ja bei schwachen Strömen sie zuweilen ein wenig vergrößert. Diese Vergrösserung rührt ohne Zweifel her von der nach der Unterbindung sich einmischenden negativen Schwankung des Nervenstroms am gequetschten Ende der der Reizstelle anlie-
genden Nervenhälfte, von welcher schon oben bei der Cathodereizung die Rede war. Diese Schwankung, die man leicht für sich darstellen kann, wenn man den polarisirenden Strom jenseits des Rheochords öffnet und nun reizt, ist in unserm jetzigen Falle gleichsinnig mit der positiven Schwankung des polarisirenden Stromes. Es ist klar dass dieser Einfluss bei schwachen Strömen am merklichsten wird, weil der Betrag der negativen Schwankung eine vom Strom unabhängige Grösse darstellt.

So ist denn auch auf diesem Wege bestätigt, dass die positive Schwankung nicht von einer Widerstandabnahme herrührt. —

d. Verhalten der Schwankung am Querschnittsende des Nerven.

Eine letzte Reihe von Versuchen die ich mitzuteilen habe, betrifft die Erscheinungen der positiven Schwankung, wenn die durchflossene Strecke am Querschnittsende des Nerven liegt, also den Nervenstrom mit enthält.

Ist bei dieser Versuchsordinnung der polarisirende Strom dem Nervenstrom entgegengesetzt, d. h. nach dem Querschnittsende des Nerven hin gerichtet, wobei also die Reizung auf der Anodenseite des Stromes liegt, so sind die Erscheinungen genau dieselben wie bei gewöhnlicher Lage der durchflossenen Strecke. Mit allmählicher Steigerung des polarisirenden Stromes, bei constanten Reizstärke, wächst die positive Erregungsschwankung continuirlich. Die negative Schwankung des Nervenstroms ist ihr nämliche gleichsinnig.

Ist dagegen der polarisirende Strom dem Nervenstrom gleich gerichtet, wobei also die Erregung auf seiner Cathodenseite geschieht, so sieht man regelmässig Folgendes. Bei den schwächsten Strömen tritt eine dem Strome und dem Nervenstrom entgegengesetzte Scalenebewegung ein, welche denselben Betrag hat, wie die für sich beobachtete negative Schwankung des Nervenstroms. Sehr schön sieht man nun mit zunehmender Stromstärke diese Bewegung abnehmen und durch Null hindurch in die gewöhnliche positive Schwankung im Sinne des polarisirenden Stromes übergehen. Diese erreicht dann bald ein Maximum, nimmt darauf wieder ab und schwindet schliesslich bei einer gewissen Stromstärke, wie immer wenn die Reizung auf der Cathodenseite des Stromes geschieht.

Diese Erscheinungen hätte man voraussagen können. Diejenige Intensität, bei welcher die Schwankung durch Null hindurchgeht, ist offenbar diejenige, bei welcher die positive Schwankung genau den Werth hat, wie die negative Schwankung des Nerven-
stroms. Wir kommen unten noch einmal auf diese Intensitätsgrenze zurück.

Vielleicht vermisst mancher Leser eine Angabe darüber, ob die positive Schwankung bei beständiger Steigerung der Stromintensi-
tät ebenfalls beständig wächst oder einen Grenzwert erreicht.
Natürlich existiert diese Frage nur für die Reizung auf der Anoden-
seite. So wichtig sie aber auch ist, so habe ich sie doch trotz aller
Bemühungen nicht beantworten können. Bei sehr starken Strömen
nämlich ist es unmöglich, die Scala genügend in Ruhe zu halten,
um die Erfolge der Reizung, so leicht deren Existenz und Richtung
stets zu constatiren ist, messend vergleichen zu können, was sogar
schon bei den oben mitgetheilten Wheatstone'schen Messungen
hie und da störend eingriff.

Diese Wanderungen beginnen schon bei Strömen von 1 Daniell
mit 10 S.-E. Nebenschl. sich einzustellen, und sind bei 1 Dan. mit
100 S.-E. Nbschl. schon ziemlich schnell. Aber da sie, einmal im
Gange, eine ziemlich constante Geschwindigkeit haben, so lassen sie
immer noch eine sichere Beobachtung und annähernde Messung der
positiven Schwankung zu, besonders wenn die Wanderung ihr ent-
gegengesetzt gerichtet ist. Bei noch stärkeren Strömen aber sind
die Wanderungen so stark und unregelmässig, dass schon die Be-
obachtung der Schwankung zuweilen schwierig, Messung oder
Schätzung aber ganz unmöglich ist.

Die Richtung der Wanderung ist bei mittlerer Lage der durch-
flossenen Strecke ganz unregelmässig und wechselnd. Ihre Ursache
ist nicht mit Sicherheit anzugeben; sie kann in einem Wogen der

1) Als Beispiel führe ich an: in einem Versuch bei 6 mm. langer auf-
steigend durchflossener Strecke am unteren Querschnitt des Nerven lag
die Grenze, bei der die Schwankung durch 0 hindurchging, bei 1 Dan. mit
500 S.-E. Hauptwiderstand und 30 S.-E. Nebenschliessung; die Intensität des
Stromes wurde aus der Reduction bestimmt zu

\[
\begin{align*}
6 \text{ Dan.} & = \frac{70476}{10^{10}} \text{ mm.}^2 \text{ mgr.}^2 \text{ sec.}^{-1} \\
10^{10} \text{ Siem.} & = \frac{1}{10^{10}} \text{ sec.}
\end{align*}
\]

Dieselbe Grenze galt für schwache und starke Reizung (s. unten). Die Grenze,
bei welcher mässige Erregung (150 mm. R.-A.) die Cathode nicht mehr über-
schreiten konnte, lag bei 1 Dan. ohne Hauptwiderstand mit 5 S.-E. Neben-
schliessung; der Strom entsprach

\[
\begin{align*}
461 \text{ Dan.} & = \frac{5415}{10^{7}} \text{ mm.}^2 \text{ mgr.}^2 \text{ sec.}^{-1} \\
10^7 \text{ Siem.} & = \frac{1}{10^7} \text{ sec.}
\end{align*}
\]

e. Schwankung bei totaler Reizung der durchflossenen Strecke.

Erwähnenswerth ist noch dass es mir gelungen ist die positive Schwankung auch bei (totaler) Reizung der durchflossenen Strecke selbst darzustellen. Die secundäre Spirale wurde in den Kreis des polarisirenden Stromes eingeschaltet und die Reizung dadurch be- wirkt, dass der primäre Kreis mit dem Hammer für gewöhnlich nicht spielte, sondern erst nach Schliessung eines Schlüssels. Hier- bei muss die magnetische Wirkung der primären Spirale auf die Bousssole durch richtige und möglichst entfernte Stellung derselben noch viel sorgfältiger als sonst ausgeschlossen sein. In einigen Ver- suchen verfuhr ich so dass der primäre Strom beständig spielte, die secundäre Spirale aber weit entfernt lag und behufs der Reizung plötzlich auf den Schlitten gelegt wurde (ein sehr zweckmässiges

Ueberblicken wir noch einmal alle hier über die positive Erregungsschwankung in der durchflossenen Nervenstrecke mitgetheilten Thatsachen, so ist soviel ich sehe keine andere Erklärung derselben denkbar als die, dass die Erregung und die mit ihr verbundene Negativität beim Ablauf durch den polarisirten Nerven ihre Intensität ändert, indem sie beim Uebergang zu stärkerer positiv oder schwächer negativ polarisirten Stellen zunimmt, in den entgegengesetzten Fällen abnimmt, d. h. derselbe Satz der mich zur Entdeckung des Grundphänomens geführt hat. Da hiernach die Erregung an der Anode intensiver, d. h. mit stärkerer Negativität anlangt als an der Cathode, so entsteht durch die Erregung eine dem polarisirenden Strome gleichsinnige electromotorische Kraft. Dieselbe ist um so grösser, je stärker die ursprüngliche Erregung und je stärker die Polarisation. Geschieht die Reizung auf der Cathodenseite, so kann die Erregung an der Cathode, oder schon vor derselben so geschwächt anlangen, dass sie zu weiterer Fortpflanzung unfähig wird, also die Schwankung ausbleibt.

Der Grund weshalb auch bei geringeren Stromstärken die Schwankung geringer ausfällt, wenn die Reizung auf der Cathodenseite liegt, lässt sich vor der Hand nicht angeben. Nach der Curve III Bd. VII Taf. V Fig. 15 dieses Archivs sollte man gleich grosse Schwankung bei Reizung auf beiden Seiten erwarten. (Man bedenke dass die Reizstellen so weit entfernt liegen, dass sie als ausserhalb des Bereichs der Polarisation zu betrachten sind, es kommt also die Curve III in Frage.) Es lassen sich aber Gründe genug erdenken, warum die Cathode auf die durchgehende Erregung, auch wenn sie nicht annullirt wird, eine gewisse Schwächung ausübt. Jedenfalls verdient dieser Punct weitere Beachtung.

Ich habe schon früher darauf aufmerksam gemacht, dass in Folge der electromotorischen Kraft am Nervenquerschnitt die an ihn grenzende Nervenstrecke sich im Catelectrotonus befinden muss 1)

1) Dies Archiv Bd. VII. pag. 363.
Beziehungen zwischen Polarisation und Erregung im Nerven. 287

woraus sich sowohl die »schwachen Nervenströme«, als auch die negative Schwankung des Nervenstroms erklären lassen. Den Einwand Bernstein's 1) gegen die letztere Erklärung, dass nämlich auch bei compassirtem Nervenstrom die negative Schwankung auftritt, habe ich schon widerlegt 2). Er beruht auf der ganz verkehrten Anschauung, dass die Compensation eines abgeleiteten Zweiges des Nervenstroms zugleich den Strom an den Nervenfasern selbst beseitige. Vielmehr hat nach bekannten Gesetzen die Compensation des abgeleiteten Stromzweiges nur zur Folge, dass der Nerv sich so verhält, als ob gar kein Bogen ihm anlage. Bekanntlich aber hat auch ein unabgeleiteter Nerv seinen Nervenstrom, der sich durch die Neurilemmata abgleicht.

Ist nun die negative Schwankung des Nervenstroms ein Phänomen gleicher Ordnung mit der positiven Schwankung in einer durchflossenen Nervenstrecke, so gewinnt die Intensität, welche ein dem Nervenende zugeleiteter, dem Nervenstrom gleichgerichteter Strom haben muss, damit bei der Erregung gar keine Schwankung auftritt (a. oben), ein erhöhtes Interesse. Sie würde nämlich einer Art innerer Compensation des Nervenstroms entsprechen; wenigstens würde die algebraische Summe der beiden Polarisationen an der Querschnittsableitungsstelle (eine negative vom Nervenstrom und eine positive vom zugeleiteten Strom) gleich sein der Summe der beiden negativen Polarisationen an der Längsschnittsableitungsstelle, so dass nunmehr die Erregungswelle an beiden Ableitungspunkten mit gleicher Intensität anlangt.

Diese Betrachtung gibt uns nun ein Mittel an die Hand, die Erklärung der negativen Schwankung des Nervenstroms als Folge der durch den Nervenstrom selbst gesetzten Polarisation noch durch einen Versuch zu prüfen. Sowohl die negative Schwankung des Nervenstroms, als die positive einer künstlich durchströmten Nervenstrecke sind nämlich Funktionen der Reizintensität. Haben nun beide Erscheinungen keine innere Verwandtschaft, so ist kein Grund vorhanden warum sie beide gleiche Funktionen der Reizstärke sein sollten; ist aber unsere Auffassung richtig, so ist das letztere allerdings zu erwarten. Die Frage lässt sich aber gerade durch den zuletzt erörterten Versuch leicht entscheiden. Wir suchen für eine

1) Dies Archiv Bd. VIII. pag. 504.
2) Ebendaselbst Bd. IX. p. 29.
gewisse Reizstärke diejenige Intensität des dem Nervenstrom gleichgerichteten polarisirenden Stromes auf, bei welcher die Erregungsschwankung gerade Null ist. Jetzt verstärken oder schwächen wir, alles Uebrige unverändert lassend, den Reiz. Hierbei bleibt nun immer die Schwankung Null; die beiden Schwankungen sind also wirklich dieselbe Function der Reizstärke. Denn wäre das nicht der Fall, so müsste durch Veränderung der Reizintensität eine Schwankung eintreten, sei es im positiven Sinne (Schwankung des polarisirenden Stromes), sei es im negativen (Schwankung des Nervenstroms). Der Compensationszustand ist also der, wo die Polarisationen an beiden Abgleichungsstellen gleichnamig und gleich sind, so dass nunmehr keine Erregung irgend welcher Intensität eine Schwankung hervorbringen kann.

Schliesslich fällt jetzt auch neues Licht auf einen sehr häufig angestellten Versuch, nämlich die Beobachtung der negativen Schwankung des Nervenstroms bei compensirtem Ruhestrom. Man glaubte bisher immer, es erscheine hier die negative Schwankung des Nervenstroms rein für sich. Aus unsern Versuchen folgt, dass dem nicht so ist, sondern dass sie verstärkt erscheint um die positive Schwankung des zugeleiteten compensirenden, dem Ruhestrom entgegengesetztes gerichteten Stroms; oder mit anderen Worten: der compensate Strom, welcher den Stromzweig im ableitenden Bogen annullirt, verstärkt durch seinen in die Nervenfasern eintretenden Theil die Polarisationsdifferenz an den beiden Ableitungspunkten im schon bestehenden Sinne, und vergrössert dadurch den Betrag der Erregungsschwankung.

Wir dürfen nunmehr den Satz von der Veränderung der Erregungssintensität beim Ablauf durch den polarisirten Nerven für so sicher gestützt halten, als irgend einen anderen der Nervenphysik. An Fruchtbarkeit für die Erklärung von Erscheinungen dürfte er eine hervorragende Stelle einnehmen, denn er erklärt: 1) die von Eckhard und Pflüger festgestellten Verschiedenheiten der Reizergolge bei Reizung im An- und Catelelektrotonus1), 2) das Scheitern der Erregungen an der Cathode bei gewissen Stromstärken, welches seinerseits erklärt das Verhalten bei suprapolarer catelektrotonischer Reizung (Pflüger), die Verschiedenheiten der

1) Vgl. hierüber dies Archiv Bd. VII. p. 323 f.
Beziehungen zwischen Polarisation und Erregung im Nerven.

Zuckung bei Reizung diesesseits oder jenseits einer Cathode 1), endlich das Ausbleiben der intrapolaren Erregungsschwankung bei catelectrotonischer Reizung und starker Durchströmung (s. oben p. 228), 3) die positive Erregungsschwankung durchflossener Nervenstrecken, 4) die negative Erregungsschwankung der extrapolaren catelectrotonischen Ströme (Bernstein), 5) die negative Schwankung des Nervenstroms, 6) die scheinbar erhöhte Erregbarkeit der dem Querschnitt nahen Nervenstrecken 2).

Die theoretische Bedeutung unseres Satzes wird in einer späteren Arbeit zur Erörterung kommen.

Zürich, 12. März 1875.

Ueber die quantitative Bestimmung des Eiweisses in tierischen Flüssigkeiten.

Von

A. Heynsius.

Die Benutzung der Salpetersäure ist misslich aus zwei Gründen: man kann erstlich eine Reaction hervorrufen, die Eiweiss vortäuscht, wenn keines vorhanden ist, und zweitens kann eine Reaction eintreten, die auf Abwesenheit von Eiweisskörpern zu deuten scheint, während doch solche in der zu prüfenden Flüssigkeit vorkommen.

1) Dies Archiv Bd. VII. p. 357 f.
2) Ebendaselbst p. 363.
Wenn man eine Flüssigkeit, die unlösliche Säuren enthält, wie die Harnsäure im Harn, mit Salpetersäure behandelt, so kann diese Säure gefällt und der Niederschlag irrtümlich für gefälltes Eiweiss gehalten werden. Bisweilen, und zwar bei hohem Harnsäuregehalt, praeципitirt die Harnsäure sofort auf Zusatz von Salpetersäure, bei geringerem Gehalt an Harnsäure wird diese oft erst nach einiger Zeit gefällt, wenn man die Flüssigkeit nach dem Sieden sich abkühlen lässt.

Andernteils ist das Verhalten der Salpetersäure in den Eiweisskörpern, wie ich das in einer früheren Abhandlung auseinandergesetzt habe, derart, dass man sich leicht zu dem Schluss verleiten lassen kann, dass kein Eiweiss vorhanden ist, wenn solches dennoch in der Flüssigkeit vorkommt. Beim Zufügen von Salpetersäure zu salzarmen Lösungen von Serumeiweiss sieht man zuerst eine Fällung eintreten, die aber wieder verschwindet, um auf erneuten Zusatz wieder aufzutreten und schliesslich wieder zu verschwinden, nachdem man mehr oder weniger Säure zugesetzt hat. Das erste Verschwinden des Niederschlags hat keine Gefahr, das zweite aber macht die Methode ganz unbrauchbar für den Nachweis kleiner Mengen Eiweiss. Man weiss nie, ob man nicht zuviel Säure zugesetzt hat und ausserdem ist die erforderliche Menge, ceteris paribus, von der Menge des Eiweisses abhängig, die man noch nicht kennt.

Da andere Reagentien (Reag. von Millon, Essigsäure und Ferrocyanalkalium) im Harn und anderen tierischen Flüssigkeiten wegen der darin vorkommenden Salze und anderen Bestandtheilen keine allgemeine Anwendung finden, empfahl ich die Methode der Fällung durch Essigsäure und Kochsalzlösung. Auch hier kommt freilich nach dem Abkühlen Trübung durch ausgeschiedene Harnsäure manchmal vor, unmittelbar nach dem Erwärmen habe ich diese Ausscheidung jedoch nie beobachtet, während sogar sehr kleine Eiweissmengen sofort flockig ausgeschieden werden. Nur muss man genug Kochsalz zusetzen und deshalb ist es rathsam, einige Ccm. einer gesättigten Lösung, die ± 32 pCt. CI\textsubscript{Na} enthält, zuzufügen. Wenn man der Eiweisslösung auch nur den achten Theil dieser Kochsalzlösung zusetzt, so wird der erforderliche minimale Salzgehalt bereits überschritten1).

\begin{itemize}
 \item 1) Dass wirklich sämtliches Eiweiss bei hinreichendem CI\textsubscript{Na}-Gehalt ausgeschieden wird, davon habe ich mich öfter überzeugt. Folgendes diente
\end{itemize}
Nachdem wir, neben der bekannten Einwirkung von starker Salpetersäure auf Serumweiß, wissen, wie schwache Acidalbumine sich verhalten, lassen sich die Erscheinungen, die bei Einwirkung von Salpetersäure auf salzarmen Lösungen von Serumweiß eintreten, leicht erklären. Salpetersäure von gewisser Concentration (bei Berücksichtigung der Dauer der Einwirkung und der Temperatur) bildet aus Eiweiß eine unlösliche Substanz. Der in die Eiweißlösung hineinfallende Säuretropfen verteilt sich darin nicht gleichmäßig. In der unmittelbaren Nähe des Tropfens beginnt die unlöslche Substanz sich zu bilden, da die Einwirkung aber nur von kurzer Dauer war, löst sich dieser Körper beim Umschütteln wieder auf, als ein durch schwache Säure gebildetes Acidalbumin, das in schwachen Säuren löslich ist 1). Hat die Einwirkung des ersten Tropfens länger gedauert, so kommt die Lösung nicht mehr zu Stande. Bei grösseren Säuremengen wird die sich bildende unlöslche Substanz ausgeschieden und bei noch grösseren Mengen wird sie zersetzt und die gebildeten Decompositionsprodukte lösen sich auf.

Für die quantitative Bestimmung von Eiweiß ist die Methode der Abscheidung mittelst CI Na und Essigsäure unbrauchbar. Bekanntlich wird bei Scherer's Methode

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>32 trübe</td>
<td>id.</td>
<td>kein Eiweiß</td>
</tr>
<tr>
<td>16 id.</td>
<td>id.</td>
<td>id.</td>
</tr>
<tr>
<td>8 id.</td>
<td>id.</td>
<td>id.</td>
</tr>
<tr>
<td>4 id.</td>
<td>id.</td>
<td>Eine Spur</td>
</tr>
<tr>
<td>2 id.</td>
<td>id.</td>
<td>Mehr Eiweiß.</td>
</tr>
<tr>
<td>1 id.</td>
<td>klar</td>
<td>—</td>
</tr>
<tr>
<td>0.5 id.</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>0.1 klar</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Wenn also der Gehalt an Kochsalz nur 4 pCt. beträgt, so wird sämtliches Eiweiß gefällt.

Serum von Rindsblut und Hühnereiweiss wurde mit 9 Vol. Wasser verdünnt. Darauf wird in 50 Ccm. = 5 Ccm. der genuinen Eiweisslösung, durch Sieden das Eiweiss coagulirt, nach Zusatz verschiedener Mengen Essigsäure und ClNa-Lösung von 32 pCt. Das ausgeschiedene Eiweiss wird mit Wasser ausgewaschen, bis

Ueber die Bestimmung des Eiweisses in tierischen Flüssigkeiten. 243

zum Verschwinden der Chlorreaction, bei 120° getrocknet und gewogen.

<table>
<thead>
<tr>
<th>Hühnereiweiss.</th>
<th>Blutserum.</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b im Mittel in pCt.</td>
</tr>
<tr>
<td>---</td>
<td>-----------------</td>
</tr>
<tr>
<td>Nach Scherer’s Methode</td>
<td>—</td>
</tr>
</tbody>
</table>

Mit 1 Ccm. Norm.-Essigs. und 0.3 pCt. CI\(\text{Na}\)

<table>
<thead>
<tr>
<th>Desgl. mit</th>
<th>0.5</th>
<th>0.52</th>
<th>9.13</th>
<th>—</th>
<th>—</th>
<th>—</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.2</td>
<td>—</td>
<td>—</td>
<td>0.438</td>
<td>0.445</td>
<td>8.88</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>—</td>
<td>—</td>
<td>0.487</td>
<td>0.488</td>
<td>8.75</td>
</tr>
<tr>
<td></td>
<td>3.8</td>
<td>0.447</td>
<td>0.453</td>
<td>9.00</td>
<td>0.433</td>
<td>0.428</td>
</tr>
</tbody>
</table>

Mit 2 Ccm. Norm.-Essigs und 0.6 pCt. CI\(\text{Na}\)

<table>
<thead>
<tr>
<th>Desgl. mit</th>
<th>1.2</th>
<th>—</th>
<th>—</th>
<th>0.438</th>
<th>—</th>
<th>8.76</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3.8</td>
<td>0.449</td>
<td>0.442</td>
<td>8.91</td>
<td>0.435</td>
<td>0.430</td>
</tr>
<tr>
<td></td>
<td>6.4</td>
<td>0.425</td>
<td>0.412</td>
<td>8.37</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Mit 10 Ccm. Norm.-Essigs. und 6.4 pCt. CI\(\text{Na}\)

| — | — | — | 0.428 | 0.422 | 8.50 |

Durch Circumpolarisation das Eiweiss zu bestimmen ist ebenso unhethlich, wie ich demnächst auseinander zu setzen hoffe. Wie soll man denn aber den Eiweissgehalt bestimmen?

Liborius kommt zu dem Resultat, dass die Fällung des Eiweisses durch Alcohol noch die genauesten Resultate giebt und ich glaube in der That, dass diese Methode den andern so eben erwähnten Methoden vorzuziehen ist und in vielen Fällen sogar ziemlich gute Resultate geben kann. Nur wird man die Flüssigkeit so genau als möglich neutralisiren müssen; kleine Mengen Alkali haben jedenfalls auf die Ausscheidung durch Alcohol grossen Einfluss, wie ich gezeigt habe.
Die Fällung durch Alcohol hat jedoch einen grossen Nachtheil, nämlich den, dass mit dem Eiweiss eine grosse Menge Salze precipitirt werden, die man durch Veraschung bestimmen muss. Liborius fand 10 bis 20 pCt. Asche. Dies macht die Methode lästig und ungenau. Diese Schwierigkeit wird bei der Eiweissbestimmung im Harn um so grösser, da hierin durch Alcohol Salze niedergeschlagen werden, deren Menge sich durch Veraschung nicht bestimmen lässt (Urate).

Ich schlug ein anderes Verfahren ein, das wenigstens für Hühnereiweiss, Blutserum und die gewöhnlichen Transsudate sehr befriedigende Resultate ergeben hat. Durch Dialyse kann man den grössten Theil der Salze und alle anderen kristalloiden Stoffe entfernen, während nur eine Spur Eiweiss durch das Pergamentpapier hindurchgeht. Nachdem die löslichen Substanzen durch Dialyse mit destillirtem Wasser entfernt waren, wurde die dialysirte Flüssigkeit, deren Menge vor der Dialyse bestimmt war, auf das zehnfache Volumen gebracht und in 50 Ccm. der feste Rückstand bestimmt. Da nun bei meinen früheren Bestimmungen des Aechengehalts des mit Regenwasser dialysirten Eiweisses im Mittel 1,5 pCt. Asche gefunden war und bei der Dialyse mit destillirtem Wasser immer noch ein Theil des Alkalis in der Flüssigkeit nachzuweisen ist, so habe ich 2 pCt. des festen Rückstandes als Asche in Rechnung gebracht, was mit der Wahrheit ziemlich genau stimmt. Diese Bestimmungen wurden mit den Zahlen verglichen, die unter den günstigsten Umständen mit Essigsäure und ClNa erhalten werden können. Das Resultat war wie folgt:

<table>
<thead>
<tr>
<th>Hühnereiweiss</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>im Mittel in pCt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mit (\frac{1}{2}) Ccm. Norm.-Essigs. und 0,6 pCt. ClNa</td>
<td>0,445</td>
<td>0,438</td>
<td>0,442</td>
<td>0,442</td>
</tr>
<tr>
<td>Fester Rückstand nach Dialyse, nach Abzug von 2 pCt. Asche</td>
<td>0,502</td>
<td>0,496</td>
<td>9,98</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pferdeserum</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>im Mittel in pCt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mit (\frac{1}{3}) Ccm. Norm.-Essigs. und 0,6 pCt. ClNa</td>
<td>0,380</td>
<td>0,384</td>
<td>7,64</td>
<td></td>
</tr>
<tr>
<td>(\frac{1}{4})</td>
<td>0,6</td>
<td></td>
<td>0,365</td>
<td>0,366</td>
</tr>
</tbody>
</table>

1) Die Eiweissmenge, die durch das von mir benutzte Pergamentpapier diffundirt, ist so gering, dass dadurch die zweite Decimale nicht einmal beeinflusst wird.
Ueber die Bestimmung des Eiweisses in thierischen Flussigkeiten. 245

<table>
<thead>
<tr>
<th>a.</th>
<th>b.</th>
<th>c. im Mittel</th>
<th>im Mittel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mit 1 Com. Norm.-Essiga. und 3.6 pCt. CINa</td>
<td>0.380</td>
<td>0.379</td>
<td>7.60</td>
</tr>
<tr>
<td>Fester Rückstand nach Dialyse, nach Abzug</td>
<td>0.390</td>
<td>0.393</td>
<td>7.83</td>
</tr>
<tr>
<td>von 2 pCt. Asche</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

II.

<table>
<thead>
<tr>
<th>a.</th>
<th>b.</th>
<th>c. im Mittel</th>
<th>im Mittel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mit 1/4 Com. Norm.-Essiga. und 0.6 pCt. CINa</td>
<td>0.291</td>
<td>0.296</td>
<td>0.297</td>
</tr>
<tr>
<td>> 1/4 > > 0.6 > ></td>
<td>0.296</td>
<td>0.297</td>
<td>5.88</td>
</tr>
<tr>
<td>Fester Rückstand nach Dialyse, nach Abzug</td>
<td>0.306</td>
<td>0.306</td>
<td>6.16</td>
</tr>
<tr>
<td>von 2 pCt. Asche</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Paraglobulin in CINa gelöst.

<table>
<thead>
<tr>
<th>a.</th>
<th>b.</th>
<th>c. im Mittel</th>
<th>im Mittel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mit 1/4 Com. Norm.-Essiga.</td>
<td>0.358</td>
<td>0.358</td>
<td>7.16</td>
</tr>
<tr>
<td>Nach Dialyse</td>
<td>0.368</td>
<td>0.364</td>
<td>7.32</td>
</tr>
</tbody>
</table>

Dass die Zahlen, welche gefunden werden, durch Bestimmung des festen Rückstandes der dialysirten Eiweisslösung besser mit dem wirklichen Eiweissgehalt stimmen, als die bei Behandlung mit Essigsäure und Kochsalz gefundenen, geht aus Folgendem hervor. Bei der Dialyse der Filtrate der zuletzt genannten Methode findet man das fehlende Eiweiss zurück. Im zuletzt erwähnten Fall wurde auf diese Art für das ins Filtrat übergegangene Eiweiss gefunden 0,014 und 0,016 Grm. Addirt man diese Zahlen zu den bei der Bestimmung mit CINa und Essigsäure gefundenen, so kommt man auf folgende Zahlen:

<table>
<thead>
<tr>
<th>a.</th>
<th>b.</th>
<th>c. im Mittel</th>
<th>im Mittel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eiweissgehalt</td>
<td>0.371</td>
<td>0.370</td>
<td>7.42</td>
</tr>
</tbody>
</table>

welche Zahlen noch etwas höher sind als die, welche die Bestimmung des Rückstandes der dialysirten Lösung ergeben hatte.

Wenn man also den Eiweissgehalt einer Eiweisslösung genau kennen lernen will, ist es meiner Meinung nach am besten, einen bestimmten Theil davon unter günstigen Bedingungen — Dialysator mit grosser Bodenfläche und viel destillirtes Wasser — zu dialysiren und den trocknen Rückstand der dialysirten Lösung als den Gehalt an Eiweiss anzusehen.

Es versteht sich von selbst, dass man, um die erwünschte

1) Hier wurden die 2 pCt. Asche nicht in Rechnung gebracht, da Paraglobulin nur Spuren von Asche zurücklässt.
Genauigkeit zu erreichen, auf manche Umstände achten muss. In
dem schwach alkalisch reagirenden Blut werden bei der Dialyse
keine Salze abgesetzt. Dabei hat man also keine besonderen Maass-
regeln zu treffen und wahrscheinlich ebenso wenig bei den meisten
Transsdudaten. In anderen Flüssigkeiten hingegen, im Harn z. B.
können je nach der Reaction Salze ausgeschieden werden, die also
der Dialyse entsogen werden. In solchen Fällen wird man, glaube
ich, diese Salze entfernen können, wenn man erst bei saurer und
darauf bei alkalischer Reaction, oder umgekehrt, dialisyrt, je nach
der Beschaffenheit der Eiweisslösung, und somit auch hier durch
Bestimmung des trockenen Rückstandes nach dem Dialysiren den
Eiweissgehalt genauer kennen lernen, als durch irgend eine andere
bekannte Methode.

Ueber Cholecyanin und Choleteelin.

Nachschrift zu Heynsius' und Campbell's Abhandlung.

Von

A. Heynsius.

Nachdem unsere früheren Untersuchungen¹) erschienen sind,
hat Stokvis noch einige Beiträge geliefert, wodurch unsere Re-
sultate bestätigt und ausgebreitet wurden, während Maly Un-
suchungen mittheilte, die damit in offenbarem Streit sind, was ihn
veranlasst, sowohl unsere Resultate, als die von Stokvis, gänz-
lich zu verwerfen.

Maly²) fand, dass durch Einwirkung von Natrium-Amalgam
auf eine verdünnte alkalische Bilirubin-Lösung ein Farbstoff erhalten
wird, der alle Eigenschaften von Jaffé's Urobilin besitzt. Die in
Alcohol, Aether, Eisessig, Chloroform, Ammon und Alkalien mehr
weniger leicht lösliche Substanz wird aus der alkalischen Lösung
durch Salzsäure in braunen Flocken gefällt. Ihre alkalischen Lö-

¹) Diese Archiv Bd. 4, 1870. St.

In einem späteren Beitrag 1) kam Maly ausführlicher darauf zurück und theilt er eine Elementaranalyse dieser Substanz mit. Ihre Zusammensetzung soll durch C₂₉H₄₀N₄O₇ ausgedrückt werden und ist demnach von der des Choletelins verschieden, ausserdem fluorescirt das Choletelin nicht "und weicht auch sonst sehr wesentlich ab."

Ferner bemerkte Stokvis, dass, obschon wir auf Grund der spectroscopischen Eigenschaften die Identität des Choletelins und des Uroblins erschlossen hatten, in der That einige Unterschiede beständen (Löslichkeit, Fluorescenz, rosenerote Färbung beim Verdünnen), was auch Jaffé veranlasste, die Identität beider Körper zu bezweifeln, während Maly dieselbe entschieden in Abrede stellte. Es glückte Stokvis durch schwächer oxydierende Mittel, als die von uns benutzten, aus dem Chokeyanin einen Stoff darzustellen, der nicht nur spectroscopisch, sondern auch in jeder

anderen Hinsicht: Löslichkeit, Fluorescenz, rosenrothe Farbe bei Verdünnung, mit dem Uroblin übereinstimmt 1).

Gegen diese Angaben von Stokvis machte Maly 2) den Einwand, dass Jaffé bereits in seiner ersten Mitteilung über das Uroblin auf die Uebereinstimmung hingewiesen habe, die in gewissen Hinsichten zwischen einer "nicht weiter characterisirbaren Gallenfarbstoffoxydationsprodukte enthaltenden Lösung" und Uroblin bestehe, bald aber bei fernerer Untersuchung gesehen habe, dass "die Eigenschaften der beiden Pigmente aus einander gingen. Er findet es ungereimt, an der Identität beider Substanzen festhalten zu wollen, und erwähnt zum Schluss den Unterschied in der elementaren Zusammensetzung, was seiner Meinung nach die Frage entscheidet.

Der Hauptgrund, weshalb ich auf Maly's Einwürfe nicht geantwortet habe, liegt darin, dass ich wenig Nutzen davon erwartete und seine Entgegnung auf Stokvis' Darlegung der Identität von Choletelin und Uroblin hat mich davon nicht zurückgebracht. Ein zweiter Grund lag darin, dass mein Vorrath an Bilirubin erschöpft war, und mir das hienlängliche Material zu einer ordentlichen Untersuchung fehlte.

Ich überzeugte mich jedoch sogleich, dass durch Einwirkung von Natriumamalgam auf Bilirubin dieselbe Substanz entsteht, die sowohl wir, als auch Stokvis unter dem Einfluss oxydirender

1) Die Identität des Choletelins und Uroblins, ebendaselbst 1873. S. 211.
Substanzen hatten entstehen sehen und schloss daraus, dass sowohl wir, als Maly, mit einem Spaltungsproduct des Bilirubins zu thun hätten, welches unter sehr verschiedenen Umständen daraus entstehen zu können scheint.

Zum Schluss behauptet Maly, wir hätten blos sehr zusammen-gesetzte Mischungen spectroscopisch untersucht und nicht einmal
versucht, die fraglichen Stoffe zu isoliren. Wer Campbell’s Ab-
handlung gelesen hat, weiss, wie unbegründet diese Behauptung ist.
Wir untersuchten — und wir haben dies selbst ausgesprochen —
die Zersetzung hauptsächlich mit dem Spectroscop, versuchten aber
ausserdem die Stoffe zu isoliren. Maly’s Bemerkungen erscheinen
aber in noch höherem Grade befremdend, wenn man bedenkt, dass
Campbell und ich gerade seine Methoden der Darstellung be-
folgten, wobei man seiner Ansicht nach so reine Producte erhält,
dass er es der Mühe werth fand, dieselben einer Elementaranalyse
zu unterwerfen. Ich will gerne zugeben, dass man allmähliger bessere
Bereitungsweisen für Cholecyanin und Choletelin finden kann, es
wird aber immer schwierig bleiben, sich von der Reinheit der Pro-
ducte hingänglich zu überzeugen. Die spectroscopische Untersuchung
wird vorläufig gewiss das hauptsächlichste Hilfsmittel bleiben für die
Erkennung dieser Stoffe. Wenn man eine alkalische, Gallenfarb-
stoffe enthaltende Lösung mit einer Säure fällt, so hat man noch
gar keine Garantie für die Reinheit des Präcipitats. Ich habe mich
immer mehr davon überzeugt, dass man auf dem gegenwärtigen
Standpunkt unseres Wissens nicht daran denken kann, chemisch
reine Zersetzungs- oder Spaltungsprodukte den Gallenfarbstoffe zu
isoliren und deshalb blebe ich dabei, auf Grund der Ueberein-
stimmung im spectroscopischen Verhalten, Urobilin und Choletelin
als identische Körper anzusehen, wenn auch Maly in den durch
ihn abgeschiedenen Farbstoffen Unterschiede in der elementaren
Zusammensetzung gefunden hat.
Prospectus.

Im unterzeichneten Verlage erscheint vom 1. April 1875 ab eine

Zeitschrift
für
Anatomie und Entwicklungsgeschichte.

Herausgegeben
von
Wilhelm His und Wilhelm Braune,
Professoren der Anatomie in Leipzig.

Wie der Titel besagt, ist dieselbe dem Ausbau der Anatomie und der Entwicklungsgeschichte gewidmet. Nach der physiologischen Seite wird sie Arbeiten bringen, welche die Fragen der Entstehung und der functionellen Bedeutung anatomischer Formen behandeln, nach der praktischen solche, welche das anatomische Detail dem ärztlichen Erkennen und Handeln dienstbar machen.
In dem unterzeichneten Verlage erscheinen:

Der Naturforscher.

Wochenblatt zur Verbreitung der Fortschritte in den Naturwissenschaften.

In 52 Nummern von 1–1 1/4 Bogen; Preis vierteljährlich 4 Mark.

Der »Naturforscher« hat sich die Aufgabe gestellt und nach dem Urtheile aller Berufen bisher mit Verdienst und Glück angestrebt, die Resultate der Forscher aller Länder — zum Theil in Original-Artikeln, zum Theil aus den Verhandlungen der Vereine, Akademien, Fachjournalen — aufzusammeln und in gedrängter Kürze wiederzugeben. Eine solche zusammenfassende Darstellung wird für Alle von grossem Nutzen sein, die irgend ein naturwissenschaftliches Fach bearbeiten und bei dem engen Zusammenhange, in dem die einzelnen Zweige der Naturwissenschaft unter einander stehen, auch aus den übrigen Gebieten regelmässig das Wichtigste und Interessanteste kennen zu lernen wünschen.

Repertorium der Naturwissenschaften.

Monatliche Uebersicht der neuesten Arbeiten auf dem Gebiete der Naturwissenschaften.

Herausgegeben von der Redaction des Naturforscher.

Jährlich 12 Nummern von 1–1 1/4 Bogen. Preis: 4 Mark.

Das Repertorium stellt den Inhalt aller deutschen und fremden Gesellschafts- und Zeitschriften, welche naturwissenschaftliche Original-Arbeiten enthalten, bequem und übersichtlich geordnet regelmäßig zusammen, um hierdurch allen Denjenigen, für welche es wichtig ist, die Existenz der betr. Arbeiten zu kennen, die Kenntnissnahme derselben zu erleichtern.

Die erste Nummer ist durch alle Buchhandlungen zur Einsicht zu erhalten.

Berlin.

Ferd. Dümmler's Verlagsbuchhandlung
(Harrwitz und Gossmann).

Verlag von F. C. W. Vogel in Leipzig.

Soeben erschienen:

Unsere Körperform

und
das physiologische Problem ihrer Entstehung.

Briefe

an einen befreundeten Naturforscher

von

Wilhelm His,

Prof. der Anatomie an der Universität Leipzig,

Mit 104 Holzschnitten.

5 M. 50 Pf.
Verlag von F. C. W. Vogel in Leipzig.

Soeben erschien:

BEITRÄGE
zur
Anatomie und Physiologie.
CARL LUDWIG
gewidme-
von
Seinen Schülern.
— 2 Heft
60 X

Eine Sammlung ausgezeichneter Originalarbeiten aus dem Gebiete der Anatomie, Physiologie und Entwicklungsgeschichte, in eleganten Ausstattung.

In unserem Verlag ist eben erschienen:

Kurzes Lehrbuch
der
Anorganischen Chemie
wesentlich für
Studirende auf Universitäten und polytechnischen Lehranstalten sowie auch zum Selbstunterricht.

Von
Professor Dr. V. v. Richter.

Mit 62 Holzschnitten und 1 Spectraltafel.

Preis 7 Mark.

Die Verlagsbuchhandlung
MAX COHEN & SOHN (Fr. Cohen) Bonn.
ARCHIV
FÜR DIE GESAMMTE
PHYSIOLOGIE
DES MENSCHEN UND DER THIERE.
HERAUSGEGEBEN
VON
DR. E. F. W. PFLÜGER,
ORD. ÖFFENTL. PROFESSOR DER PHYSIOLOGIE AN DER UNIVERSITÄT
UND DIRECTOR DES PHYSIOLOGISCHEN INSTITUTES ZU BONN.
ZEHNTER BAND.
SECHSTES UND SIEBENTES HEFT.
Mit 1 Tafel.
BONN, 1875.
VERLAG VON MAX COHEN & SOHN.
(FR. COHEN.)
Ausgegeben Anfangs April 1875.
Beiträge zur Lehre von der Respiration. (Aus dem physiologischen Laboratorium in Bonn.) 251

I. Über die physiologische Verbrennung in den lebendigen Organismen. Von E. Pflüger 251

§. 1. Definition der Aufgabe 251
§. 2. Kritik der Beweise, welche für die Gegenwart des Ozons im tierischen Organismus vorgebracht worden sind 252
§. 3. Kritik der Untersuchungen Scheremetjevsky's 266
§. 4. Thatsachen der vergleichenden Physiologie, welche für die Beziehung der Zelle zum Sauerstoff bedeutungsvoll sind 270
§. 5. Die Phosphorescenz der lebendigen Organismen und ihre Bedeutung für die Prinzipien der Respiration 275
§. 6. Thatsachen und Hypothesen zu den hier in Frage kommenden Prinzipien 300
§. 7. Widerlegung der Untersuchungen und Theorien von C. Ludwig und Al. Schmidt 345
§. 8. Kritik der Untersuchungen von Dr. W. Sadler 356
§. 9. Über die Grenzen des Partiendrucks des Sauerstoffs, welche für die tierische Verbrennung bestehen 364

II. Über den Einfluss der Strömungsgeschwindigkeit und Menge des Blutes auf die tierische Verbrennung. Von Dr. Dittmar Finkler. (Aus dem physiologischen Laboratorium in Bonn.) 368

Über verschiedene Pepsinwirkungen. Vorläufige Mittheilung von Dr. Dittmar Finkler. (Aus dem physiologischen Laboratorium in Bonn.) 372

Über die Lage des Gefässcentrums. Von Dr. Moritz Nussbaum. Hierzu Tafel II. (Aus dem physiologischen Laboratorium in Bonn.) 374
Beiträge zur Lehre von der Respiration.

I.

Über die physiologische Verbrennung in den lebenden Organismen.

Von

E. Pflüger.

§ 1. Definition der Aufgabe.

In meiner Abhandlung «Über die Diffusion des Sauerstoffs, den Ort und die Gesetze der Oxydationsprozesse im tierischen Organismus» 1) habe ich mit dem stärksten Nachdruck das Princip ausgesprochen, dass die lebendige Zelle die Größe des Sauerstoff-verbrauches regelt, nicht aber der Sauerstoffgehalt des Blutes, also nicht die Geschwindigkeit des Blutstromes oder andere Momente, die darauf von Einfluss sein können.

Meiner Auffassung nach ist die tierische Oxydation vergleichbar der langsamen Verbrennung activen Phosphors in verdünntem Sauerstoff. Denn hier liegt nur im Phosphor die Ursache, dass die chemische Bindung sich vollzieht.

Die tierische Verbrennung der Zelle setzt nicht bloss keinen activen und nur neutralen Sauerstoff voraus, sondern ist auch innerhalb weiter Grenzen vollkommen unabhängig von dem Partiadruck des neutralen Sauerstoffs.

So wenig ist diese fundamentale Wahrheit erkannt, dass trotz alles Dessen, was ich bis dahin dafür geltend gemacht habe, einer unserer berühmtesten Physiologen, nämlich C. Ludwig und seine Schule bis in die neueste Zeit geradezu das Umgekehrte des von mir aufgestellten Gesetzes für das Wahre ausgeben.

Nur mein oben ausgesprochenes Princip enthält die richtige Erklärung des Gesetzes von Regnault und Reiset, dass Thiere

E. Pflüger, Archiv f. Physiologie. Bd. X.
gleichviel Sauerstoff absorbiren und Kohlensäure abgeben, welches auch der Partiadruck des Sauerstoffes sei, den sie einathmen.

Wer mir der Ansicht ist, dass nur der Gedanke den Thatsachen des Naturforschers Werth verleiht, dass nur die Erkenntniss der wahren Principien den wirklichlichen Fortschritt möglich macht, der wird die Berechtigung dieser Abhandlung anerkennen.

§ 2. Kritik der Beweise, welche für die Gegenwart des Ozons im thierischen Organismus vorgebracht worden sind.

Abermals will ich also eintreten für die Entscheidung der Frage, ob die Metamorphose der Materie im thierischen Stoffwechsel dadurch bedingt ist, dass der Sauerstoff die organischen lebendigen Moleküle zerreissat, oder ob diese letzteren das neutrale Sauerstoffmolecul spalten.

Ich werde in der Folge deshalb genöthigt sein, die von angeesehenen Forschern beigebrachten Thatsachen und Schlussfolgerungen, welche gegen meine Ansicht sprechen, zu kritisiren, wobei ich Niemandem zu nahe treten will. Wo ich beim Citiren ein Ausrufungszeichen hinter einem Worte anbringe, möchte ich damit nur die
Aufmerksamkeit des Lesers auf diejenigen Punkte lenken, die ich für die Quelle von Fehlern ansehe.

Von jeher hat man an der Thatsache Anstoss genommen, dass das Eiweiss gegen den neutralen Sauerstoff sich indifferent verhalte und doch in dem lebendigen Körper bei relativ niedriger Temperatur so energisch oxydiert werde. Allgemein gelangte man zu der Annahme, es müsste der Sauerstoff im lebendigen Organismus eine Veränderung erfahren und seinen indifferenten Charakter verlieren, um als gefrässiges Ozon das Eiweiss, die Fette und Kohlenhydrate zu verbrennen.

Obwohl bereits Hoppe-Seyler sich auf das Bestimmteste gegen die Berechtigung der Annahme des Oizons im Thierkörper ausgesprochen, so findet man doch noch in den neuesten Lehrbüchern der Physiologie, sowie allenthalben in der medicinischen Literatur die entgegengesetzte Auffassung.

Es scheint mir deshalb nicht unwichtig, genauer die Gründe darzulegen.

Einen willkommenen Anhalt erfuhrn jene Vorstellungen, die in dem Sauerstoff den »Lebenserreger« sahen, durch die Untersuchungen von Alexander Schmidt, aus denen hervorzugehen schien, dass das Blut Ozon enthalte.

Der wichtigste Versuch ist bekanntlich der, dass man einige Tropfen guter Quajaktinctur auf schwedisches Filtrirpapier fließen lässt und abwartet, bis der entstandene braune Fleck durch Verdunstung des Alkohols nahezu, aber nicht ganz getrocknet ist. In diesem Moment bringt man auf diesen Fleck einen Tropfen gewässertes Blut. Es entsteht allmählich ein blauer Hof rings um den Tropfen 1). Wenn das Blut sehr stark gewässert worden war und man eine »möglichst dünne Schicht auf den Quajakpapierstreifen« gestrichen hat, so bläut sich auch, was gewöhnlich nicht geschieht, nach Schmidt der unmittelbar benetzte Theil des braunen Fleckens 2).

Die Ursache dieser Reaction ist nach meiner Ansicht, die ich seit vielen Jahren in meinen Vorlesungen vorgetragen habe, folgende:

Wo eine sehr dünne Blutschicht auf dem porösen Papiere sich befindet, vollzieht sich unter gleichzeitiger chemischer Zersetzung des Blutfarbstoffes die Bildung einer Sauerstoff fest bindenden Sub-

stanz. Ich sowohl, als Hoppe-Seyler in seinen berühmten Untersuchungen über den Blutfarbstoff, haben gezeigt, dass bei dieser Zersetzung ein mit Begierde sich oxydirender Körper, das Haemochromogen Hoppe's, auftritt. Hoppe-Seyler aber hat bewiesen, dass Lösungen von Blutroth beim Verdunsten über 0° sich immer partiell zersetzen, also oxydiren. Ein Molekül, welches sich oxydirt auf Kosten des atmosphärischen Sauerstoffs, muss dessen Molekül der Regel nach spalten und so erklärt sich die Bildung des Ozons durch die langsame Oxydation des Phosphors und vieler anderer leicht oxydirbarer Substanzen.

In einem Aufsatze gegen Pokrowsky, welcher ebenfalls gegen die Beweiskraft der Schmidt'schen Versuche aufgetreten ist, liefert nun Schmidt merkwürdigerweise selber den Beweis, dass bei seinem bekannten Versuche das Blut sich stärker und energischer zersetzt, als man glauben sollte.

Er sagt, es sei nothwendig gewesen zu versuchen, ob das Blut nicht etwa durch blose Berührung mit porösem Papier die Fähigkeit erlange, eine Quajaktinctur, gegen welche es sich auf glatten Oberflächen ursprünglich unwirksam verhielt, nun doch auf einer solchen Oberfläche zu bläuen. »Dieses ist in der That der Fall«1) (!!!).

»Wenn man Fliesspapier mit Blut tränkt, sich dann, sobald das Eintrocknen beginnt, einen peripherischen Streifen abschneidet, denselben zerkleinerd und mit Wasser extrahirt, so erhält man eine Blutlösung, welche mit vollkommener Sicherheit das Quajakharz auf gläsernen Oberflächen bläut, auch wenn die Reaction mit dem ursprünglichen Blute misslang. So lange die angewendete Tinctur noch empfindlich genug ist, um auf dem Papierstreifen zu reagiren, so lange gelingt bei dieser Behandlung des Blutes auch die Reaction auf einer Glasplatte2).«

Was gibt es für einen evidenteren Beweis, dass die Berührung mit dem Papier eine Veränderung des Blutes vollzogen hat, in Folge deren die Reaction energisch auftritt?

Ferner meldet A. Schmidt, dass beim Eintrocknen normalen Blutes auf Fliesspapier nur der äusserste peripherische Theil des Blutfleckes ein zur eben beschriebenen Reaction taugliches Wasser-

2) Alex. Schmidt. Nochmals über Ozon etc., p. 28.
extract giebt1). Man erinnert sich aber, dass eben meist nur der Rand des Blutstropfens bläulend wirkt. Hierzu bemerke ich ferner, dass ja bekanntlich eingetrocknete Blutstropfen in der Mitte oft noch schön roth, an den Rändern aber fast immer wegen Zersetzung des Hämoglobins braun sind. Auch Po k r o w s k y hat hierauf aufmerksam gemacht.

Das Merkwürdigste aber ist, dass Al. Schm i d t das mit dem Fliesspapier behandelte Blut mit dem Spectroscope untersuchte und sah, dass es den Hæmatinstreifen zeigte; »derselbe ist um so deutlicher entwickelt und die Oxyhaemoglobinstreifen treten um so mehr zurück, je längere Zeit das Trocknen im Papier gedauert hat und je verdünnter (!!!) das Blut war. Nach H o p p e-S e y ler haben wir es hier neben noch unserzetztem Hämoglobin mit Methämoglobin zu thun, welches optisch mit dem Hämatin in saurer Lösung iden-
tisch ist.«

»Dass mit dieser im Papier eintretenden Zersetzung des Blut-
farbestoffes2, sagt Schm i d t selbst, »eine Steigerung seiner oxydi-
renden Eigenschaften Hand in Hand geht, ersieht man daraus, dass die Reaction auf dem Glase um so besser gelingt, je deutlicher der Hæmatinstreifen hervortritt; hiermit stimmt auch meine frühere Er-
fahrung, dass das Hämatin das Quajakharz ungleich kräftiger bläut, als das Hämoglobin, überein. Andererseits genügt schon der ge-
ringste (!) Grad der Zersetzung, um dem Blute die Fähigkeit zu ertheilen, eine relativ unempfindliche Quajaktinctur auf glatter Ober-
fläche zu bläuen3).«

Gleichwohl behauptet Sch m i d t, dass sein Versuch für das Hämoglobin beweisend sei. Denn er sagt: »Frisches Blut auf einer Glastafel bei gewöhnlicher Temperatur stundenlang eingetrocknet, erleidet keine Zersetzung des Farbstoffes; da nun trotzdem die Reaction auf einer Glastafel mit frischem unserzetztem Blute ge-
lingt, so besitzt schon das normale Oxyhämoglobin die Fähigkeit, das Quajakharz zu bläuen, den Zerstorungsproducten kommt diese Eigenschaft aber in erhöhtem Maasse zu. Die Bläue des Quajak-
harzes auf porösem Papier ist also eine directe Wirkung des Blutes und nicht des Papieres, aber letzteres befördert diese Wirkung, indem es die Zersetzung des Blutfarbstoffes einleitet4).«

1) Al. Schm i d t. Nochmals über Ozon etc. p. 29.
2) Al. Schm i d t. Nochmals über Ozon etc. p. 29.
3) Al. Schm i d t. Nochmals über Ozon etc. p. 30.
4)
Da nun offenbar sehr geringe Spuren von Ozon zur Bläulung genügen, und da beim Verdunsten sich immer eine kleine Menge Blutfarbstoff auch auf einer Glastafel bei mittlerer Temperatur zersetzen wird, so kann man nicht zugeben, dass Schmidt den Beweis erbracht hat. Denn sein Beweis beruht auf der Behauptung, dass Hämoglobinlösung auf Glas beim Abdunsten sich nicht zersetzt, während nach allen Erfahrungen diese Zersetzung über 0° beim Verdunsten immer eintritt und natürlich in jedem Gefäße sich vollzieht. Wer kann denn sagen, wie klein die zersetzte Menge sein darf, ohne aufzuhören, die Quajakreaction zu geben?

Al. Schmidt hat, was zur Klärung der Frage wesentlich beiträgt, auch selbst bewiesen, dass diese Blutlösungen, welche die Quajakreaction geben, fortwährend »außerordentlich grosse« Mengen von Sauerstoff verschlucken; d. h. sich oxydiren, was ja auch die continuirlich ablaufende Zersetzung beweist 1). Schmidt zeigte, dass, während »unzersetztes« Blut bei Zimmertemperatur etwa 15—18 Vol. pCt. in etwa 2 Tagen verzehrt, ein Extract aus auf Fliesspapier getrocknetem Blute (20 pCt. feste Bestandtheile der Lösung vorausgesetzt) in derselben Zeit 87 Vol. pCt., d. h. in 8 Tagen 348 Vol. pCt. Sauerstoff verbrauchen kann 2).

Daraus geht doch ganz klar hervor, dass man es bei diesen Versuchen über Ozonreaction mit Körpern zu thun hat, die normal im Blute nicht enthalten sind.

Ganz ähnliche Verhältnisse lieferte Kohlenoxydblut 3), wie das nach unseren jetzigen Kenntnissen selbstverständlich ist, weil das Kohlenoxydhämoglobin ja bei gewöhnlicher Temperatur in Dissociation ist, also die fortwährende Wiederbildung von Oxyhämoglobin ermöglicht.

Die höchsten wesentliche Frage aber, ob nicht auch das Quajakharz selbst eine Zersetzung des Blutes veranlasst, hat Schmidt nicht berührt, wohl aber Thatssachen gemeldet, die das in hohem Grade wahrscheinlich machen.

Wenn man die Quajaktinctur zu einem dünnen Syrup zur Verjagung des Alkohols abdunstet auf circa 1/4 Volum und zu 1 bis 1 1/2 CC. 1 Tropfen Blut bringt, so scheiden sich erst Flocken aus,

3) Al. Schmidt. l. c. p. 81.
die sich dann wieder lösen, wobei der Syrup sehr dickflüssig wird.
Schmidt sagt, dass, wenn man zu 30 Tropfen dickflüssiger Quajaktinctur mehr als 2 bis 3 Tropfen Blut setzt, so „wird dadurch die Harzlösung so dickflüssig, dass sie sich nicht mehr schütteln lässt“.

Dass man diese Harze nicht als indifferent gegen Blut be-trachten kann, zeigt z. B. das Terpentinöl, welches nach Schmidt mit Blut eine harte Masse bildet²).

Das Hämoglobin unter den genannten Bedingungen sich fortwährend zersetzt und die Zersetzung durch unberechenbare Momente begünstigt oder verzögert wird; da die Zersetzung mit Entstehung von Körperneinhergeht, die in statu nascenti sich mit dem atmosphärischen Sauerstoff verbinden, und da Oxydationen oft Ozon oder Oxygenium nascens bedingen, so ist der Quajakversuch nicht beweisend für die Fähigkeit des Hämoglobins, den neutralen Sauerstoff zu ozo-nisiren.

Hiermit in Uebereinstimmung ist, dass, je älter das Blut ist, d. h., je mehr die Zersetzungen bereits abgelaufen und die Oxydationen vollzogen sind, um so schwächer die Wirkung auf Quajak wird. Aber „selbst ganz faules, 4 Wochen altes Blut war nicht unwirksam geworden“⁴). Denn es enthält immer noch unzersetztes Hämoglobin oder dessen nächste Abkömmlinge.

Al. Schmidt hat allerdings noch mehr Gründe für seine Ansicht beigebracht. Es ist ihm gelungen, mit Blut Jodkaliumstärkekleister zu bläuen, was ja bekanntlich durch Oxydation des Kaliums und Bildung von Jodstärke bedingt ist. Er war aber gezwungen, den Kleister vor dem Blutzusatz anzusäuern, um, wie er meinte, die Probe durch Bildung von Jodwasserstoff empfindlicher zu machen. Er bediente sich der Chlorwasserstoffsäure, der Schwefelsäure, der Weinsäure und der Oxalsäure⁴). Die Ansäuerung war „jedesmal“ so stark, dass die Lösung nach Beimengung von Blut oder Blutserum noch deutlich sauer reagierte (a. a. O. p. 17). In einer späteren Abhandlung⁵) hebt Schmidt richtig hervor, dass bei dieser Be-

4) Al. Schmidt. Ueber Ozon etc. p. 15 u. 16.
handlung das Blutrot sich zersetze, so dass der Versuch also nicht für das Oxyhämolglobin verwertet werden kann. Al. Schmidt hat ferner neutrale Indigolösung durch das Blutoxozon zu entfärben gesucht. Die Farbenänderung zeigte sich „in den ersten Tagen“ nicht (!), dann aber wurde die bluthaltige Flüssigkeit missfarbig, wobei sich bald ein deutliches Grün entwickelte, das von Tag zu Tag heller wurde; die Farbe der unvermischten Indigolösung verlor während dessen höchstens etwas von ihrer Dunkelheit. Nach Verlauf von 12 (!) Tagen war erstere ganz lichtgrün geworden 1).“ Später fährt er über denselben Versuch fort: „Es war also jedenfalls in dem Indigoblutgemische Blau geschwunden und Gelb aufgetreten, das dem Blute angehörige Roth wurde theils von diesen Farben verdeckt, theils hatte es sich durch Zersetzung (!) des Blutes soweit geändert, dass es zur Entstehung von Grün beitrug, wie sich daraus ergab, dass die zweite Portion der reinen Indigolösung mit dem vor 12 Tagen benutzten und jetzt schon faulenden (!) Blute in dem angegebenen Verhältnisse versetzte keine violette, sondern eine dunkelgrüne Farbe mit einem äusserst schwachen Stiche ins Violette (nur bei durchfallendem Licht bemerkbar) zeigte 2).“

Bei den Indigoversuchen handelt es sich also ebenfalls um eine fortlaufende Kette von Zerstüzungsvorgängen, die natürlich mit Oxydationen verknüpft sind.

Al. Schmidt bezieht sich nun auch noch auf Versuche von Pokrowsky mit Kohlenoxydblut, die er bestätigte, aber ohne genauere Daten anzugeben. Hierbei soll das Kohlenoxyd bei 30—42° C. in 24 Stunden in Kohlensäure übergehen 3).

Bei den Analysen Pokrowsky’s handelt es sich um kleine Kohlensauredifferenzen in den Blutproben, je nachdem es mit CO versetzt war oder nicht. Die Oxydation von Kohlenoxyd zu Kohlensäure durch normales Blut ist durch diese Versuche nicht als erwiesen anzusehen, weil einmal in 24 Stunden bei 32—42° sicher schon Fäulnis eintritt, so dass durch abnorme Zersetzung bedingte Oxydation eine Ozonation erzeugen kann, die nicht physiologisch ist. Pokrowsky giebt in einem Falle selbst an, dass die Gase Schwefelwasserstoff enthielten, was sich wohl durch den Geruch

verrieth. Er hätte deshalb bei Absorption der Kohlensäure aus
dem Gasgemische immer erst den Schwefelwasserstoff entfernen und
bestimmen müssen. Ferner entwickelt ja solches Blut mit und ohne
Sauerstoff bei der Digestion Kohlensäure und die Gegenwart des
Kohlenoxydes kann diese Entwicklung beeinflussen. Diese Unter-
suchung beweist also keineswegs die Oxydation des Kohlenoxydes
zu Kohlensäure in normalem Blute.

Ein anderer öfters angezogener Grund für die Ozonbildung im
Blute ist die Oxydation des Schwefelwasserstoffes in demselben 1).
Aber dieses Gas oxydirt sich doch sehr schnell in destilliertem Wasser,
in dem so wenig Sauerstoff aufgelöst ist, während im Blute ver-
dichteter Sauerstoff vorkommt, weshalb auch diese Thatsache nicht
beweisend ist.

Allgemein kann man sagen, dass, abgesehen von einigen win-
zigen Wirkungen, alle leicht verbrennbaren Stoffe, die in alkalischem
Wasser an der Luft stehend nicht verbrannt werden, auch im Blute
fast unverändert bleiben, wie z. B. sogar Natriumlactat 2) und Trau-
benzucker (Hoppe-Seyler).

Alexander Schmidt hat endlich noch eine Reihe von
Thatsachen von grosser Merkwürdigkeit, die er selbst entdeckt hat,
in dem Sinne verwerthet, dass der Sauerstoff, um die tierische Oxy-
dation zu vollziehen, erst erregt werden müsse.

Alexander Schmidt stellte bekanntlich fest, dass die
Körperchen ganz frischen Blutes das Wasserstoffsuperoxyd mit einer
Energie katalysieren, wie keine andere bekannte Substanz. Ein
Tropfen Blut ruft, wenn er in eine möglichst gesättigte Lösung von
Wasserstoffsuperoxyd gebracht wird, unter heftigem „explosionsartig“
folgenden Aufschäumen die sofortige Zersetzung unter Entwicklung
neutralen Sauerstoffs hervor, ohne dass eine Oxydation
des Hämoglobinës stattfindet. An sehr vielen Stellen
seiner zahlreichen Abhandlungen kommt der genannte Forscher
immer wieder mit demselben Nachdruck auf diese Thatsache zurück 3).

Alexander Schmidt ist der Ansicht, dass diese mächtige

2) Scheremetjewsky. Ludwig’s Arbeiten 1868. p. 189.
Derselbe. Ueber Blutgerinnung im Archiv für die gesammte Physiologie.
Bd. 6. p. 508, 518.
Katalyse durch eine Modification des Hämoglobinines bedingt sei, welche als „genuine“ bezeichnet wird, weil sie die des lebendigen Blutes sei.

Schmidt hebt allerdings einen Grund hervor zur Rechtfer-
tigung seiner Anschauung. Er macht darauf aufmerksam, dass in der Mutterlauge, aus welcher der Blutfarbstoff auskrystallisirt, denn doch die mächtig katalysirende Substanz enthalten sein müsse. Es verliere aber die Flüssigkeit immer mehr ihre katalytische Kraft, je mehr »genuines« Haemoglobin in kristallinisches übergehe 1). Nun sagt Schmidt in demselben Aufsatz (pag. 525), dass Zimmerwärme, atmosphärische Luft und Wasser das »genuine« Haemoglobin in kristallinisches überführen. Wenn also die Blutlösung solchen verändernden Einflüssen ausgesetzt ist, so ist es ja sehr möglich, dass die das Wasserstoffsuperoxyd katalysirende Substanz noch viel zersetzbarer und modifizierbarer als Haemoglobin ist. Was dies für ein merkwürdiger Körper sein muss, will ich etwas später erörtern.

Aus diesen Thatsachen folgt, dass bis jetzt kein Grund vorliegt, zwei Modificationen des Haemoglobins zu unterscheiden.

Auch die Einwirkung der Kohlensäure könnte man heranziehen, die das Haemoglobin des Blutes erst zersetzt, wenn das Blut gewässert worden ist. Hier sind aber offenbar sehr viele Möglichkeiten denkbar, sodass man zur Annahme einer besonderen Modification des Haemoglobins nicht gezwungen ist.

Das Haemoglobin könnte in den Blutkörperchen in einer durch Wasser zersetzbaren lockeren Verbindung sein, die es gegen die Kohlensäure schützt; dieser Schutz könnte durch die Dichte des Haemoglobins im Blutkörperchen, durch den Reichthum des letzteren an stark alkalischen Salzen geboten sein u. s. w.

Der wichtigste Punkt bleibt uns aber noch zu besprechen. Denn es handelt sich um einen der merkwürdigsten Versuche, der

1) Schmidt l. c. Arch. 6, p. 522.

Wenn das Wasserstoffsuperoxyd bei der Einführung der Canüle in die Vene nicht sorgfältig vor Beginn der Injection vor dem Contact mit Blut bewahrt wird, so findet Gasentwicklung statt und das Thier geht zu Grunde in Folge der Luftbläschen im Blute 2).

Es stellt sich demnach die wunderbare Thatsache heraus, dass Wasserstoffsuperoxyd im lebendigen Blute ruhig keist und dass auch hier also das Haemoglobin, das doch gewiss »genuines« ist, sich ganz indifferent verhält.

Schmidt erklärt die Erscheinung allerdings anders. Er meint, dass im lebendigen Blute eine so gewaltige Erregung des Sauerstoffs stattfindet, dass der aus dem Wasserstoffsuperoxyd freier werdende Sauerstoff sofort zu physiologischer Oxydation verwandt werde 3). Ich glaube kaum, dass das Blut »explosionsartig« Wasserstoffsuperoxyd zersetzen kann und dass 115 CC. Sauerstoff, die im Moment im rechten Herzen und den grossen Venen entstehen müssten, nachdem die Lösung dem Hunde in die Vena jugularis eingespritzt worden, etwas anderes bedingen würden, als augenblicklichen Tod. Ebensowenig dürfen in einem Blutgefäss des Kaninchens plötzlich 30—40 CC. Sauerstoff ohne sofortigen Tod sich entwickeln, ja noch nicht ein viel kleinerer Theil. Dass das Wasserstoffsuperoxyd sich im Blute nur sehr langsam umsetzt, zeigt auch die allmählich eintretende, von Dr. Asmuth nachgewiesene Temperatursteigerung und Vermehrung des Harnes.

Der Versuch von Dr. Asmuth beweist also, dass das lebendige Blut auf Wasserstoffsuperoxyd keine stärkere katalytische Wirkung ausübt, als sehr viele andere Stoffe. Mithin hat das ge- nuine Haemoglobin ebensowenig als das krystallinische eine eminent

3) Haematol. Studien p. 11.

Es ist deshalb recht auffallend, dass Alexander Schmidt in seiner letzten grossen Arbeit über Blutgerinnung in diesem Archive Bd. 6 so häufig es als besonders charakteristisch für das »genuine« Haemoglobin angiebt, dass es energischer als irgendeine andere Substanz Wasserstoffsuperoxyd katalysiere (p. 508), gleichwohl aber an keiner Stelle mehr des Versuches von Dr. Aasmuth Erwähnung thut, der doch ein so ergangenes Veto einlegt.

Nachdem somit alle Thatsachen, welche für die Ozonisation des Sauerstoffs im Blute ins Feld geführt worden sind, als ungenügend zum Beweise erkannt wurden, ist es wichtig, dass ein Forscher wie Alex. Schmidt, der in der Respiration des Blutes so grosse und wichtige Erfahrungen gesammelt hat, sich zu dem Geständniss gedrungen sieht, dass die ozonisierende Wirkung der Blutkörperchen bei Weitem nicht hinreiche, um alle Wirkungen, die der Sauerstoff im Thierleibe entfaltet und die ganze Grösse des tierischen Verbrennungsgesiches zu erklären¹). Schmidt findet gleich mir, dass im gelassenen Blute keine Oxydationen vorkommen, die an Intensität entfernt den »im circulirenden Blute sich abwickelnden Processe« gleichkommen. Er denkt sich, dass die Processe mit dem Moment der Entleerung des Blutes aus der Ader zum Stillstande kommen²). Er sieht sich deshalb, da das Haemoglobin eine zu winzige Erregung des Sauerstoffs bedingt³), nach einem andern Erreger um, der energetischer wirkt (p. 21. 24), muss aber hier zu im Blute kreisenden ganz

hypothetischen elektrischen Strömen greifen, deren Kleinheit sie sicher als bedeutungsvoll erweisen dürfte.

Alle Thatsachen weisen darauf hin, dass der Blutsauerstoff neutraler ist, damit ihm jene Beweglichkeit zukomme, mit Hilfe deren er bei Körpertemperatur von den Blutkörpern nach allen Richtungen ausgesprühlt werde, wie uns dies die denkwürdigen Untersuchungen von F. C. Donders1) gelehrt haben.

Alles weist auf die Herstellung von Bedingungen hin, durch welche im Blute die Diffusion, also die Bewegung des Sauerstoffs erleichtert wird, welche dem Ozone, wie ich sogleich zeigen will, absolut abgeht. Denn die Scheibe, als welche das Blutkörperrchen uns entgegentritt, ist eine Gestalt, deren Oberfläche gegen den Inhalt unendlich gross gemacht werden kann, im Gegensatz zur Kugel, bei welcher das Verhältniss der Oberfläche zum Inhalt ein Minimum ist. Auch die Delle des Säugetierblutkörperrchens bezeugt uns das Bestreben, möglichst dünne Schichten des Haemoglobins herzustellen. Nur bei den träge respirirenden Thieren, sowie also auch den Säugetierembryonen finden wir runde Blutzellen. Ganz in demselben Sinne muss die Thatsache betrachtet werden, dass die Thiere mit dem lebhaftesten Stoffwechsel die kleinsten Blutkörperchen haben und dass die grössten bei den Amphibien vorkommen. Denn eine bestimmte Menge Blutkörpersubstanz wird um so mehr Oberfläche haben, je zahlreichere Theilchen daraus geformt sind. Schon Milne-Edwards hat diese Beziehungen erkannt2). In anziehender Weise sind dieselben auch ferner von H. Welsker3) studirt worden.

Wenn in dem Blute eine Ozonisation des Sauerstoffes stattfinde, so würde die Beweglichkeit des Sauerstoffs, die zur Diffusion nöthig ist, sofort eliminiert. Jedenfalls könnte ozonisirter Sauerstoff nicht den Geweben zu gute kommen.

Dies geht besonders klar aus Thatsachen hervor, die Alex. Schmidts ermittelt hat. Er zeigte, dass Serum und Plasma ozonisirter Luft sehr schnell das Ozon entziehen und dass Blut noch viel energischer wirkt4). Pokrowsky macht darauf aufmerksam, dass

\begin{itemize}
 \item 1) F. C. Donders: Der Chemismus der Atmung, ein Dissociationsproces. Arch. f. d. ges. Phys. Bd. V. p. 20.
 \item 2) Leçons sur la physiologie I. 53.
 \item 3) Zeitschr. f. rat. Med. 3. Reihe. Bd. 20, p. 293.
 \item 4) Haematol. Studien pag. 28.
\end{itemize}
Ueber die physiologische Verbrennung in den lebendigen Organismen.

... der Sauerstoff des Blutes, der ausgepumpt werden kann, also der durch Dissociation das Haemoglobin verlassende, keine Ozonreaction gibt. Schmidt bestätigt dies und zeigt, dass, wenn man stundenlang durch Blut oder Globulinlösungen ozonirte Luft leitet, das Ozon vom Blute vollständig verschluckt wird, sodass die aus demselben austretenden Gasblasen keine Ozonreactionen geben. Das Ozon wird also sofort fixirt zur Oxydation der Blutbestandtheile, welche dadurch geändert und zersetzt werden.

Die Fibringenratoren sollen erst ihre specifische Eigenschaft, der liquor pericardii seine Gerinnbarkeit (pag. 28), das Plasma seine gelbe Farbe (pag. 28) verlieren. Allmählich werden die Eiweissstoffe, wie auch v. Gorup-Besanex fand, total oxydirt, was Schmidt für verschiedene Eiweissmodifikationen bestätigt. Der letztere Forscher hebt hervor, dass Ozon in allen Proteinverbindungen erst Coagulate erzeugt, die dem Faserstoff aber nicht identisch sein sollen; ferner werden die Blutkörperchen aufgelöst und auch der Farbstoff allmählich gänzlich zerstört (p. 45).

Wenn also Al. Schmidt dennoch behaupten will, dass der Sauerstoff nur als erregter im Organismus enthalten ist, so ist die nothwendige Consequenz, dass er erst überall da erregt werde, wo er verschwindet. Denn sobald er in den erregten Zustand übertritt, ist er auch sofort gebunden, weil er überall oxydierbare Moleküle im Körper findet.

Ich habe bei allen Erörterungen die von Nasse angeregte Frage, ob es sich um Ozon oder Sauerstoff in statu nascenti handle, unberührt gelassen, weil sie einmal für uns von keiner wesentlichen Bedeutung und zweitens wenigstens für jetzt nicht zu entscheiden ist.

Mancher wird vielleicht geneigt sein, in den Versuchen von Schermetjewsky eine Stütze für die Ansicht zu gewinnen.

1) Haematol. Studien pag. 36.
2) Haematol. Studien pag. 28, 29, 82.
6) Haematol. Studien pag. 87.
dass wenigstens in den Geweben der Sauerstoff ozonisirt werde, was ich principiell nicht für undenkbar, aber doch auch für ganz unerwiesen ansehe. Die Arbeit des genannten Forschers muss demgemäß von uns einer genaueren Würdigung unterzogen werden.

§ 3. Kritik der Untersuchungen Scheremetjewsky's 1).

Scheremetjewsky, der bekanntlich in Ludwig's Laboratorium über Fragen der Respiration arbeitete, behauptet, dass milchsaures Natron, das mit Blut digerirt werde, absolut keine Aenderung erleide, wohl aber doch sich oxydire (oder doch einen Sauerstoffverbrauch und Kohlensäurebildung bedinge), wenn dasselbe, in Blut gelöst, durch eine ausgeschnittene »überlebende« Niere getrieben werde.

Was diese Untersuchungen sogleich von vornherein verdächtig macht, ist der ganz merkwürdige Umstand, dass »ein anderes verbrennliches Molekül«, nämlich Zucker, sich geradezu umgekehrt verhalten soll. Denn mit Blut allein digerirt, soll es sich oxydiren (während Hoppe-Seyler 2) gezeigt hat, dass das nicht der Fall ist), und in Blut gelöst durch die Niere getrieben, soll es sich nicht oxydiren; ja es soll sogar keine Oxydation eintreten, wenn der Zucker in das Blut eines lebendigen Thieres eingespritzt wird, so dass also nach diesen Versuchen die einzige Art, wie die Verbrennung des Zuckers erzielt werden kann, Digestion mit defibriniertem Blute ist.

Diese Behauptungen Scheremetjewsky's, die bereits in Lehrbüchern als Wahrheiten der Wissenschaft stehen, sind vollkommen unbegründet und zum Theil sogar durch gewöhnliche Rechenfehler bedingt.

Bei Serie I 3), die aus 4 Durchströmungsversuchen besteht, wird erst unvermisches, defibriniertes Blut durch die Niere geleitet. Dieselbe verbraucht 0.107 Sauerstoff in einer Minute (pag. 139). Darauf wird dasselbe, aber mit milchsaurem Natron versetzte Blut durch dieselbe Niere getrieben. Der Sauerstoffverbrauch beträgt jetzt 0.134 in einer Minute. Also ist die Differenz = 0.134 — 0.107 = 0.027. Nun betrachte man Serie II (pag. 239), auch 4 Durch-

1) Über die Aenderung des respiratorischen Gasausstausches in C. Ludwig's Arbeiten 1869, pag. 114.
2) Hoppe-Seyler: Medicinisch-chemische Untersuchungen. 1866, pag. 186.
3) Scheremetjewsky l. c. p. 189.
Über die physiologische Verbrennung in den lebendigen Organismen.

strömungen darbietend. Bei zwei unmittelbar aufeinander folgenden Durchströmungen (2 und 3) wird ein und dasselbe Blut, welches mit milchsäurem Natron versetzt ist, durch die Niere geleitet. Das erste Mal verbraucht die Niere 0,106, das zweite Mal 0,154 Sauerstoff in der Minute, also unter ganz denselben Verhältnissen. Der Beobachtungsfehler ist also 0,154 - 0,106 = 0,048, d. h. fast doppelt so gross als obige Differenz, auf die ein Gewicht gelegt wird.

Damit sich Jeder überzeugen könne, will ich die Rechnung ausführen:

Das unvermischte Blut enthielt 15.96 Vol. pCt. Sauerstoff,
Dasselbe nach Leitung durch die Niere 3.71 .

In der Minute floss durch die Niere 1.08 CC. dieses unvermischten Blutes.

Also:

100 : 12.24 = 1.08 : 0.182

Somit folgt:

Durchströmung der Niere
mit Blut + milchsäurem Natron.
Sauerstoffverbrauch 0.186 0.182! nicht 0.111
Kohlensäurebildung 0.078 0.078.

Nun kommt zur Beurtheilung der grossen Fehlerquellen dieser Versuche aus Serie I noch folgende lehrreiche Thatsache, wenn man die erste und vierte Durchströmung mit einander vergleicht, die mit unvermischem Blut geschehen.

Obwohl bei Durchströmung 4 ein und dasselbe Blut schneller die Niere durchheilt als bei Durchströmung 1, wird es bei 1 reducirt bis zu einem Sauerstoffgehalt von 5.05 Vol. pCt., bei 4 aber bis zu 3.71 pCt., also unter nahe denselben Verhältnissen. Es verhielten sich die Geschwindigkeiten, mit denen in beiden Fällen das Blut

Bei Serie I ist ferner immer in den drei ersten Durchströmungen, wo der kleinere Sauerstoffverbrauch notirt ist, auch die Strömungsgeschwindigkeit des Blutes kleiner gewesen. Ludwig behauptet ja aber doch immer, wort für wort später genau gehandelt werden soll, dass der Sauerstoffverbrauch der Strömungsgeschwindigkeit nahezu proportional sei. Nun verhalten sich die Geschwindigkeiten in der ersten, zweiten und dritten Durchströmung (s. p. 139) wie 98 : 103 : 122,

Was soll dies also für milchsauren Natron beweisen, da die Veränderung der Strömungsgeschwindigkeit zur Erklärung allein ausreicht?

Durchströmung 4 ist, wie oben besprochen, aus anderen Gründen bedeutungslos.

0.3 Vol. pCt. also Nichts zu geben ist, so hat auch eine von 0.6 noch wenig Werth, solange man nicht viele Versuche hat.

Serie II ist in der Anlage schon verfehlt. Denn Schere-
metjewski schüttelt das Blut, das mit milchsaurem Natron ver-
setzt ist mit Luft, das Blut aber, welches nicht versetzt ist, schüttelt er nicht; es behält also seinen niederer Sauerstoffgehalt. Nun be-
hauptet doch Ludwig selbst, dass, wenn das Blut sauerstoffreicher durch ein Organ fließt, so werde auch mehr Sauerstoff verbraucht.
Es ist nicht zu vergessen, dass Schütteln von Arterienblut mit Luft zwar eine nicht gerade weitere Aufnahme von Sauerstoff zur Folge hat, wohl aber eine colossale Steigerung der Tension dieses Gases — und diese könnte Veränderungen ungewöhnlicher Art in der ab-
sterbenden Niere hervorrufen, weil während des Lebens solche Span-
nungen niemals vorkommen.

Diese Untersuchungen von Schere metjewsky haben aber noch eine höchst bedenkliche Seite. Er hat nämlich auf Grund eines einzigen Versuches, der allerdings 4 Blutgasanalysen einschliesst, gefunden, dass Stehen von arteriellem Blut mit oder ohne milch-
schreibt er dann einen Versuch, wo arterielles Blut 5½ Stunde ebenso steht, ohne dass eine Spur von Aenderung im Gasgehalte auftritt. Muss man da nicht auf die Idee kommen, dass er bei der vergleichenden Digestion von unvermischtetem und mit milchsaurem Natron versetzten Blute sich vergriffen habe und jedesmal zwei Blutarten analysirte, die milchsaures Natron enthielten und darum so absolut gleiche Aenderungen ergaben? Das ist die Folge davon, wenn man sein Urtheil auf einen einzigen Versuch stellt.

Aber ferner: Wenn die Niere oxydiren auf verbrennliche Molecula wirken soll, die im Blute selbst gar nicht angegriffen wer-
den, was hat es dann für einen Sinn, wenn Schere metjewsky für den Zucker findet, dass er im Blute allein sich auf Kosten des Sauerstoffes oxydiren, obwohl er mit dem Blute durch die Niere geleitet sich nicht oxydirt und ebensowenig, wenn er einem lebendi-
gen Thiere in die Venen injicirt wird. Hier steht denn wieder die
Oxydation des Zuckers bei Digestion mit Blut, obwohl sie mit den Angaben eines so bewährten Forschers wie Hoppe-Seyler') im Widerspruch ist, auf der Gültigkeit einer einzigen Analyse. Ich muss bekennen, dass alle diese Ergebnisse mir den Eindruck machen, dass einige capitale Beobachtungs-Täuschungen vorliegen. Denn die Resultate haben zusammengenommen, wie der Schreiber des Aufsatzes von Scheremetjewsky selbst gesteht, eigentlich keinen Sinn 2) und verlangten gevierisch eine Wiederholung der paradoxen Ergebnisse, anstatt Häufung neuer Versuche mit Natriumcapronat, Acetat, Glycerin u. s. w., die nichts Wesentliches gelehrth haben.

§ 4. Thatsachen der vergleichenden Physiologie, welche für die Beziehung der Zelle zum Sauerstoff bedeutungsvoll sind.

Die absolute Nothwendigkeit der Sauerstoffaufnahme und Kohlensäurebildung durch die lebendige Materie, resp. die Zelle, ist eine Fundamentaleigenschaft der gesammten organischen Reiche.

2) Scheremetjewsky l. c. p. 148.
4) Recherches 37.
Wenn man also einem abgeschlossenen Raume, in dem Pflanzen sind, durch Eisenfeile den Sauerstoff entzieht, den sie selbst durch Zersetzung der Kohlensäure bilden und mit Hilfe dessen sie eine Zeit lang ihr Leben fristen, so sterben sie rasch ab. Ja merkwürdig genug verhält sich der wachsende Keim dem Thiere so ähnlich, dass er bereits zu Grunde geht, wenn der Partiadruck des Sauerstoffs ein sehr niedriger wird. In Bestätigung der wichtigen Untersuchungen von Huber und Senebier ermittelte P. Bert 1), dass Getreidekörner um so langsamer keimen, je geringer die Tension des Sauerstoffs ist, mit dem sie in Berührung sind.

Bei einer Spannung von 4 bis 10 Cm. steht schon die Entwicklung vollkommen still. P. Bert zeigt in seinen höchst interessanten Untersuchungen, in Uebereinstimmung mit älteren Beobachtungen, dass der Pflanze sogar auch eine Kohlensäure-Dyspnöe zukommt, indem ein Kohlensäuregehalt von 20 Volumprocent, also eine Tension von etwa 5/4 Atmosphäre trotz hinreichender Sauerstoffmenge die Entwicklung des Keimes aufhebt und ein Gehalt von 3/4 denselben tötet 2).

Wie energisch die Oxydationsprozesse der Pflanzen sein können, zeigen die unter Sauerstoffabsorption und Kohlensäurebildung beobachteten bedeutenden Temperatursteigerungen, z. B. zur Zeit der Befruchtung am Blüthenkolben der Aroideen, der um mehr als 10° C. wärmer als die Umgebung sein kann. Die Blüthen der Victoria regia, des Kürbisses u. s. w. zeigen ähnliche, wenn auch minder auffallende Temperatursteigerungen.

Die Pflanzenzelle lebt und atmet also principiell wie das Thier, bereitet aber in sich ihre Nahrung aus anorganischer Substanz und Kohlensäure. Sie bekundet hierdurch ihre gemeinsame Abstammung mit den Thieren aus einer Wurzel.

Für alle Thiere gelten offenbar, was die Unternehmungen von V. Regnault und Reiset gezeigt haben, dieselben Principien der Respiration, wie man an den Beziehungen des Sauerstoffverbrauches zur Kohlensäurebildung sieht. Jene Forscher sind bei ihren klassischen Arbeiten mit einer für die heutige Zeit nachahmungswürdigen

2) P. Bert l. c. pag. 1496.
Auszauer und Gründlichkeit nicht bloss durch das Reich der Wirbelthiere geschritten, sondern bis zu den Würmern hinab gestiegen. Sie haben hierbei gefunden, dass gewisse Insekten, wie z. B. der Seidenspinner als Schmetterling oder der Maikäfer den Menschen an Intensität der Oxydationsprozesse nicht unbedeutend übertreffen (p. 481), während der Regenwurm etwa auf einer Stufe mit dem Frosch steht (p. 490) ¹).

Bei den niedersten Geschöpfen, die entweder nur aus undifferenziertem Protoplasma bestehen oder bei den organlosen aber bereits zelligen Protozoen athmet die nackte Leibessubstanz offenbar überall, wo sie mit Wasser in Berührung kommt, für dessen Zuführung deshalb oft ins Innere des Körpers führende mannigfache Canalsysteme angelegt sind. Wo noch kein Blut vorhanden ist, da der Körper nur aus Zellsubstanz besteht, kann die Atmung natürlich nur durch diese bedingt sein.

Keine Gruppe im Thierreich giebt aber den Zweiflern an der vorwiegenden Bedeutung der Zelle für die Oxydationsprozesse ein lehrreicheres Beispiel, als die Tracheaten, und zwar die Insekten. Die Entwicklung des Circulationsapparates steht hier auf einer sehr niedereren Stufe, denn es existirt noch kein Capillarsystem und keine Vene, sondern nur ein mit Einlassöffnungen versehenes contractiles, in eine Arterie sich fortsetzendes Herz, sodass das oft farblose Blut die Leibeshöhle durchfliesst, die Organe nur umspült und entweder gar nicht in sie eindringt, oder doch in so spärlichen Strassen mit ihnen in Berührung kommt, dass auch nicht entfernt an einen so innigen und lebhaften Verkehr zwischen Blut und Geweben zu denken ist wie bei den Vertebraten. Bei diesen mit intensiver Oxydation begabten Thieren begiebt sich deshalb die Luft nicht zum Blut, sondern direct in das Innere des Organes mit Hülfe der sich immer feiner verästelnden und dicht an die Zelle herantretenden Luftgänge oder Tracheen. Hier sieht man deutlich, wie das Blut wegen seiner zu langsamten Bewegung durch den Körper und wegen seiner zu wenig innigen Berührung mit dem Innern der Organe umgangen wird, damit die Luft, d. h. der Sauerstoff der Zelle direct

¹) Recherches chimiques sur la respiration des animaux des diverses classes; par MM. V. Regnault et J. Reiset.

und ohne Vermittlung des Blutes zugeführt werde. In ganz exquisiter Weise tritt uns dies ja nach den Untersuchungen von Max Schultze 1) an den Leuchttorganen entgegen, wo die Tracheendigung unmittelbar der Zelle aufsitzt, wie die Knospe auf dem Stiele. Hier leitet das Luftrohr also den Sauerstoff direct auf die Substanz der Zelle. Auch an anderen Orten sind direkte Beziehungen der Endigung der Tracheen mit Zellen von Schultze nachgewiesen 2). Dr. Finkler theilt mir mit, dass er bei Untersuchungen, die er in meinem Laboratorium über die Structur der Speicheldrüsen von Blatta orientalis gemacht hat, eine sehr innige Verknüpfung des Tracheenendes mit den Epithelzellen erkannt habe. Wie ich sehe, ist Kupffer 3) zu ganz demselben Resultate gelangt, und glaubt die Luftkanäle sogar bis in das Innere der Drüsenalveolen verfolgt zu haben, wie mir das auch Dr. Finkler versichert.

Da es Articulaten mit rudimentären Tracheen giebt, so deutet dies auf eine Verminderung des Sauerstoffbedürfnisses und deshalb erklärt sich leicht, dass bei einigen das Blut wieder ausreicht zur Uebermittlung des Sauerstoffs an die Gewebe; ich denke hier an die Fälle, wo die rudimentären Tracheen eine lungenartig vom Leibessaft umspülte Entwicklung erfahren haben, wie das z. B. bei den Araneen und Scorpionen vorkommt.

Die Insecten sind also ein unschätzbares Experiment der Natur, dessen Bedeutung Niemand verkennen kann, der nicht für jede Thierart besondere allgemeine Principien der Lebensprozesse für denkbar hält.

Was die vergleichende Physiologie uns in deutlicher Weise kund thut, beim Aufsteigen von den einfachsten Formen des Thier-

reiches zu den höheren Geschöpfen, das lehrt uns demgemäss nothwendig ebenso das Studium der foetalen Respiration.

Hier sind besonders die Untersuchungen über die Respiration der Vogeleier hervorzuheben, welche Baumgärtner in einem vorzüglichen und höchst wichtigen Büchlein niedergelegt hat. Wenn sie auch experimentell bestätigen, wie ich das seiner Zeit aus dem Princip von der Erhaltung der Kraft abgeleitet habe, dass der Sauerstoffverbrauch des Embryo im Verhältniss zu dem des Geborenen sehr klein ist (s. die Anmerkung), sodass mit dem Beginn der Lungenathmung eine mächtige Zunahme der gesamten Oxydation eintritt, so lehren diese wichtigen Analysen doch auch, dass mit dem ersten Moment der Entwicklung des Embryo die Sauerstoffabsorption und Kohlensäurebildung anhebt, zu einer Zeit also, wo es weder Blut noch Blutgefässe gibt, wo also nur Zellen den Sauerstoff verbrauchen und die Kohlensäure bilden können. Dass das Hühnereiweiß oder der Nahrungsdotter hier eine wesentliche Rolle spiele, erwarte ich als Einwand nicht.

Wenn sonach im Pflanzenreich wie bei den niederer Thieren und den Embryonen der höhern offenbar die lebendige organische Leibessubstanz, d. h. die Zelle der Sauerstoffconsument und Kohlensäurebildner ist, wenn dies noch für so hoch organische Geschöpf wie die Insecten wahr bleibt, wie wäre es denkbar, dass bei den Wirbelthieren das Blut, das bei manchen Wirbellosen, z. B. niederer Crustaceen, nicht einmal Zellen enthält, die Hauptarbeitsstätte des Lebens sein sollte.

Bei den höheren Thieren, ich meine den Wirbelthieren, hat sich mit vorschreitender Differentiation auch der Respirationapparat

lokalisiert. Um den Organen die grossen Sauerstoffmassen zuführen zu können, war bei der Kleinheit des Absorptionscoefficienten des Sauerstoffs in wässrigen Eiweisslösungen eine Substanz nöthig, die die Eigenschaften des Haemoglobins besitzt, welche der genialste Kopf nicht zweckmässiger hätte ersinnen können.

Das Haemoglobin ist somit für den Körper der lebhaft respirirenden Vertebraten nur ein bequemer Lastwagen von grosser Capacität.

Die vergleichende Physiologie liefert uns für die Frage, wo wir den Heerd der tierischen Verbrennung zu suchen haben, noch einige der glänzendsten und interessantesten Belege in der tierischen und pflanzlichen Phosphorescenz.

§ 5. Die Phosphorescenz der lebendigen Organismen und ihre Bedeutung für die Prinzipien der Respiration.

Die Phosphorescenz der lebendigen Organismen ist seit langer Zeit von keinem Physiologen in allgemeinerer Weise behandelt, weshalb es vielleicht für Viele von Interesse ist, eine Zusammenstellung und Beurtheilung des Wichtigsten unter Benützung der neueren Erfahrungen der Naturwissenschaften hier zu finden.

Es ist unlänglich, dass, wie Phosphor und Schwefelkies in finstrer sauerstoffhaltiger Luft leuchten, so auch durch Zersetzung abgestorbener Organismen Licht erzeugt werden könnte. Geläugnet wird, dass bei der Verwesung organischer Substanz flüssiger Phosphorwasserstoff 1) (P₃H₄), der selbstentzündlich, entstehen kann und demnach ein Leuchten verwesender organischer Reste erklärbar schwer wäre. Wirklich dürfte fast allgemein das Leuchten auch toter Organismen nur durch lebendige bedingt sein, welche auf todten schmarotzen.

Nachdem schon Vianelli 2) und Grisellini 3) erkannt hatten, dass das Meeresleuchten durch Thiere resp. lebendige Organismen bedingt sei, zeigte C. H. Pfafl in seiner Schrift über das Kieler Seebad (Kiel 1823), dass das Leuchten ganz unabhängig von

2) Nuove scoperte intorno de luci noturne dell' aequa marina. Venesia 1749. 8.

Durch zuverlässige Forscher ist der Beweis geliefert, dass das

6) Gilb. Annalen Bd. 61, p. 175. 176.

2) Pl. Heinrich, Phosphorescenz. p. 28.
der Dämpfe der intensiv oxydierenden rauchenden Salpetersäure sofort ein lebhaft glänzendes Licht auftrat, das aber nach kurzer Zeit erlosch und nun selbstverständlich, nachdem der letzte Rest verbrennlicher Substanz zerstört war, auf keine Weise mehr wieder hervorgebracht werden konnte 1).

Eine weitere Bestätigung der Ansicht, dass das Leuchten ein Oxydationsprocess sei, erhellt aus der ausserordentlichen Reichlichkeits der Luftkanäle (Tracheen), welche sich in dem Leuchtporgan verzweigen, wie Peters 2) genauer erforscht hat, dem sich die später zu betrachtenden Untersuchungen von M. Schultze 3) anreißen, aus denen die innigste Berührung der Athemluft mit der Leuchtsubstanz hervorgeht, sowie dass die lebendige Leuchtsubstanz die Uebersäumnsäure intensiv sofort reduziert.

1) Gilbert's Annalen. 1822. Bd. X. pg. 274.
2) Müller's Archiv 1841. pg. 282.
4) Oeuvres de Physique et de Mécanique. p. 472.

4) Ebendas.
5) Ebendas. 278.
9) Pfaff in Schweigger’s Journ. 52. p. 311.

Spallanzani 2) berichtete, dass der Druck oder Stich einer Nadel in das Organ das verschwundene Leuchten wieder hervorruft. Alle Beobachter 3) sind einstimmig in der Hervorhebung der bedeutenden Einflüsse, die selbst sehr leise Erschütterungen auf das Leuchten ausüben, und welche wohl schwierig anders, als durch Innervation zu erklären sind.

4) Tiedemann. Physiol. I. 498.
Über die physiologische Verbrennung in den lebenden Organismen.

in das Wasser goss, worin sich das Thier aufhielt, so wurde noch ein Lichtfunke erregt. Dann war aber Alles todt.

Demnach ist die Reizbarkeit der leuchtenden Materie ganz unzweifelhaft und ihre Abhängigkeit von der Innervation von vorne herein sehr wahrscheinlich.

Unendlich bedeutungsvoll würde der sichere Nachweis sein, da daraus hervorginge, dass der Nerv die Oxydation der Gewebe in wunderbarer Weise unter seiner Herrschaft hat.

Alle Beobachter stimmen wenigstens für viele Thiere darin überein, dass das Leuchten vom Willen des Thieres regulirt wird, ja plötzlich aufgehoben werden kann.

2) Macaire a. a. O. p. 270.
3) Gilbert's Annal. Bd. 61. p. 120.
4) Dr. F. J. F. Meyen. Beiträge zur Zoologie, gesammelt auf einer Reise um die Erde. Abhandlung V.

Allgemein wird ferner angegeben, dass, wenn man der Lampyris den Kopf abschneidet, das Leuchten erlischt\(^1\), um nach einiger Zeit, wenn die Bewegungen des Rumpfes wieder von selbst anfangen, auch wieder, aber schwächer zu beginnen. Ganz in Übereinstimmung hiermit sind die Beobachtungen von Peters\(^2\) und Tiedemann\(^3\).

Auch der eigenthümliche Wechsel der Intensität des Leuchtns, welches nur so lange beobachtet wird, als die leuchtende Materie nicht aus ihrem normalen Zusammenhange getrennt ist, wie dieses Macartney\(^4\) besonders hervorhebt, spricht sehr für eine Abhängigkeit von dem Nervensystem, besonders da die Erscheinung auch bei durchsichtigen Wasserthieren so plötzlich auftritt, dass man doch schwerlich eine grösere Zufuhr von sauerstoffhaltigem Wasser dafür verantwortlich machen kann.

Die auffallendsten Thatsachen zur weiteren Erhärting der Abhängigkeit des Leuchtns vom Nervensystem, oder doch der ausserordentlichen Reizbarkeit der Leuchtsubstanz sind folgende:

lichtern, und ihr Licht beschreibt T i l e s i u s 1) als bald feurig und flammend wie das einer glühenden Kanonenkugel, bald wie brennendes blaugrünes Schwefelfeuer. Jene Versuche M e y e n's sind noch darum so wertvoll, weil die Pyrosomen fast wasserhell sind und ihre Oberfläche frei von Schleim ist. Auch scheint ihr Leuchttorgan höchst abhängig von dem Gesamtleben. Denn wenn M e y e n das knorpelartig harte Thier mitten durch brach, so war alles Leuchten in zwei bis drei Secunden vollkommen erloschen 2). Auch das blitzartige plötzliche Auflieuchten bei Wasserthieren, mit plötzlichen Muskelbewegungen, deutet auf die Abhängigkeit von der Innervation. So beschreibt T i l e s i u s 3) nach seiner reichen, auf wissenschaftlichen Seereisen gewonnenen Erfahrung das Licht der mikroskopischen Krebsen im Unterschied zu dem anderer Leuchttiere als sprühend wie die Funken aus einer Schmiedeesse. T i l e s i u s 4) hat diese Thierchen unter dem Mikroskope einzeln beobachtet und bemerkt, dass die Dauer der Erscheinung genau übereinstimmt und in Verbindung steht mit den Bewegungen, die ihnen eigenthümlich sind. So erscheint der Lichtfunke des mikroskopischen Seekrebenschens »im Meere gerade so stossweise und in derselben Dauer wie die zuckende oder convulsische Bewegung seines Schwanzes und wie mir der Stoss seiner Schwimmfüsschen gegen den Wassertropfen, in welchem ich das kleine Thierchen unter das Mikroskop gebracht hatte, erschien 5). Ungemein empfindlich gegen mechanische Erschütterungen sind nach S p a l l a n z a n i auch die Seefedern, deren Fahne dadurch leuchtend wird.

T o d d 6) gelangt auf Grund seiner an Leuchtkäfern angestellten Untersuchungen zu dem Ausspruch, dass alle mechanischen und chemischen Erregungen, die Schmerz erzeugen, auch das Leuchtorgan zum Leuchten bringen.

Diese Auseinandersetzungen erklären nun, warum mechanische Erschütterung des Meerwassers ein Auflieuchten erzeugt. A r t a u d 7)

1) T i l e s i u s in G i l b e r t's Annal. Bd. 61. p. 87. 88 u. 157.
2) M e y e n a. a. O. p. 158.
3) T i l e s i u s in G i l b e r t's Annal. Bd. 61. p. 88.
4) E b e n d a s. p. 176.
5) E b e n d a s.
6) T i e d e m a n n. Physiol. I. p. 506.
7) A r t a u d. Annales marit. etc. 1825. p. 364, und S c h w e i g g e r's Journ. 52. p. 320.

R. Pfüger, Archiv f. Physiologie. Bd. X.
zeigte, dass das ruhende Meerwasser sofort durch und durch leuchtete, wenn er es umührte, und dass dies nicht mehr der Fall war, wenn er es vorher filtrirt hatte.

Doch kommen auf Fischen, so z. B. nach Bayon²) auf Dorado (Meergoldfisch) leuchtende Punkte vor, die als schmarotzende Medusen angesprochen werden. Dies ist gewiss ebenso glaublich, als dass das Leuchten der im Meer liegenden Schiffstaue, wie Hablitzl³)

²) Gilbert's Annalen 61. p. 6.
festgestellt hat, durch darauf sitzende kleine Seekrebschen bedingt ist, die er für Cancer pulex erklärte.

Zu den Thatsachen, welche ich gesammelt habe zur Begründung der Ansicht, dass die leuchttende Materie reizbar sei, gehört aber noch die ausserordentlich wichtige, von allen Beobachtern über-einstimmend gemachte Erfahrung, dass die Leuchtkraft durch wiederholte Reizungen erschöpft werde. So hebtTilesius 1) hervor, dass oft durch Reizung erzeugtes Leuchten Erschöpfung hervorruft. Meyen 2) sagt, dass oft wiederholte Reizung der Pyrosoma die Leuchtkraft erschöpfe. Aehnlich sprechen sich andere Beobachter aus.

Da somit die Reizbarkeit bewiesen ist, so ist auch gezeigt, dass die leuchttende Substanz lebendige Materie ist. Denn die Reizbarkeit ist die erste und wichtigste Function der lebendigen Materie.

Dem widerspricht keineswegs, dass vom lebenden Körper abgeschnittene oder irgendwie entnommene Theile zu leuchten fortfahren. Denn selbst ein ausgeschnittenes Herz schlägt lange weiter und das abgeschnittene Bein eines Frosches behält sein Leben in kühler Temperatur für viele Tage. Ja die lange sich erhaltende Reizbarkeit ausgeschnittener Stücke von Nerven, die nur Zellen-fragmenten gleichwürdig sind, zeigen uns, dass auch Partikeln von Zellen noch eine Zeit lang zu leben fortfahren, wenn sie auch die natürliche Verbindung mit dem zugehörigen Organismus aufgegeben haben. So ist es also wohl verständlich, dass bei den Pholaden die Leuchtsubstanz einige Tage nach der Entfernung vom Thiere, also auch nach der Tötung des Thieres, die ja gewöhnlich nichts weiter als Tötung des Nervencentrumcs bedeutet, fortdauert, aber mit ein-tretender Fäulniss erlischt). Von dem Gesichtspunkte des Ueberlebens der Substanz nach der Zerstörung des Zusammenhanges der Organisation müssen auch die Versuche vonSpallanzani beurtheilt werden, bei denen er Medusen zerquetschte und Wasser damit auf 22 Minuten leuchtend machte; es ist aber recht bezeichnend, dass das Licht schon nach 1½ Stunde erlosch und später wieder durch Schüttern hervorgerufen werden konnte. Wirke auch die Erschütterung nicht mehr, dann half noch Erwärmen auf 30° R.,

5) Des Hofrath Tlesiús Resultate seiner während der drei Jahre der Krustenstern’schen Entdeckungszweige angestellten Untersuchungen über das Leuchten des Meeres in Gilbert’s Annalen 61. p. 36. 89. 173.
eingetrocknet werden kann und aufgeweicht wieder leuchtet. Denn
der Versuch gelingt nur, wenn die frische Leuchtsubstanz bei nie-
derer Temperatur getrocknet wird und das Leuchten beim Wieder-
befeuchten dauert nur sehr kurz (Spallanzani). Wenn einge-
trocknete Räderthierchen, mit Wasser befeuchtet, quellen und wieder
lebendig werden, wenn ein gefrorener Muskul nach dem Aufhauen
wieder zuckt, warum sollte die getrocknete Leuchtsubstanz beim
Befeuchten nicht wieder leuchten? Der Versuch gelingt indessen
nicht bloss mit dem Leuchtorgan des Leuchtkäfers, sondern auch mit
der allerdings sehr lebenssämen Leuchtsubstanz der Pholaden 1).

Michaelis 2) hat mit dem spezifischen Thiergift, der Blau-
säure, leuchtendes Meerwasser versetzt. Nach 10 Minuten war das
Licht nur noch schwach und nach 30 Minuten vollkommen erloschen.

Da das Leben der organischen Materie noch wesentlich von
der Temperatur abhängt, so ist es von grosser Bedeutung, auch die
hierauf bezüglichen Thatsachen kennen zu lernen.

Die Kälte, welche die Erstarrung erzeugt und das Stillstehen
aller Lebensprozesse, hebt mit ihnen auch das Leuchten auf. Das
gilt sogar für die Leuchtsubstanz der Pholaden, die sich sonst durch
eine ausserordentliche Lebensfähigkeit auszeichnet, wo über Becc-
caria, Monti, Galeati und Balbi Untersuchungen angestellt haben 3).
Am meisten sind die Leuchtkäfer untersucht mit Rück-
sicht auf die Wirkung der Temperatur. Nach Hulme, Spallanzani
und Placid Heinrich hört das Leuchten mit dem Eintritt der
Erstarrung auf, um beim Aufhauen wieder zu erscheinen 4). Nach
den höchst wichtigen Untersuchungen von Macaire 5) erlischt bei
Lampyris das Leuchten schon bei 10° R. Derselbe Forscher setzte
dann das Thier einer steigenden Temperatur aus; bei 22° R. begann
es wieder zu leuchten; das Licht war bei 33° am stärksten. Bei

mann's Physiologie. I. p. 496. — Peters in Müller's Archiv f. Anat. etc.
1841. p. 229.
2) Michaelis. Ueber das Leuchten der Ostsee. 1880 und auch
p. 248.
5) Macaire. Ueber die Phosphorescens des Leuchtkäfers, übersetzt

Alle genannten Thatsachen weisen also mit Bestimmtheit auf lebendige Substanz hin und dies wird weiter bestätigt durch diejenigen chemischen Reagentien, welche die leuchtende Materie vernichten. Denn es sind diejenigen, welche Eiweiss coaguliren oder energisch umwandeln und zersetzen.

Macaire zeigte für das Leuchttorgan des Leuchtkäfers, dass es durch Schwefelwasserstoff, Mineralsäuren, sowie concentrirte organische Säure sofort total seiner Leuchtfähigkeit beraubt werde⁷). Neutralisieren stellte die verlorene Eigenschaft nicht wieder her. Auch die ätzenden Alkalien zerstören und Neutralisation bringt die Leuchtfähigkeit nicht wieder. Dann kommen die Salze der schweren Metalle, besonders Kupfer-osalve und Quecksilberchlorid, welche ener-

²) Ebendas. 278.
³) Ebendas. 274.
⁷) Macaire in Gilbert's Annalen. Bd. X. p. 879, 278.

Von jeher haben auch deshalb die spezieller mit dem Gegenstand Vertrauten die leuchtende Materie als dem Eiweiss nahe verwandt angesehen, wie es z. B. Macaire 7) und Artaud 8) direct aussprechen und worin man ihnen nur beipflichten kann.

Da es sich aber um reizbares Eiweiss handelt, um lebendiges Eiweiss, so werden wir nicht fehlgehen, wenn wir die Leuchtmaterie für Protoplasma halten, was ja für einzelne Fälle sicher bewiesen ist.

Wenn ältere Forscher das klebrige leuchtende Protoplasma der Zellen von der Oberfläche einer Meduse abwischten und die Substanz Schleim nennen, so wissen wir, dass sie mit dem Worte keinen andern Begriff als den der eigenthümlichen Consistenz verbanden.

Wenn Spallanzani 8) ferner die voll Wasser gesogene Fahne der Seefeder ausdrückte, so leuchtete das ausgepresste Wasser. Man muss aber die ganz ausserordentliche Zartheit dieser Wesen im Betracht ziehen, um einzusehen, dass solch ein Versuch dem Wasser eine Masse zerquetschter Leibessubstanz mittheilt, die noch eine Zeit lang fortlebt. Das so schnell nach dem Tode eintretende vollkommene Zerfliessen im Seewasser 10) zeigt ihre aussergewöhnliche

1) Macaire a. a. O.
5) Tilesius in Gilbert's Annalen. Bd. 61. p. 130.

Ich muss nun bekennen, dass ich auch das Leuchten todter Fische und anderer Seethiere2), sowie das Leuchten des Holzes höchst wahrscheinlich durch lebendige Organismen bedingt halte. Wenn ich z. B. die Bedingungen erwäge, von denen das Leuchten des Holzes abhängt, wie sie Placidus Heinrich in seinem grossen Werke3) zusammengestellt hat, so kann ich mich der Überzeugung nicht entziehen, dass es sich auch hier um Licht lebendiger Materie handelt. Es liegen auch hierüber viele gute Versuche zahlreicher Forscher (Canton4), Martin5), Spallanzani6), Hulme7), Heinrich8), Dessaignes9)) vor, die sich besonders auf das Leuchten todter Fische beziehen. Die Lichtentwicklung beginnt ein bis zwei Tage nach dem Tode.

Charakteristisch für die Natur dieses Leuchtens sind folgende Thatsachen: Kälte unter 0° hebt das Leuchten auf, beim Erwärmen erscheint es wieder und wird durch die Siedhitze für immer vernichtet.

Ebenso wie die leuchtende Materie der unzweifelhaft lebendigen Organismen verhält sich auch diese abgestorbenen erscheinende.

2) Macartney in Gilbert’s Annalen. Bd. 61. p. 146.
In Wasser vertheilt bewirkt sie, wie Canton 1) gezeigt hat, ein Aufliehnen beim Umrühren mit einem Stabe. Die Bahn, welche dieser beschreibt, phosphorescirt. Ja die blosse Berührung der Leuchtmaterie, die sich auf abgestorbenen Polypen bildet, bedingt eine Lichentwicklung 2).

Vortheilhaft wirkten aber verdünnte Lösungen neutraler Alkalialze, Zucker, Honig, phosphorsaures Natron, auch Salpeter in verdünnter Auflösung 5).

Was aber noch recht charakteristisch für den Beweis ist, dass die Leuchtsubstanz aus Keimen sich entwickelnder lebendiger Materie besteht, geht aus folgenden Thatsachen hervor.

Wenn man bei einem leuchtenden Fisch einen frischen Schnitt anlegt, so dauert es immer eine Reihe von Stunden, bis auch dieser zu leuchten beginnt, weil die Sporen Zeit brauchen, sich zu entwickeln.

Wird ein Seefisch gut gesalzen und das Leuchten dadurch unterdrückt, weil sich in dem Salz kein Keim bilden kann, und hebt man auf dem Continent den Fisch lange auf, so kann er auch beim Auswässern des Fleisches und Entfernung des überschüssigen Salzes nicht zum Leuchten gebracht werden 6); denn die aus der See stammenden Keime sind vernichtet.

Sehr charakteristisch ist auch, dass Pl. Heinrich eine grosse Zahl von Versuchen mit Flussfischen anstellte, die mit schwachen

2) Gilbert's Annalen. Bd. 61. pag. 146.
4) Martin a. a. O.

Ein höchst lehrreicher Fall, der beweist, dass ein leuchtendes Stück Fleisch ein anderes «ansteckt», wenn auch beide absolut gar keine Neigung zur Phosphorescenz haben, ist folgender.

Zur Osterzeit 1592 bemerkte man zu Nacht, dass Stücke eines aus der Fleischbank zu Padua gekauften Lammes leuchteten. Der damals zu Padua als Anatom berühmte Hieronymus Fabricius ab Aquapendente untersuchte diese Erscheinung etwas genauer und gab hiervon in seinem Werke de Oculo visus organo cap. IV. folgende Auskunft: das Licht musste sich ohngefähr anderthalb Tage nach dem Schlachten eingestellt und wenigstens vier Tage angehalten haben: ein damit in Berührung stehendes Stück Beckfleisch leuchtete gleichfalls; das Licht zeigte sich auf dem muskulösen Fleische und auf dem Fette; der Glanz war silberweiß, man konnte damit die Finger und jeden andern Körper leuchtend machen, indem sich eine klebrichte Feuchtigkeit ausschied 1).

Man sieht also, auf jeder eisweisshaltigen Substanz kann sich das Leuchten entwickeln und von einem Stück Fleisch auf irgend ein anderes fortsetzen. Es ist also klar, dass es sich hier gar nicht um einen besonderen in den Fischen allein vorkommenden Stoff handelt, sondern totte Seefische leuchten nur deshalb leicht, weil im Meere leuchtende Organismen sind, deren Sporen den Oberflächen der Fische anhängen und sich allmählig auf Kosten des Eiweißes wie Schmarotzer entwickeln. Das die Haut durchtränkende Salz spielt bei der Entwicklung der Leuchtsubstanz eine wichtige Rolle.

Auch das spricht sehr für meine Auffassung, dass in Seestädten, z. B. in Montpellier oder in England 2), wo der Seefisch eine so ge-

wöhnliche Nahrung ist, das Leuchten alles Fleisches keine seltene Erscheinung ist, während sie im Innern des Continentes fast nie beobachtet wird.

Nach Erörterung der Phosphorescenz abgestorbener Thiere möge die Bemerkung genügen, dass die Bedingungen dieselben sind, von denen die analoge Erscheinung bei dem Leuchten des Holzes abhängt, das auch aufhört, wenn das Holz wirklich faul ist, weil dann das Eiweiss, welches dem Schmarotzer zur Nahrung dient, zersetzt ist, dass also diese Bedingungen ganz übereinstimmen mit denjenigen, welche für das Phänomen bei lebendigen Organismen maßgebend sind. Es würde uns zu weit führen, auch diese Einzelheiten zu behandeln. Wer sich dafür interessirt, findet eine auf umfassende, sehr umsichtige Untersuchungen gestützte Behandlung des Gegenstandes in Placidus Heinrich's grossem Werke 1).

der Sichtbarkeit selbst bei meiner stärksten Vergrößerung (Zeiss F.) stehen, mit grosser Behendigkeit hin und her sich tummelten. Da nun die leuchtende Schicht auf dem Kopf des Fisches aus Nichts als Krystallen, einem spärlichen glasigen Schleim und diesen ungeheuren Massen lebendiger Kugelchen besteht, so zweife ich nicht einen Augenblick, dass diese Organismen die Phosphorescenz bedingen.

3) Hag gren a. a. O. — Johnson a. a. O.
4) Johnson a. a. O.
und sauerstofffreien Gasen verschwindet, bei Zulassung von Sauerstoff wiedererscheint, dass ferner Sauerstoff verbraucht und Kohlensäure gebildet wird.

Somit glaube ich durch Zusammenstellung aller bekannten wichtigsten Thatsachen den Satz aufstellen zu dürfen, dass die lebendige Materie in dem Zustande, wie sie den Zellen zukommt, das Leuchten in sauerstoffhaltigen Räumen veranlasst.

Für die Leuchtkäfer hat Max Schultze in einer höchst wichtigen Untersuchung bestimmt festgestellt, dass die leuchtende Materie eine Zelle sei, die am Ende des Luftrohrs, d. h. der sogenannten Tracheen sitzt, dass die Luft mit ihr in unmittelbare Berührung kommt. Er hat ferner dargebracht, dass es das Protoplasma der lebendigen Zelle ist, welches die intensive Verwandtschaft zum Sauerstoff hat, wie daraus hervorgeht, dass die Leuchtorgane sich im Protoplasma tief schwärzen, wenn sie noch lebendig in eine Lösung von Osmiumsaure gelegt werden. Bekanntlich ist die Schwärzung dadurch bedingt, dass der Osmiumsaure Sauerstoff entzogen wird. Legte Schultze das abgestorbene Organ in die Säure, so trat jene Schwärzung nicht ein 1). Max Schultze sah ferner unter dem Mikroskope die Zellen leuchten. Auch andere Beobachter sprechen von Punkten, die beim Beginn der Phosphorescenz in den Leuchtorganen aufblitzen, was auf die Entstehung des Lichtes in kleinen circumscribten Zellenherden hinweist. Auch Macartney 2) beschreibt das Licht bei den Pyrosomen als aus kleinen feurigen Punkten bestehend.

Nirgends in der Literatur — und dies ist für diese Untersuchung sehr wichtig — findet man eine Beobachtung über phosphorescirendes Blut; nur Organe phosphoresciren.

Placidus Heinrich 3) hebt mit grosser Bestimmtheit hervor, dass das Leuchten lebendiger Thiere immer einen bestimmten Herd im Körper habe, von dem es ausgehe, was mit der Annahme phosphorescirender Säfte unverträglich ist.

2) Meyen a. a. O., pag. 152.
3) Gilbert's Annalen Bd. 61, pag. 157.
Ich habe in der Literatur nur eine Behauptung von phosphorescirendem lebendigen Blute gefunden.

Mitchill hat sich indessen getäuscht, indem er die Rippen der Meduse für Gefässe gehalten hat. Macartney fand, dass das vermeinte Blut zarte Härchen sind, die sich auf den Rippen befinden und beim Schwimmen der Meduse eine so schnelle rotatorische Bewegung machen, dass es aussieht, als ob eine Flüssigkeit durch die Rippen strömte.

Hier in dem wunderbaren Schauspiel der thierischen Phosphorescenz hat die Natur uns ein Beispiel gegeben, welches uns zeigt, wo die Fackel brennt, die wir Leben nennen. Sie lehrt uns, dass die Organe, also die Zellen und nicht das Blut leuchten. Es ist das gewiss kein seltsamer Ausnahmefall, sondern nur die spezielle Aeusserung des allgemeineren Gesetzes, dass alle Zellen fortwährend im Brande stehen, wenn wir das Licht auch nicht mit unserem leiblichen Auge sehen.

Das wird meines Erachtens noch sehr wesentlich dadurch gestützt, dass die Leuchtorgane nicht morphologisch analoge Bildungen sind, indem sie an den verschiedensten Stellen des Körpers:

Ueber die physiologische Verbrennung in den lebendigen Organismen.

297
dem Kopf, der Brust, dem Bauch, auf der Bauch- sowie der Rückenseite, sowohl aussen als innen vorkommen.

Auch mit Rücksicht auf die Leuchttapparate gilt durchaus, was Carl Gegenbaur 1) der Descendenztheorie gemäss von den elektrischen Organen der Fische sagt. Er hebt hervor, dass die letzteren trotz ihrer histologischen und physiologischen Uebereinstimmung morphologisch differente sind. »Sie können nicht von einander oder von einem gemeinsamen Stammorgane abgeleitet werden, sondern stellen ganz selbstständige Differenzierungen dar. Dafür spricht auch die Beziehung zu sehr verschiedenen Nerven, sowie nicht minder ihr Vorkommen in weit von einander stehenden Abtheilungen der Fische«.

Im Kopfe liegt der Leuchttapparat z. B. unter den Hemipteren bei den Laternenträgern (Fulgora tarnaria 2), serrata in Südamerika, Fulgora pyrrhornyhusch in Ost-Indien und Fulgora candelaria 3) in China. Der lichtausströmende Theil ist der blasenartig aufgetriebene Vordertheil des Kopfes 4).

Bei dem Hakenkäfer (Paussus spheroceros) leuchten sogar die hohlen kugelförmig aufgetriebenen Antennen, wie Afzelius 5) entdeckt hat.

Auch bei den Crustaceen kommen im Kopfe gelegene Leuchtorgane vor, die wohl irrthümlich für das Gehirn gehalten worden sind 6). Mit Rücksicht hierauf sagt Tiesius 7), dass er gleichfalls ein leuchtendes Organ in dem Kopfe des Erythrocephalus macrophthalmus gesehen habe, es aber nicht für das Gehirn bestimmen wolle.

Auch in dem Brustabschnitt sind Leuchtorgane beobachtet. Beim Cucujo (Elater noctilucus), der auf allen westindischen Inseln und in Südamerika sich aufhält und über dessen starkglänzendes

2) Marian Insects Surinam. pag. 49.
6) Bericht über Tuckey's Reise nach dem Congostrme in Gilbert's Annalen 1819, pag. 817.
7) Tiesius in Gilbert's Annalen 1819, pag. 818. Atlas XXII. Fig. 5.
Smaragd-Licht Sloane 1), P. Browne 2) und Fougeroux 3) berichten, verbreitet sich das Licht nach den Untersuchungen von Curtiss 4) von zwei augenartigen Erhabenheiten des Brustschildes und der Basis des Hinterleibes.

Sehr gross ist die Gruppe der am Hinterleibe leuchtenden Thiere, verschieden die Zahl und Lage der Ringe, zu dem die leuchtende Masse gehört.

Für die Thatsache, dass bald die Bauch-, bald die Rückenseite des Thieres der Sitz des Leuchttapparates ist, erinnere ich, da der erstere Fall durch so zahlreiche Beispiele vertreten ist, an Carninum Meyen, das Meyen genauer zergliedert und mit schönen Abbildungen versehen, beschrieben hat 5). Fig. VI enthält die Abbildung auf einem, wie Meyen meint, vielleicht nervösen Stiele sitzenden eiförmigen Leuchttorganen. Meyen hat das Thier auf der Reise lebendig mit seinen Collegen beobachtet. »Des Nachts leuchtete das Thier mit einem glänzenden blassgrünen Lichte, welches dem der Pyrosomen sehr ähnlich war; und dieses Licht ging von zwei besonderen Organen aus, die auf dem Rücken zu jeder Seite des Thieres befindlich und gelblich gefärbt sind. Gleich den Pyrosomen konnten auch diese Thiere das Licht willkürlich hervorbringen und es wieder verlöschen lassen. Es kann sein, dass diese Theile zugleich die Ovarien sind; die markige Substanz schien uns aber in unmittelbarem Zusammenhange mit dem Nervensysteme zu stehen, was jedoch bei der schaukelnden Bewegung des Schiffes nicht auszumachen war 6)."

Diese zahlreichen Variationen der Lage der Leuchtapparate und ihre wechselnde Beziehung zu den verschiedensten Abschnitten des Nervensystems, welche also diese Organe als morphologisch durchaus ungleichwerthig erscheinen lässt, erklärt sich aber von dem allgemeinen Gesichtspunkte, dass jede Zelle dieselbe Eigenschaft in geringem Grade besitzt, sodass unter günstigen Verhältnissen

4) Zoological Journal 1837. Nr. 11. pag. 379.
6) Meyen a. a. O.
Ueber die physiologische Verbrennung in den lebendigen Organismen.

bald an dieser, bald an jener Stelle durch besondere Leuchtkraft ausgezeichnete Zellen sich hervorheben. Dass sehr verschiedenwerthige Zellen leuchten können, zeigen uns Pflanzen und Thiere, sehen wir in auffallender Weise daran, dass sogar Eier leuchten, wie die der Lampyris ¹), und dass selbst bei einem Wirbelthier, nämlich bei der Eidechse (Lacerta agilis) das Ei Phosphorescenz in seinem Innern besitzen soll, wie von verschiedenen Seiten bezeugt worden ist ²).

Nun leuchten aber in sauerstoffhaltigen Räumen gar viele organische Stoffe im Dunkeln, indem sie sich langsam oxydiren.

Bei Einwirkung der Wärme phosphoresciren nach Pelletier ³) Wachs, flüchtige und fette Oele, Zucker und Holz, und nach Calland ⁴) auch schwefelsaures Chinin. Dessaigne ⁵) zeigte, dass dieses Leuchten nur in der Luft stattfindet und in Sauerstoffgas zunimmt.

Es ist also keine Nöthigung vorhanden, in den Leuchtorganen an die Entstehung von Phosphorwasserstoff zu glauben, der für den thierischen Organismus so giftig ist. Abgesehen von einer Bemerkung Mitschills spricht Keiner von den Beobachtern, die ihre Hände mit Leuchtmaterie illuminierten, von dem abscheulichen Gestank, durch den sich der Phosphorwasserstoff verrath. Wenn wirklich Phosphorwasserstoff bei der electricen Reizung des Leuchtorganes producirte würde, dann hätte davon doch wohl ein Theil im Vacuum oder Stickstoff bei den Versuchen Ma c a ire's sich irgendwo ausserhalb des Thieres verbreitet und dann bei Wiederzulassung der Luft geleuchtet, was dieser feine Beobachter sicher bemerkt hätte. Aber

¹) Tiedemann. Physiologie I. pag. 500.
⁴) Journal de Pharmacie T. 7.

K. Prüger, Archiv f. Physiologie. Bd. X.
Niemand hat jemals das Licht wo anders als in dem Leuchtorgane gesehen. Ich beziehe mich hier allerdings auf die Leuchtorgane, deren Physiologie am meisten untersucht und am besten gekannt ist.

Wie wohl also die chemische Natur des Leuchtstoffs unbekannt bleibt, ist doch so viel gewiss, dass die Annahme des Phosphorwasserstoffs aller Begründung entbehrt.

Ich schliesse nun aus diesen Thatsachen nicht, dass der Sauерstoff, sondern dass das Eiweiss sich verändere, wenn sie integrirende Bestandtheile des Organismus geworden sind. Denn dieses bleibt ja wirklich nicht, was es ist, sondern wird Bestandtheil der lebendigen Zelle.

Sobald diese Einfügung stattgefunden hat, hat es seine In-

Anmerkung. Ich bitte zu bemerken, dass das Eiweiss im Allgemeinen nahe die Zusammensetzung des Amids eines Kohlenhydrates hat.
Ueber die physiologische Verbrennung in den lebendigen Organismen. 801
differenz gegen Sauerstoff verloren, das heisst beginnt zu athmen, zu leben.

Denn alle specifische Lebensleistung: Zeugung, Assimilation, Wachsthum, Vermehrung, Empfindung, Gedanke, Wille, Bewegung u. s. w. ist Arbeit der Zellsubstanz, nicht der Säfte.

Nur die Zelle giebt die specifischen Zeichen des Lebens; nur sie ist lebendig im wahren Sinne des Wortes. Das Eiweiss des Blutes, so möchte ich sagen, ist im lebendigen Körper todt, solange es nicht Zellsubstanz geworden ist.

Um nun zu begreifen, wodurch die Affinität zum Sauerstoff erweckt wird, nach Einführung des Eiweissmolekules in die Organisation der Zelle, müssen wir auf Fragen eingehen, die, wie man bald bemerkt, bis an die letzten Geheimnisse reichen.

Es wird zweckmässig sein, zunächst nur den thierischen Stoffwechsel in das Auge zu fassen, weil er von dem der Pflanzen nicht prinzipiell verschieden ist, aber viel einfacher abläuft.

Die erste Frage, die uns entgegentritt, ist die nach dem chemischen Princip, welches bei der Bindung des Nahrungseiweisses und seiner Umwandlung in Zellsubstanz thätig ist.

Wenn man die bekannten Thatsachen über Synthese im thierischen Organismus vergleicht, so gelangt man zu der Ueberzeugung, dass es sich hier im Grossen und Ganzen um einfache Vorgänge handelt. Ein sehr allgemeines Princip, nach welchem zwei und mehr Moleküle zusammentreten, basirt auf der relativ lockerer Bindung des Hydroxyles, welches deshalb, wenn ihm dazu Gelegenheit geboten wird, mit dem Wasserstoff eines anderen Moleküles zu Wasser zusammentritt. Das aus dem einen Molecul austretende Hydroxyl hinterlässt eine freie Affinität in dem einen Molecul, ebenso der austretende Wasserstoff in dem anderen; so ist die Bedingung für die Verankerung der beiden Moleküle gegeben. Das einfachste Beispiel ist die gewöhnliche Salzbildung:

\[
\text{NO}_3 - \text{H} = \text{Salpetersäure} \quad \text{gibt:} \quad \text{NO}_3\text{K} + \text{H}_2\text{O} \quad \text{Kaliumhydroxyd} \quad \text{Kaliummnitrat} \quad \text{Wasser.}
\]
Oder:

\[
\begin{align*}
\text{PO}_4\text{H}_3 \quad . \quad . \quad . \quad H &= \text{Phosphorsäure} \\
\text{C}_6\text{H}_5\text{O}_6 \quad . \quad . \quad . \quad \text{OH} &= \text{Glyzerin} \\
\text{Glyzerinphosphorsäure.}
\end{align*}
\]

Es können auch die gleichartigen Hydroxyle zweier identischer Moleküle — und dies ist biologisch sehr wichtig — in ähnlicher Weise sich gegen einander umsetzen, z. B.

\[
\begin{align*}
\text{C}_6\text{H}_5\text{O}_6 \quad . \quad . \quad . \quad H &= \text{Glyceryllalkohol} \\
\text{C}_6\text{H}_5\text{O}_6 \quad . \quad . \quad . \quad \text{OH} &= \text{Glyceryllalkohol} \\
\text{Diglycerin Wasser.}
\end{align*}
\]

Betrachtet man so die Synthese des Glykokolls mit verschiedenen aromatischen Säuren, so hat man: Glykokoll und Benzoesäure geben im Organismus Hippursäure:

\[
\begin{align*}
\text{CO}_2\text{H} \cdot \text{CH}_3 \cdot \text{NH} \quad . \quad . \quad . \quad H &= \text{Glykokoll} \\
\text{C}_6\text{H}_5\text{CO} \quad . \quad . \quad . \quad \text{OH} &= \text{Benzoësäure} \\
\text{Hippursäure.}
\end{align*}
\]

Glykokoll und Nitrobenzoësäure geben Nitrohippursäure:

\[
\begin{align*}
\text{CO}_2\text{H} \cdot \text{CH}_3 \cdot \text{NH} \quad . \quad . \quad . \quad H &= \text{Glykokoll} \\
\text{NO}_2\text{C}_6\text{H}_4\text{CO} \quad . \quad . \quad \text{OH} &= \text{Nitrobenzoësäure} \\
\text{Nitrohippursäure.}
\end{align*}
\]

Glykokoll und Orthooxybenzoësäure (Salicylsäure) geben ganz analog Salicylursäure:

\[
\begin{align*}
\text{CO}_2\text{H} \cdot \text{CH}_3 \cdot \text{NH} \quad . \quad . \quad . \quad H &= \text{Glykokoll} \\
\text{HO}\text{C}_6\text{H}_4\text{CO} \quad . \quad . \quad \text{OH} &= \text{Salicylsäure}
\end{align*}
\]

Glykokoll und Methylparaoxybenzoësäure (Anissäure) geben ganz analog Anisursäure:

\[
\begin{align*}
\text{CO}_2\text{H} \cdot \text{CH}_3 \cdot \text{NH} \quad . \quad . \quad . \quad H &= \text{Glykokoll} \\
\text{CH}_3\text{O}\text{C}_6\text{H}_4\text{CO} \quad . \quad . \quad \text{OH} &= \text{Anissäure}
\end{align*}
\]

In Wirklichkeit handelt es sich in diesen Fällen, deren viel mehr ganz analoge, vor Allem die Gruppe der wirklichen Gallensäuren (Glyko- und Taurocholsäure u. a. w.) existirens, um immer absolut denselben Vorgang, bei dem das Hydroxyl im Carboxyl der einfachen oder substituirten Benzoesäure auf einen H des Ammoniakrestes wirkt, welcher im Glykokoll u. a. w. sich befindet.

Dieser Vorgang ist also eine Amidirung. Er zeigt, dass im thierischen Organismus ächte Amidbildung stattfinden kann und dass man nicht alle amidartigen Körper als durch einfache Spaltung des Eiweisses ansehen muss oder darf, in welchem sie alle vorgebildet wären.

Es findet demnach unzweifelhaft das allgemeine Prinzip der Synthese amidartiger Stoffe auch hier Geltung, wie es K e k u l é ¹) dargelegt und in folgender Bildungsgleichung verdichtet hat:

\[m \text{ Mol. Säure} + n \text{ Mol. NH}_3 - o \text{ Mol. H}_2\text{O} = \text{amidartiges Molekül.}\]

¹) K e k u l é. Organische Chemie § 1009.
Principiell könnte also das Glykokoll selbst so wie die Hippursäure im Organismus entstehen aus Glycolsäure und Ammoniak nach folgendem Schema:

\[\text{CO}_2\text{H} \cdot \text{CH}_2 \ldots \text{OH} = \text{Glycolsäure} \]

\[\text{NH}_2 \ldots \ldots \text{H} = \text{Ammoniak} \]

\[\text{Glykokoll} = \text{CO}_2\text{H} \cdot \text{CH}_2 \cdot \text{NH}_2 + \text{OH} \]

Ganz analog verhalten sich viele andere Aminsäuren des thierischen Organismus, bei denen es sich um die Synthese aus Ammoniak mit Molekülen handelt, die wie die Glycolsäure ein alkoholisches und ein saures Hydroxyl besitzen, während die Amidirung am alkoholischen Hydroxyl abläuft.

So verhält es sich für Alanin, das Ammoniak und Gährungsmilchsäure, für Butalanin, das Ammoniak und Valerolactinsäure, für Leucin, das Ammoniak und Leucinsäure, für Serin, das Ammoniak und Glycerinsäure entspricht u. s. w.

In allen diesen Fällen handelt es sich in der That um die Einwirkung von Ammoniak resp. eines Ammoniakrestes auf alkoholische oder saure Hydroxyle.

Nach dieser Analogie dürfen wir uns also auch die Synthese des Taurines vorstellen, wenn es, wie viele Chemiker thun, gestattet ist, es als Amidoethylsulfonsäure zu betrachten. Wie bei der Bildung der Hippursäure: Glycolsäure (halb Alkohol), Benzoësäure und Ammoniak als Componenten zu betrachten sind, so analog bei dem Taurin: Aethylenalkohol, schwefelige Säure und Ammoniak. Es findet meiner Ansicht nach eine Metamerie bei der Bildung des Taurins statt, das offenbar keinen metallischen Wasserstoff enthält, also auch keine Sulfonsäure ist. Ich bezweifle sehr, dass der Schwefelsäure- und der Ammoniakrest sich damit zufrieden geben, dass man sie hier so entfernt von einander im Molecul halten will. — Doch diese Auffassung ändert nichts am Princip der Bildung, und darauf kommt es an.

Analog ist wahrscheinlich die Synthese des Tyrosins, welches als Aethylaminodiparaoxybenzoësäure angesehen wird; doch ist das Tyrosin im Wesentlichen im Eiweissmolecul der Nahrung schon enthalten.

Hierher gehört ferner die Synthese des Bilineurins, dessen Componenten methylirtes Ammoniumhydroxyd und Aethylenalkohol sind, wie es ja als Trimethylaethylammoniumhydroxyd aufgefasst wird.

Dies führt uns zu einem der schönsten Beispiele aetherartiger
Verknüpfungen, die sich nicht bloss in der Pflanze, sondern auch wohl im Thierkörper vollzieht, ich meine das Lecithin, dessen Constitution von Hoppe-Seyler und Diakonow erkannt worden ist.

Hier treten 2 Moleküle Stearinsäure oder andere Glieder der homologen Reihe, ferner 1 Molekül Phosphorsäure, ferner 1 Molekül Glycerin, und endlich 1 Molekül des selbst so complicirten Bilineurines ätherartig zu einem ungeheuren Molekül zusammengen.

Die Umwandlung von Traubenzucker in Glykogen, welche sich in thierischen Zellen vollzieht, ist wahrscheinlich analog und nicht, wie einige annehmen, eine Anhydridbildung:

$$2(C_{12}H_{22}O_{10}) = C_{12}H_{22}O_{10} + 2OH$$

Traubenzucker Glykogen Wasser.

Dies vollzieht sich nach folgendem Schema:

$$C_{6}H_{10}O_{5} + C_{6}H_{10}O_{5} \rightarrow C_{6}H_{12}O_{6} + 2OH$$

Glycose + Glycose = Glycoogen + Wasser.

Kekulé 1) stellt z. B. folgende wahrscheinliche Beziehungen zwischen Glycosan, Dextrin und Stärkemehl auf:

$$C_{6}H_{12}O_{5} \rightarrow C_{6}H_{10}O_{5} \rightarrow C_{6}H_{12}O_{6}$$

Glycosan Dextrin Stärkemehl.

Auch die Bildungsgleichung der Repräsentanten der Harnsäuregruppe gehört selbstverständlich, wie Kekulé bestimmt hervorgehoben hat, hierher.

Denn er sagt, dass alle solche Körper wie Harnsäure mit ihren Abkömmlingen, sodann einige stickstoffhaltige und im thierischen Organismus erzeugte Substanzen wie Allantoin, Sarkin, Sarkosin, Kreatin, Kreatinin, Xanthin, Guanin u. s. w., so wie auch zwei in der Pflanze vorkommende Stoffe: Theobromin und Théin als amidartige Verbindungen verhältnismässig einfacher Säuren betrachtet werden können 2).

Es ist gewiss richtig, dass manche von den im thierischen Organismus vorkommenden amidartigen Körpern gar nicht in demselben durch Synthese entstanden, sondern einfache Trümmer der Eiweissmoleküle darstellen, wie das z. B. für das Tyrosin und alle

aromatischen Bestandtheile unzweifelhaft scheint. Ich glaube aber
nicht, dass dies für den Zoophysiologen von besonderem Belange
ist. Denn so lange es sich nicht um chemische Synthesen handelt,
bei denen der Reductionsprocess eine wesentliche Rolle spielt, werden
die Vorgänge in Thier und Pflanze nicht sehr verschieden sein und
es fällt uns deshalb auch nicht auf, dass Theobromin und Thein
zur Harnsäuregruppe gehören. Denn die Pflanze ist gleich-
sam ein Thier, welches besondere Organe für Reductions-
synthese in ausgezeichneter Weise entwickelt hat.

Um den Gang unserer Betrachtung nicht zu unterbrechen, will
ich diesen vielleicht bei Vielen Anstoss erregenden Satz am Schluss
dieses Paragraphen mit einigen Worten begründen.

Nach den gegebenen Erörterungen ist also die eine Möglic-
heit vorhanden, dass auch die Eiweissbindung in den Geweben bei
der Assimilation auf einer aetherartigen Verknüpfung der Moleküle
beruht.

Ehe wir diesen Process weiter analysieren, erinnere ich an das
Laienwort: »Fleisch wird wieder Fleisch«, und dehne es aus zu dem
Princip, dass irgend ein eiweisshaltiges Gewebe als Nahrung genügt,
um Leibesubstanz für alle und die verschiedensten Zellen zu liefern.
Noch allgemeiner kann man sagen, dass irgend ein Eiweissmolecul
als Nahrung gleich gut ist, gleichgültig ob dieses Molecul sich im
Gehirn umwandeln soll in Denksubstanz oder in Muskel zu con-
tractilern Faser. Wie Maly in einer bedeutungsvollen Arbeit ge-
zeigt hat, genügt sogar das Pepton aus Faserstoff, dem bekannten
Zersetzungsmittel des absterbenden Blutes, weil es Eiweiss ist, zur
Regeneration aller Organe. Wenn also das Eiweissmolecul aus
einer beliebigen Zelle, wo es die specifischen Eigenschaften dieser
Zelle hatte, übergeführt werden kann — selbstverständlich durch
Vermittlung des Verdaungsprocesses — in irgend eine andere
Zelle, wo es also die ganz verschiedenen Leistungen dieser anderen
Zelle wieder übernimmt, so ergiebt sich, dass die Eiweissmoleküle
aller Zellen und aller Flüssigkeiten im Grossen und Ganzen isomere
Körper sein müssen.

Sie stellen also alle Modificationen desselben Grundstoffes dar
und ihre Unterschiede müssen einmal vielleicht in Metamerie, sicher
in einer physicalischen später genau zu betrachtenden Modification
des einfachsten Moleküles, dann in Polymerieen gesucht werden,
deren Elemente entweder gleichartige oder schon metamere Gruppen
sind. Dann können endlich noch zwischen polymeren Molekülen die verschiedenartigsten Verknüpfungen stattfinden, sodass man zu jeder beliebigen Complication gelangt.

Die Assimilation des Eiweissmoleküles durch die Zelle ist also Verbindung isomerer Moleküle und wir haben aus Gründen der Analogie auf die eine Möglichkeit hingewiesen, dass es sich um eine Aetherbildung handle. Dieser Vorgang würde das Wachsen erklären und steht ja nicht ohne vielfache Analogien da, die sich sogar der anorganischen Chemie z. B. bei den Polysilicaten entnehmen lassen.

Es ist deshalb sicherlich biologisch von Wichtigkeit, zu sehen, wie ein chemisches Molekül in dem Reagenzglase des Chemikers durch ätherartige Polymerisierung in infinitum gleichsam „wachsen“ kann.

Ein Beispiel statt vieler möge dieses für die Physiologie fundamental wichtige Factum erläutern.

\[
\begin{align*}
C_6H_6 \quad \{ -O-H \} & \quad = \quad \text{Aethylenalkohol.} \\
& \quad = \quad \text{Diaethylenalkohol.} \\
\end{align*}
\]

\[
\begin{align*}
C_6H_4 \quad \{ -O-H \} & \quad = \quad \text{Triaethylenalkohol.} \\
\end{align*}
\]

Es gibt viele verschiedene auf diese Art ätherartig verknüpfte Moleküle, z. B. die Polyphosphorsäuren, die Polylactylsäuren, die Polyglycolsäuren, die Polyglyceryllalkohole u. s. w.

Ich will später zeigen, dass noch eine Möglichkeit zur Erklärung der Polymerisierung der Eiweissmoleküle vorliegt, die vielleicht noch wahrscheinlicher ist.

Mit Rücksicht auf die im Thiereiche entstehenden Polymerisierungen möchte ich noch folgende chemischen Gesichtspunkte als biologisch bedeutungsvoll hervorheben.

Es gibt in der Natur kein Element, welches die Neigung zur kettenartigen Verknüpfung gleichartiger Atome in solchem hervor-
ragenden Masse besäße wie der Kohlenstoff, was z. B. die Fettsäuren von hohem Molekulargewicht evident demonstrieren. Das Wachsen des organischen Moleküles ist bereits hierdurch wesentlich begünstigt.

Ferner weiss man, dass die Kohlenstoffketten des Moleküles sich baumartig verästeln können, was z. B. die vielbasischen organischen Carboxylsäuren beweisen.

Ausserdem ist gewiss, dass bei sehr vielen polymerisierenden Verknüpfungen von Molekülen der allgemeine Kuppler: der Sauerstoff als Atom eine ganz fundamentale Rolle spielt, wie dies die oben gegebenen Schemata jedem klar erläutern.

Es hat also gar keine prinzipielle Schwierigkeit sich zu denken, dass im lebenden Organismus die Polymerisierung in infinitum verschreitet, sodass grosse schwere Massen entstehen, die — abgesehen von den in wässriger Lösung befindlichen nicht organisiernten nährenden Molekülen — factisch nur ein einziges chemisches Eiweissmolekül enthalten. Vielleicht besteht das ganze Nervensystem mit allen wirksamsten Theilen aus einem einzigen solchen chemischen Riesenmolekül. Ich habe mir immer die Nichtflüchtigkeit des Kohlenstoffs aus der fast unendlichen Größe seines Molekulargewichtes im festen Zustande erklärt, wobei natürlich das Molekulargewicht des Wasserostoffes $= 2$ gesetzt ist.

Das Kohlenstoffmolekül verhältn sich bei der Erhitzung wie ein Riesenschiff, dessen Dimensionen viele Male die Längen und Höhen der Wellen des Oceans übertreffen, sodass es bei heftigstem Sturme ohne Schaukeln seine Bahn verfolgt.

Wenn man sich so die Kohlenstoffketten oder Eiweissmoleküle mit Polymerisierung wachsend denkt, so begreift man, wie eine beliebig lange Fibrille, z. B. im Axencylinder oder dem Muskel, oder durch Nebeneinanderlagerung eine beliebig grosse Scheibe von faseriger Structurart; durch Aneinanderknüpfung in allen Richtungen ein solider Körper entsteht. Die Ramificationen erzeugen netzförmige Verbindungen und erklären die grosse Leichtigkeit, mit welcher sich die Schwingungen von einem Theile des Nervensystemes nach fast jedem andern fortpflanzen und den innigen Wechselverkehr, in dem sehr viele lebendige Zellen unter einander stehen.

Es ist ausserdem nicht unverständlich, dass die Art der Lagerung der einzelnen Radicale in den Riesenmolekülen, also die Lagerung der chemischen Angriffspunkte für die sich vollziehende Assi-
milatation, wie für den Ort, wo der Sauerstoff eintritt, von Belang sein wird, sodass man begreift, wie die Art des Wachsthumes und die Zersetzung eine Folge verschiedener primitiver Anordnung ist. Das wirft theilweise ein Licht auf die Ursache, warum das Eiweiss verschiedene Leistungen zeigt, jenachdem es von der einen oder anderen Zelle in die Organisation eingefügt worden ist.

Bei jeder Hypothese wird man diese fundamentale Tatsache nicht aus dem Auge verlieren dürfen, dass zwar nicht im Laufe der ersten Entwicklung, wohl aber bald ein Zustand im lebendigen Organismus eintritt, in Folge dessen die Gruppierung der neu assimilirten Molekule identisch ist derjenigen der assimilirenden. Hierin liegt der Ausgangspunkt für die Erklärung der Vererbung, d. h. für den Satz: Gleiches bildet Gleiches.

Die mechanische Wärmetheorie hat gezeigt, dass ein chemisches Molecul ein System gegen einander unter dem Einflusse ihrer gegen seitigen Kräfte bewegter Massenpunkte darstellt, deren lebendige Kräfte wenigstens im gasförmigen Zustande der absoluten Temperatur proportional sind 1).

Denn Clausius hat in seinen Untersuchungen über die mechanische Wärmetheorie auf mathematischem Wege bewiesen, dass die lebendige Kraft der fortschreitenden Bewegung allein noch nicht die ganze vorhandene Wärme darstellt und dass der Unterschied

um so grösser ist, aus je mehr Atomen die einzelnen Moleküle der Verbindung bestehen. Clausius schliesst daraus mit Recht, dass ausser der fortschreitenden Bewegung der ganzen Moleküle noch andere Bewegungen der Bestandtheile der Moleküle stattfinden, deren lebendige Kraft ebenfalls einen Theil der Wärme ausmacht 1). Es ist nichtwendig, sogleich zu bemerken, dass auch für den flüssigen und festen Aggregatszustand die intramolekulare Bewegung der Materie selbstverständlich ist. Ein wichtiges Argument bilden hier ausserdem die Thatsachen, welche sich auf die specifische Wärme beziehen und die freie Bewegung der Atome auch im festen Körper beweisen.

Um aber einzusehen, wie ein System von Punkten sich zer setzen könne, braucht man nur an das Sonnensystem zu denken, in dem das bis zu einem gewissen Grad vorhandene dynamische Gleichgewicht seine zufällige Ursache in den Anfangsgeschwindigkeiten der Planeten und den Newton'schen Gesetze hat, welches das umgekehrte Quadrat der Entfernung enthält. — Wäre die Anziehung z. B. der dritten Potenz der Entfernung umgekehrt proportional, so könnte zwar auch in einem theoretisch möglichem Falle eine kriessförmige Trajectorie vorkommen; in Wirklichkeit aber würden die Bahnen Spiral gen sein. — Hierbei stellt sich gleichzeitig heraus, dass das Bewegliche sich bald dem Attractionspole nähert, bald sich von ihm in infinitum entfernt. Das dynamische Gleichgewicht ist also schon durch das Attractionsgesetz ausgeschlossen.

Bleiben wir aber bei dem Newton'schen Gesetze, so wissen wir, dass auf Grund der Kepler'schen Thatssache die Planeten nur in Kegelschnitts linien sich bewegen können, d. h. in Graden, Kreisen, Ellipsen, Parabeln oder Hyperbeln. In Wirklichkeit laufen die Planeten in Ellipsen. Sobald aber eine Bedingung auftritt, welche die Bahn parabolisch oder hyperbolisch macht, verlassen die Planeten die Sonne auf ewig, das heisst, das System zersetzt sich. Dennt man r den Radiusvector von der Sonne zum Planeten und die Kraft, welche den Planeten nach dem Attractionscenrum zieht, wo K die Kraft für r = 1, v die Geschwindigkeit, nachdem der Himmelskörper einen Stoess erfahren hat, so ist die neue Trajectorie eine Ellipse, Parabel

oder Hyperbel, je nachdem \(v^2 - \frac{2K}{r} \) negativ, Null oder positiv ist.

Man sieht beispielsweise also auch, wie Erschütterungen oder irgend welche die bewegten Atome eines Moleküles treffende Kräfte zur Zersetzung desselben führen können. Ich werde in der Folge von diesem Satze Gebrauch machen.

Man braucht ferner nur die chemischen Thatsachen zu betrachten, um sofort einzusehen, dass bei der Bildung vieler Moleküle Systeme entstehen, welche allmählich naturgemäss nach anderer Lagerung streben, d. h. solche, die in keinem dynamischen Gleichgewichte sind und sollte die Störung desselben auch nur durch die gleichzeitige Gegenwart mehrerer sogar gleichartiger Moleküle veranlasst sein. So habe ich vor längerer Zeit 1) die »Selbsterzeugung« der Blausäure erklärt, indem ich schematisch nur die hauptsächlichsten Zersetzungsprodukte hervorhob. Ich stelle mir deshalb vor, dass in dem Cyanwasserstoff eine starke intramoleculare Bewegung ist, sodass das Stickstoffatom bald in die nächste Aktivitätsphäre des Kohlenstoffes gerath, während Wasserstoff sich weit von CN entfernt. In einem anderen Falle wird der Stickstoff und Wasserstoff in äusserste Nähe gerathen und der Kohlenstoff verlassen sein. Da sich nun immer Ammoniak bildet, wenn dem Stickstoff hierzu Gelegenheit geboten wird, so erklärt sich, dass bei den fortwährenden Oscillationen der Blausäuremoleküle auch einmal 3 in folgenden Gruppierungen zusammentreffen:

\[
\begin{align*}
\text{Molekül 1} & = \text{CN} \quad \text{H} \\
\text{Molekül 2} & = \text{CN} \quad \text{H} \\
\text{Molekül 3} & = \text{C} \quad \text{NH}.
\end{align*}
\]

Die Gruppe rechts bleibt als Ammoniak \(= \text{NH}_3 \) zusammen, die Gruppen links bilden ein Molekül Cyan \(= \text{C}_3\text{N}_2 \) und sich abscheidende Kohle.

Hierher gehören ferner die langsam von selbst ablaufenden

Polymerisierungen z. B. des gasförmigen Chlorcyan (CNCl) in flüssiges Chlorcyan (C$_2$N$_2$Cl$_4$), dann der Übergang von flüssigem Chlorcyan in festes Cyanurchlorid (C$_2$N$_6$Cl$_6$); ferner der von selbst erfolgende Übergang von Cyanäsüre (CNOH) in Cyamelid (C$_2$N$_6$O$_6$H$_4$); in gewissem Sinne lässt sich auch hierher zählen die durch Spuren von Chlorwasserstoffsäure oder anderer fremder Moleküle vermittelte Verwandlung von Aethylaldehyde (C$_5$H$_4$O) in Paraldehyde (C$_5$H$_4$O)$_2$ und Metaldehyde (C$_5$H$_4$O)$_3$ u. s. w.

Das aber haben die gegebenen Erklärungen der Selbstumsetzungen gemein, dass sie Bewegungen der Atome voraussetzen, gross genug, um sie aus der Aktivitätssphäre der sie unmittelbar im Molekül bindenden mehr oder weniger zu entfernen. Da diese Bewegungen aber nichts als ein Theil der Wärme sind, so darf man sagen, dass die intramolekulare Wärme die Ursache der Selbstzersetzungen sei.

Wenden wir diese Betrachtungen einmal auf die lebendige Materie an.

Eine Wahrheit, die allen Biologen auf Schritt und Tritt entgegen kommt, ist die ganz erstaunliche Zersetzbareit fast aller lebendigen Materie, wobei ich die Einwirkung von Fermenten gar nicht in Betracht ziehe. Diese Zersetzbareit ist die Ursache der Reizbarkeit. Sind es nicht wahrhaft verschwindend kleine leibliche Kräfte, die in einem Lichtstrahle wirkend, die gewaltigsten Wirkungen in der Retina und dem Gehirn hervorrufen? Ist nicht die leise Erschütterung, welche eine über einen bloss liegenden Muskel fahrende Nadelspitze erzeugt, hinreichend, eine sofortige Zuckung mit gleichzeitiger Bildung von Kohlensäure und Milchsäure zu veranlassen? Wie ganz minimal sind die lebenden Kräfte der Nerven, mit Hülfe deren sie die Vorgänge, also auch den Chemismus in den Organen in der mächtigsten Weise zu steigern vermögen; wie ganz wunderbar klein die Mengen gewisser Gifte, die ein grosses lebendiges Thier total vernichten.

Ich glaube also nicht, dass ich einen Widerspruch erfahre, wenn ich die lebendige Materie als nicht gross erstaunlich zersetzbar, sondern als sich immerfort zersetzend ansehe. Ich spreche eigentlich nur eine Thatsache aus, da es kein Mittel in der Welt gibt, diese Zersetzung aufzuhalten, sodass wir sie als eine nothwendige Eigenschaft der lebenden Materie ansehen müssen, die in ihrer molekularen Anordnung den letzten Grund hat. So wenig es mög-
lich ist, die Blausäure zu zwingen, sich nicht zu zersetzen, ebenso-
enig ist lebendige Substanz denkbar, ohne fortlaufende Zersetzung. Ich unterscheide hier zwischen lebendiger und lebensfähiger, aber nicht lebendiger Substanz. Denn ein Weizenkorn oder ein gelegtes Vogelei oder ein eingetrocknetes Räderthierchen sind nicht lebendig, sondern nur fähig, durch Zufuhr von Wärme und Wasser lebendig zu werden.

Es ist bekannt genug, dass es kein Mittel gibt, ein Stück lebendiger Körpersubstanz unzersetzt zu erhalten. Ich habe spezielle Versuche angestellt mit dem Gehirn, der Retina, der Wand der Aorta und einigen Drüsen.

Um zu ermitteln, mit welcher Geschwindigkeit die Zersetzungen ablaufen, prüfte ich die Reaction des lebendigen Gehirnes und der Retina und verfuhr folgendermassen. Ich füllte eine grosse Flasche mit einer eiskalten verdünnten Lösung von absolut reinem, also neutralem Natriumsulfat, stellte sie sehr hoch an die Decke des Laboratoriums und leitete einen Schlauch aus der Flüssigkeit nach abwärts, sodass diese unter hohem Drucke mit grosser Geschwindig-
keit abfliessen konnte. Dann befestigte ich eine Cantule an das Ende des Schlauches und klemmte denselben mit einer Compressionspin-
cette zu. Diese Cantule wurde in die Aorta abdominalis eines Kaninchens eingebunden, die Thoraxhöhle nach Einleitung der künstlichen Respiration geöffnet und in einem gegebenen Moment die eiskalte Lösung gegen das Gehirn injizirt und gleichzeitig das rechte Herz durchschnitten. Schnell schoss die aus dem Gehirn und den anderen Theilen rückkehrende Flüssigkeit aus dem Herzen hervor. Ich liess sie einige Minuten fliessen, bis sie farblos abfloss. Nun wurde in Zeit von einer Minute das ganze Gehirn herausge-
nommen, zerschnitten und auf empfindliches Reagenspapier gedrückt. Die Reaction war in der weissen Substanz oft schwach alkalisch, in der grauen selten ebenso, zuweilen neutral, meist schwach sauer, und diese saure Reaction nahm mit erstaunlicher Geschwindigkeit zu; viel weniger geschah dies mit der weissen Substanz. Ein Gyrus zeichnete deshalb durch ein rothes geschlängeltes Band immer genau die Lage der grauen Schicht auf dem blauen Reagenspapier ab. Fast ebenso schnell sättert die Retina. Es giebt kaum ein Gewebe, bei dem selbst in der Kälte von wenig über 0° die Zersetzung mit solcher Geschwindigkeit abläuft, als in der grauen Substanz des Gehirns. Auch die nicht aus der Rinde der Hemisphären entnom-
mene graue Substanz verhielt sich ungefähr ebenso. Dieser Versuch ist wiederholt von mir mit gleichem Resultat angestellt worden.

Es schien mir nun zunächst nothwendig, die Beziehung des Sauerstoffs zu diesen Zersetzungen kennen zu lernen. Da die Principien des Lebens bei allen Thieren dieselben sind und bei den Amphibien wegen der grossen Langsamkeit aller Stadien der verschiedenen Stoffmetamorphosen das Studium sehr erleichtert ist, so stellte ich Versuche an Fröschen an, um den Einfluss der Sauerstoffentziehung auf die Lebensfunctionen und die Abgabe der Kohlensäure zu erforschen.

Als bekannt setze ich die Thatsache voraus, dass die Erregbarkeit von sogar ausgeschnittenen Nerven und Muskeln sich sehr viele Stunden auch ohne eine Spur freien Sauerstoffs erhält, ja dass die kräftigsten Muskelzuckungen mit Kohlensäurebildung, ebenso die Nervenreizung in vollkommener Weise auch bei Abwesenheit des Sauerstoffs hervorgerufen werden können.

Nach Zusatz von Wasserstoff und vor Zusatz von Knallgas war das auf 0° C. und 1 Mtr. Quecksilberdruck bezogene Volum = 18,843 CC.

Nach Explosion und Abkühlung = 18,775 CC.

Es war also keine mit Sicherheit nachweisbare Menge von Sauerstoff in dem Gase. Berechnet man aber die kleine Contraction auf Sauerstoff, so ergiebt sich, dass den beiden Fröschen in dem Gasräume in toto 1,5 CC. Sauerstoff zur Disposition stand.
Nach Regnault's und Reiset's 1) classischen Untersuchungen gebrauchten Frösche pro Kilo und Stunde:

bei 15° C. : 0,063 Gr. Sauerstoff (pag. 474).
> 18° C. : 0,098
> 21° C. : 0,108
> 19° C. : 0,105
> 17° C. : 0,068

Das Verhältniss des Gewichtes des in der Kohlensäure enthaltenen Sauerstoffs zu dem Gewichte des verbrauchten Sauerstoffs betrug nach Regnault und Reiset: 0,7 bis 0,8. Das ist natürlich auch das Verhältniss der Volumina der Kohlensäure und des Sauerstoffs.

Nimmt man, da unsere Frösche auf niedrigerer Temperatur waren, als die von V. Regnault und Reiset, den niedrigsten Werth für den Sauerstoffverbrauch (0,06), so hätten unsere Frösche 41,9 CC. pro Kilo und Stunde und wirklich pro Stunde 3,5 CC. O (0° und 0,76 Mtr.) bedurfte, also in 5 Stunden 17,5 CC. Sie hatten aber höchstens 1,5 CC. (auch auf 0° und 0,76 Mtr. bezogen). Diese Zahlen zu wissen ist für die Beurtheilung der folgenden Versuche nöthig. Was in dem Körper der Frösche beim Einbringen enthalten war, kommt bei der verhältnissmässig hohen Temperatur von 14° C. nicht in Betracht; denn Sauerstoff ist nur in dem Blut und nicht in den Geweben und das Venenblut sieht auch bei Fröschen dunkler als Arterienblut aus; folglich muss bei Athmung in Stickstoff der Sauerstoff in ihrem Körper im Laufe von höchstens ein paar Minuten ebenso gut wie bei Warmblüttern in einigen Secunden total verschwunden sein. (Wird später streng besonders bewiesen.)

Nach Regnault's Quotient (0,7 angenommen) würden sich auf das Gewicht unserer Frösche bezogen 12,2 CC. Kohlensäure für 5 Stunden ergeben.

Nach dieser Orientirung bemerke ich nun, dass, nachdem die Frösche 5¹/₂ Stunden im Stickstoff gesessen hatten, ich eine zweite Gasprobe entnahm, aus welcher sich ergab, dass die Luft, in der die Thiere sich befanden, jetzt 0,7 Vol. pCt. CO₂ enthielt. Da nun

1) V. Regnault et J. Reiset. Recherches chimiques sur la respiration des animaux des diverses classes;
2) Regnault und Reiset a. a. O. p. 479.
Ueber die physiologische Verbrennung in den lebenden Organismen.

315
der Gesamtraum 1279 CC. Luft enthielt, so hatten die Frösche 8,9 CC. Kohlensäure (0° und 0,76 Mtr.) abgegeben. Sie saßen aber in etwas Wasser über dem Quecksilber. Die Rechnung ergiebt, dass dies bei dem bemerkten Procentgehalt der darüerstehenden Luft 1,4 CC. Kohlensäure enthalten musste. Also hatten die Frösche 10,3 CC. ausgehaucht, d. h. kaum weniger, als nach Regnault's Versuchen zu erwarten gewesen wäre, wenn sie selbst in reinem Sauerstoff gesessen hätten. — Nach Regnault hatten wir circa 12,2 CC. Kohlensäure erwartet. Diese auffallende Uebereinstimmung mit Regnault's Zahl ist gewiss nur Zufall, da Regnault selbst sagt, dass sehr beträchtliche Schwankungen in dem Sauerstoffverbrauche und der Kohlensäurebildung vorkommen.

Bedenkt man, dass die Frösche beim Beginne des Versuches eine Temperatur von 14° C., bei Entnahme der zweiten Probe nach 5\(\frac{1}{4}\) Stunden aber wenig über 0° temperirt waren, dass die Luft jetzt bereits 0,7 pCt. Kohlensäure enthielt, so muss eine Stauung von Kohlensäure in den Thieren angenommen werden. Man darf also wohl kaum annehmen, dass weniger Kohlensäure als normal producirt worden ist.

Man muss wissen, dass dieselben Versuche vor mir von Spalanzani, Edwards\(^1\)), Collard de Martigny\(^2\)), von Prof. Bergemann und Joh. Müller\(^3\)) u. Anderen mit ganz denselben Resultaten, sogar bei Fröschen mit ausgeschnittenen Lungen (Bischoff), die also gewiss keine Luft mehr in derselben enthalten konnten, angestellt worden sind. Ich wollte mich nur von der Wahrheit der Thatsache überzeugen, abgesehen von einem viel wichtigeren Gründe, den Niemand vor mir für der Mühe werth gehalten hat, zu berücksichtigen, obwohl es sich um die tiefsten und bedeutungsvollsten Verhältnisse handelt.

Nachdem meine Frösche 17\(\frac{1}{4}\) Stunden in dem Stickstoff gewesen waren, entnahm ich wieder eine Probe der Luft, in der sie sich befanden. Sie enthielt jetzt 1,0 pCt. Kohlensäure. In den letzten elf Stunden hatten sie also nur noch 3,24 CC. Kohlensäure ausgehaucht.

\(^1\) Edwards. Influence des agens physiques p. 445.
\(^2\) Collard de Martigny in Magendie's Journal de physiologie. 1880. p. 121.

Wie verhielten sich nun diese Frösche? Ich hatte Eis rings um die Glocke auf das Quecksilber gelegt, damit die Selbstzerstörung möglichst langsam bei Abwesenheit des Sauerstoffs von Statten gehen solle. Um 2 Uhr 44 Minuten gelangten die Thiere in den Stickstoff. Sofort sah ich, dass sie sich unbehaglich fühlten und ängstlich betrugen. Um 3 Uhr zeigen sie die entschiedenste Athemnoth; sie sitzen mit weit aufgerissenen Mäulern da und stellen sich von Zeit zu Zeit in die Höhe, als ob sie einen Ausweg nach der Luft suchten. Keine Krämpfe oder sonstige Reizungsscheinungen wie bei Warmblütern wurden bemerkt. Anfänglich athmen sie sehr schnell; dann hören sie ganz auf, beginnen wieder, um wieder aufzuholen.

Sie sitzen alsbald absolut bewegungslos, aber mit aufrechtem Kopf und offenem Auge, aber so still, als wollten sie durch Vermeiden jeder Bewegung das Sauerstoffbedürfniss nicht vermehren. Ich wartete nun auf ihren Tod. Aber es verging eine Stunde nach der andern; sie wanderten nach längerer Ruhe von Zeit zu Zeit, stellten sich auf und öffneten so weit als möglich die Mäuler, sodass auch gar kein Zweifel bestehen konnte, dass alle Functionen ihren ungestörten Gang nahmen. Abends 8 Uhr sind die Frösche noch ruhiger geworden und sichtlich sehr matt, besonders der eine, geben aber, als ein Draht um 9 Uhr durch das Quecksilber eingeführt wird, um sie zu irritiren, die unzweideutigsten Zeichen der Integrität. Sie werden nun in Eis verpackt und die Nacht sich überlassen. Am folgenden Morgen 9 Uhr, als ich nach dem Laboratorium kam, lagen beide Frösche wie Leichen bewegungslos in ihrem Gefängniss. Nach Entnehmung einer letzten — der dritten Gasprobe — werden die Thiere herausgezogen. Selbst die heftigsten Hautreize brachten nicht die Spur einer Reaction hervor, sogar die stärksten elektrischen Schläge wirkten nur auf die Muskeln, wo sie diese unmittelbar mit grösster Dichte trafen. Denn dass die Muskeln noch erregbar waren, ist ja nach allen anderen Erfahrungen selbstverständlich. Fest stand also, dass die Thiere absolut paralytisch waren, sodass die Erregbarkeit des centralen Nervensystemes erloschen sein musste. Es war also auch keine Spur einer Athembewegung vorhanden.

Da nun diese Frösche von dem Moment ihres Todes an auf beinahe 0° C. abgekühlt gewesen waren, so konnte an eine Fäulniss nicht wohl gedacht werden. Ich hoffte die Thiere also wieder lebendig zu erhalten. Um demnach ferner alle Zersetzung zu

Der eine Frosch starb bald, der andere erhielt sich länger.

Dieser einfachste aller Versuche ist, wie ich die Sache ansehe, von fundamentaler Wichtigkeit. Denn er lehrt erstens, dass die höchsten Lebensfunctionen normal von Statten gehen, ohne dass eine Spur von Sauerstoff in dem Körper des Thieres vorhanden ist und dass lange Zeit gleichzeitig die Kohlensäurebildung ungeschwächt weiter geht. Wir haben ferner gesehen, dass mit eintretendem Scheintod auch die Kohlensäurebildung aufhört, wenn für Abhaltung abnormer Zersetzung gesorgt ist. Die Uhr war abgelaufen. Wir fanden weiter, dass die Lebensprocesse viele Stunden lang beim ausgewachsenen Thiere bei absolutem Sauerstoffmangel und stillstehender Kohlensäurebildung zu Stillstande kommen können,
ohne dass die Möglichkeit des Wiederauflebens ausgeschlossen war.
Ebenso interessant ist deshalb das Wiederaufziehen der Uhr
gewesen. Denn wir haben gesehen, dass erst, nachdem viele Stunden
lang das centrale Nervensystem wieder Sauerstoff absorbirt hatte,
die Reizbarkeit der Moleküle sich herstellte. Eine Reihe von Stunden
ist also nöthig, um die reizbare Substanz zu regeneriren — richtiger:
um die Reizbarkeit der Substanz wieder herzustellen.
Ich glaube, Jedermann wird die Wichtigkeit der Thatsache
zugeben, dass alle Lebensprocesse lange Zeit ohne die Gegenwart
freien Sauertoffs mit scheinbar ungeschwächter Kraft ablaufen können.
Dies erschien mir aber so fundamental, dass ich es durch
einen noch viel überzeugenderen Versuch sicher stellen wollte. Dieser
Versuch, der in hohem Grade lehrreich gewesen ist, soll von mir
eingehend nunmehr behandelt werden.
Abermals wollen wir uns auf den Versuch genau vorbereiten.
Es soll, um die Ansammlung zu vieler Kohlensäure im Stick-
stoff zu vermeiden, nur 1 Frosch (Rana temporaria) gebraucht
werden, der 31,6 Grm. wiegt.
Nach Welcker's vertrauenswürdigen Bestimmungen beträgt
die Blutmenge von 100 Grm. Rana temporaria 4,71 bis 6,27 CC. 1);
im Mittel also 5,5 CC. Da unser Frosch 31,6 Grm. wiegt, so ent-
hält er 1,74 CC. Blut. Die Sauertoffmenge, welche das Blut bei
Atmosphärendruck aufnehmen kann, ist abhängig von seinem Ge-
halt an Blutfarbstoff.
Nun verhält sich nach den Bestimmungen H. Welcker's der
Farbstoffgehalt gleicher Volumina des Blutes vom Hunde und der
Rana temporaria wie 47 : 25 ²). 100 CC. Blut vom Hunde, der am
gensuesten untersucht ist und deshalb als Ausgangspunkt genommen
wird, enthalten im Mittel gesättigt 16 CC. Sauertoff (bezogen auf
0° und 1 Meter Hg), oft viel weniger, fast niemals mehr als 19—20 CC.
Demnach würden die 1,74 CC. Blut der Rana temporaria in
Anbetracht der von Welcker bestimmten geringen Menge des
Sauerstoff chemisch bindenden Farbstoffs in Maximo 0,14 CC.
(bez. auf 0° und 1 Meter) Sauertoff enthalten. Das macht 0,18 CC.
bei 0° und dem Atmosphärendruck von 0,76 M. Diese Zahl ist

1) H. Welcker. Grösse, Zahl, Volum, Oberfläche und Farbe der Blut-
körperchen bei Menschen und bei Thieren in Zeitschr. für rationelle Medicin.
2) H. Welcker a. a. O. p. 301.
aber viel zu gross, weil ja das arterielle Blut nicht ganz mit Sauerstoff gesättigt ist und weil der grösste Theil des Blutes im Thiere Venenblut ist, das also noch viel weniger enthält.

In den Organen des Thieres ausserhalb des Blutes befinden sich nur Spuren von Sauerstoff und zwar aus folgendem Grunde.

Erstens haben alle Beobachter in zahllosen Versuchen über-einstimmend bezeugt, dass in allen Geweben und thierischen Flüssigkeiten ausser dem Blute immer so kleine Spuren von Sauerstoff gefunden werden, dass sie zum grössten Theile wohl nur durch Verunreinigung mit atmosphärischer Luft bedingt sind.

Zweitens ist das Venenblut der Frösche auch dunkeler, als Arterienblut und also nicht mit Sauerstoff gesättigt. Wenn das Blut mit Sauerstoff gesättigt ist, hat es in minimo eine Sauerstoffspannung von 30—40 Mm. Quecksilber; das kalte Froschvenenblut hat also sicher noch keine Spannung von 15 Mm., ich will aber 30 Mm., was viel zu hoch, annehmen. Nun weiss man, dass der Absorptionscoefficient für thierische Flüssigkeiten nahezu gleich dem für Wasser ist, d. h. um etwas kleiner.

Der Absorptionscoefficient des Wassers für Sauerstoff bei 30° C. — unserer Beobachtungstemperatur — ist 0,039¹). Da nun das specifische Gewicht des Frosches, ohne hier in Betracht kommenden Fehler gleich dem des Wassers gesetzt werden kann, so dürfen wir statt 31,6 Grm. 31,6 CC. lesen, wodurch wir wieder einen kleinen Fehler zu unserem Schaden begeben. Von diesen 31,6 CC. geht aber das Blut ab, dessen Sauerstoff schon verrechnet ist, bleibt also:

Frosch Blut
31,6 CC. — 1,74 CC. = 29,86 CC.

Aber 29,86 CC. Wasser bei 30° C. absorbiren bei einer Sauerstofftension von 30 Mm., gemäss des oben notirten Absorptionscoefficienten:

0,04 CC. Sauerstoff

gemessen bei 0° und 760 Mm. Hg Druck. Da der Frosch nun in seinem Blut 0,18 CC. Sauerstoff enthält, so würde sein ganzer Körper enthalten:

0,18 CC. Sauerstoff im Blute,
0,04 " in den Organen ausserhalb des Blutes.

0,22 CC. Sauerstoffgehalt in dem Körper eines Frosches ohne den in den Lungenräumen befindlichen Sauerstoff.

Nach Regnault und Reiset's niedrigster Zahl verbraucht 1 Kilo Frosch pro Stunde 41.9 CC. Sauerstoff, also unser Frosch von 31,6 Grm. Gewicht nur 1,32 CC. und in 11 Stunden 14,3 CC. Sauerstoff.

Wenn man also absieht von dem in den Lungen enthaltenen Sauerstoff, hat der Froschkörper so viel freien Sauerstoff, um damit in Stickstoff gerade auf 10 Minuten aushalten zu können. Da aber alle Werthe von uns zu gross angenommen wurden, kann er damit nicht so lange auskommen.

Zu einem analogen Resultate kommt man in anschaulicherer Weise durch folgende Betrachtung.

müssen, worauf die evidenten Farbenverschiedenheit des arteriellen und venösen Blutes beim Frosche hinweist.

Schreiten wir jetzt zu dem Versuche.

Am Abend wurden gute Phosphorkugeln abermals eingeführt. Sie blieben dunkel; das Gas war also jetzt sauerstofffrei. Es wurde sorgfältigster Verschluss mit dem Quecksilber hergestellt, da am andern Morgen der Versuch ausgeführt werden sollte.

Während der Nacht hatte der zu demselben bestimmte Frosch im Eiskasten gesessen, war aber am Morgen sehr munter. Das Wasser in einem grossen Becherglas, das auch über Nacht in dem Eiskasten gestanden hatte, zeigte eine Temperatur von 2,7 ° C. Demselben Frosche war mit einer Nadel ein seidener Faden durch die Fusswurzel gezogen und festgebunden, um ihn später bequem aus dem Stickstoffraume ohne Einführung der Hand herausziehen zu können. Nun waren auch Eisstücke um die Bechergläser auf das Quecksilber gelegt worden, um die Räume, in welche der Frosch kommen sollte, möglichst abzukühlen. Es standen also zwei mit Stickstoff gefüllte Bechergläser (A und B) nebeneinander in der
Wanne, unten in Quecksilber tauchend, darüber aussen von Wasser mit schmelzenden Eisstücken bespült.

Ich nahm nun den Frosch und führte ihn nach Abspülung der Luft, die etwa an ihm hängen möchte, unter Wasser, dann unter Quecksilber in den Raum A, der also mit Phosphordampf geschwängerten Stickstoff enthielt. Hier bot sich uns — Prof. Zuntz, Dr. Finkler und Dr. Nussbaum, die mir bei diesen Versuchen freundlichst assistierten, waren gegenwärtig — nun ein merkwürdiger Anblick dar. Über dem Kopfe des Frosches erhoben sich dichte weisse Nebel, die bald den ganzen, fast 1 Liter betragenden Raum erfüllten, aber wesentlich in den unteren Theilen sich vorfanden. Die Phosphorkugel hatte natürlich Phosphordampf im Stickstoff zurückgelassen und als der Frosch wieder zu athmen anfang und die Reste atmosphärischer Luft aus seinen Respirationorganen ausathmete, oxydirte der Sauerstoff den Phosphordampf zu phosphoriger Säure, oder bildete auch Ammoniumnitrit. Ein besserer Beweis für die absolute Abwesenheit des Sauerstoffs in diesem Stickstoff ist also nicht denkbar. Nun wäre es möglich gewesen, dass der dampfförmige Phosphor doch nicht ausgereicht hätte, um allen von dem Frosche abgegebenen Sauerstoff zu binden. Darum liess ich zwar das lebhaft athmende und so seine Lungen ganz vom Sauerstoff befreiende Thier 5 Minuten im Raume A.

Hierauf aber zog ich ihn an dem Seidenfaden herab in das Quecksilber und führte ihn durch dieses in den Raum B, so dass er also hierbei mit der atmosphärischen Luft in keine Berührung mehr kam. Wir gaben gut Acht. Diesmal war keine Spur von Nebelbildung zu sehen. Der Frosch befand sich also in einem absolut sauerstofffreien Raume, in dem Phosphordampf war, der natürlich die kleinen Spuren von Sauerstoff, die aus seinem durch die Lungen strömenden Blute abdunsten mussten, sofort in Beschlag genommen haben würde. Als das Thier in den Stickstoff kam, war es 10 Uhr 30 Minuten. Eine Stunde nach der andern verging, ohne dass sich in der Kräftigkeit seiner Haltung und in den von Zeit zu Zeit auftretenden spontanen Bewegungen etwas merkbar änderte. Da auch um 2 Uhr 30 Minuten noch gar keine Abnahme der Lebensenergie constatirt werden konnte, wollte ich mich nochmals überzeugen, ob denn wirklich der Raum absolut sauerstofffrei sei. Ich nahm also eine gute, an einem Platindraht befestigte Phosphorkugel, erwärmte sie in Wasser von etwa 35° C. längere Zeit
und führte sie dann so schnell als möglich durch das kalte Quecksilber in den Raum hoch empor, wo sie gegen die Glaswand angelehnt und mit der Hand erwärmt wurde. Aber auch nicht die leiseste Spur eines Nebels war zu sehen. Als das festgestellt war, zog ich die Kugel wieder heraus. So blieb der Zustand; gegen 5 und 6 Uhr war der Frosch vielleicht etwas träger und ruhiger geworden; aber er bewegte sich noch immer im Laufe einiger Minuten hin und her, richtete sich auf und zeigte, dass eine auffallende Veränderung in seiner Leistungsfähigkeit noch nicht eingetreten sei, d. h. nachdem dem Thiere seit 7½ Stunden kein Atom Sauerstoff mehr zugeführt worden war.

Was die Temperatur betrifft, die das Thier hatte, so habe ich dafür folgende Anhaltspunkte. Die Luft des Laboratoriums zeigte eine Temperatur von 10,5° C. Das Quecksilber in der eisernen Wanne, auf welchem der Frosch sass, hatte eine Temperatur von 3° C., das Wasser darüher, in dem viele faustgroße Eisklumpen lagen, selbstverständlich alle möglichen Temperaturen zwischen 0° und 3° C. Das Wasser zwischen den Eisklumpen zeigte etwa 2 Cm. über dem Quecksilber, im Niveau des Frosches 1,7° C. Da nun die obere Hälfte des Becherglases mit der wärmeren Luft des Laboratoriums in Berührung stand und die Amphibien immer etwas wärmer als ihre Umgebung sind, so wird man die Temperatur des Thieres auf 3—4° C. richtig schätzen können.

Um 6 Uhr Abends verließ ich das Laboratorium und Prof. Zuntz und Dr. Finkler übernahmen von da ab die weitere Beobachtung, da ich weit vor der Stadt wohne, während das Bonner physiologische Institut in der Stadt liegt.

Professor Zuntz constatirte, dass der Frosch noch um 8 Uhr lebhaft sprang; um 9 Uhr 40 Minuten war er noch immer lebendig. Im Wasser um die Glocke schwammen noch Eisstückchen. Von jetzt ab wurde die Beobachtung abgebrochen, nachdem alle Vorrichtungen nochmals sicher befunden.

Am andern Morgen fand sich kein Eis mehr in der Wanne und der Frosch war scheintot. Er hatte also mindestens 11½ Stunden ohne allen Sauerstoff vollkommen gelebt, vielleicht aber auch noch viel länger.

Abermals stiegen in uns Zweifel auf, ob nicht doch Sauerstoff in dem Raume unter der Glocke sei und deshalb wurde nun der eigentliche Beweis angetreten. Nachdem fast alles Wasser um die
Glocke entfernt, diese wohl gereinigt worden, constatirten wir um 11 Uhr 30 Minuten die absolute Durchsichtigkeit des Raumes, in dem der Frosch nunmehr also 25 Stunden verweilt hatte; darauf nahm ich ein Reagensglas, füllte es mit destillirtem Wasser zur Hälfte, drehte es um und tauchte es mit seiner unteren Mündung in das Quecksilber der Wanne, in der die Glocke stand, führte es, wie bei Ueberfüllung von Gasen, unter die Glocke und liess einige CC. atmosphärischer Luft in den Stickstoff eintreten. Sehr bald entstanden die weissen Nebel der phosphorigen Säure und des Ammoniumnitrites, die sich allmälig wie Rauch von den unteren Theilen der Glocke gegen die oberen fortsetzten.

Es war also bewiesen mit aller überzeugenden Sicherheit, die erreichbar ist, dass der Frosch in Phosphordampf, der die Gegenwart freien Sauерstoffes absolut ausschliesst, mindestens 11 1/2 Stunden vollkommen gelebt hatte, bei vollster Integrität aller wesentlichen Functionen.

Der Frosch wurde nun aus dem Raume gezogen. Er war ganz paralytisch, matsch und schien mir todt. Er wurde gewogen. Sein Gewicht war = 31.6 Gramm. Darauf, d. h. nach etwa 1/4 Stunde, schnitten wir die Brustöhle auf und waren nicht wenig erstaunt, das Herz wieder, wenn auch schwach, 8 mal in der Minute schlagen und mit hellrothem Blute schon wieder gefüllt zu sehen. Aber noch nach 2 Tagen paralytisch, erholte er sich am 3. (nach 75 Stunden) so weit als die früheren (!!).

Dass dieser Frosch so sehr viel länger ausgehalten als die anderen Frösche bei dem vorhergehenden Versuche, liegt wahrscheinlich daran, dass hier nur 31.6 Gr. lebendiger Froschmodse, dort fast dreimal so viel in einem Stickstoff-Raume von ungefähr derselben Grösse sich befanden, weshalb die Tension der giftig wirkenden Kohlensäure keinen so hohen Werth in diesem Falle erreichen konnte. Ausserdem war der Frosch beim Einbringen in den Stickstoff diesmal auf circa 3° C. abgekühlt.

Eine andere Erklärung würde annehmen müssen, dass die Gegenwart des Phosphors die Intensität des Ablaufes der Lebensprozesse herabgesetzt habe.

Wie das auch sei, es ist zunächst eine für uns hier gleichgültige Frage.

Das aber glaube ich schliessen zu dürfen, dass, wenn man Frösche wirklich auf 0° C. abkühlt, was ja hier bei Weitem nicht
der Fall war, unter günstigen Verhältnissen das Leben ohne Sauер-
stoff sich wahrscheinlich noch sehr viel länger erhalten kann.

Ich legte mir nun endlich noch die Frage vor, ob die Amphi-
bienn vielleicht die Fähigkeit besäßen, in Fällen der Noth ihren
Lebensmechanismus gleichsam still zu stellen.

Dagegen sprach nun freilich die von mir und allen meinen
Vorgängern bewiesene fast ungeschwächte Weiterentwicklung von
Kohlensäure in Stickstoff, sowie die evidente Fortdauer aller Lebens-
functionen. Es müsste also, wenn etwas Derartiges existiren könnte,
das Thier die Macht haben, die Affinitäten seines Körpers zum
Sauerstoff aufzuheben, obwohl sichtlich nichts geändert ist.

Gleichwohl wollte ich mit meinem Auge mich überzeugen, dass
das Blut des Frosches nach Unterbrechung der Sauerstoffzufuhr in
kurzer Zeit vollkommen reducirt wird. Der Versuch ist darum
nicht so leicht, weil der Frosch mit der Haut so energisch athmet,
so dass derselbe sofort sein Blut wieder arterialisirt, wenn man ihn
unmittelbar, nachdem er im Stickstoff war, untersuchen will.

Ich nahm also einen gleich beschaffenen Gefährten des oben
.genannten Frosches — es war auch eine Rana temporaria — und
kühlte sie wie jenen im Eiskasten ab. Gleichzeitig wurde neutral
reagirendes Olivenöl auf dem Wasserbade 4 Stunden ausgekocht,
um die Luftbläschjen zu vertreiben, dann in den Eiskasten gestellt,
und später in Eiswasser bis auf 3°C. abgekühlt, wobei das Oel
ganz klar blieb. Dem abgekühlten Frosche zog ich durch zwei
kleine, kaum blutende Einschnitte die Lungen hervor und drückte
nach Anbringung von ein paar Schnittchen die Luft aus. Dann
band ich ein Gewicht von 200 Gramm an sein Bein und versenkte
ihn in das eiskalte in Eiswasser gestellte, in einem grossen Becher-
glas befindliche Oel. Hierbei muss man erwägen, dass er in seinem
geräumigen Rachen immer Luft hat und dass beim Einbringen ihm
etwas Luft anhing, auch einige Bläschjen wieder hierdurch in das
Oel gebracht waren. Dennoch wagte ich es, nach einer halben
Stunde ihn unter Oel die vordere Brustwand zu öffnen. Ich sah,
dass das Blut im Herzen ganz schwarz war. Ich nahm den Frosch
nun schnell heraus und durchschnitt das Herz, aus dem das
schwarze, also sauerstofffreie Blut ausfloss. Auch die anderen Or-
gane hatten die Farbe wie bei asphyktischen Thieren. Sehr schnell
röthete sich aber Alles wieder an der Luft und das Anfangs kaum
schlagende Herz fing deutlicher zu pulsiren an. Der Frosch selbst
hatte selbstverständlich durch spontane Bewegungen im Oele bis zu-
letzt das Vorhandensein der Integrität des gesammt Nerven-
systemes bewiesen.

Es bleibt also kein Zweifel. Das Blut des Thieres ist längst
vollkommen reducirt, aller freie Sauerstoff im Körper total aufge-
braucht, ohne dass der Lebensprocess still steht, der vielmehr noch
eine sehr lange Reihe von Stunden weiter läuft, wenn man nur für
niedere Temperatur sorgt, die aber nicht einmal bis 0° herabzugehen
braucht.

Aus diesem Versuche folgt mit Gewissheit, dass es der intra-
moleculare Sauerstoff ist, welcher die Reizbarkeit wesentlich mitbe-
dingt und dass ferner im Wesentlichen die Kohlensäure durch Dis-
sociation entsteht.

Es ist ebenfalls durch Versuche festgestellt, dass die Kohlen-
säurebildung innerhalb gewisser Grenzen mit der Temperatur der
Organe wächst.

Nach Moleschott 1) producirt ein Frosch auf 100 Gramm
Körpergewicht in 24 Stunden

bei 6° C. 0,475 Gr. Kohlensäure.
" 28° C. 0,752 "
" 38,7° C. 1,330 "

Schon Trevisanus 2) fand, dass die Honigbiene bei 22° bei-
naher 3mal so viel Kohlensäure producirt als bei 11°.

Auch dass ich meine Frösche so viele Stunden in Stickstoff
lebendig erhalten konnte, da ich sie so stark abgekühlt hatte, wäh-
rend z. B. Johannes Müller, der offenbar bei mittlerer Tem-
peratur experimentirte, die Asphyxie der Frösche schon vor Ablauf
von 3 Stunden eintreten sah, zeigt, dass die Dissociationsprozesse
bei höherer Temperatur schneller zum Verbrauche der reizbaren
d. h. lebendigen Moleküle führen.

Dass die Zersetzungen aber auch bei den Warmblütern mit
wachsender Temperatur zunehmen, ist unzweifelhaft. Dies hat
Adolf Fick und Goldstein z. B. für das verlängerte Mark mit
Hülfe eines sinnreichen Versuches bewiesen. Diese Forscher um-
gaben die nach dem Kopfe führende Schlagader eines Hundes mit
einem Gefässe, durch welches man einen raschen Strom heissen

1) Moleschott. Ueber den Einfluss der Wärme auf die Kohlensäure-
ausscheidung der Frösche. Unters. zur Naturlehre, Bd. II. pag. 315.
2) Trevisanus, Zeitschrift für Physiologie. 4. 1.
oder kalten Wassers führen konnte, so dass das Blut, welches zum Gehirne floß, bald erhitzt, bald abgekühlt wurde. Mit steigender Temperatur fängt die Respiration sofort an zu jagen, mit abnehmender ausserordentlich zu sinken. Dort also Steigerung, hier Abnahme der Reizbarkeit der Nervencentren. Die Grösse der Reizbarkeit ist aber — ceteris paribus — nur der Ausdruck für die Stärke der Umsetzung.

Ganz allgemein folgt die Abhängigkeit der Dissociation der lebenden Materie von der Temperatur daraus, dass bei den Warmblütern eine Steigerung der Blutwärme um 7° C. den Tod zur Folge hat und dass die Normaltemperatur des Säugethierblutes das Leben der meisten Amphibien vernichtet. Diese geringe Zunahme der lebendigen Kraft der Schwingungen der Moleküle führt also zur vollständigen Sprengung und Zersetzung der lebendigen Substanz.

Wohin man blickt in das Reich der lebenden Organismen sieht man, wie die Intensität der Lebensvorgänge also die Zersetzung der Temperatur proportional wächst. Betrachte ich die lebhaften, bewegliche, flinke Eidechse im Sommer und wie sie, wenn man sie einer Temperatur unter 0° aussetzt, allmählich ruhig wird, und in Torpor versunken einem Scheintodten gleicht und frage ich mich, was die Ursache sei, dass das Tier in der Wärme wieder so aktiv wird, so sagt mir der Augenschein: weil ihren Organen Wärme zugeführt worden ist, die die Atome der Molekeln in Schwingungen versetzt und die Dissociation erzeugt. Ich wage deshalb den Ausspruch: die intramoleculare Wärme der Zelle ist ihr Leben.

Die Chemie gibt uns noch bis zu einem gewissen Grade Auskunft, warum die Aufsaugung von Sauerstoff den lebenden Molekülern den hohen Grad der Zersetzbarkeit ertheilt, der bei der Erwärmung zur Abspaltung von Kohlensäure und Wasser führt. Es giebt, wie Kekulé 1) hervorhebt, unter den zahlreichen Molekülten der organischen Chemie kein einziges, welches in sich so viel Sauerstoff enthielt, dass er genügte, um allen Kohlenstoff zu Kohlensäure und allen Wasserstoff zu Wasser zu oxydiren. Das beweist also, dass, wenn die lebendigen Moleküle trotzdem fortwährend Sauerstoff anziehen, er nothwendig bald auch wieder aus-

treten muss, sobald die Bedingungen zur Bildung von Kohlensäure und Wasser gegeben sind. Wie also die Blausäure zum grossen Theil durch Dissociation sich zersetzt, weil der Stickstoff sofort Ammoniak bildet, wenn ihm dazu Gelegenheit geboten wird, so zersetzt sich die lebendige Substanz zum Theil desshalb, weil der intramoleculare Sauerstoff, sobald er Gelegenheit findet, Kohlensäure und Wasser zu bilden, sofort in diese Combination eingeht.

Wo deshalb der Lebensprocess energisch ablaufen soll, ist wie bei den Warmblütern eine hohe Temperatur nothwendig, welcher die Zersetzungen proportional sind. Die Wärme ist also die Ursache des Lebens und nicht, wie man gewöhnlich die Sache ansieht, nur die Folge. Es ist ganz vergleichbar der brennenden Kohle, deren Wärme durch den Brand zwar erzeugt wird, ihn aber auch erst ermöglicht. Meine Auffassung erklärt die Proportionalität aller Lebensvorgänge mit der Temperatur innerhalb gewisser Grenzen und wirft ein Licht auf den tieferen Sinn der grossen Constanz der inneren Körpertemperatur bei den höchststehenden Geschöpfen.

Bei der tierischen Oxydation tritt uns nun die bemerkenswerthe Thatsache entgegen, dass die Zersetzungen im Grossen und Ganzen sich so gestalten, dass nur ein Kohlenstoffatom nach dem anderen aus dem lebendigen Molecüle austritt.

Lebensprozessen des Thieres beteiligt ist, während der andere allmäß zu seiner Bestimmung heranreift. Ich komme auf die Kohlensäurebildung noch einmal zurück.

Da die intramolekulare Schwingung die Anziehungen verändert, indem Atome mit einander in Beziehung kommen, die sonst nicht aufeinander gewirkt hätten, so greift man die plötzliche Entstehung mächtiger Zugkräfte, da diese Atome sich anziehen. Liegen solche sich anziehende Theile in geordneten Reihen und entsteht auf der ganzen Reihe in demselben Moment die Anziehung, so können dadurch wie bei der Muskelzuckung bedeutende Kräfte erzeugt werden. Diese Kräfte müssen, wenn sie durch Kohlensäurebildung bedingt sind, schnell verschwinden, weil der Zug in dem Momente erlöschen muss, wo die Kohlen- und Sauerstoffatome ihren Zusammenhang mit dem contractilen Moleküle aufgegeben haben.

Selbstverständlich liefern unsere Erörterungen auch eine wie mir scheint befriedigende Erklärung der Reizbarkeit und Auslösung von Kräften, weil eben die intramolekulare Bewegung bereits so gross ist, dass die Atome periodisch nahezu in statu nascenti sich befinden, so dass Minimalimpulse ausreichen, um sie in diesen Zustand wirklich überzuführen, der wahrscheinlich aber bei der Structur des lebendigen Moleküles ganz vorzugsweise zur Kohlensäurebildung führt, was mit der Umsetzung einer bedeutenden Menge von chemischer Spannkraft gleichbedeutend ist.

Wenn wir uns somit klar gemacht haben, wie die Kohlensäure und das Wasser in aller lebendigen Materie fortwährend durch Dissociation aus den lebendigen Molekülen abtreten, so ergibt sich, dass dieser Process nur unter Zurücklassung freier Affinitäten denkbar ist. Denn die Kohlensäure kann als geschlossenes Molecul niemals in einem anderen enthalten sein, sondern nur bei einer Zersetzung entstehen, wobei die Affinitäten, welche der abtretende Kohlenstoff resp. Wasserstoff und Sauerstoff vorher sättigte, nunmehr frei geworden sind. Je zahlreicher aber die durch Dissociation sich bildenden Kohlensäuremoleküle sind, um so zahlreicher sind auch die in der Zeiteinheit in der Zelle entstehenden freien Verwandtschaften.

Die meisten dieser frei werdenden Verwandtschaften sind es nun, welche das Sauerstoffmolecul zersetzen, da fast aller Kohlenstoff den Körper als Kohlensäure verlässt und die überwiegende
Menge des Sauerstoffs sich zuletzt nur mit dem Kohlenstoff verbindet.

Unsere Betrachtungen haben uns dahin geführt, bei der Erklärung der Lebenserscheinungen das Hauptgewicht auf Kohlenstoff, resp. Kohlenwasserstoff und Sauerstoff zu legen. Das ist deshalb auch naturgemäß, weil die Lebensvorgänge notwendig an das organische Molekül gebunden sind, das durch den Kohlenstoff charakterisiert ist und weil sie zweitens im Wesentlichen Oxydationsprozesse darstellen.

Wir sind aber ferner von der Voraussetzung ausgegangen, die von jeher alle Biologen instinctiv und richtig gemacht haben, dass der Lebensprozess durch die Metamorphose eines stickstoffhaltigen Moleküls, namentlich des Eiweisses, wesentlich bedingt sei.

Wenn man die Zersetungsprodukte dieses merkwürdigsten aller Körper untersucht, wie sie durch einfache chemische Behandlung erhalten werden, so folgt daraus mit absoluter Gewissheit, dass in ihnen der bei Weitem grösste Theil des Kohlenstoffs in einfacher, also nicht sehr fester Bindung enthalten ist. Es gehören fast alle Radicale ganz sicher zur Fettgruppe.

Die Bruchstücke, die bei der Zersetzung des Eiweisses auftreten, sind ferner zum sehr grossen Theil ganz sicher Bruchstücke von Fett- oder Kohlenhydratmolekülen, wie dies durch alle Forscher übereinstimmend bezeugt wird und noch in der neuesten Feit durch die ausgezeichneten Arbeiten von Ritthausen ¹) sowie von Hlasiwetz und Habermann ²) erhärtet worden ist. Die durch einfache chemische Behandlung und Oxydation erhaltenen Zersetungsprodukte, welche hier zu erwähnen wären, sind einmal die einbasischen homologen Säuren wie Capronsäure, Valeriansäure, Buttersäure, Propionsäure und Essigsäure, ferner die zweibasischen wie Fumarsäure, Oxalsäure und nach Berzelius auch die Zucker-

säure, ferner die stickstoffhaltigen Säuren, wie Asparaginsäure, und Amine, wie Caprylamin u. s. w., die ich später betrachten will.

Daraus folgt aber, dass, da der tierische Körper die Mittel zur Spaltung der Fette, wie man am pancreaticen Saft sieht, besitzt, und auch Synthesen vollzieht, was z. B. das Haemoglobin evident beweist, ein Eiweissmolekül sich in dem tierischen Organismus auf Kosten von Fetten und Kohlenhydraten regenerieren kann. Das ist wahrscheinlich die wesentliche Bedeutung dieser Satelliten des Eiweissmoleküles. Das macht auch verständlich, dass alles lebendige, besonders das wachsende Protoplasma Fette consumirt. Da die Prozesse der Oxydation des lebendigen Eiweissmoleküles hauptsächlich im Bereiche der Kohlenwasserstoffradicale ablaufen, so kann bei Gegenwart von Fett und Kohlenhydraten das Eiweissmolekül sich regenerieren. So erklärt sich die Ersparniss an Umsetzung des Stickstoffs und die Fettansammlung bei abnehmender Muskelarbeit. So versöhnen sich auch die entgegenstehenden Ansichten über die Quelle der Muskelkraft.

Nur vermöge der nicht so festen Bindung des Kohlenstoffes, wie sie den Radicalen der Fettgruppe zukommt, waren die Phänomene des Lebens möglich.

Worauf ich nun ein schweres Gewicht legen möchte, ist, dass die stickstofffreien Oxydationsproducte, welche der Chemiker auf künstliche Weise erhält, im Wesentlichen mit denjenigen übereinstimmen, welche sich durch die Lebensprocesse im tierischen Organismus erzeugen. Diese Producte entstehen im Wesentlichen in gleicher Art, welches auch die specielle Methode ist, nach welcher die Proteinsubstanz oxydiert wird. Es wird sich alsbald zeigen, weshalb dies besonders wichtig ist. Daraus folgt zunächst, dass das lebendige Eiweiss in dem Bereiche seiner Kohlenwasserstoffradicale nicht wesentlich verschieden vom Nahrungseiweiss ist.

Wir sehen ferner, dass der kleine Theil des Kohlenstoffes, der im Eiweiss in fester Bindung ist, d. h. der die aromatischen Radicale bildende, im tierischen Organismus weder zersetzt noch oxydiert wird. Diese nur in den Pflanzen entstehende Gruppe durchdriesshals ungeändert den tierischen Körper. Denn seine oxydiren- den und zersetzenden Kräfte sind zu schwach, um diese in doppelter Bindung befindlichen Atome des Kohlenstoffes sich nutzbar zu
machen. Auch hier verhält sich die auf einfache Art vollzogene künstliche Oxydation wesentlich ebenso, wie die im lebendigen Körper; es wird Tyrosin, resp. Benzoësäure, Paraoxybenzoësäure u. s. w. erhalten.

Nach Erörterung der Functionen der betrachteten Atome des lebendigen Eiweissmoleküles bleibt uns noch ein Element, das sicher eine hochwichtige Rolle spielt: das ist der Stickstoff.

Nach den Untersuchungen von Hlasiwetz und Habermann 1) haben wir unter den durch einfache chemische Behandlung erhaltenen Spaltungsproducten einmal Amine: wie

Caprylamin (C₈H₁₄·NH₃),
Amylamin (C₆H₁₄·NH₃),
Butylamin (C₄H₉·NH₃),
Propylamin (C₅H₁₁·NH₃),
Aethylamin (C₅H₁₁·NH₃),
Methylamin (C₅H₁₂·NH₃).

Das sind also lauter Ammoniakte mit zur Fettgruppe gehörigen Alkoholradicalen.

Außer diesen werden erhalten Aminsäuren 2) wie Leucin C₅H₁₁·CO₂H, Glycocoll CH₃·CO₂H, Glutaminsäure C₅H₉·NH₂·CO₂H und Asparaginsäure C₅H₉·NH₂·CO₂H, alle mit zur Fettgruppe gehörigen Radicalen, endlich aber auch eine zur aromatischen Gruppe zu zählende Aminsäure, nämlich Tyrosin C₅H₅·OH

Hieraus folgt nun im Gegensatz zu dem, was wir früher mit Rücksicht auf die stickstofffreien Zersetzungsprodukte sagen konnten, dass die stickstoffhaltigen in ihrer überwiegenden Menge gar keine entfernte Ähnlichkeit mit der Hauptmasse der im lebendigen Körper entstehenden haben.

Die beiden tiefsten Kenner der Eiweissstoffe, Hlasiwetz und Habermann, sagen, dass Harnsäure und Harnstoff, die im Wesentlichen die stickstoffhaltigen Zersetzungsprodukte des im leben-

1) Hlasiwetz und Habermann a. a. O. Bd. 169, p. 382.
digener Körper oxydirten Eiweissmoleküles sind, noch nicht hergestellt werden konnten, weshalb diese Forscher Thatsachen aufzufinden versuchen wollen, die für die Erklärung auch dieser Art von Umsetzung verwerthet werden könnten 1).

Die merkwürdigste Aeusserung Liebig's ist aber die über den Muskel, also über organisirtes Eiweiss (l. c. p. 75).

"Es könnte sein, dass die Maschine, die wir Organismus nennen, eine viel vollkommenere Einrichtung — vielleicht so vollkommen wie ein menschliches Werk, eine Uhr besäße, die wir z. B. durch Aufziehen jeden Tag mit Kraft, ähnlich wie den Körper mit Speise versehen und die so eingerichtet ist, dass sie drei oder mehr Tage Arbeit verrichten kann, ohne weitere Zufuhr von Kraft, in Folge von angesammelter Kraft; für die Erhaltung des Ganges ist es in beiden Fällen nothwendig, nach Verlauf einer gewissen Zeit die zur Bewegung verbrauchte Kraft wieder zu ersetzen; aber einmal vollständig aufgezogen, ist bis zu einer gewissen Grenze der Ersatz nicht nothwendig." Ich erinnere zur Illustration an meine Frösche, bei denen lange Zeit ohne freien Sauerstoff alle Lebensfunctionen ihren ungestörten Fortgang nahmen.

Die andere merkwürdige Aeusserung Liebig's, in der er darlegt, wie er sich diese Aussammlung von Kraft denken würde, weist darauf hin, dass es eine Menge von Fällen gäbe, in denen mecha-

nische oder Bewegungseffekte hervorgebracht werden durch eine innere oder Molecularbewegung (p. 85).

Indem er deshalb mit vollem Rechte läugnet, dass gewöhnliches Eiweiss in der von ihm erzeugten Verbrennungswärme ein Mass liefere, für die in dem Muskeleiweisse, dem organisirten, enthaltene Kraft, sieht man, wie er sich darüber klar ist, dass das nicht lebendige Eiweiss beim Uebergange in den lebendigen Zustand eine Veränderung seines Moleküles erfährt. Ich glaube fest, das muss so sein; — die Thatsachen, welche mir dies zu beweisen scheinen, sind folgende.

Wenn sich der Chemiker gestattet — und mit Recht thut er es unter gewissen nothwendigen Cautionen — aus den Zersetzungsproducten, resp. den Radicalen, die in denselben enthalten sind, auf die Constitution eines Moleküles zu schliessen, so sehen wir, dass bei Vögeln, Schlangen und vielen anderen Thieren fast aller aus dem lebendigen Körper, also den Zellen stammende Stickstoff in der Harnsäure enthalten ist. In der Harnsäure ist aber ebenso sicher ein sehr grosser Theil des Stickstoffes in Cyan gebunden, d. h. mehrere stickstoffhaltigen Radicalen sind Cyan. Wer kann denn die Bedeutung der Thatsache verkennen, dass nicht bloss die Harnsäure, sondern viele andere stickstoffhaltige Producte der regressiven Metamorphose, wie z. B. Kreatin, Kreatinin, Guanin, und doch auch Hypoxanthin, Xanthin u. s. w. das Radical Cyan enthalten? Ich behaupte deshalb, dass das lebendige Eiweiss den Stickstoff grossenteils nicht in der Form des Ammoniaks, sondern des Cyans enthält. Auch die im Speichel vorkommende Sulfocyan säure weist uns auf das Cyan des lebendigen Eiweisses hin und gibt einen Wink über die Art der Bindung des Schwefels in dem Eiweissmoleküle. Keines dieser Zersetungsproducte des lebendigen Eiweissmoleküles, die zum Theil aus Cyanverbindungen künstlich wirklich dargestellt wurden, ist je mals aus totem Eiweiss erhalten worden. Die Ahnung Liebigs heisst also specialisirt: bei der Bildung von Zellsubstanz, d. h. von lebendigem Eiweiss aus Nahrungseiweiss findet eine Veränderung desselben, wahrscheinlich mit gleichzeitiger bedeutender Wärmebindung statt, indem die Stickstoffatome mit den Kohlenstoffatomen in cyanartige Beziehungen treten, um beim Absterben wieder in den stabilen Zustand der Amide zurückzukehren. Weil man das stabile Nahrungseiweiss bis jetzt nicht künstlich lebendig machen
Ueber die physiologische Verbrennung in den lebendigen Organismen.

kann, erhält man auch unter den Zersetzungsprouekten weder Harn-
säure noch die zu dieser Gruppe wesentlich gehörenden Körper, es sei denn, dass sie wie das Glycocolle den Stickstoff in der Form des Ammoniaks enthalten. Ich meine, das müsste doch für jeden Chemiker sonnenklar sein, dass lebendiges Eiweiß in seinen stickstoff-
haltigen Radicalen eine andere Structur als Nahrungseiweiß haben muss, welches nur Object der chemischen Analyse sein kann.

Bei den Säugethiere und dem Menschen bildet die Harnsäure und die ihr nahestehenden Körper wenigstens im Harne nur einen sehr kleinen Theil der stickstoffhaltigen Spaltungsprodukte des lebendigen Eiweisses, die fast ganz im Harnstoffe enthalten sind, der in der That ein Amid ist.

Aber die Physiologie lehrt uns, dass die analogen Organe der Vögel, Amphibien und Säugetiere in ihrer Zusammensetzung und in ihren Leistungen keine wesentlichen Unterschiede darbieten, weshalb es nicht denkbar ist, dass das lebendige Eiweiß z. B. im Muskel des Vögel wesentlich anders gebaut wäre, als in dem des Säugetieres oder des Menschen. Das Wichtigste aber ist, dass der Harnstoff, wie heutigen Tages wohl mit aller Sicherheit behauptet werden kann, durch Oxydation von nicht lebendigem Eiweiß, mit dem es ja der Chemiker zu thun hat, nicht erhalten werden kann, wohl aber auch durch Spaltung und Metamerie aus Cyanverbin-
dungen, wie aus Harnsäure, Kreatin, Kreatinin, cyanauren Ammoni-
nium u. s. w. — Das cyanaure Ammonium repräsentirt uns ein Stück Lebensproces, den letzten Ablauf der aufgezogenen Uhr, denn es geht von selbst in die stabile Verbindung des Harnstoffes über. Ich glaube sonach: es kann kein Zweifel bestehen, dass das lebendige Eiweiß aus denselben Grunde Harnsäure bilden kann, aus welchem es Harnstoff erzeugt, weil es Cyan als Radical enthält. Dass direct Harnstoff vom Eiweissmolecul sich ablöst, ist unwahr-
scheinlich. Ich habe indirekte Beziehung im Auge.

Betrachtet man also die stickstoffhaltigen Zersetzungsprouekten, so erkennt man, dass im lebendigen Organismus die Körper der regressiven Metamorphe in ihren Stickstoff aus dem cyanartigen in den Ammoniakzustand überzuführen bestrebt sind.

Diese Erkenntniss, die mir als kaum bezweifelbar erscheint, eröfnit uns weitere Gesichtspunkte.

Die Chemie zeigt, dass der Stickstoff, wenn er mit 2- oder 4werthigen Atomen in chemische Beziehung tritt, wie das ja beim
Eiweissmoleculé des 4werthigen Kohlenstoffs halber der Fall ist, eine ausgesprochene Neigung zur Bildung von Polymerisirungen darbietet.

Gerade das Cyan gibt uns ein lehrreiches Beispiel, ganz ebenso die Cyansäure. Zur Verkuppelung der assimilirten, d. h. zu Zellsubstanz verwandelten, also lebendigen Eiweissmoleculé, kann man wohl an das Cyan denken, wenn man nicht vorzieht, diejenigen Atomgruppen des Eiweissmoleculés, welche den Kohlenhydraten entsprechen, diese Condensation vermitteln zu lassen.

Eine andere Folgerung von noch viel grössem Gewichte, die Liebig ebenfalls, wie wir sahen, im Princip vorahnte, ist die, dass durch Einführung des Cyns in das Eiweissmolecul ein mit grosser Kraft ausgerüstetes Radical auftritt. Dies wird wesentlich gestützt dadurch, dass 1 Gramm Kohle im Cyan 43 % mehr Verbrennungswärme entwickelt, als 1 Gramm freier Kohlenstoff. Abermals aus diesem Grunde muss angenommen werden, dass bei der Verwandlung von Nahrungseiweiss in lebendiges Eiweiss, d. h. in Zellsubstanz, Arbeit geleistet wird.

Da ein Eiweissmolecul selbst dann, wenn man den Schwefel = 1 setzt, viele Stickstoffatome enthält, so ergiebt sich, dass durch die vielen Cyanradicale ein Moment innerer starker Bewegung in die lebendige Materie eingeführt worden ist.

Hlasiwetz und Habermann haben in neuerer Zeit die ausserordentliche und vielfache Aehnlichkeit, welche zwischen den Kohlenhydraten und Proteinkörpern existirt, in anziehender Weise mit Recht hervorgehoben 1). Diese Uebereinstimmung ist wohl keine zufällige und hat ihren Grund in den im Eiweissmolecul enthaltenen Fragmenten von Kohlenhydraten.

Mit Rücksicht auf die Frage, wie im Eiweiss bei der Gewebebildung die Cyanbildung sich vollzieht, möchte ich an die vielfach bei dem tierischen Stoffwechsel constatirten Veränderungen im Wassergehalt der Molekule erinnern. Da sich nun die Nitrile durch Austritt von Wasser aus Ammoniaksalzen und Amidn bilden, so liegt die Annahme nahe, dass es sich um Nitrilirung oder einen analogen Vorgang handele. Dies wird noch gestützt dadurch, dass bei Behandlung von Eiweiss mit Braunstein und Schwefelsäure wirklich Nitrile erhalten worden sind, wie Acetonitril, Propionitril und Valeronitril 1). Dieses hat seinen Grund in der wasserent-

Der Uebergang des lebendigen in das gewöhnliche Eiweiss würde demnach in einer Aufnahme von Wasser bestehen.

Es ist nun noch ein Punkt, der mir von der Voraussetzung aus, dass in dem lebendigen Eiweiss Cyanradicale enthalten sind, erwähnenswerth scheint. Eigentlichlich ist bei dem thierischen Stoffwechsel, wie ich bereits oben hervorhob, dass bei der Oxydation im Grossen und Ganzen immer ein Kohlenstoffatom nach dem anderen abtritt, was bei aller künstlichen bekanntlich sehr viel weni ger der Fall ist.

Da von uns als wesentlicher Unterschied zwischen lebendigem Eiweiss und demjenigen in der Retorte des Chemikers der Cyangehalt des ersteren erkannt wurde, so suche ich die Ursache der Kohlensaurebildung im Cyan, sei es primär, sei es secundär.

Wenn Atome in einem Molecule in heftige Oscillationen gerathen, so nähern sie sich denjenigen Lagen, die sie in den Status nascens bringen. Worauf kann die begünstigende Wirkung, welche die Wärme auf die chemischen Umsetzungen ausübt, naturgemäss zurückgeführt werden, als auf diesen Umstand? Aber auch bei gleicher Temperatur der Substanz oxydiert sich diejenige mit starker intramoleculare Bewegung leichter als eine solche mit schwächerer. Ein schönes Beispiel gibt uns das Cyan selbst.

Sobald also in dem lebendigen Eiweiss ein Radical wie das Cyan gebunden ist, dessen Atome in den mächtigsten Oscillationen sich befinden, wird dasjenige Kohlenatom, das dem Stickstoff am nächsten ist, oder vielleicht dasjenige, das überhaupt dem Cyanradicale am meisten benachbart, sich auch periodisch dem status nascens
nähern und bei günstiger Gelegenheit und Annäherung zweier Sauerstoffatome mit ihnen austreten als Kohlensäure, wobei ich mir denke, dass die Kette sich sofort wieder schliesst, so dass ein neues Kohlenatom an den Stickstoff oder das Cyan heranrückt. Die Bewegungen der Atome des lebendigen Eiweissmoleküles werden aber wesentlich durch noch einen Umstand vermittelt, dessen Kraft die Kohlensäurebildung liefert.

Da die Kohlensäure intramolekular entsteht, so ist es klar, dass in dem Momente, wo in dem Eiweissmolekül diejenige chemische Spannkraft verbraucht ist, welche die Kohlensäurebildung ermöglicht, eine bedeutende Steigerung der Temperatur in dem neu gebildeten Kohlensäuremolekül eintritt. Das heisst: die dieses Molekül zusammensetzenden Atome gerathen in ungeheure Schwingungen, als ob gleichsam das Kohlensäuremolekül im Moment seiner Entstehung explodierte. So muss sich im lebendigen Eiweissmolekül eine fortlaufende Kette von kleinen Explosionen vollziehen, deren Stosse die intramolekularen Schwingungen verstärken, so etwa wie es im Grossen bei den singenden Flammen der Fall ist.

Die Ansichten, zu denen wir über die Constitution des lebendigen Eiweissmoleküles geführt worden sind, werfen, wie ich glaube, ein Licht auf die Art, wie die lebendige Materie wohl entstanden sein mag.

Der Anfang liegt vielmehr im Cyan. — Wie entsteht Cyan?

Es ist sonach nichts klarer, als die Möglichkeit der Bildung von Cyanverbindungen, als die Erde noch ganz oder partiell in feurigem oder erhitztem Zustande war. Ich stelle mir vor, man müsste daran denken, dass die Abkühlung auf der Erdoberfläche nicht gleichförmig geschah und dass einzelne Distrikte, die sich abgekühlt hatten, auch wieder erhitzt werden konnten u. s. w.

Ebenso ist principiell zu begreifen, was kein Chemiker leugnen wird, die Entstehung der anderen wesentlichen Constituenten des Eiweissmoleküles, nämlich zahlloser Kohlenwasserstoffe, resp. Alkoholradicale ohne irgend welche Vermittlung lebendiger Materie durch synthetische Bildungen. Nachdem wir die Bedingungen der Synthese des Cyans kennen gelernt, fragen wir nach denen der Kohlenwasserstoffe.

sich leicht aus den Elementen erzeugt, mit Natronkalk, entstehen Methylwasserstoff, Aethylen, Butylen, Amylen u. s. w. 1)

Da das Eiweiss sicher den Benzolkohlenkern enthält, weil durch einfache chemische Behandlung aus Eiweiss immer Benzoësäure und Derivate derselben gewonnen werden können, so hat für uns die Synthese der aromatischen Kohlenwasserstoffe noch besonderes Interesse.

Bei den hohen Hitzegraden entstehen die einfachsten aramatischen Verbindungen, wie Benzol, Homologe etc., und bei noch höheren Hitzegraden das an Kohlenstoff noch reichere Naphthalin 3). Diese Thatsachen sind besonders durch Berthelot begründet 4).

Man sieht, wie ganz ausserordentlich und merkwürdig uns alle Thatsachen der Chemie auf das Feuer hinweisen, als die Kraft, welche die Constituenten des Eiweisses durch Synthese erzeugt hat. Das Leben entstammt also dem Feuer und ist in seinen Grundbedingungen angelegt zu einer Zeit, wo die Erde noch ein glühender Feuerball war.

Erwägt man nun die unermesslich langen Zeiträume, in denen sich die Abkühlung der Erdoberfläche unendlich langsam vollzog, so hatten das Cyan und die Verbindungen, die Cyan- und Kohlenwasserstoffe enthielten, alle Zeit und Gelegenheit, ihrer grossen Neigung zur Umsetzung und Bildung von Polymerien in ausgedehnter und verschiedenster Weise zu folgen und unter Mitwirkung des Sauerstoffs und später des Wassers und der Salze in jenes selbstzersetzliche Eiweiss übergehen, das lebendige Materie ist.

Ich glaube also, dass von der leblosen zur lebendigen Natur ein Zwischenstadium führt.

Auch heute noch ist es ein glühender Himmelskörper, die

Sonne, die in weite Fernen den Pflanzen der Erde in dem Lichte die Kraft sendet, welche die Constituenten des Eiweisses in ihr erzeugt.

Es scheint mir, dass dies nicht unverständlich ist, wenn man, wofür Vieles spricht, annimmt, dass das Eiweiss in der Pflanze nicht anders als dadurch entsteht, dass das bereits vorhandene lebendige Eiweissmolecul auf Kosten bestimmter ihm gebotener Radicale oder Moleculle sich vergrössert, d. h. „wächst“; denn die Eiweissbildung in der Pflanze ist da, wo sie wächst, wo lebendiges Eiweiss ist.

Das „Wachsen“ der organismischen Materie sieht man ja überzeugend an den fast endlosen Kohlenstoffketten mit ihren verschie denenartigsten Anordnungen, wie sie sich im Körper der Pflanze bilden. Diese Ketten sind aus ganz getrennten Kohlenatomen entstanden, die früher in der Kohlensäure enthalten waren. Der Kohlenstoff hat also in den lebendigen Moleculen eine grosse Neigung durch Kettenbildung ein Wachsen zu bedingen. Das Cyan besitzt diese Neigung aber auch in hohem Grade und zwar besonders wieder gegen Cyan. Aber auch dem Ammoniak geht sie eventuell nicht ab. Also haben die wesentlichen Elemente des lebendigen Eiweisses die ausgesprochenste Neigung, gleichartige Radicale anzuziehen und auf diese Weise immer grössere Moleculle zu erzeugen, d. h. zu wachsen.

Dass nun das lebendige Eiweiss in einer besonders bevorzugten Bedingung ist, um fortwährend neue gleichartige Elemente in sein Molecul einzufügen, geht aus meiner Theorie hervor; da die Kohlen- und Cyanradicale bei ihren Schwingungen immer in Phasen treten müssen, wo sie sich dem Zustand nähern, den wir in der Chemie als status nascens bezeichnen.

Demnach würde ich sagen, dass das erste Eiweiss, welches entstand, sogleich lebendige Materie war, begabt mit der Eigenschaft, in allen seinen Radicalen mit grosser Kraft und Vorliebe besonders gleichartige Bestandtheile anzuziehen, um sie dem Molecul chemisch einzufügen und so in infinitum zu wachsen. Nach dieser Vorstellung braucht also das lebendige Eiweiss gar kein constantes Moleculargewicht zu haben, weil es eben ein in fortwährender, nie endender Bildung begriffenes und sich wieder zersetzendes ungeheures Molecul ist, das sich wahrscheinlich zu den gewöhnlichen chemischen Moleculen wie die Sonne gegen ein kleinstes Meteor verhält.

Wenn man flüssiges Eiweiss untersucht, hat man es meist mit
abgerissenen Fetzen jener ungeheuren Moleküle zu thun, die wohl oft so gross wie ein ganzes Geschöpf sind. Diese Fetzen brauchen keine constante Zusammensetzung zu haben, es sei denn, dass man vorher durch chemische Eingriffe, d. h. Bildung von Zersetzungs-producten von endlichem Moleculargewicht gleich grosse Moleküle hervorruft.

In der Pflanze führt also das lebendige Eiweise nur fort zu thun, was es immer seit seinem ersten Entstehen that, d. h. sich fortwährend in allen seinen Theilen durch Anziehung von Gleichartigem zu regeneriren oder zu wachsen, weshalb ich glaube, dass alles heute in der Welt vorhandene Eiweiss direct von jenem ersten abstammt. Deshalb zweifele ich an der Generatio spontanea in der gegenwärtigen Zeit; auch die vergleichende Biologie deutet unverkennbar darauf hin, dass alles Lebendige aus nur einer einzigen Wurzel seinen Ursprung genommen hat.

Wenn ich somit zum Schlusse meine Hypothese zusammenfassen soll, so sage ich: »Der Lebensprocess ist die intramoleculare Wärme höchst zersetzbare und durch Dissociation — wesentlich unter Bildung von Kohlensäure, Wasser und amidartigen Körpren — sich zersetzernder, in Zellsubstanz gebildeter Eiweissmolecule, welche sich fortwährend regeneriren und auch durch Polymersirung wachsen.«

Sollte ich aber in einem Bilde, das allerdings sehr unvollkommen ist, meinen Gedanken erläutern, so würde ich mir eine unermesslich grosse Zahl kleiner verschieden abgestimmter Harfen denken. Ich würde annehmen, dass alle diese Instrumente zu einer grossen Masse fest zusammengeschraubt wären, so aber, dass alle Saiten dadurch im freien Schwingen nicht behindert werden. Dann dächte ich mir mit einem Hämmerchen fortwährende Schläge gegen das ganze System ausgeübt, so dass alle Saiten in Schwingungen gerathen und alle Harfen ihren Klang angeben. Die Harfen repräsentiren die lebendigen Eiweissmolecule, die Schwingungen das Leben, d. h. die intramoleculare Wärme, die Stösse des Hammers die Wärme, welche die Schwingungen dauernd erhält, richtiger, ihren Verlust an lebendiger Kraft ausgleicht. Im Körper existirt nun, wie an einem Klavier für jede Saiten ein Hämmerchen, für jedes Molecul auch eines oder mehrere. Die Kraft des Stosses, durch
welche im Körper die Schwingungen erzeugt und erhalten werden, ist wesentlich durch die Kohlensäurebildung bedingt.

Wie ich oben zeigte, erzeugt die Kohlensäurebildung kleine Explosionen, deren Stöße das Molekül in stärkere Vibration ver- setzen, wie das ähnlich im Grossen bei den singenden Flammen geschieht.

Deshalb erlischt der specifische Lebensproces, was unsere Versuche mit den Fröschen gelehr haben, mit dem Moment, wo die Kohlensäurebildung aufhört, weil aller, oder doch der hierzu bestimmte Sauerstoff verbraucht ist. Die Kohlensäurebildung liefert uns also die Kraft, welche das Instrument spielt. Deshalb findet sich immer in allen Zellen die Bildung derselben Kohlensäure, obwohl doch die Leistung so verschieden ist, weil die Leistung die Musik ist, welche von der Stimmung des Instrumentes abhängt.

Ich betone aber endlich nochmals, dass obiges Bild sehr unvollkommen ist und nur eine Seite der Verhältnisse darstellt.

Das Bild giebt keine klare Vorstellung von meiner Ansicht, dass die verschiedenen Moleküle mit Hilfe chemischer Verknüpfung zu Netzen verbunden sind, durch deren Stränge Oscillationen sich leicht von einer Stelle zu der anderen fortpflanzen.

Es ignorirt das Bild ferner die Massenbewegungen, wie sie in Folge der Contractilität und Secretion beobachtet werden. Hierbei setze ich voraus, dass in Dissociation begriffene, einer Faser jenes Netzes zugehörige Atome, welche also noch festgehalten werden von den Kräften des zugehörigen Moleküles, eine Anziehung äussern zu ebenfalls in Dissociation begriffenen, aber ebenfalls noch festgehaltenen Atomen eines anderen Moleküles, welches zu einer benachbarten Faser desselben Netzes gehört. Nachdem die chemische Verbindung der beiden Fasern angehörigen Atomen zu einem geschlossenen Molekül sich vollzogen hat, erlischt natürlich die Anziehung, welche durch diese Atome erzeugt war. Die feinen Maschen des Netzes hat man sich mit wässrigen Lösungen getränkt vorzustellen.

Ich habe oben, um den Gang der Darstellung nicht zu unterbrechen, einen Punkt unerörtert gelassen, der sich auf die tiefe Verwandtschaft des pflanzlichen und tierischen Lebens bezieht. Hierbei muss man ganz von der Form absehen, die absolut unwesentlich ist.
Ueber die physiologische Verbrengung in den lebendigen Organismen. 346

Erscheinen doch Medusen und Polypen äusserlich viel eher wie Pflanzen, denn wie Thiere.

Der früher — in Folge der Anschauungen Liebig's — besonders betonten Unterschied ist kein principieller. Die Pflanze besitzt — wie das Thier — auch die Fähigkeit, in ihrem Körper Reductionsprocesse zu vermitteln. Es kommt aber ihrem eigentlichen Lebensproces diese Fähigkeit wahrscheinlich in nicht höherem Maasse als dem Thiere zu. Denn nur das Sonnenlicht vermag in den grünen Organen der Pflanze Kohlensäure etc. zu zerlegen; am Tage wird die thierische Respiration der Pflanze durch die Arbeit der Sonne verdeckt.

Man kann also nur sagen, dass Reductionsprocesse in beiden Reichen vorkommen, und dass bei der Pflanze besonders starke derartige Arbeit in bestimmten Organen durch die Sonne geleistet wird.

Chemische Synthesen kommen im Körper des Thieres ebenso gut als in dem der Pflanzen vor. In Folge der vielen durch die Arbeit der Sonne erzeugten, in statu nascenti befindlichen Radicalen muss aber die Synthese im Pflanzenkörper in viel ausgedehnter Weise begünstigt sein.

Was endlich die Bewegung betrifft, so gibt es Thiere, die kaum beweglich sind, und Pflanzen, die sich lebhaft bewegen und auf äussere Einwirkungen zweckmässig reagiren. Fast alle Pflanzen sind aber mehr oder weniger beweglich.

Es handelt sich jetzt darum, diejenigen Thatsachen zu würdigen, welche mit meinen Ansichten von der Respiration unverträglich erscheinen. Sie sind es besonders, auf welche C. Ludwig's Vorstellungen und Theorien beruhen. Die bezüglichen Untersuchungen
wurden von C. Ludwig und Alexander Schmidt im Leipziger Laboratorium gemeinsam angestellt und 1869 veröffentlicht.

In Wahrheit aber ist es nicht schwer, theoretisch und experimentell zu zeigen, dass die Versuche C. Ludwig's und Alex. Schmidt's eine ganz andere Erklärung verlangen, als sie von diesen Forschern gegeben ist.

Die Art, wie sie die Versuche angestellt haben, bestand darin, dass sie durch die ausgeschnittenen Musculi biceps und semitendinosus eines soeben getöteten Hundes einen Strom defibrinirten Blutes leiteten und das aus den Venen hervorquellende Blut in geeigneter Weise unter Luftabschluss auffingen, seine Menge bestimmten und auf seinen Gasgehalt untersuchten. Da ihnen der Sauerstoffgehalt des durch die Arterie zugeleiteten Blutes bekannt war, so ergab sich leicht der Sauerstoffverlust, den das Blut beim Durchströmen der Muskeln erlitten hatte. Sie stellten nun verschiedene Strömungsgeschwindigkeit her, indem sie den Quecksilberdruck, mit dem sie das Blut durch den Muskel trieben, größer machten, wenn mehr Blut durch denselben getrieben werden sollte. Wenn mehr Blut durch den Muskel in Folge des stärkeren Druckes floss, nahmen sie an, dass es eine entsprechend grössere Geschwindigkeit im

Muskel gehabt habe. Nun finden sie die merkwürdige Thatsache, dass das Blut, wenn es schnell floss, nicht viel weniger stark reducirt war, als wenn es langsam durch den Muskel strömte.

Sie leiteten also z. B. 1) durch einen Muskel von 211 Gr. arterielles desfrünstirtes Blut von 13,2 pCt. Sauerstoffgehalt und zwar das erste Mal mit einer Geschwindigkeit, sodass in einer Minute 2,25 CC. den Muskel passirten, wobei sich ein Sauerstoffverbrauch von 0,19 CC. in der Minute herausstellte. Darauf wurde der Druck gemindert und das Blut mit etwa der halben Geschwindigkeit von 1,03 CC. (pro Minute) durch den Muskel getrieben, und es fand ein Sauerstoffverbrauch von 0,09 CC. statt, was ungefähr halb so viel als vorher war. Das schneller durc rhleita te Blut wurde bis 5,58 pCt. Sauerstoff, das langsamer durchleitete bis zu 4,02 pCt. reducirt. Es ist indessen wohl zu bemerken, dass eine strenge Proportionalität nicht aus den Zahlen resultirt. Es kommen auch Falle vor, wo trotz Verdoppelung der Strömungsgeschwindigkeit der Sauerstoffverbrauch kaum wächst. So verhalten sich in Versuch IV. (l. c. p. 32) die Geschwindigkeiten wie 1 : 2, der Sauerstoffverbrauch wie 5 : 6, d. h. nahe wie 1 : 1.

Zwischen diesem extremen Falle und dem obigen liegen vermittelnde, so zwar, dass, wenn man alle betrachtet, der Schluss mit Ludwig und Schmidt gezogen werden darf, dass mit wachsender durch den Muskel fließender Blutmenge der Sauerstoffverbrauch auch wachse, aber langsamer als die Geschwindigkeit.

C. Ludwig und Al. Schmidt erlauben sich diese Thatsache auf die allgemeinen Verhältnisse des im Körper befindlichen Muskels zu übertragen und dies ist nicht richtig.

Die beiden Forscher arbeiten mit kaltem Blute von circa 20° C. 2) und ebenso mit kalten Muskeln und beschreiben uns zunächst ein Phänomen, welches für die Beweiskraft ihrer Versuche von verhängnisvoller Bedeutung ist, ohne dass sie darauf aufmerksam geworden sind.

Am Zweckmässigsten lasse ich die Forscher das Phänomen selbst beschreiben:

»Am besten lässt sich der Strom handhaben, wenn arterielles Blut durch den ruhenden horizontal gelagerten Muskel fließt; unter

1) S. a. a. O. p. 32. (43.)
2) C. Ludwig und Al. Schmidt l. c. p. 15.
E. Möger, Archiv f. Physiologie. Bd. X.

»Die soeben gemachte Mittheilung über das allmähliche Anwachsen des Widerstandes darf jedoch nicht so verstanden werden, als ob dies gleichmässig mit der wachsenden Zeit geschah; dieses ist keineswegs der Fall. Der Widerstand wächst zwar im Allgemeinen, aber er thut dies in sehr unregelmässiger (!) Weise, indem er, ohne dass sich ein Grund dafür angeben liesse, bald auf-, bald absteigt. Diese Eigenschaft zwingt den Beobachter zu einer stetigen Aufmerksamkeit, wenn er auch nur annähernd selbst während der Zeit von wenigen Minuten (!) die Geschwindigkeit gleichmässig erhalten will«.

»Ahnlich wie ein Muskel, der fortwährend vom arteriellen Blut durchströmt wird, verhält sich auch ein solcher, dessen Strom, nachdem er durch Zeiträume von 1 bis 1½ Stunde unterbrochen war, wieder eingeleitet wird. Nach der Strompause findet man den Muskel mit ungefähr denselben Widerständen behaftet, die er vor dem Beginn derselben darbot, zuweilen aber scheint sich auch in Folge der Pause der Widerstand erniedrigt zu haben, sodass er dem
bei Beginn der ersten Durchleitung vorhandenen gleichkommt. Die soeben ausgesprochene Bemerkung gilt jedoch nur dann, wenn der Muskel durch den wieder eintretenden Strom zu seiner früheren Reizbarkeit zurückgeführt wird.

»Besondere Widerstände werden eingeführt, wenn der Muskel zu tetanischen oder zuckenden Zusammenziehungen veranlasst wird. Mit jeder Zuckung entleert sich allerdings das Blut, welches in den Venen angehäuft war, aber zugleich mehrt sich der Widerstand, der dem Eindringen arteriellen Blutes entgegentritt. Daraus wird es verständlich, dass man den Druck erhöhen muss, wenn man durch einen intermittirend zuckenden Muskel gerade so viel Blut führen will, wie durch den ruhenden in derselben Zeit abfloss. Schwerer verständlich ist der Umstand, dass hinter einer abgelaufenen Zuckung ein vergrösserter Widerstand zurückbleibt. (1) Zuweilen ist derselbe so gross, dass man geneigt ist, an eine die Zuckung überdauernde Zusammenziehung der Gefässe zu denken. — Die Hemmungen, welche in dem Blutstrom angebracht werden durch einen Muskel, den man mehrere Minuten hindurch in raschem Wechsel bald zucken bald ruhen lässt, sind um so grösser, je reizbarer der Muskel, beziehungsweise je kräftiger und allgemeiner seine Zusammenziehungen ausfallen.«

»Viel grössere Widerstände als durch die bisher berührten Umstände werden eingeführt, wenn man O-armes Blut (III) in den Muskel schickt. Uns hat es geschehen, als ob das durch Erstickung ent- sauerstoffe in dieser Richtung nicht merklich anders wirkte, als das mit Eisen reducirte. Die Hemmung könnte man als eine Folge der Veränderung ansehen, welche die Blutkörperchen erlitten haben; wenn sich, wie oben erwähnt, ein Theil derselben aufgelöst hat, so dürften auch andere, die nicht vollständig zerflossen sind, aufgequollen sein und damit ihre Glättung und Elasticität eingebüsset haben. (Ref.) Wir möchten jedoch nicht behaupten, dass diese Erklärung für alle Fälle ausreiche. Auffallend war es wenigstens, dass wiederholt der Strom unter relativ niederem Druck rasch floss, wenn das O-arme Blut unmittelbar auf das arterielle folgte, so dass sich erst sehr allmählich der langsamer Strom des schwarzen Blutes einstellte. Wir können zudem nicht leugnen, dass uns die Annahme einer Selbststeuerung des Stromes innerhalb der Muskeln eine ansprechende ist. Jedenfalls scheint es nach den vorliegenden Andeutungen wünschenswerth, Versuche darüber anzustellen, ob nicht etwa die
contractilen Ringe (!) der kleinen Arterie unmittelbar von dem durch ihre Lichtung strömenden Blute angeregt werden. Eine solche Einrichtung könnte möglicherweise dazu führen, dass die Gefässe des Muskels je nach den Bedürfnissen dieses letzteren das Blut mehr oder weniger rasch zufließen liessen."

Zu diesen Darlegungen der beiden Forscher gehört nun noch das von ihnen bezeugte Factum, dass, wenn man auch den Strom arteriellen Blutes dauernd durch den ausgeschnittenen Muskel leitet, »trotz stetiger und sorgfältiger Ueberwachung« derselbe »nach etwa zwanzig Stunden abgestorben und ungeachtet des dauernden Stromes auch alsbald starr« war. (L. c. p. 19.)

Es ist in der That merkwürdig, dass die genannten Forscher nicht sofort die Ursache des wachsenden Widerstandes in der Zusammenziehung der kleinen Arterien erkannten, da ja absterbende Muskeln sich verkürzen. Die Muskeln der Arterien haben aber, wie der nach der Durchschneidung der vasomotorischen Nerven noch vor der Zusammenheilung wiederkehrende Gefässstonus zeigt, höchst wahrscheinlich peripherische Ganglien wie der Darm, und reagiren wie alle Ganglienzellen auf Sauerstoffmangel und Reize. Darum ziehen sich die Gefässe stärker zusammen bei Durchleitung von sauerstofffreiem Blute. Mit vorschreitender Starre werden immer mehr Gefässe von der Contraction ergriffen und immer mehr wächst der Widerstand. Die Variation des Widerstandes leitet sich aus der verschieden starken Innervation wie auch dem directen Druck auf die Arterie durch den während des Erstarrens sich zusammenziehenden Muskel ab. — Wahrscheinlich bedingt aber auch die veränderte Gestalt des ausgeschnittenen Muskels, die eine Verdickung der Muskelzylinder zur Folge hat, eine partielle Zerrung von Capillargebieten und das Gewicht des Muskels selbst übt einen Druck auf diese aus oder comprimirt sie ganz.

Was folgt nun daraus? Eine gewisse grosse Zahl von kleinen Arterien waren in dem kalten Muskel total conthahirt, oder comprimirt, sodass der schwache Druck, mit welchem das Blut durch den Muskel getrieben wurde, die Lichtungen dieser conthahirten Arterien gar nicht öffnete. — Wenn dann der Druck viel stärker genommen wurde, genügte er, um Blut durch viele Arterien zu treiben, die bis dahin verschlossen waren. — Also bei langsamer Strömungsgeschwindigkeit hat nur ein kleinerer Theil des
Ueber die physiologische Verbrennung in den lebendigen Organismen. 351

C. Ludwig und A. Schmidt schliessen aus ihren Untersuchungen, dass der Muskel den Sauerstoff aus dem Blute um so rascher entfernt, je reichlicher er in dem letzteren vertreten ist 1).

Es ist nothwendig, noch eine zweite Methode zu besprechen, mit welcher diese Forscher dieselbe These zu stützen suchten. Diese Methode ist viel correcter erdacht als die bisher behandelte, aber die Ausführung derselben macht wieder die erlangten Resultate illusorisch.

Lassen wir die genannten Forscher selbst reden (p. 36):

»Wir kehren zu unseren Versuchen zurück. Der Annahme, dass die Stromgeschwindigkeit deshalb maassgebend für den O-Verbrauch sei, weil sie den procentigen O-Gehalt des Muskelblutes regele, erwächst eine Bestätigung durch die folgenden Versuche, in welchen das mit ungleichem O-Gehalt begabte, im Uebrigen aber gleichartige Blut mit derselben Geschwindigkeit durch den Muskel floss.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I. 1. ?</td>
<td>0—104</td>
<td>0,001</td>
<td>0,00</td>
<td>104—199</td>
<td>0,04</td>
<td>16,80</td>
</tr>
<tr>
<td></td>
<td>194 Gr.</td>
<td>0,50</td>
<td>0,001</td>
<td>0,42</td>
<td>0,08</td>
<td>15,04</td>
</tr>
<tr>
<td></td>
<td>198—260</td>
<td>0,48</td>
<td>0,036</td>
<td>0,42</td>
<td>0,08</td>
<td>15,04</td>
</tr>
<tr>
<td></td>
<td>270—315</td>
<td>0,58</td>
<td>0,036</td>
<td>0,42</td>
<td>0,08</td>
<td>15,04</td>
</tr>
</tbody>
</table>

»Diese beiden Versuche halten wir ausser dem schon angeführten Grunde noch darum der Erwähnung werth, weil sie sich gegen seitig beleuchtend zeigen, dass der ausgeschnittene Muskel dem Blute zwar die letzten Spuren von O entziehen kann (I), dass aber dieses ganz ungemein langsam geschieht, da in II das venöse Blut trotz seiner geringen Stromgeschwindigkeit noch einen merklichen Antheil von O enthielt«.

Meine Ansicht lautet ganz anders. Obige zwei Versuche sind

1) Ludwig und A. Schmidt l. c. p. 54.
die mit der guten Methode ausgeführten. Sie beweisen für die vorliegende Frage aber auch gar nichts. Denn bei Versuch I ist in dem Blut, welches aus dem Muskel hervorkommt (s. Colonne 6), kein Atom Sauerstoff mehr enthalten. Der Muskel hätte also, wenn man ihm nur mehr Sauerstoff geboten hätte, vielleicht auch viel mehr gebraucht. Was hat es denn für einen Sinn, von einem verringerten Sauerstoffverbrauch des Muskels zu reden, wenn man Blut durchleitet, welches kein Atom von Sauerstoff enthält?

Folglich stützt sich der Beweis, da I ganz bedeutungslos, auf Versuch II.

Die ganze Untersuchung ruht also darauf, ob in den vorliegenden zu entgasenden 25 CC. Blut 1/10 CC. Sauerstoff enthalten war oder nicht. Ich finde allerdings keine bestimmte Angabe über die absolute Blutmenge, mit der diese Analyse gemacht ist, wohl aber p. 48 die Bemerkung »30 CC.«, welches aus der Vene ausfliesst, sei so viel, als zur sicheren Bestimmung des Sauerstoffgehaltes im Blute nothwendig war. Es bleibt also die Möglichkeit, dass auch dieses Blut gar keinen Sauerstoff enthielt. Damit sind die Versuche erledigt.

Wenn man aber annehmen wollte, dass diese Zahl von 0,43 Sauerstoff richtig wäre und dass eine hinreichende Zahl von Versuchen dasselbe Resultat geliefert hätte, so würde ich diesen Versuchen doch keine Beweiskraft zukennen und zwar aus folgendem Grunde.

C. Ludwig und A1. Schmidt wollten sehen, welchen Ein-
fluss der absolute Sauerstoffgehalt des Arterienblutes auf die Oxy-
dationsprozesse ausübe und leiten deshalb einmal sauerstoff-
reiches, einmal sauerstoffarmes Blut mit immer derselben
Geschwindigkeit durch den Muskel.

Solche Versuche haben nun doch offenbar nur dann einen
höheren Werth, wenn man unter Verhältnissen arbeitet, die sich
einigermassen den physiologischen annähern. Genannte Forscher
nehmen aber einmal mit Sauerstoff gesättigtes Blut (»arterielles«),
um es durch den Muskel zu leiten, und das andere Mal solches
Blut, das fast gar keinen Sauerstoff enthält, d. h. Blut von 0,4
pCt. bis 0,62 pCt. Sauerstoffgehalt, wie es niemals in einer Arterie
ausser nach Erstickung vorkommt und auch dieses Blut wird, weil
es durch den Muskel geleitet werden soll, »arterielles« genannt.

Es ist ja gerade von Alex. Schmidt die Thatsache gefunden
worden, dass Erstickungsblut gewöhnlich noch Sauerstoff sogar
neben reducirenden Substanzen enthält, welche erst sich oxydiren,
ennen man den Erstickungsblut mehr Sauerstoff zuführt. Alex.
Schmidt hat selbst daraus den Schluss gezogen, dass ein Theil
des Sauerstoffes von dem Haemoglobin fester gebunden sei, der des-
bhalb bei Reduction schwerer ihm entzogen werde. Dieser Schluss
ist zwar nicht absolut nothwendig, aber möglicherweise richtig.
Man braucht nur daran zu denken, dass das Moleculargewicht des
Haemoglobins unbekannt ist, da die aufgestellte bekannte Formel
nur eine stöchiometrische Bedeutung hat. Die wahre Formel des
Haemoglobines kann ebenso gut der kleinstmöglichen polymer sein
und ein so condensirtes Molecul wird sich dem Grade seiner Con-
densation entsprechend mit mehren Sauerstoffmoleculen verbinden,
die mit verschiedener Kraft angezogen werden können.

Aus diesem Grunde muss der Versuch mit arteriellem Blute
angestellt werden, dessen Differenzen nicht viel grösser sind, als sie
innerhalb der physiologischen Schwankungen wirklich vorkom-
men und hier disponirt man ja in der That über hinreichend grosse
Differenzen.

Somit ist auch diese Versuchsreihe widerlegt.

Nunmehr erübrigt es mir, den ernstesten Punkt der ganzen
Untersuchung darzulegen, indem ich zeige, warum selbst dann, wenn
alle geräumten Ueberlegungen nicht vorhanden wären, wenn bewiesen
wäre, dass wirklich in den Versuchen von C. Ludwig und Al.
Schmidt der Sauerstoffverbrauch mit der Strömungsgeschwindig-
keit wuchse, ja fast proportional wäre, daraus gar Nichts für die Physiologie des Muskels folgte.

C. Ludwig und Al. Schmidt haben nämlich nicht bedacht, dass der Sauerstoffverbrauch in den Geweben von dem Verhältniss zweier Geschwindigkeiten abhängt. Wie viel Sauerstoff verbraucht werden kann, das hängt einmal davon ab, wie viel Sauerstoff bindende Affinitäten in der Zeiteinheit in dem Muskel erzeugt werden, allgemeiner gesagt, wie viel Sauerstoff ein Quantum Körpersubstanz in der Zeiteinheit binden kann. Das wird oder kann doch eine bestimmte Grenze haben. Wenn, was als wenigstens im höchsten Maasse wahrscheinlich angesehen werden darf, eine solche Grenze existirt, so wird von dem Moment ab, wo der verbrennenden Substanz soviel Sauerstoff zugeführt wird, als sie in Maximo in der Zeiteinheit fest binden kann, jede weitere Vermehrung des Sauerstoffes von gar keiner Bedeutung mehr für die Intensität der Oxydation sein. Dies würde also auf die thierischen Gewebe angewandt heissen, dass wenn durch die Diffusion ihnen eine Spur Sauerstoff mehr zugeführt wird als unerlässlich nöthig ist, um eben so viele Affinitäten zu sättigen, als in der Zeiteinheit in Freiheit gesetzt werden, eine Beschleunigung der Diffusion keinen Einfluss auf den Sauerstoffverbrauch ausüben kann.

Vom Standpunkte einer berechtigten Teleologie scheint es nun offenbar a priori wahrscheinlich, ja nothwendig, dass diejenigen Bedingungen im Körper hergestellt sind, welche ausreichen, um das Sauerstoffbedürfniss wirklich zu befriedigen. Es ist also a priori anzunehmen, dass den Geweben immer etwas mehr Sauerstoff geboten ist, als sie in der Zeiteinheit brauchen. Es scheint dies sogar dadurch bewiesen zu werden, dass, wenn plötzlich wie bei einer Muskelzuckung ein höheres Bedürfniss auftritt, auch diesem durch Vermehrung des Verbrauches an Sauerstoff genügt werden kann.

Ganz anders stellt sich das Gesetz, wenn in der Zeiteinheit durch den Diffusionsstrom den Geweben weniger Sauerstoff geliefert wird, als zur Befriedigung der in der Zeiteinheit sich bildenden Affinitäten nothwendig ist.

Wenn man in einem solchen Fall Verhältnisse herstellt, welche den Diffusionsstrom des Sauerstoffes zu den Geweben steigern, dann muss auch der Sauerstoffverbrauch wachsen.

Es ist also sonnenklar, dass der physiologische Sauerstoff-
über die physiologische Verbrennung in den lebendigen Organismen.

verbrauch von dem Verhältniss zweier Variabelen abhängt, nämlich

1. von der Geschwindigkeit der Sauerstoffdiffusion;
2. von der Geschwindigkeit der Sauerstoffbindung.

Nun operirt C. Ludwig und A. Schmidt an kalten Muskeln des Hundes, durch die sie kaltes Blut leiten.

Die Kälte aber verringert unzweifelhaft die Geschwindigkeit des Sauerstoffdiffusionsstromes und die Geschwindigkeit der Dissociation des Oxyhaemoglobines. Wenn ich nach meinen Erfahrungen über die Evacuation kalten Blutes urtheilen soll — und auch das von 20° C. nicht ausgenommen — so ist die Dissociation und Diffusionsgeschwindigkeit bei dieser Temperatur ganz bedeutend herabgesetzt.

Die Kälte aber verringert unzweifelhaft ebenso die Erzeugung sauerstoffbindender Substanz im Muskel, da sie den Stoffwechsel besonders beim Warmblütter sehr beeinträchtigt. Die Menge des in der Zeiteinheit zu verbrauchenden Sauerstoffs ist also herabgesetzt.

Bei der Methode der genannten Forscher werden also die Werthe beider Variabelen bedeutend verkleinert, und Niemand weiss um wie viel. Es kann deshalb sein und Alles spricht gerade bei den Versuchen von C. Ludwig und A. Schmidt 1) für diese Auffassung, dass der Sauerstoffdiffusionsstrom in raschem Maasse sinkt als das Sauerstoffbedürfniss.

Denn einmal liegt nach der Angabe von jenen Forschern der aus dem getödteten Thiere entfernte Muskel wenigstens 1/2 Stunde, bis die Durchleitung sauerstoffhaltigen Blutes beginnt, sodass das Sauerstoffbedürfniss einen maximalen Werth vor Beginn des Versuches erreicht. Zweitens deutet der colossale Widerstand, der dem Strom erwächst, auf abnorme, in Folge der beginnenden Stärke und Reizungstetanus bedingte Verengerung der kleinen Arterien. Drittens aber sind die Blutmengen, welche in diesen Versuchen durch die Muskeln getrieben werden konnten, unzweifelhaft eben wegen der abnormen Widerstände ganz unnatürlich kleine. Wir sehen, dass durch einen Muskel von 200 Gr. in einer Minute nur 1 bis 2 CC. Blut gehen, ja noch viel weniger.

Nun erwage man, dass die Kreislaufdauer eines Hundes circa

1) C. Ludwig und A. Schmidt l. a. p. 32.
15 Secunden beträgt, und dass also, wenn man 8 % Blut auf das Körpergewicht rechnet, durch 100 Gr. Körpersubstanz in 15 Se-
cunden ungefähr 8 Gramm Blut fließen, also durch 200 Gramm
16 Gramm; folglich in einer Minute 64 Gramme. Wenn dieser
Wert auch nur annähernd ist, so zeigt er doch, dass jene
Beobachter in einer ganz colossalen Weise sich von den physiolo-
gischen Verhältnissen entfernen und gerade solche Momente ein-
führen, welche die Geschwindigkeit des Sauerstoff-Diffusionsstromes
möglichst herabzudrücken geeignet sind.

C. Ludwig wird mir erwidern, dass Dr. W. Sadler unter
seiner Leitung die Strömungsgeschwindigkeit des Blutes in den
lebendigen nicht ausgeschnittenen Muskeln, die in natürlicher Lage
befindlich waren, bestimmt und auch sehr klein gefunden habe.

„Vor Durchschneidung der Muskelnerven“, sagt W. Sadler,
„dieser in der Regel aus der Vene nur sehr wenig Blut, auffallend
wenig im Verhältniss zu dem Durchmesser der Arterien und der
Venen, welche dem beobachteten Muskelgebiet zugehören. Venen
der Haut von entsprechender Weite liefern eine um das Vielfache
grössere Blutmenge. Nach dem, was ich beiläufig gesehen, halte
ich eine eingehendere Vergleichung des Stromquantums entsprechend
weiter Haut- und Muskelvenen für eine lohnende Arbeit. Auf den
sehr schwachen Strom innerhalb der ruhenden Muskeln weisen auch
die geringen Blutungen der Muskelwunden hin, vorausgesetzt, dass
man keine Arterienstämmchen verletzt hat. 1)

Letztere Angabe W. Sadler's habe ich oft bei Anstellung des
Speichelversuches am lebenden Hunde so sehr bestätigt gefunden,
dass ich nach totaler Querdurchschneidung des mächtigen Musculus
digastricus fast gar keine Blutung erhielt. Da ich nun
sah, wie gewaltig die Muskelwunde klaffte, wie stark also die durch
Elasticität bedingte Verkürzung, also Verdickung des Muskels war,
die ja auch eine entsprechende Verdickung der Muskelfasern vor-
aussetzt, so war ich der Meinung, dass die gestillte Blutung in
dem durch die Schwellung der Muskelzylinder erzeugten stärkeren

1) S. W. Sadler. Ueber den Blutstrom in den ruhenden, verkürzten
und ermüdeten Muskeln des lebenden Thieres. In „Arbeiten aus der phy-
siologischen Anstalt zu Leipzig 1870, pag. 77, oder Bd. XXI des Sitzungs-
ber. der math. phys. Classe der K. S. Gesellsch. der Wissenschaften."
Druck auf die Umgebung, also durch Compression der Blutgefäße bedingt sei. Bei jeder künstlich herbeigeführten sehr bedeutenden Gestaltveränderung des Muskels dürfte ein Schluss gewagt sein, der nicht in Betracht zieht, dass hierdurch eine grosse Veränderung der Widerstände für den Blutstrom eingeführt werden könne.

Die Thatsachen, welche in der Arbeit Sadlers über die Geschwindigkeit des Blutstromes in ruhenden und verkürzten Muskeln mitgetheilt werden, erklärt der Schreiber dieser Abhandlung in einer Weise, die meiner Ansicht nach falsch ist.

Wenn man nämlich die von Sadler gewonnenen Curven betrachtet, deren Ordinaten die Stromgeschwindigkeit, d. h. die in der Zeiteinheit aus der Vene des Musculus biceps hervorstörenden Blutmengen messen, dann muss sofort die ganz colossal in Zeit einiger Secunden oder doch Minuten wechselnde Geschwindigkeit auffallen 1). Da fließt z. B. das Blut durch den ruhenden Muskel im 25. Zeitabschnitt (= 15 Sec.) mit einer Geschwindigkeit von circa 0,8 CC. in 15 Secunden im 30., 31., also nach einem Intervall von nur 1 Minute mit einer Geschwindigkeit von circa 8,5 CC. in 15 Secunden abermals durch den ruhenden Muskel; das sind Aenderungen um 1000 Procent, von denen, was die Hauptsache ist, W. Sadler nicht die Ursache anzugeben vermag. Obiges Beispiel habe ich, ohne zu suchen, gerade herausgegriffen; es sind deren viele vorhanden.

Nun zeigen die mitgetheilten Curven, dass während des von dem Nerven angeregten Tetanus die Strömungsgeschwindigkeit bald steigt, bald abnimmt.

Wie erklärt sich aber die Stromvermehrung? —

Wenn man die Curven dieser Arbeit durchsieht, dann muss Jodem auffallen, dass fast ganz regelmässig der Tetanus den Strom

1) A. a. O. pag. 90.
nicht sehr viel beschleunigt, die dem Tetanus folgende Ruhe
Eine ganz colossale Strombeschleunigung zur Folge hat,
die eine Reihe von Minuten anhält und dann wieder
absinkt.

An diese Thatsachen schliesst sich noch die
von Sadler gemachte Angabe, dass der Blutstrom
aus dem ruhenden Muskel auffallend schnell und
mit Schwankungen an Geschwindigkeit abnimmt.
Es versteht sich von selbst, dass der bei dem Versuch eintretende
Blutverlust so geringfügig war im Verhältniss zur Grösse des
Thieres 1), dass nicht die Grösse dieses Blutverlustes die schnellle
und unmotivirte Abnahme des in natürlicher Lage befindlichen und
unnatürlich mit geronnenem Blute ernährten Muskel erklären kann.

Die richtige Erklärung dieser Versuche ist meiner Ansicht
nach im Wesentlichen folgende:

W. Sadler hat in die Muskelvene eine Metallcannule eingebunden.
Diese besass 2) eine Erweiterung an demjenigen einen
Ende, welches nicht in das Lumen der Vene zu liegen kam und
in diese Erweiterung war ein Schenkel eines metallenen T-förmigen
Rohres eingeschliffen, d. h. es sollte sich die Venencannule in zwei
Rohre hierdurch theilen; die eine Leitung sollte das Blut abführen,
die andere Leitung zur zeitweiligen Durchspülung mit einer Sodalösung
dienen, um etwaige Gerinnsel zu entfernen.

Aus diesem Verfahren folgt also, dass ein für alle Mal ein
Stück der Cannule in der Vene fest eingebunden blieb und dass
das Venenende selbst mit Sodalösung natürlich ebenso wenig wie das
fixe Cannulenstück hinreichend ausgespült werden konnte. Doch ist
dies nicht wesentlich.

Wesentlich ist, dass, wenn das lebendige Blut aus dem
flüssigen in den coagulirten Zustand übergeht, ein Zwischenzustand
existirt, in dem es immer noch fließt, aber schwieriger.

Wer sich hiervon überzeugen will, der nehme eine Ludwig-
sche Stromuhr mit der von mir angebrachten Modification, die
weiter bei Dr. Finkler in dem folgenden Aufsatz beschrieben ist.
Diese Stromuhr gestattet es, da sie aus zwei cylindrischen graduierten Röhren statt der gebräuchlichen Glaskugeln besteht, genau
die Zeiten zu messen, in denen gleich kleinere Blutquanta aus-

1) S. Sadler a. a. O. p. 79.
2) S. Sadler a. a. O.

Ich gebe einige Beispiele Dogiels aus den Zahlen in „Ludwig`s Arbeiten“ über die Geschwindigkeit in demselben Gefäss am Anfang und Ende des Versuches:

<table>
<thead>
<tr>
<th>Geschwindigkeit im Anfang</th>
<th>Geschwindigkeit am Ende</th>
</tr>
</thead>
<tbody>
<tr>
<td>186 mm.</td>
<td>103 mm. (p. 232.)</td>
</tr>
<tr>
<td>226 „</td>
<td>94 „ (p. 235.)</td>
</tr>
<tr>
<td>520 „</td>
<td>248 „ (p. 236.)</td>
</tr>
</tbody>
</table>

Dies ist der gewöhnliche Fall, in kürzeren Zeiträumen kommen selbstverständlich auch wohl Steigungen der Zahl vor, die aber meist unbedeutend sind.

Denken wir uns also das in die grösseren Aeste der mit

Offenbar aber kann es vorkommen, dass auch einmal ein compacteres Gerinnsel in der Vene entsteht, dass ventilartig die Cannüle schliesst, wenn der Muskel das Blut mit stärkerer Gewalt gegen sie antreibt. In diesem Falle kann der Tetanus auch ein dauerndes Aufhören des Stromes bewirken. Dies scheint aber selten vorzukommen.

In den Aufsätzen von W. Sadler finden sich Discussionen über die denkbaren Möglichkeiten, warum nach Durchschneidung der Muskelnerven der Blutsstrom unmittelbar beschleunigt werde, um dann allmählich zu sinken. Es werden die gefässverengernden und gefässerweiternden Nerven besprochen, obwohl der Nerv bei dem curarisirten Thier gar keinen Einfluss auf die Strömungsgeschwindigkeit zeigte. Die Sache ist einfach die, dass die durch die Nervendurchschneidung bedingte Muskelzuckung die Bahn der Muskelvene frei macht.

Diese Betrachtungen erklären nun auch, warum zuweilen der Tetanus den Blutsstrom etwas in dem Muskel beschleunigt. Der Tetanus an sich behindert den Blutsstrom (abgesehen von der ersten Blutausspressung); aber dadurch, dass er das steife Blut aus der Vene austreibt und freie Bahn macht, beschleunigt er ihn. Es wird also darauf ankommen, welche der beiden entgegengesetzten
Ueber die physiologische Verbrennung in den lebendigen Organismen. 361

Wirkungen des Tetanus die Oberhand behauptet und wie stark der Tetanus ist.

Hieraus folgt also, dass man nur diejenigen grossen Werthe der Strömungsgeschwindigkeit des Blutes durch die Muskeln, welche Sadler unmittelbar nach dem Tetanus beobachtete, und das sind seine Maximalwerthe, als wahren Ausdruck für die physiologischen Verhältnisse betrachten kann. Hier finde ich denn Werthe bis 11,5 CC. Blut, die in 15 Secunden aus nur einem Theile des Biceps femoris abfließen. Denn Sadler fing dasselbe nur aus einer Vene auf; der Muskel besitzt aber noch eine grössere. Man sieht also, dass schon durch einen Theil des Biceps des Hundes in 1 Minute 46 CC. Blut bei freier Circulation strömen können.

Nun hatten C. Ludwig und A. Schmidt bei den Versuchen Biceps und Semitendinosus und beide Venen und schickten durch diese Muskeln 1/4—2 CC. in der Minute, selten aber wenig mehr.

Ich will nun noch einige mögliche Einwände gegen meine Erklärung beleuchten. Sadler hatte den Beweis zu liefern geglaubt, dass die Formveränderung des Muskels beim Tetanus keinen unmittelbaren Einfluss auf die Strömungsgeschwindigkeit habe. Sie fixirten nämlich die Ansatzpunkte des Muskels, indem >die Beugung der Hand und des Vorderarms< durchaus unmöglich gemacht wurde und nichts desto weniger sahen sie die Geschwindigkeit des Blutstromes zu einer bedeutenden Höhe ansteigen. Dieser Versuch ist nämlich an den Arm- und Muskeln angestellt. „Jedenfalls“, liest man bei Sadler 1), „lehrt dieser Versuch, dem ich ähnliche zur Seite stellen kann, dass die Vermehrung der muskulären Stromgeschwindigkeit hier in bedeutendem Maasse eintrat, wenn die Formveränderung nicht gestattet wurde, während sie in anderen zahlreichen Fällen sehr mächtig zum Vorschein kam, wenn der Muskel seinem Contractionsbestreben ungehindert folgen konnte. Daraus erübrigt unmittelbar, dass die Ursache der starken Strömung, die beim Tetanisiren der Muskelnerven auftritt, nicht in einem unmittelbaren Zusammenhang mit der Formveränderung des Muskels zu bringen ist. Nach der Ausschliessung dieser Möglichkeit kann der Grund, nach dem wir suchen, nur in einer Erweiterung der kleinen Muskelarterien gefunden werden und es kann deshalb nur die Frage sein, ob die Erschlauffung der Muskelwand von einer Einwirkung der

1) A. a. O. p. 95.
Nerven oder von irgend einer anderen die Gefässmuskeln unmittelbar betreffenden herrührte.

Sehr merkwürdig ist, was dann zwei Seiten weiter in demselben Aufsatz auseinandergesetzt wird, wie das Verhalten des Blutstromes in einem curarisirten Muskel sei, dessen Nerven durchschnitten sind. „In einem so beschaffenen Muskel“, liest man bei Sadler 1), „bringt, wie beispielsweise Fig. 9 darlegt, die Reizung der Nerven keine (!) Veränderung des Stromes hervor."

Da nun Curare die Gefässnerven sehr wenig affizirt, so ist die gegebene Erklärung wohl nicht befriedigend, um so weniger als die natürlichste und einfachste von der Welt ausreicht. In Sadler (p. 97) steht sogar bestimmt gesagt, dass „beachtlich die Gefässnerven durch das Curare nicht angegriffen werden."

Wenn in der Abhandlung von Sadler behauptet wird, dass die Beugung der Glieder durch Fixation derselben unmöglich gemacht und dadurch eine Formveränderung der gereizten Beuger eliminiert worden sei, so ist es doch sonnenklar, dass die einzelne Muskelfaser immerfort das Vermögen besitzt, sich wegen der Elasticität der Sehne um Etwas zu verkürzen, also zu verdicken, so dass sicher eine bedeutende Steigerung des Seitendrucks der Muskeln auf ihre Umgebung, also auf die kleinen Venen stattfindet, wie sich das in der Zunahme des Blutstromes aus der Vene zu erkennen gibt. Es scheint sogar diese intramusculäre Drucksteigerung während der Behinderung zur Vollziehung einer ausgiebigen Formveränderung in dem Versuche Sadlers 2) bedeutender zu sein, als wenn der Muskel seine Gestaltveränderung frei vollzieht.

Es bleibt uns endlich noch ein Punkt der Arbeit Sadlers zu besprechen, welcher hier in Betracht kommt. Mit Rücksicht auf curarisirte Thiere sagt er 3), ändere sich der Blutstrom überhaupt nicht, so lange die künstliche Respiration hinreicht, um dem Blute eine kräftige arterielle Färbung zu bewahren.

Wenn man nun aber die Curve betrachtet, die er zum Beleg mittheilt, so sehe ich da auch Schwankungen von 100% in einer ganz kleinen Zahl von Beobachtungen und nach Unterbrechung der

1) A. a. O. p. 97.
2) A. a. O. p. 45.
3) A. a. O. p. 97.
künstlichen Respiration werden sie ganz colossal. Offenbar hat Sadler an curarisirten Thieren, da er ja den Einfluss der Muskelbewegung auf den Strom untersuchen wollte, nur wenige Untersuchungen angestellt, so dass ich auf diese Erfahrungen kein Gewicht legen kann. Wenn es sich aber bei erneuter Untersuchung ergeben sollte, dass man bei curarisirten Thieren und Anstellung des Experimentes von W. Sadler weniger leicht durch Blutgerinnung in der canutilisirten Vene gestört wird, so müssten weitere Experimente angestellt werden, um zu entscheiden, ob das Venenblut eines curarisirten Muskels etwa weniger leicht als anderes gerinne. Ich denke daran, weil ich ausgehend von der Idee, dass die Blutcoagulation durch Fermente bedingt ist, und dass Chinin die Säurebildung im frisch gelassenen Blute hemmt (Zuntz), vor einigen Wochen meinen ersten Assistenten Herrn Prof. Zuntz bat zuzu- sehen, ob Chininzusatz zu frisch entleertem Blute die Gerinnung hindere. Er stellte den Versuch wiederholt mit Kaninchenblut an, das in der That $\frac{1}{4}$ Stunden vollkommen flüssig blieb und erst dann gerann. Ich habe mich durch einen besonderen Versuch überzeugt, dass das Herzblut eines curarisirten Kaninchens, was allerdings für Muskelvenenblut keinen Beweis liefert, seine Gerinnbarkeit nicht verloren hatte. Am Blutserum bemerkte ich dann eine auffallend starke weisse ins Blauliche spielende Fluorescenz.

Es steht somit unzweifelhaft fest, dass die Curareversuche Sadler's keine Stütze für die anderen Versuche sind, bei denen an mit Morphia betäubten, also nicht muskellahmen Hunden experimentiert wurde.

Die Curven Sadler's bedeuten nur, wie der Blutstrom durch grössere oder geringere Widerstände an der Ausflussöffnung der Vene in Folge von Gerinnungsproducten des Blutes modifizirt worden ist.

Eine nicht unwichtige Einsicht in die Geschwindigkeit des normalen Blutstromes durch die Muskeln scheint mir noch die Bestimmung der Strömungsgeschwindigkeit in der Arteria oder Vena femoralis des Hundes zu liefern, da doch immerhin die Hauptmasse der Hinterbeine Muskeln sind und Bindegewebe, Sehnen, Fascien und die Haut des Hundes sich durch Blutarmuth auszeichnen.

Man betrachte zu dem Ende die Werthe, welche der erfahrene Forscher auf diesem Gebiete, Prof. J. Dogiel 1) erst vor

N. Pfüger, Archiv f. Physiologie. Bd. X.
Kurzem wieder mitgetheilt hat. Da findet man die hohen Werthe von 300 bis 600 mm. in der Secunde für die Strömungsgeschwindigkeit des Blutes.

Vergleicht man ferner die Zahlen, welche Dogiel 1) in seiner früheren Arbeit über die Geschwindigkeit in der Carotis und A. Femoralis aufgestellt hat, so ergibt sich, dass die Carotis auch keine grösseren Maxima gibt. Da nun das Blut, welches durch die Femoralis mit so grosser Geschwindigkeit fließt, doch unzweifelhaft überwiegend den Muskeln zugeführt wird, so kann die Strömungsgeschwindigkeit in denselben schwerlich als eine geringe betrachtet werden.

§ 9. Ueber die Grenzen des Partiardrucks des Sauerstoffs, welche für die thierische Verbrennung bestehen.

Nachdem ich somit Alles hinweggeräumt habe, was der Anerkennung des von mir erkannten Gesetzes noch im Wege steht, muss ich noch einer Reihe von Untersuchungen gedenken, die der Unabhängigkeit der thierischen Oxydation vom Partiardruck des Sauerstoffs eine obere Grenze zu ziehen scheinen.

P. Bert 2) hat in den Comptes rendus Thatsachen bekannt gemacht, welche, wenn sie sich bestätigen, zu den wichtigsten gehören, die für die Physiologie der Respiration in dem letzten Decennium gefunden sind.

Wenn Thiere in einer Atmosphäre von hoher Dichte des Sauerstoffs athmen, so bekommen sie Convulsionen, sobald ihr arterielles Blut einen Sauerstoffgehalt von 28—30 Vol. pCt. (0,76 m. Druck) enthält und werden bei einem Gehalt von 35 Vol. pCt. getödtet 3). Auf den Druck von 1 Meter berechnet würden diese merkwürdigen Werthe für den Sauerstoffgehalt des Blutes 22,8 pCt. und 26,6 pCt. ausmachen. Es handelt sich also um eine sehr kleine Steigerung des Sauerstoffgehaltes über die Norm. Aber dieser kleinen absoluten Zunahme des Procentgehaltes entspricht eine ganz ungeheuere Zu-

Ueber die physiologische Verbrennung in den lebendigen Organismen.

nahme der Spannung des Sauerstoffs. Die Spannungen des Sauer-
stoffs im arteriellen Blute verhalten sich zu der Spannung bei Sätti-
gung des Blutes mit Sauerstoff von 3 'Atmosphärendruck, was nach B e r t die tödliche Dichte ist 1), etwa wie 35 : 2280.

Es ist gewiss in hohem Grade interessant, dass nach den in meinem Laboratorium ausgeführten Untersuchungen von Dr. A u g u s t E w a l d aus Darmstadt der Organismus sich in so erfolgreicher Weise gegen die Apnoë wehrt.

B e r t zeigt, dass die Thiere in dem Maasse entschiedener vom dichten Sauerstoff getödtet werden, je energischer ihre Respiration ist. In comprimirter Luft sterben Insecten rascher als die Arach-
niden und Myriapoden; letztere wieder rascher als Molusken und Würmer 2). Aber auch die Fische werden getödtet, wenn das Wasser mehr als 10 Volumprocent enthält 3).

B e r t ermittelte ferner, dass auch die Pflanzen sich ähnlich verhalten und fügte hierdurch einen neuen Zug bedeutsamer Ver-

B e r t hat auch über die Ursache der »giftigen« Wirkung experimentirt und ist zu Resultaten gelangt, die mir wohl richtig zu sein scheinen.

Er zeigt, dass die Sauerstoffvergiftung keine Convulsionen nach Zerstörung des Rückenmarks erzeugt, allgemein nicht in denjenigen Gliedern, deren Nerven durchschnitten sind. Er überzeugt sich, dass Blut eines mit Sauerstoff vergifteten Thieres einem andern in grosem Massen injicirt werden kann, ohne dass eine Störung der Gesundheit eintritt, wodurch er beweist, dass unter dem Einfluss der hohen Dichte des Sauerstoffs nicht etwa giftige Substanzen im Blute entstanden sind 5).

Das Wichtigste aber, was er ermittelt hat, ist, dass bei hoher Dichte des Sauerstoffs die Oxydationsprocesse abnehmen, dass also Sauerstoffverbrauch und Kohlensäurebildung sinkt, der Harnstoff

4) Bert. l. c. p. 585.
5) Bert. l. c. p. 585.
vermindert erscheint, die Temperatur herabgeht, während das Tier von Convulsionen heimgeschickt wird.

Ja sogar ausgeschnittene Muskeln nehmen aus comprimirter Luft weniger Sauerstoff auf und die Fäulnis wird verzögert oder aufgehoben. Es werden deshalb auch die Gährungsprozesse behindert oder unmöglich gemacht. Er bezieht sich auf die Milch säuregährung in der Milch, auf die Ammoniakgährung des Harns, auf die Essigsäuregährung, ja sogar auf die Umwandlung des Amy- lens in Traubenzucker durch Speichel 1).

Ganz analog verhalten sich nach Bert kleinere Pflanzen, deren Sauerstoffabsorption immer schwächer wird, je mehr die Dichte dieses Gases zunimmt.

Bert hat nun merkwürdigerweise doch nicht den allgemeinen chemischen Charakter dieses Phänomens erkannt, wegen dessen für mich seine Untersuchungen von so eminentem Interesse sind.

Im Eingange meiner Abhandlung sagte ich, dass die lebendige Zelle sich den Sauerstoff nimmt, wie es activer Phosphor thut. Activer Phosphor leuchtet in verdünntem Sauerstoff, nicht in dichtem.

Das Natrileuchten in reinem Sauerstoff bei Atmosphärendruck soll nach der Angabe einiger Chemiker dadurch bedingt sein, dass der Phosphor sich gar nicht oxydire 2).

Da aber in einigen Punkten differente Angaben der Chemiker vorliegen, so wollte ich mich selbst von dieser merkwürdigen That- sache überzeugen.

Ich füllte zwei Absorptionsrohre (A und B) mit einem aus chlorsaurem Kali bereiteten Sauerstoff, und zwar entnahm ich das Gas für beide Rohre aus demselben Quecksilbergasometer, so dass in beiden absolut dasselbe Gas war. Beide Rohre waren feucht.

In dem einen Rohre (A) stellte ich, indem ich das Quecksilber- niveaü aussen und innen ungefähr gleich hoch machte, Atmosphärenüdruck her. Temperatur = 6,1° C., schwankt im Gaslaboratorium um diese Jahreszeit nur um ein paar Zehntel Grade in 24 Stunden. Die Sauerstoffmenge betrug 56,497 CC. bezogen auf 0° und 1 Meter Hg.

1) Bert l. c. p. 584.

Nun führte ich eine Phosphorkugel ein, entfernte sie nach 24 Stunden, nahm phosphorige Säure und Wasser mit einer Aetzkalkkugel fort. Die Temperatur war in dieser Zeit im Gaslaboratorium auf 6,5° gestiegen. Der übrig gebliebene Sauerstoff betrug 56,519 CC. Es war also keine Spur Sauerstoff absorbiert worden. Während in dem ersten Rohr (A) die Phosphorkugel sich in reinem Sauerstoff befand, war eine zweite zu derselben Zeit aus derselben Phosphor gegossene Kugel in eine dritte Röhre (C) gebracht, die unmittelbar neben der Sauerstoffröhre (A) stand und atmosphärische feuchte Luft enthielt. Der Phosphor umgab sich sofort, obwohl die Temperatur noch nicht 7° C. war, mit dicken weissen Nebeln, die nach abwärts continuirlich sich auf das Quecksilber niedersenkten und die Absorption des atmosphärischen Sauerstoffs zur Folge hatten. Der Druck war 37,99 Cm., also der Partiadruck des Sauerstoffs = 7,6 Cm. Die Kugel, welche nach 24 Stunden in dem reinen Sauerstoff von 75,208 Cm. Druck absolut nichts absorbiert hatte (Rohr A), brachte ich nun sofort in das oben erwähnte Rohr (B) von 1 Meter Höhe, in dem derselbe Sauerstoff war. Dieser Sauerstoff stand unter einem Druck von 7,27 Cm., hatte also nahezu dieselbe Dichte wie in der analysirten atmosphärischen Luft (Rohr C).

Die selbe Kugel fing jetzt sofort mit derselben Sauerstoff sogar bei noch niedrigerer Temperatur von 5,8° zu dampfen an, während sie vorher bei höherem Drucke in Rohr A sich ganz gleichgültig verhalten hatte. Auffallend war mir, dass die Dämpfe nicht so dicht wie in atmosphärischer Luft waren, was also vielleicht durch die Bildung von Ammoniunnitrit in letzterem Falle bedingt war. Nach 24 Stunden nahm ich die Phosphorkugel aus dem verdünnten Sauerstoff (Rohr B) fort und neigte das Rohr, um zu sehen, ob es Toricelli'sche Leere wäre. Das Quecksilber schlug oben an. Hier erkannte ich noch ein Bläschen, das noch nicht so gross wie der vierte Theil einer Linse war. Der verdünnte Sauerstoff war also vollkommen von derselben Kugel absorbiert worden, die derselben Sauerstoff bei Atmosphärendruck in 24 Stunden auch nicht spurweise absorbiert hatte.

Die Verminderung der Strömungsgeschwindigkeit des Blutes ist bei diesen Versuchen durch Aderlässe erzielt worden. Um zunächst festzustellen, ob ein solcher Blutverlust überhaupt einen Einfluss auf die Reduction des Blutes ausübe, wurden einige vorläufige Experimente angestellt.

Das venöse Blut ist immer aus dem rechten Herzen, das arterielle in bekannter Weise aus der A. femoralis oder Carotis entnommen.

Folgende Tabelle wird ohne weitere Angaben verständlich sein:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>venös. Btt.</td>
<td>O CO₂</td>
<td>O CO₂</td>
<td>O CO₂</td>
<td>O CO₂</td>
</tr>
<tr>
<td>L</td>
<td>12.50 36.00</td>
<td>8.40 40.63</td>
<td>— —</td>
<td>16.50 84.80</td>
</tr>
<tr>
<td>II</td>
<td>12.50 24.96</td>
<td>7.80 30.94</td>
<td>5.20 28.93</td>
<td>16.12 30.65</td>
</tr>
<tr>
<td>III</td>
<td>6.37 57.94</td>
<td>5.10 57.64</td>
<td>4.52 38.80</td>
<td>16.88 30.30</td>
</tr>
<tr>
<td>Mittel</td>
<td>10.46 32.96</td>
<td>7.1 36.40</td>
<td>4.86 33.58</td>
<td>16.83 31.88</td>
</tr>
</tbody>
</table>

Man sieht sofort, dass mit wachsendem Blutverlust der Sauerstoff des venösen Blutes in ganz erstaunlich schneller Weise abnimmt, während die Kohlensäure nur ein geringes Ansteigen darzubieten scheint.

Um solche Zahlen zu principiell wichtigen Schlüssen verwerthen zu können, muss man noch die Grösse des Blutverlustes
und ihr Verhältniss zum Körpergewichte kennen, sowie auch die Beziehung des Blutverlustes zur Strömungsgeschwindigkeit.

Zur Ermittlung der letzteren Beziehung mass ich mit Hilfe eines Metronomens die Zeit in Secunden, während welcher 10 CC. aus der Arteria femoralis sich in die Ludwigs'sche Stromuhr ergossen. Es waren statt der gewöhnlichen 2 Kugeln, 2 vertical stehende graduirte Cylinder an der Stromuhr angebracht. Die Ergebnisse sind:

Tabelle B.

<table>
<thead>
<tr>
<th>Blutverlust in pCt. auf's Körpergewicht bezogen:</th>
<th>0 pCt.</th>
<th>2 pCt.</th>
<th>3 pCt.</th>
<th>4 pCt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Es floessen 10 CC. in:</td>
<td>4 Sed.</td>
<td>7</td>
<td>10</td>
<td>19</td>
</tr>
<tr>
<td>" "</td>
<td>4</td>
<td>7</td>
<td>11</td>
<td>46 mit Stockung.</td>
</tr>
<tr>
<td>" "</td>
<td>4</td>
<td>7</td>
<td>9</td>
<td>47</td>
</tr>
<tr>
<td>" "</td>
<td>4</td>
<td>7</td>
<td>10</td>
<td>57 Gerinnung.</td>
</tr>
<tr>
<td>" "</td>
<td>4</td>
<td>7</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Die Curve ähnelt in ihrem Verlaufe einer Hyperbel, selbstverständlich mit nur einem Aste, weil die Ordinaten nicht negativ werden können. Die Theile der Curve, welche zwischen den experimentell bestimmten Punkten liegen, sind als gerade Linien angenommen, wobei man einen sehr kleinen, hier nicht in Betracht kommenden Fehler begeht.

Zur Berechnung der Strömungszeit für 10 CC. als Function des Blutverlustes, hat man, wenn y dem Intervall x' = 2 pCt. Blutverlust und $x_0 = 0$ pCt. entspricht und η dem Intervall $\xi'' - \xi'$, wo $\xi'' = 3$ pCt. Blutverlust und $\xi' = 2$ pCt.:

1) $y = \left(\frac{3}{2}\right) \cdot x + 4$

2) $\eta = \left(\frac{3}{4}\right) \cdot (\xi - 2) + 7$

Nach meiner Rechnung stimmt Volkmann's Curve (Beziehung von Stromgeschwindigkeit und Blutverlust), zu welcher er in der Hämodynamik die Daten gibt, mit der meinigen innerhalb der hier gebrauchten Werthe der Abscissen vollkommen überein.

Ehe ich die ganze Serienreihe meiner Analysen gebe, bemerke ich, wie aus der Differenz der Gasgehalte zwischen Arterien- und Venenblut der Sauerstoffverbrauch und die Kohlensäurebildung auf die Secunde berechnet wurden. Da aus dem bekannten Blutverlust die Zeit folgt, innerhalb welcher eine bestimmte Blutmengen durch den Querschnitt der Arteria femoralis fliesst, so weiss man, dass in der-
selben Zeit dieselbe Menge durch die Capillaren fließen muss, welche aus der A. femoralis hervorgehen. Da nun nach Strassburg's Analysen das Blut des rechten Herzens nahezu dieselbe Zusammensetzung, wie das der V. femoralis hat, so kennt man also die durch den Capillarkreislauf bedingte Venosität.

Die Berechtigung dieser Betrachtung erwächst auch daraus, dass thatsächlich ein Blutverlust in verschiedenen grossen Arterien dieselbe Abnahme der Strömungsgeschwindigkeit zur Folge hat. Denn das Gesetz, welches Volkmann für die Beziehung zwischen Blutverlust und Strömungsgeschwindigkeit in der Carotis ermittelte, ist genau dasselbe, welches ich für die Art. femoralis gultig fand.

Tabelle C.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IV 1</td>
<td>0.76</td>
<td>5.14</td>
<td>17.96*</td>
<td>12.82</td>
<td>5.14</td>
<td>0.10</td>
<td>Nicht</td>
<td>47.10</td>
</tr>
<tr>
<td>2</td>
<td>1.46</td>
<td>6.19</td>
<td>17.96*</td>
<td>12.53</td>
<td>5.43</td>
<td>0.09</td>
<td>be-stimmt</td>
<td>45.08</td>
</tr>
<tr>
<td>3</td>
<td>2.16</td>
<td>7.24</td>
<td>17.96*</td>
<td>6.48</td>
<td>11.48</td>
<td>0.16</td>
<td>33.9</td>
<td>45.55</td>
</tr>
<tr>
<td>4</td>
<td>2.84</td>
<td>9.52</td>
<td>17.96</td>
<td>4.52</td>
<td>13.44</td>
<td>0.14</td>
<td>0.92</td>
<td>11.95</td>
</tr>
<tr>
<td>V 1</td>
<td>0.49</td>
<td>4.73</td>
<td>13.52</td>
<td>11.80</td>
<td>1.72</td>
<td>0.04</td>
<td>33.20</td>
<td>41.49</td>
</tr>
<tr>
<td>2</td>
<td>0.98</td>
<td>5.39</td>
<td>13.10</td>
<td>8.80</td>
<td>4.30</td>
<td>0.08</td>
<td>36.94</td>
<td>42.05</td>
</tr>
<tr>
<td>3</td>
<td>1.33</td>
<td>5.99</td>
<td>13.08</td>
<td>4.06</td>
<td>9.02</td>
<td>0.15</td>
<td>32.45</td>
<td>40.31</td>
</tr>
<tr>
<td>4</td>
<td>1.90</td>
<td>6.85</td>
<td>13.96</td>
<td>2.71</td>
<td>11.25</td>
<td>0.16</td>
<td>35.89</td>
<td>41.49</td>
</tr>
<tr>
<td>VI 1</td>
<td>0.83</td>
<td>4.49</td>
<td>16.62</td>
<td>10.96</td>
<td>5.66</td>
<td>0.125</td>
<td>37.30</td>
<td>43.42</td>
</tr>
<tr>
<td>2</td>
<td>1.60</td>
<td>6.40</td>
<td>15.45</td>
<td>7.89</td>
<td>7.56</td>
<td>0.120</td>
<td>27.43</td>
<td>35.90</td>
</tr>
<tr>
<td>3</td>
<td>2.48</td>
<td>8.62</td>
<td>16.05*</td>
<td>5.98</td>
<td>10.05</td>
<td>0.120</td>
<td>33.90</td>
<td>34.73</td>
</tr>
</tbody>
</table>

Die mit * bezeichneten Sauerstoffgehalte des arteriellen Blutes sind nicht direct bestimmt, sondern bei Serie IV aus einer Analyse, bei Serie V aus zwei Analysen als Mittel berechnet. Serie V und VI, sowie zahlreiche andere Versuche zeigen, dass hierbei kein in Betracht kommender Fehler begangen wird.

Es ergibt sich aus dieser Tabelle:

Der Sauerstoffverbrauch ist absolut unabhängig — versteht sich innerhalb der eingehaltenen Grenzen — von der Strömungsgeschwindigkeit des Blutes.

In Serie VI sinkt die Strömungsgeschwindigkeit fast auf den halben Werth, während der Sauerstoffverbrauch absolut unverändert bleibt.

In Serie V. findet mit dem Sinken sogar eine Steigerung des
Verbrauches statt und ebenso, wenn auch geringer in Serie IV, was wohl unzweifelhaft durch die physiologischen Schwankungen bedingt ist, die sich im Verlaufe einiger Stunden einstellen, da der Versuch oft viele Stunden dauert wegen der grösseren, zwischen zwei Aderlässen liegenden Zeitintervallen. Die Ursache der Steigerung soll sofort bei der Betrachtung der Kohlensäure angegeben werden.

Für die Kohlensäure verhält sich das Gesetz wahrscheinlich ebenso.

In Serie VI verändert sich die Kohlensäureabfuhr — wir sagen aus Vorsicht nicht Production — fast absolut nicht, obwohl die Strömungsgeschwindigkeit so kolossale Veränderungen erfährt.

In Serie V findet scheinbar unter erheblichen Schwankungen ein Sinken mit dem Blutverlust statt. Doch beruht auch dieses Sinken hier wohl nur auf dem unvermeidlichen Beobachtungsfehler, den erst eine viel grössere Zahl von Versuchen eliminiren oder sicher klären kann. Hier bei Serie V handelt es sich offenbar um eine physiologische Oscillation des Quotienten \(\frac{\text{Kohlensäure}}{\text{Sauerstoff}} \) um die Norm; denn wie er im Anfang viel zu gross ist, ist er am Ende des Versuches viel zu klein. — Bei dem wichtigen Versuche VI waren wir so glücklich, gerade in einer Periode zu arbeiten, wo der Werth jenes Quotienten sich nahe der Einheit hielt. Dies erklärt einfach das bei V und IV bemerkte scheinbare Steigen des Sauerstoffverbrauches mit dem Blutverluste.

Obwohl ich die gewonnenen Ergebnisse für vollkommen zuverlässig halte, verkenne ich doch bei der Wichtigkeit der Frage nicht die Notwendigkeit, die Stromgeschwindigkeit des Blutes noch auf andere Weise zu verändern. Ich gehe sofort an diese Versuche und hoffe, sie bald zu Ende führen zu können.

Das beiläufige Ergebniss dieser mitgetheilten Thatsachen, dass selbst bis zu einem Drittel der gesammten Blutmenge reichende Blutverluste gar keine Verminderung des Sauerstoffverbrauches und wahrscheinlich ebenso wenig der Kohlensäurebildung wenigstens im Laufe der nächsten Stunden nach sich ziehen, dürfte auch von erheblichem Interesse sein. Es ist ein nicht misszuverstehender erneuter Fingerzeig, dass die Sauerstoffconsumenten dem Pflüger'schen Satze gemäss in den Geweben zu suchen sind.
(Physiologisches Laboratorium in Bonn.)

Über verschiedene Pepsinwirkungen. Vorläufige Mitteilung von Dr. Dittmar Finkler.

Da in der Lehre von der Verdauung die Ansichten von Ernst Brücke und Georg Meissner vollkommen unvermittelt nebeneinander stehen, weil es noch nicht gelungen ist, die Ursache der verschiedenen Beobachtungen der beiden Forscher zu ermitteln, unternahm ich auf Anrathen und unter Leitung des Herrn Prof. Pflüger die Untersuchung dieser Verhältnisse.

Als Verdauungssubject benutzte ich absichtlich das schwerer als Faserstoff verdauliche, durch Hitze geronnene Hühnereiweiss.

Dieses brachte ich zugleich mit dem ausgedrückten Labbrei eines möglichst frischen Schweinemagens in Salzsäure von 0,1 bis 0,2 pCt. Gewöhnlich wurde die Menge der Flüssigkeit möglichst klein im Verhältniss zur Menge des zu verdaulenden Eiweisses genommen, abermals um recht concentrirte Peptonlösungen zu erhalten, deren specifisches Gewicht ich mit dem Piknometer bestimmte. Das höchste von mir bestimmte specifische Gewicht solcher Peptonlösungen betrug 1020, also fast so viel, als das des Blutserums. Doch hängt, worüber ich Versuche angestellt, das Resultat von der Concentration nicht ab. Die Digestion in der Brütemaschine geschah selbstverständlich bei 37—40° C.

Es war also kein Parapepton vorhanden.

Sehr oft habe ich diese Versuche mit immer demselben Resultate und verschiedenen Variationen wiederholt.
Als das feststand, nahm ich nun käufliches Pepsin, das soge-
nannte "pepsinum activum", das längere Zeit schon im Laboratorium
in einer sonst wohl verschlossenen Flasche aufbewahrt worden war
und stellte ganz in derselben Weise Verdauungsversuche mit durch
Hitze coagulirtem Eiweisse an.

Hier erhielt ich dann nach beliebig lang fortgesetzter Ver-
dauung immer den Neutralisationsniederschlag von G. Meissner,
den er Parapepton genannt hat, sowie auch im Allgemeinen die
der anderen Reactionen, aus denen dieser Forscher die Gegenwart von
Metapepton, von a-, b- und c-Pepton ableitete.

Die Quantität des Pepsins war im Verhältniss zur Menge der
angewandten Salzsäure so gewählt, dass in den immer gleichen Be-
dingungen unterworfenen beiden Kochflaschen, von welchen die eine
frische, die andere käufliches Pepsin enthielt, die Verdauung glei-
cher Eiweissmengen fast zu gleicher Zeit vollendet war.

Vermehrung des käuflichen "Pepsinum activum" brachte das
Parapepton nicht zum Verschwinden; ebenso wenig gelang dies, wenn
es ausgefallt, gewaschen und auf's Neue mit dem käuflichen Pepsin
und Salzsäure versetzt wurde. Ich habe das oft wiederholt, bis
die Pilze dem ein Ziel setzten.

Nur unter den gedachten Verhältnissen kann ich demnach die
Angaben Meissner's bestätigen.

Es ist also gewiss, dass Ernst Brücke den physiologi-
schen Verdauungsprocess vollkommen correct erkannt hat.
(Physiologisches Laboratorium in Bonn.)

Ueber die Lage des Gefässcentrums.

Von

Dr. Moritz Nussbaum.

Nebst Taf. II.

Nachdem Pflüger 1) im Jahre 1855 nachgewiesen, dass die Gefässnerven in den vorderen Rückenmarkswurzeln verlaufen, und dass die electriche Reizung des von Gehirn und Medulla oblongata losgetrennten Rückenmarks die Arterien des beobachteten Mesenteriums zur Contraction bringe: nach Feststellung dieser Thatsachen, sage ich, war der Weg gezeigt, wo das Centrum der Gefässinnervation zu suchen sei.

Durch die Arbeit Dittmar's 2) ist es nun zweifellos sicher gestellt, dass die Gefässnerven über die Medulla oblongata hinaus nicht mehr zu verfolgen sind. Ebenso sicher glaubt sich die Mehrzahl der Physiologen zu der Annahme berechtigt, dass das Centrum für die Innervation der Gefässe in der Medulla oblongata gelegen sei, dass die von Pflüger und nach ihm von Ludwig und Thiry 3), von Bezold 4) auf Reizung des Rückenmarks an den verschiedensten Körperstellen beobachteten Arteriencontractionen bedingt seien durch directe Reizung von Gefässnerven, welche aus der Medulla oblongata ihren Ursprung genommen. Diese Annahme gründet sich auf die an Warmblütern gemachte Beobachtung, dass nach

2) Berichte der königl. sächs. Gesellsch. der Wissenschaften. Math.-
3) Sitzungsberichte der Wiener Acad. der Wissenschaften. XLIX. Bd.
II. Abth. Leipzig 1868.

Durchschneidungen des centralen Nervensystems oberhalb der Medulla oblongata die Reizung sensibler Nerven den Blutdruck wie am unversehrten Thiere gewaltig zu steigern vermögen; während dieser Effekt nach Durchschneidung des Rückenmarks unterhalb\(^1\) der Medulla oblongata ausbleibt.

In neuester Zeit hat sich Goltz, einer der eifrigsten Verfechter der Ansicht, dass auch im Rückenmarke vasomotorische Centren\(^2\) gelegen seien, auf Grund von Temperaturmessungen an Hunden veranlasst gesehen, seinen alten Standpunkt aufzugeben und das Rückenmark nunmehr als Centralorgan für die Gefässweiterung\(^3\) anzusprechen.

Ebenso wie es Goltz\(^4\) erst nach Verlauf einer grösseren Zahl von Stunden oder gar Tagen gelang, beim Hunde die Beziehungen des Rückenmarks zur Erection des Penis zu demonstrieren, wird man auch nur dann im Stande sein zu erkennen, welche Bedeutung das Rückenmark der Säugethiere für die Gefässinnervation hat, wenn man dem verletzten Rückenmark die nöthige Zeit zur Erholung gegeben haben wird. Der Frosch reagirt nicht so heftig auf einen derartigen Eingriff, obwohl es auch bei ihm einiger Zeit der Erholung bedarf, was klar genug aus dem Factum hervorgeht, dass direct nach der Durchschneidung des Rückenmarks die heftigsten sensiblen Reize von dem verstümmelten Thiere kaum beantwortet werden. Es scheint, dass Eingriffe in die Organisation des verlängerten Rückenmarks unter dem sogenannten »Gefässcentrum« einen lang dauernden ohnmachtähnlichen, d. h. durch Paralyse sich äusseren Zustand vieler Centralorgane des Rückenmarks unterhalb des Schnittes bei dem Säugethiere zur Folge haben.

Ich gehe zur Beschreibung meiner auf Anregung und unter Leitung des Herrn Prof. Pflüger angestellten Versuche und zur Mittheilung ihrer Ergebnisse über, denen ich am Schlusse einige Tafelerklärungen folgen lassen werde.

Durchschneidet man einem Frosch unterhalb des ersten Wirbels das Rückenmark und entfernt mit möglichst geringem Blutverlust — am besten mit einem glühenden Draht — Gehirn und

2) Virchow's Archiv. Bd. XXIX. pag. 481.
Medulla oblongata, so gelingt es oft genug an der vorsichtig unter dem Mikroskop ausgebreiteten Schwimmhaut sich von der Contraction der Arterien zu überzeugen, wie sie in Folge einer Reizung des Rückenmarks eintritt. — Die Beobachtung der Schwimmhautarterien lässt sich beliebig lang fortsetzen, wenn man dem Thiere auf einer gut geschliffenen Glasplatte genau die hockende Stellung giebt, wie sie der decapitirte Frosch einzunehmen pflegt, wenn man jeden Reiz fern hält und das Thier vor Verdunstung schützt. — Im Laufe von ungefähr 5 Minuten nach der Durchschneidung macht die hochgradige, bis zum Verschluss des Lumens selbst grösster Arterien gehende Verengerung einer Erweiterung des Arterienrohres Platz, welche gewöhnlich zwei Stunden andauert. Dann aber stellen sich die rhythmischen Contractionen der Arterien wieder her wie sie am unverletzten Versuchsthier von Schiff¹, Saviotti², Riegel³ u. a. beobachtet wurden. Das Phänomen lässt sich auch am folgenden Tage demonstrieren.

Man wird wohl kaum einwenden, dass die beobachteten Schwankungen im Caliber der Arterien vielleicht doch nicht aktiver Natur seien, sondern etwa durch Contractionen der Skelettmuskeln erst inducirt würden: der Versuch gelingt auch am curarisirten Thiere.

Mit den Pulsen sind die aktiven Veränderungen der Arterienwandungen ebenfalls nicht zu verwechseln, da sie erstens zeitlich durchaus von ihnen verschieden sind, und zweitens die Strömungsgeschwindigkeit in der beobachteten Arterie durch diese beiden Momente in ganz entgegengesetzter Weise modifizirt wird. Die Systole treibt das Blut in die Arterien, dehnt die Wandungen derselben aus und beschleunigt den Strom, so dass ceteris paribus beim Abfall der Pulswelle der Strom am langsamsten fließt und das Lumen am kleinsten ist. Ist hingegen durch active Contraction der Wandung das Lumen verkleinert, so wird in der beobachteten Arterie durch die neu entfaltete Kraft der Strom beschleunigt. Ueberdies bringt der Puls in den kleinen der Beobachtung zugänglichen Arterien nur kaum messbare Excursionen der Wandung hervor.

Wären wir auf Grundlage dieser Beobachtung schon berechtigt,

das Rückenmark als Centralorgan für die Gefäßinnervation anzu-
sprechen, so wollen wir zuvor doch den Beweis erbringen, dass am
curarisierten Frosch, dem Gehirn und Medulla oblongata extirpirt
sind, nach einer kurzen Zeit der Erholung: mechanische, chemische
und elektrische Reizung sensibler Nerven Arteriencontraction zur
 Folge hat.

Nach Exstirpation des ganzen centralen Nervensystems hört
der Tonus der Gefässe auf, die rhythmischen Contractionen der
Arterien und selbstverständlich jeder sonst durch Reizung sensi-
blier Nerven zu erzielende Effect bleiben aus. Spätestens nach
24 Stunden sistirt der Kreislauf. Da die periodischen Schwankungen
des Lumens der Arterien nur langsam im Laufe vieler Minuten ab-
laufen, die reflectorisich erregte Contraction aber sofort im Laufe
von 5—15 Secunden deutlich horvortritt und unter günstigen Be-
dingungen das Normalumens bis auf 1/8—1/4 verkleinert, da ganz
derselbe Effect fast beliebig oft wiederholt werden kann — nur aber,
so lange noch Rückenmark da ist, so ist es sicher, dass ich nicht
durch vom Reize unabhängige Bedingungen getäuscht worden bin.

Der Versuch gelingt auch, wenn das Rückenmark tiefer, d. h.
unter dem Plex. brachialis durchschnitten wird.

Es ist somit sicher, dass das Rückenmark selbstständig, wie
die Medulla oblongata die Gefäßinnervation besorgt, dass also die
Medulla oblongata nur das obere Ende des Gefässcentrums enthält.

Es erübrigt noch, auf einige controverse Punkte über den Ver-
lauf und die Function der Gefässnerven, welche von mir einer experi-
mentellen Prüfung unterzogen wurden, an dieser Stelle einzugehen.

Durchschneidet man einem curarisirten Frosche den einen
Ischiadicus und beobachtet die Schwimmhaut des zugehörigen Fusses,
so sieht man im Moment der Durchschneidung die Arterien sich
mehr und mehr contrahiren; bald folgt eine Dilatation der Gefässe.
Reizung des peripheren Ischiadicusstumpfes ruft jedesmal Verenge-
 rung der beobachteten Arterie hervor.

Es müssen somit im Ischiadicus vasomotorische
Nervenfasern verlaufen, eine Thatsache, welche durch die
Beobachtung von Putzeys und Tarchanoff1) bestätigt wird.

1) Reichert's u. du Bois-Reymond's Archiv. 1874. Heft 3 u. 4.
 pag. 371 sqq.
Dogiel 1) kam allerdings in Folge seiner Messungen der Stromgeschwindigkeit in der Vena cruralis bei intacten, durchschnittenen und peripher gereisten Nn. ischiadicus und cruralis zu dem Schlusse, dass in diesen Stämmen keine Gefässnerven verlaufen.

Dogiel hat indessen bei mit Morphium vergifteten Hunden eine Abnahme der Strömungsgeschwindigkeit in den Gefässen des Schenkels constatirt, wenn der zugehörige durchschnittene Ischiadicus an seinem peripheren Ende gereizt wurde, was also durch eine Contraction der Arterien, aber auch durch Muskeltetanus, bedingt sein konnte.

Bei curarisirten Hunden war indessen eine deutliche Beeinflussung der Strömungsgeschwindigkeit nicht vorhanden. Er schliesst daraus, dass im Ischiadicus keine Vasomotoren verlaufen.

Es wäre aber hier denkbar, dass wegen der durch das Curare bedingten Schwächung der Vasomotoren eine vielleicht von Dogiel gebrauchte zu starke Reizung schnell eine Erschöpfung hervorge- rufen, so dass ein dauernder Effect, wie er zur Veränderung der Strömungsgeschwindigkeit nöthig ist, ausblieb. — Oder es könnten Hemmungsnerven im Ischiadicus zu den Gefässen verlaufen, die in Folge der mit der Vergiftung eintretenden Veränderungen der relativen Erregbarkeit beider antagonistischen Nervenfasern den Einfluss der Motoren bei den von Dogiel eingehaltenen Reizstärken compensirt hätten. — Oder es waren zufällig bei der kleinen Zahl von Versuchen die Ischiadici an ihrem untern Ende so misshandelt, dass ihre Reizung nicht wirkte. — Oder endlich — und das ist das Unwahrscheinlichste — es laufen beim Frosche die Vasomotoren in anderen Bahnen zum Fusse als beim Hunde.

Der auf Seite 141 (l. c.) mitgetheilte Versuch von Dogiel an Fröschen aber ist durch die Beobachtungen von Putzeys und Tarchanoff (l. c.) hinlänglich seiner Beweiskraft entkleidet, indem man nur hoch genug die Zehen abzuschneiden braucht, um einen recht augenfälligen Unterschied zwischen den Blutverlusten des intacten Schenkels und desjenigen mit durchschnittenen N. ischiadicus zu gewahren.

Somit darf aus den negativen Erfolgen von Dogiel nicht der Schluss gezogen werden, dass der Ischiadicus des Frosches und Hundes keine Vasomotoren enthalte.

Hierbei will ich bemerken, dass ich bis jetzt noch nicht im Stande bin, anzugeben, ob ausser den Gefässnerven der Schwimmhäute auch noch andere für die Arterien des Beines in der vorderen Wurzel des siebenten Rückenmarksnerven verlaufen.

Nach diesen Erörterungen sei es mir erlaubt, etwas eingehender noch die Frage zu berühren, ob auch an anderen Stellen des arteriellen Stromgebietes gefässerweiternde Nerven vorkommen, wie sie für die Gefässe der Gland. submaxillaris und des Penis nachgewiesen wurden.

Man begegnet nämlich nicht selten in der neueren Literatur dem aus Lovén's Beobachtungen 2) abgeleiteten Schlusse: dass auf Reizung eines sensiblen Nerven locale Gefässerweiterung eintrete.

Lovén selbst ist gar nicht so weit gegangen, indem er pag. 16 sagt: »dass man bis jetzt noch nicht dahin gekommen, zu sagen, wann der sensible Reiz contractionsvermehrend, und wann er hemmend einwirken werde; ferner: »Aus meinen Versuchen scheint nur so viel hervorzugehen, dass die Erweiterung sich viel örtlicher einstellt als die Verengerung.«

Lovén sah zuweilen an curarisirten Kaninchen auf elektrische Reizung des centralen Endes des N. dorsalis pedis eine Erweiterung der zugehörigen Arteria saphena eintreten. An den

2) Arbeiten der physiologischen Anstalt zu Leipzig. 1867.

25*

In meinen eigenen zahlreichen Experimenten ist es mir nie gelungen, die Versuchsbedingungen so einzurichten, dass der Effect auf die Arterien der Schwimmhaut ein anderer gewesen wäre bei Reizung der Pfote oder einer Zehe, als bei Reizung einer beliebigen entfernteren Körperstelle.

Wesentlich Werth legt Lovén mit Recht darauf (pag. 16), dass die Erschlaffung der arteriellen Musculatur unabhängig von einer vorausgegangenen stärkeren Verkürzung derselben eintreten könne.

Noch wichtiger aber ist, was er nicht beachtet hat, dass, wenn reflectorisch das ganze Arteriensystem sich zusammenzieht, und wenn in einzelnen Provinzen die Contraction sich energischer vollzieht als in anderen, was doch a priori als höchst möglich erscheint, die Folge eintreten kann, dass eine Arterie, obwohl sie sich schwach zusammenziehen will, in Folge des gewaltig wachsenden Blutdruckes passiv ausgedehnt werde. Dann erhält man Erweiterung, obwohl der Reflex ein rein motorischer ist.

Um so empfindlicher ist der Mangel von Blutdruckbestimmungen in den Hauptversuchen, wo auf Reizung eines sensiblen Nerven locale Gefässerweiterung eintrat, weil in fast allen Fällen, wo die Nerven gereizt und auch der Blutdruck von Lovén bestimmt wurde, stets ein Steigen zu beobachten war (p. 11). Er theilt z. B. Versuche mit, in denen sich auf Reizung des centralen Endes eines Ohrnerven auch das Ohr der anderen Seite röthete. An einer anderen Stelle (pag. 16) findet sich: „Auf Reiz des Infraorbitalis röthete sich das Ohr, auf Reiz des centralen Stumpfes des Plexus brachialis trat Erschlaffung der Auriculararterien bei demselben Thiere ein.“

Ich bin indessen weit entfernt, die Möglichkeit leugnen zu wollen, dass viele sensible Nerven reflectorisch durch Erregung von Hemmungscentren oder durch Relaxation von vasomotorischen Centren die Arterien direct zu erweitern vermögen.

Aus diesen Untersuchungen folgt also mit Sicherheit, dass das vasomotorische Centrum durch das Rückenmark sich bis in die Medulla oblongata erstreckt und von allen sensiblen Nerven in erhöhte reflectorische Thätigkeit versetzt werden kann.
Wenn diese Resultate auch beim Frosche gewonnen sind, so
wird doch schwerlich ein Physiologe geneigt sein, für die Säugethiere eine total andere Lagerung dieses wichtigen Centralorganes in dem Cerebrospinalmark anzunehmen.

Um dem Leser in einem klaren Bilde die wesentlichen Verhältnisse anschaulich zu machen, gebe ich die Curventafel (II).

Auf der Abscisse ist die Zeit in Minuten abgetragen; die Minute ist in 10 Theile getheilt, von denen jeder also 6 Secunden entspricht. Diese Zehntel sind auf dieser Tafel nicht verzeichnet, wie es in meiner Originalzeichnung der Fall war, die sich auf Millimeterpapier befand. Nach meiner Originalzeichnung sind die Curven in dieses gröbere Netz eingetragen.

Auf der Ordinate finden sich die Zahlen, welche — wie alle in meinen zahlreichen Versuchen — durch directe mikrometrische Messung des Durchmessers der beobachteten Arterie gewonnen sind.

Die ausgezogene Linie stellt den Zustand einer Schwimmhautarterie eines curarisirten, nicht gereizten Frosches innerhalb einer grösseren Zahl von Minuten dar; die punktierte Linie die Veränderungen an derselben Arterie, wenn eine Reizung voraufgegangen.

Dem zu diesem Versuche benutzten curarisirten Frosche war vorher das Rückenmark unterhalb des ersten Wirbels durchschnitten; das Gehirn und die Medulla oblongata ausgebrannt. Die Reizung geschah mittelst einer Nadel abwechselnd am anderen und an demselben Beine und derselben Pfote, von welcher eine Schwimmhautarterie beobachtet wurde.

Gleichzeitig bemerke ich, dass alle Versuche, die ich angestellt habe, Curvendifferenzen wie die hier vorliegenden geben.

Die zweite Reizung folgte 5 Minuten nach der ersten; zwischen zweiter und dritter und ebenso zwischen dritter und vierter Reizung
liegt ein Zwischenraum von je 20 Minuten. — Der Raumersparnis halber ist das Stück der Curve nicht gezeichnet, welches folgen müsste, wenn das Gefäß nach einer Reizung und der dadurch erzielten Contraction sein ursprüngliches Caliber wieder angenommen hatte, was in diesem Falle gewöhnlich nach 3 Minuten geschah; die übrigen 17 Minuten sind durch eine ausgezogene Linie bezeichnet.

Dies konnte um so eher geschehen, als innerhalb dieser Zeit nur langsame Schwankungen im Caliber der beobachteten Arterie eintraten, welche ihrer Extensität und dem zeitlichen Ablauf nach durchaus denen der Normalcurve analog waren.

Das Zeichen * bedeutet den Augenblick der Reizung. Das Zeichen + bezeichnet den Moment, von dem ab die Arterie sich wieder erweitert oder auch den Moment der höchsten Contraction.
In unserem Verlag ist eben erschienen:

Kurzes Lehrbuch

der

Anorganischen Chemie

wesentlich für

Studirende auf Universitäten und polytechnischen
Lehranstalten sowie auch zum Selbstunterricht.

Von

Professor Dr. V. v. Richter.

Mit 62 Holzschnitten und 1 Spectraltafel.

Preis 7 Mark.

Die Verlagsbuchhandlung

MAX COHEN & SOHN (Fr. Cohen) Bonn.
ARCHIV
FÜR DIE GESAMMTE
PHYSIOLOGIE
DES MENSCHEN UND DER THIERE.

HERAUSGEGEBEN

VON

DR. E. F. W. PFLÜGER,
ORD. ÖFFENTL. PROFESSOR DER PHYSIOLOGIE AN DER UNIVERSITÄT
UND DIRECTOR DES PHYSIOLOGISCHEN INSTITUTES ZU BONN.

ZEHNTER BAND.
ACHTES UND NEUNTES HEFT.
Mit 2 Tafeln.

BONN, 1875.
VERLAG VON MAX COHEN & SOHN.
(FB. COHEN.)


Weitere Untersuchungen über die physiologischen Wirkungen des Atropin und Physostigmin
mit einem Beitrag zur Physiologie des Vagus.

Von

Dr. M. J. Rossbach,
Professor der Pharmakologie a. d. Universität Würzburg.

Mit Taf. III u. IV.

E. Pfüger, Archiv f. Physiologie. Bd. X.
Ich hielt es nicht für angezeigt, nur einen Kampf mit Worten zu kämpfen, gleich meinem Gegner, und habe deshalb die ganze angegriffene Frage von Neuem experimentell durchgearbeitet, woraus sich die lange Verzögerung meiner Antwort erklärt. In dieser werde ich ausserdem zeigen müssen, welcher Mittel sich HerrHarness bedient hat, um meine Arbeit zu discreditiren.\(^1\)

1) Schon an den Anfang der Kritik sind in der Absicht, auf das Gefühl des Lesers einzuwirken, eine Reihe aus dem Zusammenhang gerissener Sätze gestellt, in einer Weise gruppiert und umgeändert, dass sie einen ganz anderen Sinn geben und meinen persönlichen Charakter in der nicht schnei- chelhaften Beleuchtung des wissenschaftlichen Hochmuths erscheinen lassen müssen, wie aus folgender Nebeneinanderstellung eines Theils der Harness'schen Citate und der Originalsätze erhellt:

Herr Harness zitiert:

- die Befunde stehen im Widerspruch mit allen bisherigen Angaben. (S. 21).

- die Untersuchungen stehen im Widerspruch mit den Resultaten aller übrigen Forscher. (S. 24).

-wir stehen mit unseren Beobachtungen über die Atropinwirkung ganz isolirt. (S. 49).

Diese Stellen lauten im Original wörtlich:

- Da uns diese Befunde, als im Widerspruch mit allen bisherigen Angaben stehend, selbst ungemein befremdeten, unterlassen wir natürlich nicht, uns von deren Richtigkeit durch eine grosse Zahl von Versuchen, die uns ausserdem noch zu andern höchst wichtigen Ergebnissen führten, zu überzeugen.

- Während wir mit unseren Beobachtungen der Atropinwirkung auf das Froscherz ganz isolirt stehen,
I.

Die angewendeten Atropin- und Physostigminpräparate.

Einwirkung des Physostigmin auf Rückenmark und periphere Nerven.

Bei der Betrachtung der Physostigminwirkung auf das Herz 1) führte ich an, dass die bezüglichen Versuchsergebnisse Boehm's 2) in diametralem Gegensatze zu denen aller anderen Forscher stehen, welche früher mit diesem Gift gearbeitet haben, im Gegensatz also

ist für das Herz der Warmblüter diese Isolirtheit nur eine scheinbare, wie eine eingehende Durchmusterung der Literatur zeigt. (Es folgen die ausführlichen Belege.

Ein solches auf die Gefühle der Leser berechnetes Verfahren dürfte wohl für ein böswilliges Pamphlet, nicht aber in eine nüchterne naturwissenschaftliche Kritik passen, welche nur Thatsachen und Versuche pro oder contra zu setzen hat.

1) I. c. p. 54.
2) Studien über Herzgifte. S. 80.

Ich fand:

"dass mein Physostigmin, soweit ich nicht eingehendere Fragen stellte, als die früheren Beobachter, im Wesentlichen dieselbe Wirkung auf die Pupille entfaltete, wie von Bezold u. A. gefunden hatten;

dass es auch auf das Herz im Wesentlichen dieselbe hemmungserregende Wirkung hat, wie sie von Fraser und den anderen oben genannten Autoren angegeben worden ist;

dass es dagegen auf das Rückenmark enorm erregend und erst nach Ablauf dieser Erregung lähmend wirkt, während Fraser gleich von Anbeginn Lähmung ohne erregendes Vorstadium bei seinem Präparat beobachtet hatte."

Herr Harnack referirt diese Versuche wörtlich, wie folgt:

"so zeigt das von ihm benutzte Präparat gerade die dem Calabar entgegengesetzten Wirkungen, indem es sich als tetanisches Gift erwies, ja in dieser Wirkung sogar die des Strychnins an Intensität hinter sich zurück lässt, so dass es sicher ist, dass beide Präparate nicht identisch sind; denn die Rückenmarkswirkungen des Calabargiftes, mit welchem die bisher vorliegenden Untersuchungen ange stellt wurden, ist der von dem Verf. beobachteten entgegengesetzt. Es ist demnach schon aus diesem Grunde nicht zu verwundern, wenn sich in den Beobachtungsresultaten des Verf. über die Physostigminwirkung manche Widersprüche mit den bisher gewonnenen ergeben."

Ich finde also mit Ausnahme der Rückenmarkswirkung bei der gewöhnlichen Dosierung dieselbe Wirkung auf Pupille und Herz, wie alle übrigen Forscher, mit Ausnahme Bohm's. Herr Harnack aber sagt, weil die Rückenmarkswirkung entgegengesetzt der des Fraser'schen Präparates sei, so sei es nicht zu verwundern, dass ich auch beim Herzen und der Pupille widersprechende Resultate gehabt habe. Eine gewisse erstaunliche Verdrehung! Es ist klar, dass Herr Harnack eigentlich Bohm hätte angreifen müssen; denn dieser unterschied sich
in seiner Physostigmin-Herzwirkung von der aller übrigen Forscher und hatte nichts gethan, um diese Widersprüche klar zu legen.

Einwirkung des Physostigmin auf Rückenmark, sensible und motorische Nerven und quergestreifte Musculatur.

Aus einer Notiz Nothnagel's hatte ich selbst geschlossen, dass es zweierlei Physostigminpräparate gebe, die sich durch ihre Rückenmarkswirkung von einander unterscheiden, während sie dagegen andere Organe (Pupille, Herz, Speicheldrüsen) in gleicher Weise beeinflussen. Ich fand seitdem aber bei Anstellung einer grossen Versuchsreihe, dass auch ein und dasselbe Physostigminpräparat (eben das von mir bereits früher gebrauchte) bei verschiedenen Froshindividuen auf das Rückenmark verschieden wirkt, und zwar, dass sehr kräftige Frösche fast ausnahmslos primär tetanisirt und dann erst gelähmt werden, während sehr schwache Frösche gleich von Anbeginn in allgemeine Lähmung der willkürlichen Körperbewegungen ohne ein tetanisches Vorstadium verfallen. Es waren nicht verschiedene Frosharten (etwa R. temporaria und esculenta), die in dieser Weise verschieden auf dasselbe Physostigmin reagirten, sondern nur verschiedene Körperzustände der Versuchsthiere. Es folgt aber daraus, dass der einzige Wirkungsunterschied, den ich bei Anwendung des Physostigmin in meiner ersten Arbeit von den Fraser'schen Versuchsergebnissen statuirt hatte, nicht durch eine Verschiedenheit der angewandten Präparate, sondern durch eine verschiedene Constitution der von Fraser und mir gebrauchten Thiere bedingt gewesen sein kann.

Bei weiterer Fortsetzung dieser Versuche fand ich, dass einige Zeit nach dem Eintritt der primären sowohl, wie der secundären Physostigminlähmung auch die motorischen Nerven vollständig gelähmt waren, so dass z. B. vom peripheren Ende des n. ischiadicus selbst bei den stärksten Strömen keine Spur einer Muskelbewegung mehr auszulösen war, während die Muskeln selbst für directe Paralysirung gut erregbar blieben, genau wie nach Curare. Während man also für diejenigen Frösche, welche auf Physostigmin zuerst tetanisirt werden, unbedingt annehmen muss, dass dieser Physostigminzustand in ähnlicher Weise wie der Strychnintetanus durch heftige Erregung gewisser Elemente des Rückenmarks zu Stande kommt unter Intactbleiben der Erregbarkeit der motorischen Nervenfasern,

Nach einem Referate H. Köhler's hat auch Martin-Damourette 1) gleich mir gefunden, dass sein Phystostigmin (Eserin) einerseits stark reizzend auf das Rückenmark und in Folge dessen tetanisch wirkt, andererseits die peripheren Endigungen der motorischen Nerven paralysirt 2). Martin-Damourette glaubt, dass in den Fällen, wo auf Phystostigmin seine Versuchsthiere gelähmt wurden, diese Lähmung in Folge einer Uebercompensirung der Rückenmarksreizung durch die mit ihr Schritt haltende Paralyse der peripheren motorischen Nerven zu Stande komme; letztere erreiche sehr bald eine solche Intensität, dass die Excitation des Rückenmarks nicht mehr auf die Muskeln übertragen werden könne, die tetanische Erschütterung derselben also einer gänzlichen Relaxation weichen müsse (Martin-Damourette nennt diesen Vorgang Antagonismus gegen sich selbst). Diese letztere Ansicht Martin-Damourette's scheint nicht durch Versuche gestützt zu sein; wenigstens werden deren keine von H. Köhler erwähnt.

Man kann auf einem sehr einfachen Wege Gewissheit erlangen, welche der beiden Möglichkeiten die Phystostigminalähmung bedingt. Wenn man bei einem Frosch die eine, z. B. die linke a. iliaca communis nach Abtragung des Steissbeines unterbindet, wenn man hierdurch also das linke Bein sammt dessen motorischen Nerven von der Phystostiginwirkung ausschliesst und dann dem Thiere unter die Rückenhaut Phystostigmin einspritzt, so muss Folgendes eintreten: Kommt die Lähmung trotz einer gesteigerten Erregung des Rückenmarks nur durch die Paralyse der motorischen Nerven zu Stande (wie Martin-Damourette glaubt), so kann diese Lähmung an dem in der angegebenen Weise hergerichteten Thiere

2) Lähmung der motorischen Nerven auf Phystostigmin fanden früher schon Sharpey, Harley, Röber, Frasier; jedoch bestehen zwischen deren Angaben unter sich und mit Martin-Damourette noch manche Widersprüche.
von den hinteren Extremitäten nur diejenige ergreifen, welche noch von Blut durchströmt, also physostigminisirt wurde, d. i. rechte hintere Extremität; der linke, von der Vergiftung ausgeschlossene Hinterfuss dagegen muss vom gereizten Rückenmark aus in Krämpfen und tetanischen Contractionen erhalten bleiben.

- Meine Versuche zeigten mir aber, dass die Martin-Damourette'sche Ansicht eine irrig ist, und dass die Physostigminlähmung zunächst durch eine Lähmung des Rückenmarks (zuerst der die Reflexe vermittelnden Ganglien, dann der centrifugal verlaufenden Fasern) und zum Schluss erst der motorischen Nerven bedingt ist. Bei allen Fröschen, deren linke a. iliaca unterbunden war, und bei denen Physostigminlähmung eintrat, hörten die willkürlichen und die Reflexbewegungen sowohl in dem rechten, wie in dem linken Hinterfuss gleichzeitig auf (wie auch schon Laschkewich beobachtet hat), obwohl die nachträglich angestellten Reizungen des am Ende des Versuchs durchschnittenen linken n. ischiadicus an seinem peripheren Stumpfe selbst bei sehr weiten Rollenabständen die Fussmuskeln in Zusammenziehung brachten.

Auch zeigte sich in vielen Fällen, wenn ich unmittelbar nach Eintritt der Reflexlähmung den n. ischiadicus untersuchte, derselbe noch erregbar; verlor sich diese Erregbarkeit in manchen Fällen erst 5 Minuten bis 10 Minuten nach dem Zeitpunkt, wo bereits die stärksten Hautreize keine Reflexbewegungen mehr auszulösen vermochten.

Hatte ich, wie in den vorausgegangenen Versuchen, vor der Vergiftung die linke a. iliaca unterbunden, und wirkte das Physostigmin tetanisch auf dieses so vorbereitete Thier, so verfielen beide hintere Extremitäten, die mit Blut durchströmte und demnach der Giftwirkung unterworfen rechte, wie die aus dem Blutstrom ausgeschlossene linke in gleich starke tetanische Zuckungen, und bei directer Reizung der vergifteten, wie der unvergifteten Muskeln konnte ich nie einen besonderen Unterschied in dem Grad ihrer Reizbarkeit auffinden. Auch wenn ich Frösche zuerst curarisirte, dann ihre linke a. iliaca abband und schliesslich unter die Rückenhaut Physostigmin brachte, zeigten sich die Muskeln des linken wie des rechten Fusses bei directer Faradisation mit annähernd gleichen Rollenabständen erregbar.

Ich stellte auch folgende Versuchsreihen am Myographion an: In einer ersten Reihe von Fröschen unterband ich die eine a. iliaca,
vergiftete die Thiere durch Einspritzung von Physostigmin unter die Rückenhaut, wartete die ersten Vergiftungssymptome ab und schnitt unmittelbar nach Eintritt des ersten tetanischen Streckkrampfes beide Hinterfüsse ab, präparierte beide mm. gastrocnemii der vergifteten und der unvergifteten Seite und verglich die auf das Pendelmyographion gezeichneten Zuckungscurven beider Muskeln mit einander. In einer zweiten Reihe von in obiger Weise vergifteten Fröschen schnitt ich den einen Fuss ab unmittelbar nach Ausbruch des ersten tetanischen Anfalls, den anderen nachdem viele tetanische Anfälle vorübergegangen waren und liess die Zuckungscurven beider Muskeln auf das Pendelmyographion aufzeichnen. In einer dritten Reihe führte ich nach Abbinden und Abschneiden des einen Beins eine Canüle von der Aorta aus in die a. iliaca des anderen Beins und spritzte das in einer 0,7 procentigen Kochsalzlösung gelöste Gift direct in die Muskeln und liess wieder die Zuckungscurven beider Gastrocnemii am Myographion anschreiben.

In allen Fällen ging der Oeffnungsinductionsschlag nicht durch den Nerven, sondern direct durch den Muskel.

Endlich tetanisirte ich die physostigminisirten und deren Controllmuskeln und liess die tetanische Curve an eine rotirende Trommel anschreiben: nie fand ich, dass sich der physostigminisirte von dem normalen Controllmuskel wesentlich unterschied; weder in der Form der Curve, noch in der Länge, noch in dem Grad der Muskelreizbarkeit. Einzelne Physostigminmuskulaturcurven zeigten eine Verlängerung des absteigenden Theils, die aber um so weniger auf die Physostigminwirkung bezogen werden kann, als auch die normalen Controllmuskeln bisweilen dasselbe Verhalten zeigten.

Ich muss also Martin-Damourette auch in dieser Beziehung widersprechen und sagen: An den Physostigminkrämpfen der Frösche ist nur die Excitation des Rückenmarks und nie eine Vermehrung der Muskelirritabilität schuld.

Wenn nach Ablauf des Physostigmintetanus schliesslich Lähmung eintritt, so trifft auch hier diese Lähmung zuerst das Rückenmark; es dauert nicht etwa die Reizung des Rückenmarks fort und kann nicht etwa dadurch keine Muskelzuckung mehr ausgelöst werden, weil nun eine Lähmung der motorischen Nerven eingetreten ist; denn auch hier zeigt sich dieselbe Unbeweglichkeit und Unerregbarkeit durch Reflexe auf der Seite, wo die a. iliaca unterbunden worden und deshalb der n. ischiadicus erregbar geblieben war.
Untersuchungen über d. physiolog. Wirkungen d. Atropin u. Physostigmin. 391

Es folgt eine Auswahl meiner neueren Versuche mit Physostigmin an Fröschen, die hauptsächlich zur Klärung seiner Wirkung auf den Bewegungsapparat gemacht wurden. Dieselben zeigen ausser dem oben Gesagten noch, dass die Schmerzempfindung erhalten ist, wo die Motilität schon sehr abgenommen hat, sowie, dass die hinteren Extremitäten früher als die vorderen von der Lähmung betroffen werden, was auch bereits Martin-Damourette angegeben hat.

Versuch I
Schwacher, matter Frösch.

Auf Injection von 0,003 Grm. meines Physostigmin unter die Rückenhaut zeigten sich folgende Reactionen des Thieres:

Es trat ohne jedes Symptom einer vorausgegangenen Erregung eine allmäßige Abnahme der Reflexorregbarkeit ein, so dass nach 15 Minuten das Thier selbst auf die heftigsten peripheren elektrischen Reize nur noch durch örtliche Muskelcontractionen (soweit die Muskeln von dem Reiz direct getroffen waren), nicht aber mit einer allgemeinen Körperbewegung antwortete.

Es wurden beide n. ischiadici blogelegt und durchschnitten. Reizung der peripheren Stämpe dieser Nerven selbst bei 0 mm. R. A. ergaben keine Spur einer Reaction der von denselben versorgten Muskeln, während diese letzteren selbst bei direc ter Faradisation sich als leicht erregbar erwiesen.

Reizung des zentralen abgeschnittenen Ischiadicusendes jedoch rief um diese Zeit noch eine Reaction in der Weise hervor, dass das Thier einige Sekunden lang noch schwach zusammenfuhr durch eine leichte Bewegung der vorderen Extremitäten, deren motorische Nerven demnach noch schwach erregbar geblieben waren.
Dagegen zeigte sich nach 5 Minuten auf direkte Reizung des Rückenmarks nicht der geringste Effekt mehr; das Thier machte nicht die leiseste Bewegung, selbst nicht, als später das Rückenmark durch eine eingehobhte Nadel zerstört wurde.

Im Beginn der Vergiftung erschwerte und beschleunigte Respiration, Herzvagus und Venensinus kurze Zeit nach Beibringung der Gifte noch schwach erregbar, indem nur noch eine kurze Verlängerung der Diastole durch Sinus- und Vagusreizung zu erzielen war; nach 12 Minuten aber waren selbst die stärksten Ströme ohne Einfluss auf die Hemmungsapparate; dieselben waren gelähmt. Wenn man jetzt das Herz an dem Venensinus mit starken Strömen reizte, verblieb der Ventrikel in fast fortlaufender Systole, nur von ganz rudimentären Diastolen unterbrochen.

Versuch II.

Kräftiger, sehr lebhafter Frosch.

5 Minuten nach Injection von 0,003 Physostigmin unter die Rückenhaut wurde die Reflexerregbarkeit so stark, dass die leiseste Berührung der Haut, z. B. in den Zehen, hinreichte, um die beiden hinteren Extremitäten zu starken Reflexcontractionen zu bringen. Trotz dieser starken Erhöhung der Reflexerregbarkeit war aber das Thier selbst durch Schmerzseinwirkung nicht mehr dazu zu bringen, fortzufliegen oder seine Körperlage zu ändern; reflektorisch stockten sich zwar die Beine augenblicklich, ohne aber mit ihrer Bewegung den Körper fortzuschieben oder zu schnellen. Nach weiteren 5 Minuten trat ein sehr heftiger tetanischer Anfall ein, der 5 Minuten lang fast ununterbrochen anhielt. Hierauf begann die Reflexerregbarkeit rasch abzunehmen und schon 5 Minuten nach Beendigung der tetanischen Periode gelang es selbst mit den stärksten electricischen Reizen nicht mehr, eine Reflexbewegung zu erzielen; es kontrahirten sich nur die Muskeln, die direct unter der Hautstelle lagen, an der die Electroden applizirt wurden.

Es wurden jetzt die beiden nn. ischiadici abgebunden und abgeschnitten. Reizung ihrer peripheren Endigungen rief keine Contraction der Beinmuskeln mehr hervor und der Frosch verhielt sich demnach genau wie ein curarsiirter; die directe Muskelreizung erzeugte Contraction.

Alles dieses geschah innerhalb der ersten 15 Minuten nach Injection des Giftes.

Numehr wurde die Brust des Frosches geöffnet. Es kam ein träg pulsirendes Herz zum Vorschein, bei dem Vagus- und Sinusreizung keine diastolische Stillstände hervorzuruufen im Stande war.

Versuch III.

Ein kräftiger Frosch erhielt 0,008 Physostigmin unter die Rückenhaut, worauf nach 5 Minuten die Reflexthätigkeit so erhöht wurde, dass auf leise Berührung starke tetanische Krämpfe erfolgten und der Frosch Minuten lang so starr war, wie gefroren. Dieses Stadium der enorm erhöhten Reflexreizung hielt über 1/4 Stunde an und machte erst sehr allmählich einer vollständigen Lähmung Platz.
Untersuchungen über d. physiolog. Wirkungen d. Atropin u. Physostigmin. 393

Nach Eröffnung des Thieres zeigte sich ein kräftig pulsierendes Herz, das, ohne elektrisch gereizt zu sein, öfter in diastolische Stillstände bis zur Dauer einer halben Minute fiel.

Nachdem es wieder regelmässig rhythmisch pulsirte, vermochten die schwächsten, an den Venen Sinus applicirten Ströme das Herz zum diastolischen Stillstand zu zwingen. Bald jedoch genügten diese Ströme nicht mehr und man musste zu immer stärkeren Strömen greifen, um die gleiche Wirkung zu erzielen, bis schliesslich gar keine Verlangsamung des Herzschlages mehr auftrat und das Herz im Gegenteil durch elektrische Reizung stets zu schnelleren Contractionen angeregt wurde.

Versuch IV.

Mittelmässig kräftiger, nicht lebhafter Frosch; doch macht derselbe, aus den Händen gelassen, sogleich Fluchtversuche und reagirt auf ganz schwache elektrische Reize theils mit Entfärnen des gereizten Beines, theils mit Springen.

Nach Entfernung des Steissbeines wird die linke a. iliaca unterbunden und hierauf 0,003 Physostigmin unter die Bauchhaut gespritzt.

5 Minuten später liegt der Frosch ruhig da mit starken Athembewegungen und macht keine Fluchtversuche mehr; nur auf sehr starke, auf seine Schwimmhäute applicirte, schmerzhafte elektrische Reize ist er noch zu einem trägen Sprung zu bewegen. Auch dieses hört nach 10 Minuten auf; es reagiren auf Schmerzseinwirkungen, welche die Fusse treffen, nur noch die Vorderarme und der Kopf mit schwachen Bewegungen; die Fusse bleiben ruhig liegen; namentlich ist hervorzuheben, dass auch der linke Fuss, dessen motorischer Nerv doch der Giftseinwirkung entsogen ist, ebensowenig zu Reflexbewegungen veranlasst werden kann, wie der rechte.

Die Schmerzempfindungen sind bis jetzt erhalten; der Frosch schreit bei der jedesmaligen Application des Electroden laut auf.

Ebenso kann man durch directe Faradisation des Rückenmarks noch Streckkrämpfe der Hinterfusse bewirken.

Es sind schon bis jetzt: die sensible Leitung zum Centrum, die Schmerzempfindung und die Leitungsfähigkeit der motorischen Nervenfasern noch erhalten und nur die reflexvermittelnden Ganglien für die hintern Extremitäten vollständig, die der vorderen noch nicht vollständig gelähmt.

Im weiteren Verlauf der Beobachtung wurden in nächster Linie die motorischen Fasern im Rückenmark, sowie in den centrifugal en Nerven zuerst der hinteren, dann der vorderen Extremitäten gelähmt, Reizung der peripheren Enden der durchschnittenen Bewegungsnerven selbst mit den stärksten Strömen konnte keine Muskelcontraction mehr bewirken mit einziger Ausnahme des linken ischiadicus, der aus dem Giftkreislauf ausgeschaltet war und sich demnach, wo alle andern Nerven schon vollständig gelähmt waren, selbst den schwächsten Strömen gegenüber als gut erregbar zeigte.
Dr. M. J. Rossbach:

Versuch V.

Ein mittelmässig kräftiger Frosch wird unter den Armen aufgehängt und nach Türk'scher Methode auf seine Reflexerregbarkeit durch verdünnte Schwefelsäurelösung (1:700) geprüft. Er zieht seine Füsse nach je 6, 4, 7, 6, 6, 5, 6 Secunden aus der Säurelösung, in die er immer nach Zwischenräumen von je 5 Minuten bis zu seinem Sprunggelenk getaucht wurde. Es wird hierauf die hintere a. iliaca unterbunden und 0,004 Physostigmin unter die Bauchhaut gespritzt. Unmittelbar nach diesem Vorgang springt der Frosch unaufhörlich unter der Glasglocke mit grosser Kraft umher; nach 5 Minuten wird er matter, fällt bei einem Sprung auf den Rücken und kann sich nicht mehr herumdrehen; eine Zeitlang macht er noch Versuche, diese Umdrehung zu bewerkstelligen; endlich wird er ganz ruhig.

Er wird wieder aufgehängt und auf seine Reflexerregbarkeit gegen Säure geprüft, zieht aber selbst nach 120 Secunden seine Füsse nicht mehr aus derselben. Auf Reizung mit secundären Strömen, die auf die Schwimmhaut des rechten oder linken Fusses applizirt werden, zuckt er bei 120 mm. R. A. noch schwach mit beiden Füssen. 3 Minuten später (14 Minuten nach der Vergiftung) sind die Ströme selbst bei 0 mm. R. A. nicht mehr im Stande, weder rechts noch links die Füsse zu Reflexzucken zu veranlassen. Es wird jetzt das Rückenmark durchschnitten und werden auf den peripheren Stumpf die Electroden aufgesetzt: augenblicklich strecken sich noch beide Beine in tetanischem Krampf.

Es werden beide Ischiadici durchschnitten, ihre peripheren Enden auf Electroden gelegt und auf ihre Reizbarkeit geprüft: Rechter n. ischiadicus noch bei 850 mm. R. A., linker bei 415 mm. R. A. erregbar, so dass hierbei die Fussmuskeln in kräftige Contractionen verfallen.

Versuch VI.

Sehr kräftiger und lebhafter Frosch.

Es wird die linke a. iliaca nach Abtragung des Steinbeines unterbunden und 0,005 Physostigmin unter die Bauchhaut gespritzt. Unmittelbar nach der Einspritzung wird der Frosch sehr ruhig, sitzt mit geneigtem Kopfe, den er zwischen die beiden Vorderfüsse nimmt, regungslos da. 2 Minuten später dagegen wird er sehr erregt und häupt unaufhörlich gegen die Wände der Glasglocke. Nach 19 Minuten (von der Einspritzung an gerechnet) bricht ein starker Teta mus aus, wobei sowohl der rechte wie der linke (aus dem Kreislauf ausgeschaltete) Fuss in gleicher Intensität tetanisch gestreckt wird.
Die tetanischen Starranfälle dauern mit kurzen Unterbrechungen 12 Minuten an. Hierauf wird der Frosch sehr apathisch, macht willkürlich keine Bewegungen mehr und macht nur nach sehr starken, auf die Schwimmhäute applizierten elektrischen Reizen mühsame, aber vergebliche Fluchtversuche. indem er nicht mehr im Stande ist, eine ordentliche Hupfbewegung zu machen. 87 Minuten nach der Vergiftung hört jede Reflexbewegung auf, namentlich ist der linke Fuss, der doch von der Giftwirkung ausgeschlossen war, so wenig wie der rechte durch irgend einen Reiz noch in Reflexbewegung zu bringen. Auch war nach Anhören des Tetanus und mit Beginn der Lähmung trotz darauf gerichteter Aufmerksamkeit nicht zu bemerken, dass der linke Fuss auch nur 1 Secunde länger etwa in tetanischer Starre geblieben wäre, als der rechte: die willkürlichen, wie die Reflexbewegungen hörten in beiden Füssen gleichzeitig auf.

Es wurden zum Schluss die beiden um. ischiadici blogelegt, abgebunden, durchschritten und an ihren peripheren Stümpfen auf ihre Erregbarkeit geprüft: der linke war noch gut erregbar, der rechte war total gelähmt, so dass selbst 0 mm. R. A. keine Spur einer Muskelszuckung mehr zu bewirken im Stande waren.

Die Behauptung des Herrn Harnack, meine Präparate müssten andere gewesen sein als die der früheren Forscher, ist also vollständig aus der Luft gegriffen. Dass er diese seine Behauptung übrigens selbst nicht geglaubt hat, schliesse ich daraus, weil er seine Kritik hiermit nicht abschliesst, sondern sich weiter bemüht, die Resultate meiner Untersuchung als Folge falscher Versuchsannahme hinzustellen; mit dem Beweis, dass ich schlechte Präparate angewendet hätte, wäre ja ohne Weiteres meine Arbeit gerichtet gewesen.

II.
Versuchstiere und Untersuchungsmethoden.

Was von Herrn Harnack über meine Versuchstiere und über die von mir angewendeten Untersuchungsmethoden gesagt wird, übersteigt eigentlich noch mehr jede Schau vor dem Urtheil des Publikums, das doch selbst als competent in der Entscheidung solcher Fragen angesehen werden muss.

a. Versuchstiere.

Herr Harnack 1) sagt: »Ein Jeder, der im Experimentiren am Froschherzen einige Erfahrung besitze, werde wissen, dass die

1) L. c. pag. 311.
Herzaktion bei Winterfröschen, selbst bei sehr geringen Kältegraden, sehr beträchtliche Unregelmäßigkeiten zeigt: ja dieselbe sei, wie man sich häufig überzeugen könne, selbst bei Fröschen, die äußerlich einen ganz normalen Eindruck machen, oft so geschwächt, dass eine leise Berührung des Herzens genügt, sie für kürzere oder längere Zeit völlig aufzuheben, indem wahrscheinlich durch die mechanische Reizung der Hemmungsapparate diastolischer Stillstand des Herzens, dessen Muskulenergie bei einem Winterfrosche eine ziemlich schwache ist, eintritt.«

Herr Harnack liefert keine experimentellen Beweise für diese Behauptung; am Schlusse seiner Arbeit aber hat er, wie es scheint, diese Behauptung wieder vergessen, indem er 12 Versuche an 12 Winterfröschen vorführt, deren Herzen nach seinen eigenen Untersuchungsprotokollen mit der erstaunlichsten Regelmäßigkeit arbeiten. Er enthebt eigentlich hiermit mich selbst des Beweises, dass es auch Winterfrösche mit höchst regelmäßig arbeitenden Herzen giebt; ich könnte einfach auf seine Versuche verweisen.

Seit 5 Jahren arbeite ich fast täglich mit Fröschen aller Jahreszeiten und habe mich gerade mit der Physiologie des Froschherzens sehr viel beschäftigt. Ich habe gefunden, dass es zu jeder Zeit sehr elende und sehr kräftige Frösche giebt, dass aber im Allgemeinen die Sommerfrösche in gefangennem Zustande eine geringere Widerstandskraft haben, als die Winterfrösche; dieselbe Beobachtung wurde mir auch von anderen Seiten bestätigt. Ich habe 4 Winter lang eine Menge Froschherzen untersucht, nicht allein für die angegriffene Arbeit, sondern auch für meine Ecbohoinarbeit, für meine Arbeit über die partiellen Erschaffungen der Herzmuskulatur bei örtlicher Reizung während der Systole, für meine Arbeit über die Luciani'schen Gruppen, in meinen Vorlesungsversuchen: ich habe eine Unmasse kräftig, regelmäßig arbeitender Herzen gefunden, mindestens ebenso häufig, wie bei Sommerfröschen; ich habe die ausgeschnittenen Herzen von Winterfröschen, die in künstlichem Kreislauf eingeschaltet waren, viele Tage regelmäßig arbeiten gesehen, selbst wenn sie nicht in eine Kochsalzlösung gehängt waren; und selbst wenn das Blut 12 Stunden lang nicht erneuert worden und ganz dunkelbraun geworden war; halb vertrocknet arbeiteten dieselben noch in regelmäßigem Rhythmus fort. Und dass gerade die von mir zu den angegriffenen Versuchen verwendeten Frösche sehr kräftige und regelmäßig arbeitende Herzen besassen, kann ich,
was der Kritiker nicht bedacht hat, heute noch durch die von denselben an die rotirende Trommel gezeichneten Curven beweisen, die ich deshalb im Verlaufe dieser Arbeit mittheilen werde. Bei durch Krankheit sehr geschwächten Froschherzen ferner, oder wenn die Kraft eines Froschherzens z. B. im Verlaufe eines langen Versuches abgenommen, hemmt eine mechanische Reizung oder Berührung des Herzens keineswegs, wie Herr Harnack (und zwar wieder ohne Beweis) behauptet, die Hemmungsapparate und bringt dadurch das Herz zum Stillstand; im Gegentheil ruft Berührung oder überhaupt ein mechanisch auf das Herz ausgeübter Reiz belebend auf dessen Thätigkeit ein, so dass es darauf schneller und stärker pulsirt, oder, wenn es sogar bereits zu pulsiren aufgehört hat, wieder von Neuem zu Bewegungen angespornt wird; ja, wenn der Ventrikel schon vollständig gelähmt ist, kann durch Berührung desselben eine Zeit lang wenigstens noch der Vorhof zu Contractionen gezwungen werden. Diese Thatsache steht so fest und ist durch so unzählige Versuche von Coats, Boehm, Bowditch, Luciani, Kronecker und mir etc. sicher gestellt, dass ich einfach nicht begreife, wie Herr Harnack ohne Gegenversuche durch einfache Berührung auf allgemeine Erfahrung das Gegentheil zu behaupten wagt. Reizung des Ventrikelgs ruft nie Stillstände durch Erregung der hemmenden Apparate hervor, da ja keine Hemmungsganglien im Ventrikel vorhanden sind. In der angezogenen Stelle sagt Herr Harnack ausdrücklich, bei den Herzen der Winterfrösche genüge oft eine leise Berührung, um die Herzbewegung, wahrscheinlich in Folge einer mechanischen Reizung der Hemmungsapparate, aufzuheben. Er will damit dem Leser von vornherein den Glauben beibringen, dass meine diastolischen Stillstände, die ich nach verschiedenen Einwirkungen auf das Herz beobachtet habe, in diese Kategorie gebracht werden müssten, dass z. B. nicht das Atropin, sondern der Reiz der Einspritzung die Ursache der von mir beobachteten diastolischen Stillstände gewesen sei, indem der örtliche Reiz bei meinen schwachen Winterfroscherzen die Hemmungsapparate gereizt hätte. Später, bei Besprechung dieser von mir beobachteten diastolischen Stillstände findet er, dass ich in einer grossen Reihe von Fällen, z. B. bei elektrischen Reizungen des Venensinus, den Nachweis bringe, dass die hierdurch bedingten diastolischen Herzstillstände aus einer Reizung der Hemmungsapparate zu erklären sind; er hat nun aber wieder vergessen, dass er früher dasselbe behauptet, und sagt deshalb dann

Da ich auf diesen Punkt später ausführlicher zurückkommen werde, so füge ich hier nur noch bei, dass Herr Fröhlich im Herbst 1873 an Herbstfröschen meine Versuche wiederholt 1) und stets dieselben Resultate wie bei Winterfröschen bekommen hat. Aber da Herrn Harnack letzteres nicht passt, da er sein Interdict dann nicht allein auf Winter-, sondern auch Herbstfrösche ausdehnen müsste, so verschweigt er die Fröhlich'schen Versuche vollständig, mit denen allerdings sein ganzes Winterfroschräsonnement noch gründlicher zusammentrören müsste. Ich werde leider noch öfter zeigen müssen, mit welcher Consequenz Herr Harnack alles das verschweigt, was, wie aus diesem Verschweigen hervorgeht, ihm selbst die Haltlosigkeit seiner Einwürfe gezeigt haben musste.

b. Untersuchungsmethoden.

Nach Herrn Harnack «habe ich die graphische Methode nur zu dem Behufe angewendet, um den Schein grosser Exactheit zu gewinnen 2).» Es ist dem Kritiker demnach selbstverständlich, dass ein Thierherz ganz andere Curven zeichnet, je nachdem der Experimentator nur scheinbar oder wirklich exact ist.

«Ich hätte aber», fährt Herr Harnack fort, «Alles gethan, um diese wesentliche Bedingung nicht zu erfüllen. Denn ich hätte eine Canüle in die Aorta, eine zweite in die präparirte Bauchvene eingebunden und dann das Gift (bisweilen eine Lösung von mehreren Mgm.) direct in das Froschherz eingespritzt, und das Alles bei einem Winterfrosch».

Nachdem Herr Harnack unmittelbar vorher die graphische Methode eine sehr exacte genannt hat, verwirrt er den einzigen

Diese Arbeit war lange vor dem Harnack'schen Angriff veröffentlicht.
2) S. 812. a. a. O.
Weg, der zu derselben führt; denn auf welche andere Weise kann das Herz besser seine Arbeit und seine Bewegungen anschreiben, als indem man in die Aorta eine Cantüle einbindet und damit einen Weg vom Herzen zum Quecksilbermanometer herstellt? Die von Ludwig und Hoffa vor langer Zeit angewendete andere Methode, mittelst eines auf die Herzoberfläche gelegten Hebels dessen Bewegungen anschreiben zu lassen, hält doch gar keinen Vergleich mit der Feinheit dieser neueren aus. Herr Harnack scheint die Einbindung einer Cantüle in die Froschaorta für so schwierig zu halten, dass er sich gar nicht denken kann, dass hierbei das Herz nicht misshandelt wird; ich kann ihm aber versichern, dass diese Einbindung so leicht, wenn nicht noch leichter ist als die Einbindung einer Cantüle in die carotis eines Kaninchens. Wenn Herr Harnack nur einige Male diese Operation selbst versucht hätte, würde er wissen, dass man hierbei das Herz gar nicht zu berühren braucht. Dasselbe gilt von der Einbindung einer Cantüle in die Bauchvene; bei dieser Operation wird das Herz gar nicht berührt, geschweige irgendwie beleidigt oder ermüdet. Bei meiner ganzen Versuchsanstellung bleibt die normale Circulation des Frosches erhalten; das Blut kommt aus allen Venen (mit einzigem Ausnahme der Bauchvene) durch den Venensinus in das Herz und wird durch die zweite Aorta, die nicht unterbunden wurde, aus dem Herzen wieder in den Körperkreislauf gebracht. Werden Substanzen durch die Bauchvene langsam in den Blutkreislauf eingeführt, so mischen sie sich, bevor sie in das Herz gelangen, in den grossen Hohlvenen mit dem Körperblut, und gelangen, mit dem Körperblut vermischt, genau so in das Herz, als wenn sie subcutan eingespritzt durch Resorption in das Blut gelangen. Der einzige Unterschied liegt bei meiner Methode darin, dass man sicher weiss, wie viel der angewendeten Substanz in einer genau zu bestimmenden Zeit in das Herz gelangt ist. Bei subcutaner Einspritzung weiss man nie, wie viel von dem Gift und bis wann es in das Herz gelangt ist, weil die Resorption je nach der Einspritzungsstelle eine viel zu unregelmässige ist, weil man nie weiss, wie viel des Giftes von andern Organtheilen festgebunden wurde, bis es in das Blut gelangte etc. Ich komme später nochmals auf den Werth der unmittelbaren Injection der Gifte in das Blut zurück, sowie auf die Controlversuche, die ich angestellt habe, um mich vor Irrthümern zu bewahren.

Dass Herr Harnack diese von mir angewendete Methode

E. Pflüger, Archiv f. Physiologie. Bd. X. 27
verwirft, kann nur von seiner gänzlichen Unkenntniss aller vorausgegangenen Arbeiten über das Froschherz herrühren; denn sonst wäre es schwer begreiflich, wie er dazu kommt, einer so grossen Reihe moderner Physiologen und Pharmakologen, und unter letzteren sogar seinem eigenen Lehrer, Herrn Schmiedeberg, die alle mit dieser Methode gearbeitet haben, den Handschuh ins Gesicht zu werfen. Ich will von Physiologen nur Ludwig, E. Cyon 1), Blasius-Fick 2), Coats 3), Bowditsch 4), Luciani 1) nennen, die sämtlich an Froschherzen arbeiteten, in deren Aorta und Hohlvene Canälen eingebunden waren, durch welche in künstlichem Kreislauf Blutserum geleitet wurde.

Herr Harnack sagt weiter 3): „Wir haben uns vergeblich bemüht, einen Grund dafür ausfindig zu machen, weshalb die Vff. zur Applikation des Giftes den Weg der directen Einspritzung in's Herz gewählt haben; derselbe ist nach allen Seiten hin der ungeeigneteste. Es handelt sich darum, die Wirkung des Atropins auf das Herz kennen zu lernen, und nicht die einer directen Injection.“

Schmiedeberg hat in seinen „Untersuchungen über einige Giftwirkungen am Froschherzen 3)“ den Einfluss des Nicotin an dem Coats'schen Herzpräparat studirt, hat also nach Durchschneidung der Leber, Blöslegung des Herzens einen Zweig der Aortengabel unterbunden, in den zweiten eine Glascanülle durch den bulbus aortae hindurch bis zum Ventrikel hingeschoben und eingebunden, hierauf die untere Hohlvene eröffnet, eine starke Glascanülle durch dieselbe bis in den Vorhof eingeführt und fest gebunden; hierauf eine zugeschmolzene, möglichst grosse Glasröhre durch den Mund ein- und zum offenen Magen wieder ausgeführt; sodann durch die Venencanülle nicotinhaltiges Kaninchenserum zugeleitet und mit

3) l. c. S. 812.
Untersuchungen über d. physiolog. Wirkungen d. Atropin u. Physostigmin. 401
der Aortencanüle ein Quecksilbermanometer verbunden und sodann auf einer Tafel die in dieser Weise gewonnenen Curven als Ausdruck der Nicotinwirkung erklärt.

Da ich bei weitem nicht so tief eingreifende Operationen gemacht habe, wie Schmiedeberg, und bei mir namentlich der natürliche Kreislauf erhalten blieb; da ferner Schmiedeberg ebenfalls in seiner Untersuchung keine subcutane Giftinjection, sondern eine directe in das Herz gemacht, und doch die danach aufgetretenen Erscheinungen als Ausdruck der Nicotinwirkung aufgefasst hat: so genügt wohl dieser Hinweis, um Herrn Harnack zu veranlassen, sich vielleicht mündlich Aufklärung von seinem Lehrer über diesen Punkt geben zu lassen. In einer unter Schmiedeberg’s Leitung gefertigten Arbeit über die Nicotinwirkung gibt Truhart ausdrücklich an, dass er in seinen Versuchen das Nicotin zum Theil unter die Haut, zum Theil unmittelbar in eine Vene einspritzte.

Auch Boehm 1) hat in derselben Weise (an dem Coat's'schen Herzpräparaten) Gifte unmittelbar in das Froschherz gebracht, und zwar nicht allein so indifferente Gifte wie ich, sondern auch (örtlich, sogar die Haut) stark-reizende, wie das Veratrin, und die hievbei gewonnenen Curven als durch das Veratrin und nicht durch die unmittelbare Einbringung bedingt angesehen; derselbe hat ferner (auch wieder an einem Coat's'schen Herzpräparat) Digitalin direct in das Herz gebracht, dessen Einfluss auf die Herzarbeit bestimmt und die gefundene Verstärkung desselben, auch nur dem Digitalin, nicht der „Injection“ zugeschrieben. Und überhaupt ist für die meisten alkaloidischen Gifte, die zu ihrer spezifischen Nervenwirkung nur ungemein kleiner Dosen bedürfen, die unter keiner Bedingung das Blut nennenswerth schon wegen ihrer kleinen Dosis beeinflussen könnten, allgemeiner Gebrauch geworden, sie entweder subcutan oder unmittelbar in die Venen zu spritzen.

Ein Kritiker, wie Herr Harnack, könnte übrigens immer noch die Behauptung aufstellen, der Druck, mit dem die Druckflasche das Gift in das Herz presse, sei ein anderer, als der des Stempels der Injectionsspritze. In dieser Beziehung verweise ich

III.

Einwirkung des Atropin und Physostigmin auf Pupille und Herz.

Kritik meiner Versuchs-Resultate.

Hier muss ich einige Kunstgriffe beleuchten, deren sich Herr Harnack in seiner kritischen Untersuchung bedient hat. Der eine besteht darin, dass er die von mir mitgetheilten Versuchsprotokolle so hinstellt, als ob ich überhaupt nur diese angestellt hätte; er sagt also fortwährend: „Es wurden nur 3, oder 1, oder nur 2 Versuche angestellt“ u. s. w., während, wie wir im Texte meist ausdrücklich angegeben haben, immer nur eine Auswahl unserer vielen Versuche mitgetheilt worden ist. Welcher Physiologe denkt auch daran, jeden Froschversuch mitzutheilen, namentlich Versuche mit übereinstimmenden Resultaten? Welche Bände von Versuchsprotokollen müsste man beigeben, welche die ganze Arbeit um das Dreifache ihres Volumens überbieten? Herrn Harnack selbst ist dies in seiner einzigen, der Kritik vorausgegangenen Untersuchung nicht eingefallen 1).

1) Harnack: Apomorphin. Arch. f. exp. Path. u. Pharm. Bd. 2, theilt für das allgemeine Wirkungsbild des apomorphinisirten Kaninchens (S. 268) 1 Versuch mit, S. 282 1 Controlversuch zu seinen Respirationsversuchen (wenn ich dagegen nur 1 Controlversuch mittheile, setzt er jedesmal ein grosses Ausrufezeichen bei l. c. p. 214), für die Nichtidentität des Respirations- und Brechcentrums 2 Versuche (S. 284), für die Wirkung des Cyclamin auf den Froschmuskel 1 Versuch etc.

Schmiedeberg: das Muscarin. Leipzig 1869, theilt zum Beweis, dass der Muscarinstillstand des Froschhersens durch erhöhte Erregung des Vagus zu Stande kommt, 2 Versuche mit (S. 50), dass das Froschherz nach längeren Stillstand nicht mehr die frühere Schlagzahl wieder erhält, 1 Versuch (S. 32), für die Speicheldurchspülung 1 Versuch (S. 63) und bei einer grossen Reihe anderer Beobachtungen überhaupt keine Versuche mit.
Ein zweiter Kunstgriff Herrn Harrnack's ist sodann, dass er eine Reihe von Möglichkeiten aufstellt, die an einer Erscheinungsschuld gewesen sein können, so z. B. krampfhafte Körperbewegungen als Ursache diastolischer Herzstillstände; dass er diese Möglichkeiten später als sicher constatirt hinstellt, wenn auch in meinen Versuchsprotokollen kein Wort darauf hinweist, und dann von diesem Standpunkt aus, den er sich erst selbst aufgebaut, in einer mir feindlichen Weise kritisirt.

A. Pupille.

Und während Herr Harrnack hier leugnet, dass der durch Atropin gelähmte Oculomotorius durch Physostigmin nicht wieder erregt werden könne, hat er am Schlusse seiner Abhandlung (S. 321)
Diese Behauptung schon wieder ganz und gar vergessen, indem er, sich selbst schlagend, schreibt: »Meine Schlüsse böten wenig Neues, da die Anschauung, dass ein durch ein Gift gelähmtes nervöses Organ, so lange die Wirkung andauert, durch ein dasselbe Organ erregendes Gift nicht zur Thätigkeit veranlasst werden kann, bereits eine ziemlich verbreitete ist.« Von einem Kritiker dürfte man doch wohl verlangen, dass er am Schlusse der Kritik noch weiss, was er im Beginn derselben behauptet hat.

Da auch Krenchel\(^1\) angiebt, er habe meine Angaben nicht bestätigen können, so habe ich alle Versuche seit meiner ersten Veröffentlichung noch oft wiederholt und kann die Richtigkeit meiner Beobachtungen nur wieder bestätigen. Die primäre Pupillenverengerung nach kleinsten Atropingaben ist oft so stark, dass sie schon mit bloßem Auge wahrgenommen werden kann; noch leichter zu constatieren ist die endliche Pupillenerweiterung nach enorm grossen Physostigmingaben. Wenn Herr Harnack sagt, ich könne es wohl Niemandem zumuthen, durch meine 3 Versuche seine bisherigen Anschauungen über die Wirkung des Atropin auf die Pupille zu modifiziren, so bemerke ich, dass ich meinerseits von einem Naturforscher nur verlange, dass er über Dinge, die ihm zweifelhaft sind, selbst Versuche anstellt und sich auf diesem Wege, nicht aber durch oberflächliche Bemerkungen, eine eigene Ueberzeugung zu verschaffen sucht.

Nur wenn das Resultat einer Untersuchung widersinnig wäre, hätte eine Kritik Berechtigung, auch ohne Versuche. Da aber eine primäre Verengerung der Pupille auf Atropin gar nichts Wider-

\(^1\) Ueber die Wirkung des Muscarin. v. Graefé's Archiv für Ophthalmologie 1874. Nachdem ich mich durch wiederholte Versuche nochmals meiner Sache vergewissert habe, muss ich annehmen, dass Krenchel vielleicht zu wenig Versuche gemacht hat; ich werde in dieser Annahme bestärkt, da derselbe am Schlusse eines ganz anderen Themas' nur nebenbei bemerkt, er habe meine Beobachtungen nicht bestätigen können, und da er gar keine Belege für seine Behauptung giebt. Ueberhaupt müssen, wenn man durch Anfänger die Arbeiten anderer Forscher so nebenbei nachuntersuchen lässt, gewiss viel häufiger negative, als positive Resultate herauskommen. Die Gewissenhaftigkeit, die man von Originaluntersuchungen verlangt, ist auch für Nachuntersuchungen geboten. Und will man eine Arbeit widerlegen, die sich auf Versuche stützt, so hat man auch die Pflicht, die Gegenversuche mitzuteilen.
sinniges hat, im Gegenteil die Atropinwirkung gleich der der meisten Alcaloide setzt, die alle in kleinsten Gaben diejenigen Organe erregen, welche sie in grossen Gaben lähmen, so begreife ich nicht, wie Herr Harnack' ohne einen einzigen, noch dazu so leichten Versuch es wagen kann, auf's Geradewohl zu widersprechen.

B. Erregende Einwirkung kleinster Atropingaben auf die Herzemmungsvorrichtungen.

Froschherz.

In einer sehr grossen Reihe von Versuchen hatte ich gefunden, dass die Herzen verschiedener Frösche auf Atropin nicht in der selben, sondern in dreierlei verschiedener Weise reagiren.

Ich fand ausser solchen Froschherzen, bei denen sehr kurze Zeit nach Einverleibung des Atropin complete Lähmung der die Herzhärtigkeit hemmenden Apparate unter Fortdauer der normal starken und normal schnellen Herzbewegungen eintrat, eine zweite Reihe, bei denen die hemmenden und die musculomotorischen Apparate gleichzeitig gelähmt wurden, und endlich eine dritte Reihe mit folgenden Atropinreaktionen:

Nach Injection von kleinen Gaben Atropin in die Bauchvene oder unter die Haut trat diastolischer Stillstand bis zur Dauer von 1 Minute mit nachfolgender Pulsverlangsamung, oder kein diastolischer Stillstand, aber starke Pulsverlangsung ein. Während des durch Atropin bewirkten diastolischen Stillstandes lösten mechanische und electriche Reize vom Ventrikel aus eine Contraction aus. Es ging dann der Puls entweder rasch auf die frühere Höhe zurück, oder die Pulsverlangsung dauerte sehr lange an, bis endlich wieder die frühere Frequenz des Pulses zurückkehrte. So lange die Pulsfrequenz auf Atropin sank, bewirkten inducirte Ströme bei sehr grossen Rollenabständen diastolische Stillstände; sobald aber die Frequenz wieder stieg, hatte man immer stärkere Ströme nöthig, um denselben Effect zu erreichen. Im Stadium der Pulsverlangsung wurden die Contractionen des Herzens nicht schwächer, sondern bestanden in gleicher Stärke fort, wie vor der Vergiftung etc. Alle diese Er-
scheinungen sprachen mit grosser Sicherheit für eine durch Atropin bedingte starke Erregung des Hershemmungszentrums.

Die ersteren Beobachtungen schliessen sich denen anderer Forscher an, die letzteren, dass Atropin auch die Herzemmungsapparate erregte, waren neu. Gegen diese letzteren wendet sich daher die ganze Wucht des Harnack'schen Angriffs.

Herr Harnack leugnet nicht, dass ich in meinen zahlreichen Versuchen nach Atropin diastolische Stillstände beobachtet habe; es ist von allen meinen Beobachtungsresultaten das einzige, was er wenigstens vorübergehend zugiebt; es scheint, dass die Aufnahme von Curven es Herrn Harnack nicht räthlich erscheinen liess, auch diese Thatsachen, wie alle übrigen, einfach als nichtig zu verwerfen. Aber er setzt Alles in Bewegung, um behaupten zu können, an meinen diastolischen Stillständen sei alles Mögliche schuld, nur nicht das Atropin, und meine diastolischen Stillstände seien nicht Folge von Erregung der Hemmungsapparate, sondern einfache Ermüdungsstillstände.

Ich erlaube mir, Punkt für Punkt auf die Harnack'schen Einwände genauer einzugehen.

1. Zunächst beschuldigt Herr Harnack die fortwährende elektrische Reizung der Herzmuskulatur, durch die ich mein Möglichstes gethan hätte, um die Muskulatur schnell zu ermünden. „Diese einmaligen oder wiederholten elektrischen Reizungen in Verbindung mit der Misshandlung des Herzens durch Einbindung von Cantilen in Aorta und Bauchvene machten es bei einem Winterfrosche unmöglich, in Bezug auf die Pulsfrequenz sichere Beobachtungsergebnisse zu erzielen."

Herr Harnack scheint die seit 4 Jahren im physiologischen Institut zu Leipzig von Bowditsch²), Kronecker⁸) gemachten

1) Später sucht Herr Harnack allerdings wieder diese diastolischen Stillstände in anderer Weise zu verdächtigen.

2) Bowditsch: Üeber die Eigenthümlichkeiten der Reizbarkeit, welche die Muskelfasern des Herzens zeigen und

Versuche gar nicht zu kennen, aus denen hervorgeht, dass sogar
der aus dem Körper genommene Herz- oder quergestreifte Körper-
muskel erst nach Hunderten und Tausenden von elektrischen Reizen
die Ermüdung gebracht werden kann, und dass selbst nach einer
auf so massenhaften Reize eingetretene Ermüdung frische Zuleitung
von Serum oder anderen erfrischenden Substanzen genügt, diese
Ermüdung wieder aufzuheben. Ich selbst habe in dem genannten
Institute am Luciani’schen Froscherzen an Winterfröschen ge-
arbeitet, und weiss, welcher enormen Leistungen dieselben fähig
sind. In meinen Atropinversuchen aber war noch dazu das Herz
stets im natürlichen Kreislauf eingeschaltet geblieben und an diesem
wären doch noch weit mehr Reize, als sie von Bowditsch angewendet
würden, nicht im Stande gewesen, einen Ermüdungsstillstand her-
vorzurufen. Wie sollten meine wenigen elektrischen Reize (1—10 im
Ganzen und noch dazu nur an den Venensinus*) im Stande sein,
diastolische Ermüdungsstillstände des Herzens hervorzurufen? A. B.
Meyer*) hat 10 Minuten bis über eine Stunde lang den Frosch-
herzsinus continuirlich mit faradischen Strömen gereizt und hier-
durch Stillstände bis zur Dauer von 11/2 Stunden erzielt, und auch
diese langen Stillstände von einer Erregung der hemmenden Appa-
rate abgeleitet. Er sagt: „Dass es sich bei dem ganzen Phänomen
um den Erregungszustand eines hemmenden Apparates und nicht
um die Ermüdung oder Erschöpfung eines motorischen handelt, geht
wohl aus der Thatsache des schnellen, oft schon nach einigen Se-
cunden erfolgenden Wiedereintritts der rhythmischen Pulsationen
hervor; handelte es sich um eine Erschöpfung, so wäre eine so
schmale Restitution nicht gut denkbar und ohne Analogie.“ Hätte
Herr Harnack sich nur die Mühe genommen, an einigen wenigen
Fröschen selbst Versuche zu machen, ob eine geringe Zahl elektrischer
Reizungen eine Froscherz so zu ermüden vermögen, dass es still
steht, statt ohne die Grundlage auch nur eines einzigen Versuchs
kühne Behauptungen aufzustellen, so hätte er sich diese Zurecht-
weisung erspart.

Zuckungen, nach einem zweiten Serumwechsel 100 Zuckungen auf elektrische
Reize ausgelöst werden.

1) Obwohl ich ausdrücklich immer angegeben hatte, ich hätte die Ve-
neninsinus gereizt, spricht Herr Harnack an dieser Stelle immer von Reizung
des Herzmuskels.

Herr Harnack verschweigt aber noch dazu gänzlich, dass wir in einer Anzahl unserer Versuche vor Einspritzung von Atropin überhaupt gar keine elektrische Sinusreizungen gemacht und dennoch auf Atropin diastolische Stillstände erhalten haben (so in unseren Versuchen 1, 2, 3), wodurch auch, abgesehen von den oben angegebenen Gründen, sein Einwand gänzlich hinfällig wird; verschweigt ferner diejenigen Versuche (10 und 11), in denen Atropin zuerst diastolische Stillstände oder Pulsverlangsamung hervorrief und elektrische Sinusreizungen eine Zeit lang bei immer grösseren Reizstärken ebenfalls noch diastolische Stillstände bewirkten, bis endlich nach fortgesetzter Atropininjektion selbst Reize bei 0 mm. R. A. keine Herzstillstände mehr erzielen konnten. Wären die anfänglichen, auf elektrische Reize bei 80 und 90 mm. R. A. eintretenden diastolischen Stillstände Ermüdungsstillstände in Folge Ueberreizung gewesen, so hätten sie nach immer weiteren Atropingaben und immer geringeren Rollenabständen um so mehr eintreten müssen. In Versuch 10 aber war sogar gerade das Umgekehrte der Fall; wie ich dort ausdrücklich angegeben habe, wurden am Schlusse des Versuchs, wo weder Vagus- noch Sinusreizungen mehr diastolische Stillstände bewirkten, im Gegenteil durch die Reizung die Herzbewegungen sogar beschleunigt. Es gibt keine bessere Widerlegung des Harnack'schen Einwandes, als diese letzteren Versuche; eben deshalb aber scheint sie Herr Harnack mit Stillschweigen übergangen zu haben.

2. Bei meinen Versuchen, in denen ich Atropin durch die Bauchvene oder durch subcutane Injection in den Kreislauf einbrachte oder auf die Herzoberfläche auftrüpfelte 1), verfehlten meine Versuchsthiere nie in Krämpfe oder überhaupt in Reflexbewegungen; es fehlte eben bei meiner Methode jede Spur von Schmerzempfindung, bei Einbringung des Giftes in die eingebundene Venenkanüle selbstverständlich; aber auch bei subcutaner Injection, weil ich nie frische Einstiche machte, sondern von der vor Beginn des Versuchs mit der Scheere gemachten Hautöffnung aus lange derselben die abgestumpfte Spitze der Spritze vorsichtig nach unten schob. Es findet sich auch in allen meinen Versuchen nirgends an-

1) Wenn es in einem meiner Versuche einmal heisst: »Aufräufelung in die Bauchvene«, so ist das selbstverständlich ein Druckfehler.
gegeben, dass nach Einverleibung des Atropin Krämpfe eingetreten
sehen; es war also in allen unseren hierher gehörigen Versuchen
gar nicht möglich, dass die von mir beobachteten diastolischen Herz-
stillstände durch Körperkrämpfe veranlasst waren, weil die Thiere
während der Versuche gar keine Bewegungen machten. Für Jeden,
der mit Fröschen experimentirt hat, sind die Functionsänderungen
des Herzens bei allgemeinen Körperkrämpfen so charakteristisch,
dass es geradezu schwer fallen würde, solche durch enorme Blut-
überfüllung des Herzens erzeugten Stillstände, denen meist grosse
andere Irregularitäten der Herzbewegung, Herzkrämpfe, peristaltische
Herzbewegungen vorausgehen, und während deren kleine peristalti-
ischen Wellen über die Herzoberfläche hinlaufen, mit Atropinstill-
ständen zu verwechseln.

Herr Harnack aber hat, wenn er keinen anderen Ausweg sah,
die diastolischen Atropinstillstände in meinen Versuchen plausibel
auf ein anderes Moment als auf Vagusreizung zurückzuführen
keinen Anstand genommen, jedesmal „allgemeine Krämpfe“ als Ur-
sache hinzuzuphantasieren.

3. Dass meine Versuchsmethoden und die Benützung von
Winterfröschen nicht Ursache meiner Versuchsresultate sein konnten,
habe ich oben bereits naseinander gesetzt.

Ich halte es aber für angezeigt, die genaue Abbildung eines
graphisch aufgenommenen Versuchs 1) hier vorzulegen, da ich in
dieser Weise wohl am besten jeder falschen Auslegung vorbeuge.
(Siehe Tafel III, Fig. 1, a—c).

Nach einer grossen Menge von Vorversuchen, in denen ich
das Verhalten des Herzens nach Einbringung kleinster Atropin-
mengen einfach mit meinen Augen beobachtet hatte, in denen also
überhaupt keine Cantile eingebunden war, und welche ich nur zum
Theil veröffentlichte, hielt ich es für angezeigt, um jeden Augen-
blick auch Anderen diese merkwürdige Thatsache zeigen zu können,
mittels des Froschmanometers dieselbe an die rotirende Trommel
anzeichen zu lassen.

In meiner ersten Veröffentlichung hielt ich die lithographische
Wiedergabe einer solchen Curve nicht für nöthig; Herr Harnack
hat mich aber jetzt belehrt, dass man am besten gleich von vornehmein

1) Froschherzversuch 1 der angegriffenen Arbeit.
das graphische Beweismaterial beigibt, um sich gegen derartige Angriffe sicher zu stellen.

Der auf Tafel III, Fig. 1 wiedergegebene Versuch war so vorbereitet worden, dass nur in die eine Aorta eine mit dem Froschmanometer verbundene Cantülle einge bunden war, und das Herz somit durch die freigebliebene zweite Aorta sein Blut immer wieder in den Körperkreislauf treiben konnte. Dies ist der Grund, warum die gezeichneten Froschherzcurven nicht die Höhe erreichen wie an Herzen, die in der Systole ihre ganze Blutmenge nur in den Froschmanometerschlauch zu treiben vermögen, z. B. an dem Coats'schen oder Luciani'schen Froschherzpräparat oder an Herzen, an denen auch die zweite Aorta unterbunden wurde.

Zum Einbringen des Giftes in das Herz war eine zweite Cantülle in die Bauchvene eingebunden worden.

Ich liess zuerst 5 Minuten lang die normalen Herzbewegungen an die rotierende Trommel zeichnen; die erhaltenen Curven ergaben die grösste Regelmässigkeit in den Herzbewegungen, in immer je 15 Secunden 7. 7. 7. 7. 7. 7. 7. 7. 6. 7. 6. 7. 7. 7. 7. 6. 7. Con tractionen. Die Höhe des Blutdrucks gemessen an der von dem Schwimmer auf die Abscisse gezeichneten Ordinate ergab 21 mm. Hg. Curve a ist ein herausgeschnittenes Stück aus diesen der Atropin injection vorausgegangenen normalen Herzbewegungen.

Es ist hiermit bewiesen, dass dieses zum Versuch verwendete Winterfroschherz mit der grössten Regelmässigkeit und Kraft arbeitete. Denn Froschherzen, die mit einem arteriellen Blutdruck von 21 mm. Hg. arbeiten, gehören schon zu den stärkeren; es gilt sonach der Vorwurf der Herzschwäche an Winterfröschen für dieses Präparat nicht.

Hierauf liess ich (Curve b α, β, γ des Versuchs) 0,001 Grm. Atropin langsam durch die Bauchvene zum Herzen einfließen.

Die unmittelbar darauf folgenden 3 Herzschläge zeigen zur Evidenz, dass die als Folge dieser Einflussung sich ergebende Erhöhung des Blutdrucks eine sehr geringfügige war und kaum einige Millimeter Hg. betrug. Wäre eine grosse Menge Flüssigkeit unter starkem Druck auf einmal in das Herz gepresst worden, so hätte sich dieses mit Nothwendigkeit auf der Curve sehr stark ausprägen müssen. Es fällt hiemit der Harvack'sche Einwand einer Reizung des Herzhemmungsapparates durch plötzliche starke Zunahme des intracardialen Drucks:
Es beginnt jetzt ein über 1 Minute andauernder diastolischer Herzstillstand, der sich auf der Curve als eine gleichmäßige zuerst etwas absinkende und dann wieder etwas ansteigende gerade Linie ausdrückt. Wären vor oder im Beginn oder im Verlauf dieser Herzstillstände allgemeine Körperkrämpfe oder nur Körperbewegungen aufgetreten, so hätten sich dieselben, wie jeder Experimenterator weiss, durch eine Menge von Unregelmäßigkeiten in der angeschriebenen Curve ausdrücken müssen. Es können demnach Krämpfe, da keine vorhanden waren, nicht als Ursache dieses Herzstillstandes aufgestellt werden.

Nach Beendigung des diastolischen Stillstandes werden sehr rasch die durch die Herzschläge bedingten Hubhöhen so hoch wie vor der Atropineinspritzung und werden im weiteren Verlauf des Versuchs immer ausgeprägter. Es kann demzufolge der Herzstillstand kein durch Ermüdung bedingter gewesen sein; denn wie sollte durch eine Minute Ruhe ein ermüdetes Herz befähigt werden können, intensivere Hube wie vor der Ermüdung auszuüben? Was sollte bei ruhender Blutsäule das Herz wieder erfrischt haben, wenn es trotz guter Circulation des Körperblutes ermüdet stille stand? Es ist somit die fünfte Behauptung des Herrn Harnack ebenso unrichtig, wie die vier vorausgegangenen.

Dass nach dem Aufhören des diastolischen Stillstandes das Froschherz erst noch 5 sehr schwache Schläge ausführte, die über der Stillstandlinie sich kaum erheben, und dass nicht wie am Säugerherzen die nach dem diastolischen Stillstand (in Folge von Erregung des Vagus) unmittelbar auftretenden Herzschläge so kräftig oder noch kräftiger sind, wie vor der Vagusreizung, ist für das Froschherz, wie Coats 1) bereits nachgewiesen, sogar der häufigere Fall.

Coats machte an seinem Herzpräparate Reizungen des n. vagus und beobachtete die hierdurch bedingten Veränderungen der Herzthätigkeit; er fand 3 verschiedene Wirkungsformen: a) In Folge der Reizung verlängert sich die Pause; während derselben sinkt der Quecksilverstand tiefer, als er in der vorhergehenden kürzeren Diastole herabgestiegen war; kehrt der Schlag wieder, so erhöht sich das Quecksilber zu Ende der Systole genau auf den Stand, den es vor der Reizung erreicht hatte; dies sind die seltenen Fälle unter seinen Beobachtungen. b) Eine zweite viel häufigere

1) l. c. S. 874.
Erscheinung ist die, dass bei einer längeren Pause als Folge dauernder Reizung das Quecksilber dem Nullpunkt bis zum Erreichen desselben näher sinkt, und wenn jetzt ein Schlag erscheint, so ist sein Hub ein sehr viel schwächerer etc. c) Nicht selten endlich bewirkt die Vagusreizung zuerst eine Erniedrigung der Excursion des Herzens.

Endlich wurde während des ganzen Versuchs, wie auch bereits in meiner ersten Arbeit angegeben ist, nie, weder vor noch nach der Atropininjection, eine electricische oder mechanische Reizung gemacht, so dass auch der von Herrn Harnack beliebte Einwand, das Herz sei immer durch electriche Reize bis zur Ermudung „maltratirt“ worden, hier keine Geltung hat.

4. Ich hatte ausser so starken Erregungen der Herzhemmungsapparate nach kleinsten Atropindosen, dass diastolische Stillstände von der Dauer des ersten oben wiedergegebenen Versuchs eintreten, bei einer Reihe von Froschherzen beobachtet, dass sie dem Atropin eine viel grössere Widerstandskraft entgegensetzten, so dass auf die erste Application kleiner Atropindosen gar keine Veränderung in der Frequenz der Herzschläge und keine Zu- oder Abnahme der Vagusreizbarkeit ein trat und erst nach wiederholter Injection neuer Atropinmengen entweder diastolische Stillstände oder doch bedeutende Pulsverlangsamung durch Vagusreizung zu Stande kamen, welcher letztere Zustand dann verschieden lang anhielt. So war in meinem sechsten Froschherzversuche die normale Pulsfrequenz 8; nach Injection von 0,001 Atropin in die Bauchvene nahm die Pulsfrequenz sogar etwas zu, statt ab; ich zählte 9. 8. 8. 9. 8. 8. 9 Schläge in je 15 Secunden, und die electriche Sinusreizung bewirkte nach wie vor diastolischen Herzstillstand. Erst nach einer zweiten Injection von 0,0005 Atropin trat diastolischer Stillstand von selbst ein mit nachfolgender Pulsverlangsamung auf 4. 4. 4. Unmittelbar darauf hob sich die Pulsfrequenz wieder auf 5. 6. 6. 7. 7, um nach 13 Minuten (von der letzten Injection an gerechnet) wieder auf die frühere Höhe von 9. 8. 9. 9 zu kommen.

In meinem neunten Froschherzversuch waren 0,0005 Atropin, unter die Haut des Schenkels gespritzt, nicht im Stande, die Herzthätigkeit zu verlangsamen, und Sinusreize bei 150 mm. R. A. bewirkten immer noch diastolische Herzstillstände. Erst eine 45 Minuten nach der ersten gemachte subcutane zweite Injection von 0,001 Atropin erzeugte diastolischen Stillstand von 10 Secunden Dauer und Pulsverlangsamung von 6. 5 auf 4. 3. 2 in je 15 Se-
cunden, und erst 45 Minuten nach der zweiten Injection erreichte die Herzthätigkeit ihre alte Höhe von 6 in 15 Secunden wieder.

5. In einer Reihe von Fällen hatte ich weitere Beweise dafür, dass die gegebenen Atropinmengen die Herzhemmungsapparate gereizt oder erst nach unverhältnissmässig hohen Dosen in ihrer Erregbarkeit herabgesetzt oder überhaupt nicht gelähmt hatten, durch folgende Versuche gegeben.

In meinem elften Versuche war vor der Injection von Atropin die Reizbarkeit der in den Venensinus gelegenen hemmenden Ganglien geprüft worden, und es hatte sich ergeben, dass ihre Reizbarkeit durch öftere Reizungen sinkt; während im Beginn des Versuches Sinusreizung bei 100 mm. R. A. noch diastolische Herzstillstände
bewirkte, mussten nach und nach immer stärkere Reize angewendet werden, um denselben Effect zu erzielen, und kurz vor der Atropin-injection waren 85 mm. R. A. die äussere Grenze, bei der noch diastolische Herzstillstände bei Sinusreizung auftreten. Es wurden nun 0,004 Grm. Atropin injicirt, nach einigen Minuten die Reizbarkeit der Hemmungsganglien wieder geprüft und gefunden, dass die Reizbarkeit wieder zugenommen hatte; es waren jetzt wieder 95 mm. R. A. im Stande, diastolische Stillstände zu erzielen. Gleichzeitig war die Pulsfrequenz von 7 auf 6. 5. 4. 3 in je 10 Secunden heruntergegangen.

Es hob sich die Pulsfrequenz sodann wieder auf 4, und hiermit nahm die Reizbarkeit der Hemmungsganglien wieder ab und sank auf 85 und 80 mm. R. A.

Dass dieser Versuch ein guter Beweis für meinen aufgestellten Satz, dass Atropin erregend auf die Hemmungsganglien wirke, geht schon daraus hervor, dass Herr Harrock einen Druckfehler (es heisst irrtümlicherweise »Aufträufelung in die Bauchvene« statt »Aufträufelung auf die Herzoberfläche«) benützt, um mit Hilfe seines gewohnten u einen Salto mortale darüber hinwegzumachen, ihn zu verschweigen. Dass ferner die Pulsverlangsamung in diesem Falle nicht etwa von einer Ermüdung und Lähmung durch Atropin oder durch die electricen Reize herrührt, beweist auch der weitere Verlauf des Versuchs; denn nach Aufträufelung von im Ganzen 0,020 Atropin und nach 8 Sinusreizungen hob sich auf einmal die Frequenz der Herzschläge wieder auf 6. 5. 6. 5. 6 in je 10 Secunden, um von da an erst allmählich wieder abzusinken, indem jetzt natürlich als zweites Moment abnehmende Erregung auch der muskulomotorischen Apparate hinzutrat.

Aber selbst in diesem zweiten Stadium der Atropinwirkung waren die hemmenden Apparate noch eine Zeit lang erregbar und ging in dem Momente, wo endlich Sinusreizung selbst bei 0 mm. R. A. keinen diastolischen Stillstand mehr bewirkte, die Pulsfrequenz wieder von 3 auf 5. 4. 4 hinauf. Wäre Ermüdung die Ursache der vorausgegangenen auf Sinusreizung hin eintretenden diastolischen Stillstände gewesen, so hätten nach so grossen Atropinmengen und auf so viele vorausgegangene electriche Reize die Ermüdungsstillstände um so leichter eintreten müssen. Dass dies nicht der Fall war, sondern dass umgekehrt immer kleinere Rollenabstände nöthig wurden und endlich selbst bei 0 mm. R. A. kein diastolischer Still-
stand mehr erfolgte, ist doch eine schlagende Widerlegung der Harnack'schen Behauptung, wie man sie besser nicht geben kann. Um so weniger aber lässt sich das Verfahren Herrn Harnack's rechtzeitig, alle Versuche, die in sein Räsonnement nicht passen, so auch diesen, zu verschweigen.

Ich habe ferner in einer Reihe von Versuchen gezeigt, dass die Hemmungsapparate mancher Froschherzen nach Atropin äusserst lange ihre Erregbarkeit behalten, oder nur höchst langsam und schrittweise weniger erregbar werden, und erst nach unverhältnismässig grossen Gaben gelähmt werden (Froschherzversuche 10, 11, 12). Der Beweis hiefür lag darin, dass nach starken Atropingaben elektrische Vagus- und Sinusreizung noch ausserordentlich lange und mit sehr langsam abnehmenden Rollenabständen diastolische Stillstände zu Wege brachte.

Es war demnach eigentlich unmöglich, aus den von mir mitgeteilten Versuchen eine andere Folgerung zu ziehen als ich sie gezogen hatte. Allein Herr Harnack gleicht einem Schüler, der von seinem Lehrer die Aufgabe bekommen hat, eine bestimmte Sache anzugehen, und der nun glaubt, an dieser Sache sonder Wahl Alles tadeln zu müssen. Er ergreift daher, um ja nicht einen einzigen Punkt anzuerkennen, den eigenthümlichen Ausweg, die von mir nach Sinusreizung beobachteten diastolischen Herzstillstände jetzt auf einmal als nicht vorhanden zu erklären, indem er mir eine ganz besondere Auffassung des Vorganges unterschiebt und indem er durch Vergleichung der Dauer meiner diastolischen Stillstände mit der Frequenz der Herzkontraktionen den Beweis führen möchte, dass ich eine unbedeutende Verlängerung der Diastole als diastolischen Stillstand ausgesetzt hätte. »Es sei auffallend, was ich als diastolischen Herzstillstand bezeichnete; wenn das Herz einmal im Laufe einer
Viertelminute 1 oder 2 Schläge weniger macht als sonst, so sei dies
doch noch kein diastolischer Herzstillstand; sonst könnte man die
Ruhe, in welcher sich das Herz zwischen zwei Systolen befindet,
acht einen diastolischen Herzstillstand nennen."

Ich möchte hier Herrn Harnack ins Gedächtniss zurückrufen, was er Alles in Bezug auf meine diastolischen Stillstände bis
jetzt schon behauptet hat: »Bei Winterfröschen würden diastolische
Stillstände schon bei blosser Berührung der Ventrikelwandungen
hervorgerufen; die von mir beobachteten diastolischen Stillstände
seien nicht durch das Atropin zu Stande gekommen, sondern je
nachdem durch Krampf oder durch Ermüdung, oder durch die
Einspritzung in die Venen, oder durch Malträtsigung«. Es ist gewiss
auffallend, dass Herr Harnack sich so grosse Mühe gab, meine
diastolischen Stillstände auf alle möglichen Ursachen zurückzuführen,
um zum Schluss seine eigene Argumentation selbst wieder
umzustossen, indem er meine diastolischen Stillstände überhaupt
nicht als solche gelten lassen will.

Ich bin auch hier in der Lage, eine Reihe von graphischen
Aufnahmen der erwähnten Froschherzreaktionen vorzulegen; da ich
auch diese in meiner ersten Arbeit nicht beigegeben hatte, so ergreife ich diese Gelegenheit, um das Versäumte nachzuholen. Ich
glaube nicht, dass Herr Harnack nach gründlicher Betrachtung
derselben wagen wird, mir fernerhin die Berechtigung zu bestreiten,
die aufgeschriebenen Verlängerungen der Diastole als »diastolische
Stillstände« zu bezeichnen; auch wird sich aus den hier gegebenen
Curven wieder ergeben, dass sämtliche Deutungsversuche, die Herr
Harnack zu geben bemüht ist, gar keine Grundlage haben.

Auf Tafel III Fig. 2 lege ich 19 Sinusrhythmen vor, die ich in
meinem zwölften Froschherzversuche (der ersten Arbeit) vor und
nach Injection von Atropin gemacht habe. Es sind auf die berusste
Fläche der rotirenden Trommel innerhalb einer Reihe höchst regel-
mässiger Curven jedesmal mit grösster Schärfe die von mir als
diastolische Stillstände bezeichneten Verlängerungen der Diastole
gezeichnet; die Bewegungen, wie sie das Herz vor und nach solchen
Stillständen angeschrieben hat, zeigen klar und deutlich, dass das
gebrauchte Froschherz von Anfang bis zu Ende schön und regel-
mässig arbeitete, trotz der vielen Reize und trotz der Einspritzung
von Atropin in die Bauchvene. Während vor der Atropinisierung
elektrische Sinusreize bei 200 mm. R. A. noch einen kurzen diasto-
lischen Stillstand bewirken (Fig. 2, a), erzeugen nach der ersten Injection von Atropin dieselben Rollenabstände keinen Stillstand mehr (2, b), ein offenbarer Beweis, dass der erste diastolische Stillstand durch Erregung der hemmenden Elemente zu Stande kam, und dass diese letzteren durch die erste Atropinjection eine Abnahme ihrer Erregbarkeit erfahren haben. Eine Annäherung der Rollen bis auf 150 mm. A. bewirkte aber wieder Stillstände. Dass die aufgeschriebenen Stillstände ferner nicht Folge einer Ermüdung sind, ersieht man auch schon daraus, dass unmittelbar nach den meisten derselben die unmittelbar darauf eintretenden Herzhuber stark und hoch sind, als die dem Stillstand vorausgegangenen. Dass Körperkrämpfe nicht mit im Spiele gewesen sein können, lehrt die Regelmässigkeit der angeschriebenen Herzarbeit. Zugleich geben die aufeinander folgenden einzelnen Curven die höchste Gesetzmässigkeit in der immer grösser werdenden Abnahme der Erregbarkeit.

Bei Curve Fig. 2. t waren bereits 0,0045 Atropin von der Bauchvene aus in das Herz gespritzt, und Sinusreizung ergab doch noch prächtige diastolische Stillstände. Ich gebe ferner auf Tafel III Fig. 3 zwei weitere Curven eines in meiner ersten Arbeit nicht veröffentlichten Versuches. In diesem war das Atropin unter die Haut des Schenkels gespritzt worden in mehreren einzelnen Dosen von je 0,00025 und 0,001 Grm., so dass im Ganzen bis zu dem Moment, wo die mitgetheilte Curve vom Herzen gezeichnet wurde, dem Thierkörper 0,00425 Atropin im Verlaufe von 16 Minuten einverleibt waren; die in die 2 Curven fallenden 3 Sinusreizungen (×××) sind die 8., 9. und 10. des Versuches; noch 20 weitere Minuten nach der letzten Sinusreizung (×××) bewirkten neue Sinusreize bedeutende diastolische Stillstände. Es ist gewiss auch hier keine Spur einer stürmischen oder unregelmässigen Herzaktion, einer Ueberfüllung des Herzens mit Blut, eines Ermüdungsstillstandes etc. herauszulesen.

Denkt Herr Harnack wohl immer noch, derartige Beweise mit seinem stereotypen Fragezeichen abfertigen zu können?

Aus den angeschriebenen Curven ergiebt sich auch, dass bei der höchst regelmässigen Herzarbeit schon das Ausfallen eines einzigen Herzschlages eine auffallende Bild gibt, dass der Blutdruck absinkt etc., kurz, dass ich wohl berechtigt war, jede, auch nicht grosse Verlängerung der Diastole über die normale Dauer als diasto-
lischen Stillstand zu bezeichnen 1). Herr Harnack versucht namentlich die Dauer der auf Sinusreizung eintretenden diastolischen Stillstände in meinem dritten Froschherzversuch zum Nachweis zu benützen, dass das, was ich mit „diastolischer Stillstand“ bezeichnete, nur unbedeutende Verlängerung der Diastole gewesen sei, indem ich bei einer Herzaction 2 in 15 Secunden angegeben habe: „Auf Sinusreizung von 140 mm. R. A. diastolischer Stillstand von 8 Secunden etc.;“ er hat aber wohlweislich verschwiegen, dass die von mir angegebene Herabsetzung der Herzaction von 6 auf 3 und 2 Folge der Atropinisierung war, sowie dass die Herzaction zur Zeit der Reizung 2. 3. 2 betrug (er sagt nur 2); und hat endlich bei Berechnung der Dauer der Diastole den kleinen Umstand ganz ausser Acht gelassen, dass auch die Systole eine gewisse Zeit in Anspruch nimmt. Auf diese Weise natürlich fällt es ihm leicht, als Dauer einer jedesmaligen Diastole bei 2 Herzschlägen in 15 Secunden 71/2 Secunden (demnach hätte die Dauer der 2 Systolen 0 Secunden betragen) zu berechnen und dann unter Zuhilfenahme eines 1 zu behaupten, mein sogenannter diastolischer Stillstand habe 1/2 Secunde länger gedauert, als die normale Diastole.

6. Controlversuche. Bis jetzt habe ich nur die positiven Beweise für meine Angaben über die Wirkung des Atropin auf das Froschherz vorgebracht. Ich hatte in meiner ersten Arbeit aber auch ausdrücklich angegeben, dass ich Controlversuche gemacht

1) Ich bin zudem nicht der Erste und Einzige, der auch kurze Verlängerungen der Diastole als diastolische Stillstände bezeichnete. Herr Harnack braucht nur Böhm's Herzgifte durchzulesen, so wird er z. B. Seite 42 bei einer Frequenz von 14 Herzschlägen in 20 Secunden eine auf Vagusreizung eintretende Diastole von 3 Secunden Dauer, Seite 50 bei einer Frequenz von 10 Herzschlägen in 20 Secunden eine Diastole von 1 1/2 Secunden Dauer als diastolischen Stillstand angeschrieben finden etc.

Einspritzung von verschiedenen Substanzen unmittelbar in das Herz. Variirung des Füllungsdruckes.

Wenn bei meinen Atropinversuchen die nachfolgende Verlangsamung der Herzaction und die diastolischen Stillstände nicht durch das Atropin, sondern durch die unmittelbare Einspritzung in die Vene zu Stande gekommen wären, so müssten die Substanzen gleichgültig sein, die man durch die Vene hindurch einbringt.

Ich habe deshalb eine Menge von Einspritzungen mit destilliertem Wasser und mit Kochsalzlösung durch die Bauchvene gemacht, von denen ich einige Beispiele mitgetheilt habe; nie war dadurch eine auch nur kleine Verlängerung der Diastole zu erzielen. Ausserdem habe ich eine grosse Zahl verschiedener Alkaloiide und Glucoside durch die Bauchvene gegen das Herz hin eintliessen lassen, in derselben Weise, wie ich es bei meinen Atropinversuchen gehalten hatte, namentlich viele solche Versuche mit Digitalin, Veratrin, Antiarin, Pikrotoxin, Strychnin, Colchin, Ecbolein, Aconitin gemacht; mit keinem dieser Gifte gelang es mir, einen diastolischen Stillstand zu erzielen. Es traten vielmehr genau dieselben Herzreactionen ein, welche bei subcutaner Injection dieser Gifte für manche derselben so überaus charakteristisch sind. Wenn aber die venöse Injection des Digitalin, Veratrin, Antiarin etc. genau in derselben Weise das Herz beeinflusst, wie ihre subcutane Injection, warum soll dann die venöse Injection des Atropin allein anders wirken, wie die subcutane Injection?

Ich habe ferner Wasser oder Luft in verschieden heftiger

1) Diese Versuche sind in meiner ersten Arbeit über diese Materie nicht mitgetheilt.
Weise durch die Vene in das Herz gespritzt; nie zeigte sich eine Verlangsamung der Herzaktion oder diastolische Stillstände, selbst bei den heftigsten Drucken: ja ich habe von der Bauchvene aus Luft so lange in das Herz gepumpt, bis das Herz wie ein kleiner Ballon ausgedehnt war und durchsichtig wurde, so dass man die Contractionen der einzelnen Herzmuskelfasern namentlich an den Vorhöfen unter dem Mikroskop wunderschön beobachten konnte 1); ich habe solche Ballonherzen stundenlang nicht aus dem Auge gelassen: nie trat ein diastolischer Stillstand auch nur von einigen Secunden Dauer ein; und hier war der innere Herzdruk fast bis zum Zerplatzen gesteigert. Ich war ferner vor Jahren Zeuge der Blasius-Fick'schen Herzversuche 2), bei denen die Herzarbeit unter dem Einfluss der verschiedensten Füllungsdrucke studirt wurde (zwischen 2—27 mm. Quecksilber); nie wurde durch noch so starke Steigerung des Füllungsdruckes ein diastolischer Stillstand erzeugt, obwohl Blasius zu seinen Versuchen verhältnissmässig kleine und schwächliche Winterfrösche benutzte.

Da also weder Wasser, noch Kochsalzlösung, noch Luft, noch die oben genannten Gifte, da ferner auch selbst enorm gesteigerter Füllungsdruck nicht im Stande war, diastolischen Herzstillstand zu erzeugen; da ferner auf andere alcaloidische Gifte das Herz in derselben charakteristischen Weise reagirt, ob dieselben in die Vene oder unter die Haut gespritzt werden: so darf man nach den Controlversuchen dieser Reihe schon den Schluss ziehen, dass die nach Atropinjection in die Vene beobachtete Verlangsamung der Herzaktion und die diastolischen Stillstände auf die Wirkung des Atropin bezogen werden müssen.

Seite 316 findet Herr Harnack es sehr verständlich, dass ich 4 Winterfrösche gefunden habe, deren Herzmuskeln nicht die genügende Widerstandsfähigkeit besass gegenüber einem so bedeu- tenden Eingriff, welchen eine directe Injection einer Flüssigkeit in das Herz involvirt. Dass aber bei meinen Controlversuchen mit

1) Auch diese Versuche, die meines Wissens bis jetzt noch nicht an- gestellt wurden, und die bei der enormen Auseinanderdrängung der Herzmuskelfasern selbst bei starken Vergrösserungen ihre regelmässigen Con- tractionen mir noch gut zu untersuchen erlaubten, habe ich in der ersten Arbeit nicht mitgetheilt.

2) l. c.
Einspritzung von Wasser in die Vene kein diastolischer Stillstand eintrat, beweist Herrn Har n a c k nichts, weil auch auf Atropin-Injection bei manchen Fröschen kein Stillstand eintrat. Es zeigt dies, sagt er, wieder nur die verschiedene Resistenzfähigkeit der einzelnen Froschherzen. Herr H a r n a c k lässt demnach den einen Frosch, je nachdem es ihm passt, schwach, den andern stark sein, ohne je eines meiner Versuchsthiere gesehen zu haben, also ohne jeden Schatten eines Beweises.

... Subcutane Atropineinspritzung.

Umgekehrt durften, wenn bei der venösen Einspritzung des Atropins der Modus der Applikation und nicht das Atropin Schuld war an der darauf eintretenden Erhöhung der Vagusreizbarkeit, an den hierdurch bedingten diastolischen Stillständen, diese Herzreaktionen nicht eintreten bei einer anderen Applikationsweise. Ich habe deshalb Atropin subcutan und durch Auftränufung auf das bloßliegende Herz und dessen Umgebung dem Körper einverleibt, aber wieder dieselben Resultate erhalten, wie bei der venösen Injection, also auch auf diesem Wege den Beweis meiner Behauptung erbracht. Herr H a r n a c k verwirft den Weg der Eintränufung des Giftes in den geöffneten Thorax als unzweckmäßig, ohne aber Gründe hierfür anzugeben, als ob eine solche Eintränufung etwa anders sich verhielte, als wie eine subcutane Injection, und nimmt daraus Anlass, die auf diesem Wege entstandenen Resultate — zu übergehen. Und bei der Mittheilung meines Versuchs, wo ich auch nach subcutaner Atropininjection einen diastolischen Stillstand von 10 Secunden Dauer bei einer Herzaction von 5, 6, 5, 5 in je 15 Secunden erhielt, verschweigt er wieder, dass auch auf subcutane Injection diastolischer Stillstand eingetreten ist, und kritisiert die nachfolgende Frequenz der Herzschläge, deren Zahl er aber zu diesem Behuf erst wieder fälschen muss. Während das ausführliche Versuchsprotokoll unzweideutig, wie sich Jedermann durch Nachlesen überzeugen kann, angiebt, dass nach dem diastolischen Stillstand der zweiten Injection (welchen Herr H a r n a c k verschweigt) die Herzaction im Verlauf von 45 Minuten auf ihre ursprüngliche Frequenz von 6 in 15 Secunden wieder hinaufgegangen ist (5b 20), und dass von dem Moment, wo das Herz in 15 Secunden zum letzten Male 3 Contractionen ausführte (4b 55), bis zu dem Moment, wo es
wieder regelmässig 6 Schläge ausführte (5 h 15), 10 Minuten verflossen sind, ist, wie Herr Harnack referirt: „die Pulsfrequenz insonstant zwischen 3 und 6.“

Stärkste Sinusreizungen an Froschherzen vor und nach Lähmung der Hemmungsapparate durch Atropin. Einwirkung von Körperkrämpfen auf dieselben Froschherzen.

Da alle Beobachter vor mir ohne Ausnahme gefunden hatten, dass das Froschherz auf Atropin immer nur zunächst mit einer Lähmung seiner Hemmungsapparate antwortet, und da sie diesen letzteren Zustand dadurch beweisen, dass am atropinisirten Froschherzen weder Vagus- noch Sinusreizung mehr einen diastolischen Herzstillstand bewirken: so warf sich die Frage auf, ob in meinen Atropinversuchen am Ende doch die Hemmungsapparate gelähmt waren und die von mir trotzdem auf Sinusreizung beobachteten diastolischen Stillstände keinen Beweis für ein Bestehenbleiben der Vaguserregbarkeit abgeben, sondern durch andere Momente bedingt sind; mit anderen Worten, ob nicht die auf Sinusreizung eintretenden diastolischen Herzstillstände auf eine Beeinflussung verschiedener Herztheile zurückgeführt werden müssen, so dass in einem Falle, z. B. am nicht atropinisirten normalen Herzen, die auf Reize eintretenden Herzstillstände allerdings auf einer Reizung der Hemmungsapparate beruhen, in einem andern Falle, z. B. bei Lähmung der Hemmungsapparate, auf anderen bis jetzt unbekannten Ursachen. Als diese andere Ursache aber war Ermüdung und Erschöpfung des Herzens zu denken etwa in Folge zu heftiger electricer Schläge, oder in Folge der Atropinisierung selbst. In letzterem Falle hatte man sich zu denken, dass durch das Atropin das Herz in einen solchen Zustand der Schwäche versetzt würde, dass jeder electriche Reiz im Stande ist, es durch Ueberreizung zu lähmen. Wenn zwar in allen meinen Versuchen die auch nach Atropinisirung ungeschwächt fortdauernde Stärke der Herzarbeit nicht für letztere Annahme sprach, so glaubte ich doch zu meiner eigenen Beruhigung auch noch auf eine andere Art mir darüber Sicherheit verschaffen zu müssen. Die zu diesem Behufe angestellten Versuche habe ich in meiner ersten Arbeit nur zum kleinsten Theile mitgetheilt, obwohl dieselben von der grössten Beweiskraft sind.
Ich benutzte hierzu diejenigen Froschherzen, welche nach einer
unmittelbar in die Bauchvene oder subcutan gemachten Injection
einer so grossen Gabe Atropin, die nach allgemeiner Annahme un-
mittelbar hemmungsläthmend wirkt, noch längere Zeit auf electriche
Sinusreize in diastolische Stillstände verfielen. Waren diese Still-
stände nicht durch Reizung der Hemmungsapparate in Folge der
erhalten gebliebenen Erregbarkeit derselben (wie ich angenommen
hatte), sondern durch eine Erschöpfung des Herzens bedingt, dann
musste selbstverständlich diese Erscheinung bei wiederholt ange-
wendeter Atropinapplikation oder bei fortgesetzten electricen Rei-
zungen immer deutlicher hervortreten, die diastolischen Stillstände
mussten immer länger dauern etc. Umgekehrt, waren die diastoli-
schen (Sinusreiz) Stillstände, die auch nach Atropinisierung auftreten,
wirklich der Ausdruck der trotz Atropin erhalten gebliebenen
Erregbarkeit der Hemmungsapparate, dann mussten sie bei fortge-
setzter Atropininjection aufhören; es musste ein Moment eintreten,
wo die heftigsten Reize an den Sinus oder sonst wie immer keine
Stillstände mehr hervorzurufen vermochten.

In der That zeigte sich in diesen Versuchen stets das letztere
Verhalten, wie übrigens auch die in der ersten Arbeit schon mit-
getheilten 10 und 11 Froschherzversuche beweisen; es ergab sich
also mit unbezweifelbarer Gewissheit die Richtigkeit meiner An-
nahme: dass die von mir beobachteten diastolischen Stillstände
durch die Reizung der noch erregbaren oder sogar in erhöhter Er-
regbarkeit befindlichen Hemmungsapparate bedingt waren.

Gegenüber der Harnack'schen Angriffsweise wird es auch
hiefür zweckmässig sein, eine graphische Aufnahme eines solchen
Versuches zur Beurtheilung vorzulegen.

Tafel III Fig. 4 zeigt die wichtigsten Ausschnitte eines solchen
Versuches, bei dem 0,002 Atropin in die Bauchvene eingefloss
wurden (Fig. 4, a), ohne dass ein diastolischer Stillstand eintrat,
worauf noch nach 3 Minuten, von der Einspritzung an gerechnet,
auf Sinusreiz bei 100 mm. R. A. ein diastolischer Stillstand auf-
trat (4, b). ¾ Minuten nach diesem Stillstand jedoch waren die-
selben Rollenabstände schon nicht mehr im Stande, irgendwie die
Herzaction zu beeinflussen (4, c) und ebensowenig 0 R. A. unmittel-
bar nach dieser Reizung (4, d); auch nicht nach 7 Minuten (von
der Injection ab gerechnet; 4, e). Endlich war auch starke Faradisierung
der Unterleibsdecken nicht vermögend, Stillstände zu er-
zeugen; die einzige Folge dieses letzteren, stark schmerzhaften und
den Frosch zu heftigen Reflexbewegungen veranlassenden Eingriffes
waren eine Verstärkung der Herzaktion, so dass bei jeder Herz-
contraction die Quecksilbersäule höher gehoben wurde und bei der
Diastole nicht mehr so tief absank, wie vor der Reizung (4, f).
Am Schlusse des Versuches endlich wurde auch die vorher offene
rechte Aorta unterbunden, und es zeigten sich, da jetzt der ganze
Druck nur in das Manometer ging, ein starkes Ansteigen der Queck-
silbersäule und bedeutend höhere Herzschübe (4, g).

Nach den vorausgegangenen Auseinandersetzungen habe ich
wohl nicht nötig, hier nochmals ausführlich nachzuweisen, wie auch
durch diese Versuche unzweifelhaft sich ergibt, dass die H a r n a c k-
schen Einwürfe, die von mir beobachteten diastolischen Stillstände
seien bedingt durch Einbringung von Cantilen in die Aorta und
Vene der Winterfrösche, oder durch Erniedrigung des Herzens in Folge
der starken Reize, oder durch heftige Körperbewegungen und Krämpfe,
durchaus unhaltbar sind.

Vergleichung der durch Atropin hervorgerufenen mit
Nicotinstillständen.

Um nach keiner Seite hin etwas unversucht zu lassen, und
um meinerseits wenigstens alle erdenklichen Möglichkeiten experi-
mentell zu prüfen, habe ich auch Versuche mit kleinsten Dosen
Nicotin angestellt, welches Gift nach Tru h a r t’s und S c h m i e d e-
berg’s Angabe die Hemmungsapparate der meisten Froscherzen
zuerst erregt und dann lähm t (genau so, wie ich es für das Atro-
pin gefunden hatte), welches also auch im ersten Wirkungsstadium
diastolische Stillstände oder Pulsverlangsamung hervorruft, und dem-
nach Ähnlichkeiten mit den von mir beobachteten Atropinherz-
wirkungen darbietet.

Ich wollte zunächst sehen, ob etwa die Nicotinstillstände des
Froscherzens in anderer Weise in Erscheinung treten, als meine
Atropinstillstände, und ob ich durch eine Vergleichung beider nicht
am Ende doch zu einer Modifikation meiner Anschauungen ge-
zwungen würde.

Allein, so viele Versuche ich auch anstellte, wenn es mir über-
haupt gelang, Nicotinstillstände zu bewirken, so konnte ich nie,
weder einen qualitativen noch einen quantitativen Unterschied zwi-
schen meinen Atropin- und den Schmiedeberg'schen Nicotinstillständen herausfinden.

Da weder Schmiedeberg noch Tru hart Curven solcher Nicotinstillstände gegeben haben, so gebe ich die genaue Copie eines solchen von mir angestellten Versuches auf Tafel III Fig. 5 wieder, der an einem in seiner natürlichen Circulation gebliebenen Froschherzen angestellt ist, und wo von einer in die linke Aorta einge bundenen Cantile aus die Herzbewegungen durch ein kleines Quecksilbermanometer auf die rotirende Trommel aufgezeichnet und die Nicotininjection subcutan gemacht worden war.

Ich denke hiermit den Nachweis geliefert zu haben, dass alle Fehlerquellen, die Herr Harnack in meine Versuche hineinzulegen sucht, von mir selbst in ausführlichen Untersuchungen berücksichtigt wurden, und dass die Resultate meiner Untersuchungen durch dieselben in keiner Weise berührt werden.

7. Ich gehe an die Betrachtung des experimentellen Theiles der Harnack'schen kritischen Untersuchung.

Man sollte denken, die heftige Form des Angriffes habe zum wenigsten eine solide Basis an exact durchgeführten Gegenversuchen. Aber gerade diese letzteren zeigen die Frivolität des Harnack'schen Angriffes gegen die wissenschaftliche Ehre eines Fachgenossen noch deutlicher als Alles, was bis jetzt aus dem theorethischen Theil seiner Kritik in dieser Richtung hervorgehoben werden musste.

Eine Widerlegung meiner Versuchsergebnisse hätte, wie ich bereits gezeigt habe, in der Weise stattfinden müssen, indem 1) gezeigt worden wäre, dass man bei Winterfröschen durch venöse Injection aller möglichen Stoffe, differenter und indifferenter, mindestens ebenso häufig diastolische Stillstände des Herzens erzeugen könne, wie bei Atropininjektionen; 2) dass bei kräftigen Froschherzen Atropin niemals diastolische Stillstände hervorrufe; 3) dass die Stillstände, welche Atropin bei Winterfröschen hervorrufe, Ermüdungsstillstände sind und nicht durch Reizung der Hemmungsapparate zu Stande kommen. Es war Herrn Harnack leider viel zu mühevoll, sich durch eine solche grosse Reihe von Versuchen hindurchzuarbeiten, und er geräth daher in dem Bestreben, sich die Sache leicht zu machen und doch Versuche vorzuführen, auf folgenden erstaunenswerthen Weg. Nachdem er in seiner vorausgeschickten theoretischen Kritik das Auftreten der diastolischen Stillstände nach Einspritzung
von Atropin in die Bauchvene zum Theil der schlechten Beschaffenheit und Herzschwäche der Winterfrösche zugemessen hat, experimentirt er — zum Beweis für seine Behauptung — selbst an Winterfröschen, hat aber jetzt auf einmal, wie er selbst angiebt, grosse, kräftige Exemplare. Während er wenige Seiten vorher mir gegenüber behauptet hat, dass die geschwächten Herzen der Winterfrösche selbst bei gelinden Kältegraden sehr beträchtliche Unregelmässigkeiten zeigen, führt er jetzt 12 Winterfrösche mit der schönsten Regelmässigkeit der Herzaktion vor, beweist folglich zu meinen Gunsten und gegen seine frühere Behauptung, dass es auch ganz gesunde Winterfrösche mit regelmässig arbeitenden Herzen giebt, dass aber auch meine Winterfrösche ein kräftiges und gesundes Herz gehabt haben können, wie die seinigen.

Auf subcutane Einspritzung von Atropin nun fand er nie, dass hierdurch eine Pulsverlangsamung oder durch Hemmungsreizung diastolische Stillstände eintraten; nur in Versuch 3 sah er in Folge heftiger Muskelanstrengungen diastolischen Stillstand von 20 Sekunden Dauer eintreten, wobei das Herz sich stark mit Blut füllte und sich in das kleine Brustfenster einklemmte; und in seinem vierten Versuche giebt er an, dass bei einer R. temporaria 25 Minuten nach subcutaner Injection von 0,001 Atropin auf Sinusreizung das Herz eine Zeit lang weiter arbeitete und endlich in Diastole still stand. Höchst naiv setzt hier Herr Harnack in Parenthese bei »Ermüdungsstillstand«, ohne jede Angabe, welche Momente ihm darauf hindeuteten, dass eine Ermüdung und nicht Reizung der Hemmungsapparate die Ursache des Stillstandes war. Wo er also eine frühere Behauptung beweisen soll, stellt er eine neue Behauptung auf, als ob eine Summe von 2 Behauptungen einen Beweis ausmachten.

Doch will ich hiervon ganz absehen und annehmen, dass sämtliche 12 Frösche des Herrn Harnack auf Atropin nicht mit einer Erregung, sondern mit einer Lähmung ihrer Hemmungsapparate reagirten. Nun habe ich aber selbst, wie ich in meiner ersten Arbeit ausdrücklich angab, dasselbe Verhalten bei Froschherzen ebenfalls gefunden und im Laufe der Zeit jedenfalls an einer viel grösseren Zahl als Herr Harnack. Es liefern diese Beobachtungen somit keinen Beweis gegen meine andere Beobachtungsreihe, in der die Froscherzen auf Atropin mit Verlangsamung und Stillstand ihrer Bewegungen antworteten. Herr Harnack hätte deshalb folgerichtig so lange suchen müssen, bis er Frösche fand, die durch
Untersuchungen über d. physiolog. Wirkungen d. Atropin u. Physostigmin. 427

Es verliert zudem mit der Thatsäch, dass Herr Harnack nur solche Frösche gefunden hat, deren Hemmungsapparate auf Atropin sogleich gelähmt werden, die zweite Hälfte seiner 12 Frosch-

1) der übrigens schon im Jahre 1873 durch den Nachweis Fröhlich's, dass auch Herbstfrösche dieselbe Reaction wie die Winterfrösche darbieten, ebenfalls zu meinen Gunsten entschieden wurde.

Herr Harnack hätte sich übrigens eine Lehre aus der kurze Zeit früher veröffentlichten Mittheilung Böhm's 1) ziehen können. Auch Böhm war in einer ersten mit Wartmann angestellten Untersuchung über die physiologische Wirkung des deutschen Aconitin zu einem den vorausgegangenen Untersuchungen Ascharumow's und Weyland's entgegengesetzten Resultate gekommen. Während letztere gefunden hatten, dass die Erregbarkeit der motorischen Nerven durch das deutsche Aconitin vollständig aufgehoben wird, konnten Böhm und Wartmann diese Nerven in keinem Stadium der Vergiftung unerregbar finden. Dieselben geben ausdrücklich an, dass sie auf ihre eigenen Resultate im Anfang misstrauisch waren und deshalb 39 Versuche (nicht 12, wie Herr Harnack) zur Klarlegung der Frage an 39 Würzburger Fröschen (R. esculenta) anstellten, bei allen ohne Ausnahme aber die motorischen Nerven durch schwache electriche Reize noch gut erregbar fanden; sie glaubten daher berechtigt zu sein, die Ascharumow'schen etc. Resultate als irrige zu betrachten. Als sodann Böhm in Dorpat dieselben Versuche nochmals mit R. temporaria aufnahm, fand er zu seiner Verwunderung, dass die Frösche genau so auf dasselbe Aconitinpräparat reagirten, wie es Ascharumow und Weyland angegeben hatten. Böhm entnimmt hieraus eine neue Mahnung, mit der Verallgemeinerung von Versuchsergebnissen vorsichtig zu sein. Herr Harnack aber, der gar nicht weiss, mit

welchen Fröschen ich Versuche angestellt habe, geht von 12 Froschherzen aus mit einer Leidenschaft gegen meine Versuchsresultate vor, die Böhm bei 39 stets negativ ausfallenden Versuchen nicht für angezeigt fand.

Herz der Warmblüter.

Schneller und Flechner: Auf ⅓—⅓ ⅔ Grm. Extr. Bellad. trat 1mal Erhöhung auf 100, 1mal Reduction auf 50 Schlüge ein.

Wertheim: Atropin setzt die abnorm vermehrte Pulsfrequenz herab, beschleunigt dagegen dieselbe wieder bei grossen Dosen.

Lusana: Atropin verstärkt und verlangsamt den Puls.

Lichtenfels und Fröhlich: Atropin setzt die Pulsfrequenz anfangs herab, um dieselbe später zu erhöhen.

v. Bezold:

1) Bei einem Kaninchen mit undurchschnittenen Vagi werden auf 0,01 Atropin die Herzschläge etwas langsamer (III A Versuch 1).

2) Bei einem Kaninchen fällt 1 Minute nach Einspritzung von 0,05 Atropin die Herzfrequenz von 70 auf 44, um später wieder auf 60, 57, 60 etc. zu steigen (III A Versuch 6).

3) Kaninchen. Auf Injection von 0,05 Atropin sinkt die Pulsfrequenz von 80 auf 56 (III A Versuch 8).

4) Kaninchen. Bei der Injection von 0,1 Atropin werden bei der Injection des Giftes die Herzschläge verlangsamt (III A Versuch 10).

5) Kaninchen von 56 Herzschlägen in 15 Seconden. Nach Durchschneidung der Vagi steigt die Frequenz auf 60, fällt aber nach Injection von 0,02 Atropin sogleich auf 48 (III B Versuch 2).

6) Kaninchen, 56 Herzschläge in 15 Seconden; dieselben stiegen nach Durchschneidung auf 60 und sanken nach der Injection von 0,04 wieder auf 56 (III B Versuch 8).

7) Hund. Vor Vagusdurchschneidung 56 Herzschläge.

<table>
<thead>
<tr>
<th></th>
<th>168</th>
<th>160</th>
<th>148</th>
<th>186 etc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach</td>
<td></td>
<td></td>
<td></td>
<td>(III B Versuch 5)</td>
</tr>
</tbody>
</table>
Dr. M. J. Rossbach:

6) Hund. Vor Vagusdurchschneidung 140 Herzschläge.

Nach " 266 "

232 "

Nach 0,006 Atropin 200 " (III B Versuch 6).

Diese Autoren, deren Angaben und Citierung durch mich verschweigt wieder Herr Harnack vollständig; ja er giebt sich den Anschein, als ob er nicht wisse oder in meiner Abhandlung gelesen habe, dass diese Beobachtung schon lange vor mir gemacht worden ist, indem er wörtlich schreibt: "Wenn die Verfasser meinen, durch die beiden Zahlen in Versuch 2 die bisher gültige Anschauung über die Wirkung des Atropin auf das Herz der Säugethiere stürzen zu können, so messen sie ihren Lesern doch zu wenig Kritik bei". Ich glaube nicht, dass die wissenschaftliche Unschicklichkeit mehr auf die Spitze getrieben werden kann. Wo wir also ausdrücklich frühere Beobachtungen nur bestätigen wollten, da will Herr Harnack seinen Lesern den Glauben beibringen, wir allein hätten diese Resultate gehabt. Ich habe die Pulsverlangsamung auf Atropin in 2 Versuchen, Fröhlich später in weiteren 4 Versuchen gefunden, die ich hier zusammenstelle:

Rossbach und Fröhlich 1):

1. Kaninchen vor Atropin 62 Herzschläge
 nach 0,06 " 46 "

2. Kaninchen vor Atropin 47. 48. 47. 50 Schläge
 nach " 51. 47. 46. 43. 43."

Fröhlich 2):

3. Kaninchen vor Atropin 60—70 Herzschläge
 nach " 50—60 "

4. Kaninchen vor " 63 "
 nach " 58 "

5. Kaninchen vor " 69 "
 nach " 65 "

6. Kaninchen vor " 67 "
 nach " 63 "

in 15 Sekunden. Auch diese Versuche verschweigt Herr Harnack und spricht stets nur von 1 Versuch.

Ich habe seit 2 Jahren stets mein Augenmerk auf diese Frage gerichtet und in einer grossen Zahl von weiteren Experimenten bestätigt gefunden, dass unmittelbar nach kleinsten Dosen

Atropin bei vielen Kaninchen eine Verlangsamung der Herzfrequenz eintritt; diese Verlangsamung hält selten längere Zeit an, geht rasch vorüber und ist selten eine sehr bedeutende. Daraus erklärt sich, warum sie von vielen Beobachtern überschätzt wurde und wird. Es muss aber doch gewiss nicht jede Wahrheit auch lang oder gross sein, um wahr zu sein. Ich habe auf Taf. III Fig. 6 (a—c) drei diese Verhältnisse illustrierende Ausschnitte beigegeben. In Curve a führte das Herz vor der Atropinvergiftung in 15 Secunden 49 Contractionen aus; 1 Minute nach der ersten Injection von 0,001 Atropin macht es 42 Contractionen in 15 Secunden; zugleich waren die Herzrube stärker; erst nach einer zweiten Injection von 0,001 Atropin ging es auf 54 Schläge.

Weil Fröhlich und ich gleich anderen Forschern aber auch viele Kaninchen gefunden hatten, bei denen unmittelbar nach Atropinisirung Vaguslähmung und Pulserhöhung eintrat, stellte Herr Harnack die Behauptung auf, weil wir an verschiedenen Kaninchen Verschiedenes beobachtet hätten, so hätten wir uns selbst widerlegt.

Ich komme hiermit unmittelbar zur Betrachtung der individuellen Verschiedenheit, die man auch bei gleicher Thierspecies findet, und die sich unter anderem auch in verschiedener Reaction gegen ein und dasselbe Gift ausdrückt.

Einfluss der Individualität.

Thieren durch die Individualitäten in seinen Experimenten gestört wird; wie oft misslingen durch diese Verschiedenheit in der Organisation derselben Thierart die Demonstrationen selbst sehr häufig gebüter Versuche. Ist diese individuelle Verschiedenheit ja auch der Grund, weshalb man sich bei Giftversuchen nie mit einem einzigen Versuche begnügt, sondern immer nur grössere Versuchsreihen als beweisend ansieht.

Ich wende mich deshalb eigentlich nur an Herrn Harnack, der, bevor er unter die Kritiker ging, nur eine einzige pharmakologische Untersuchung gemacht und deshalb jedenfalls nicht die nöthige Erfahrung hatte. Sonst hätte er gewiss nicht auf den Einfall kommen können, meine Angabe, dass sich die von mir untersuchten Thiere auch individuell verschieden bei Vergiftung mit Atropin und Physostigmin verhalten, als Beweis der Unrichtigkeit meiner Beobachtungen zu verwerthen. Die einzige Verlegenheit hierbei bereitet mir nur die ungeheure Masse von Material, die von den verschiedensten Forschern im Laufe der Zeit angehäuft wurde. Ich lege mir daher freiwillig die Beschränkung auf, gegen die Harnack'schen Behauptungen nur diejenigen Erfahrungen vorzuführen, die von seinem Lehrer Schmiedeberg und diesem nahe stehenden Forschern in Bezug auf das individuelle Verhalten von Exemplaren derselben Thierart gegen Einwirkung derselben Gifte gemacht wurden, und die Bezug auf dieselben Organtheile haben, an denen ich die individuellen Verschiedenheiten beobachtete. Wenn also Herr Harnack (S. 310 und 311) es wunderbar findet, weil ich gefunden habe, dass „die Froschherzen individuell sich sehr verschieden gegenüber dem Atropin verhalten, und dass diese Differenzen in der Wirkung nicht nur quantitative, sondern auch qualitative, dass sie einzig und allein individuell sind“ und dabei ausruft: „Es muss schon an sich im höchsten Grade auffallen, dass das Atropin bei dem einen Froschindividuum die Hemmungsscentren im Herzen reizt, bei dem anderen sofort lähmt“, so erlaube ich mir, die den meinen ganz gleichwertigen Beobachtungen entgegenzuhalten, die Truhaft und Schmiedeberg 1) an der Nicotinwirkung ausgesetzten Herzen

verschiedener Froschindividuen gemacht haben, und die ich aus dem Schmiedeberg'schen Arbeit wörtlich citire:

"Es verhält sich das Nicotin in kleinen Gaben und im ersten Stadium seiner Wirkung, wie das Muscarin; es bringt einen diastolischen Herzstillstand hervor, der nach der Lähmung der Hemmungsvorrichtungen durch das Atropin ausbleibt. Das Herz beginnt in Folge der nach der Erregung bald eintretenden Lähmung des Vagus von selbst wieder zu pulsiren. Nach grösseren Mengen von Nicotin tritt diese Lähmung so rasch ein, dass das Herz durch die vorausgehende Erregung nicht zum Stillstand kommt, höchstens eine Verlangsamung der Pulszahlen sich bemerkbar macht. In einzelnen Fällen bringen selbst jene kleinen Quantitäten sofort eine Lähmung, keinen Stillstand, zuweilen auch keine Verlangsamung hervor."

Hier hat also Schmiedeberg (genau, wie ich, nach Atropin) bei einer Reihe von Fröschen nach Nicotin primäre Erregung, bei einer anderen Reihe primäre Lähmung der hemmenden Herzapparate gefunden. Fällt dieser dem meinen gleiche Befund seines Lehrers Herrn Harnack auch "schon an sich im höchsten Grade auf"? Hat Schmiedeberg deshalb sich selber widersprochen? Da, wie Truhart 1) ausdrücklich angiebt, unter seinen 13 Versuchen, bei denen 1/4 Milligr. angewendet wurden, in 9 Fällen der sonst charakteristische Nicotinstillstand gänzlich ausblieb, sollte da nicht eben so gut ein anderer Versuchsanzeliger nicht auch einmal 12 Frösche hintereinander finden können, bei denen Nicotin gleich von vorne herein lähmend auf die Hemmungsvorrichtung einwirkte? Dürfte daraufhin dieser Kritiker in gleicher Weise gegen Schmiedeberg — Truhart auftreten, wie Herr Schmiedeberg seinen Schüler Harnack gegen mich auftreten lässt?

Weil ich auch bei ein und derselben Species von Säugetieren auf Atropin bald Pulsverlangsamung, bald Pulsbeschleunigung als unmittelbar nach der Injection eintretende Wirkung fand und diesen Befund als ganz selbstverständlich mittheilte, erachtet sich Herr Harnack "durch mich der Mühe enthoben, meine Atropinversuche am Säugethier durch Anstellung eigener Versuche zu kontrolliren, indem ich durch meine Versuchsreihen mich selbst voll-

1) L. c. p. 41.
ständig widerlegt hätte. Eigentlich müßte die Consequenz die sein, dass ich auch die Kaninchen in verschiedene „Individualitäten“ eintheilte, je nachdem die Hemmungszentren bei dem einen Thier sofort gelähmt, bei dem anderen sofort gereizt werden.

Herr Harnack findet demnach diese Consequenz, die ich für ganz natürlich halte, für so absurd, dass er sogar daran zweifelt, ob ich mich derselben unterziehen würde; er hat offenbar in meiner ersten Arbeit übersehen, dass ich diese Consequenz dort schon gezogen und sogar ausdrücklich gesagt habe, dass wir bei allen thierischen Organismen ohne Ausnahme diese individuellen Schwankungen gegen dieselben von aussen kommenden Einflüsse finden.

1) Boehm und Wartmann: Ueber die Wirkung des deutschen Aconitin. 1. c.
Da auch diese Boehm'schen Beobachtungen älteren Datums sind als die meinigen, so ist wohl die Frage erlaubt, warum Herr Hannack sich nicht lieber an die ältere Adresse gewendet hat. (Auch begreife ich die Logik des Herrn Hannack überhaupt nicht, wenn er mehrmals unter Ausrufezeichen behauptet, wir hätten uns selbst widerlegt, weil wir von demselben Gifte an verschiedenen Individuen verschiedene und entgegengesetzte Einwirkungen verzeichnet hätten. Wenn durch ein und dieselbe Krankheit, durch ein und dieselbe Wunde eine gewisse Prozentszahl von Individuen stirbt, eine andere mit dem Leben davon kommt, schliesst denn da die eine Thatscache die andere aus? Ist dadurch, dass man Froschvagi findet, deren electriche Erregung keinen Herzstillstand bewirkt und überhaupt gar keinen Einfluss auf die Herzthätigkeit hat, die Beobachtung widerlegt, dass man von den Vagis anderer Frösche durch dieselben electricen Reizungen die schönsten diastolischen Herzstillstände erzeugt? Zudem ist der Grund, warum auch dieselbe Thierspecies sich individuell verschieden gegen die Einwirkung derselben Agentien verhalten kann, ein sehr durchsichtiger, selbst wenn man davon absieht, dass es verschiedene Alter und Körperzustände bei derselben Species gibt, und wenn man annimmt, man habe gleich starke und gleich alte Individuen aus demselben Wurf vor sich. Es handelt sich immer darum, dass bei dem einen Individuum ein Nerv oder eine Nervengruppe durch dasselbe Gift bei derselben Dosis erregt oder gelähmt wird. Erregung und Lähmung sind bedingt durch Veränderungen der Nervensubstanz; diese Veränderungen sind aber so minimale, dass es bis jetzt nicht gelungen ist, durch irgend welche Mittel diese Veränderungen zu erkennen; weder mikroskopisch noch chemisch ist es uns gelungen, eine normalen Nerv von einem erregten oder gelähmten zu unterscheiden, und wir schliessen nur von den veränderten Functionen auf veränderte Zustände. Wenn ein bloesgelegter Nerv durch Verdunstung eine Spur Wasser verloren hat, zeigt er Erregungsentsecheinungen, bei Verdunstung einer weiteren Spur ist er gelähmt. Nehmen wir an, dass ein Nerv schon vor der Bioslegung etwas wasserärmere vielleicht durch vorausgehendes Abschneiden der Blutzufuhr geworden ist, so kann durch die ersten Verdunstungsspuren nach Bioslegung gleich Lähmung eintreten. Man kann also bei derselben Thierart beobachten, wie ein bloesgelegter Nerv, ohne ein erregendes Vorstadium durchzumachen, aus scheinbar normalem Verhalten sogleich
in Lähmung verfällt. Dasselbe kann auch bei Einwirkung der Gifte
der Fall sein. Wenn ich hypothetisch annehme, eine Ganglienzelle
werde erregt, indem z. B. einige wenige ihrer Eiweissmoleküle durch
Einwirkung einiger Morphinmoleküle aus der löslichen in die unge-
löste Modification übergeführt werden, und gelähmt, indem eine
größere Zahl ihrer Eiweissmoleküle durch eine größere Zahl Mor-
phinmoleküle in die unlösliche Modification übergehen, so kann ich
mir auch ganz gut denken, wenn durch irgend eine andere voraus-
gegangene Ursache bereits eine kleinere Zahl von Eiweissmolekülen
dem Stoffwechsel entzogen ist, dass dann eine viel geringere Mor-
phinmenge hinreicht, Lähmung der Ganglienzelle zu erzeugen, als
bei einer ganz normalen Beschaffenheit (denn für die Funktionen
einer Ganglienzelle wird es darauf ankommen, wie stark die mole-
cularen Veränderungen sind, mögen die Ursachen einfache oder viel-
fache sein); dass also Morphin unter Umständen erst Erregung und
dann Lähmung, unter Umständen aber ohne vorausgangene Er-
regung Lähmung erzeugt. Und in der That erzeugt Morphin, des
Abends gereicht, leichter und in geringerer Dosis Schlaf, als am
Morgen; am Abend sind die Ganglien des Bewusstseins dem Zu-
stand der Lähmung näher gerückt und es bedarf deshalb eines ge-
ringeren Anstosses, einer weit geringeren Veränderung ihrer molecu-
aren Verhältnisse, dass Schlaf eintritt, als am Morgen; und die-
selbe Dosis Morphium bewirkt daher früh Aufregungerscheinungen,
welche am Abend sogleich Schlaf erzeugt. Bei gewissen Körper-
zuständen z. B. bei sogenannten nervösen Personen, bei Potatoren,
tritt auf Morphium schlaflosigkeit auf unter enormer Erregung der
grauen Substanz, und es bedarf einer dreimal so grossen Morphindose,
um Schlaf hervorzurufen, als z. B. bei einem phlegmatischen Manne.
Für das Morphin, Alcohol, das Chloroform steht dieses individuell
verschiedene Verhalten durch unzählige Beobachtungen fest. Ich
habe noch nie gehört, dass man die Behauptung aufgestellt hat,
durch diese allerdings sich scheinbar widersprechenden Versuchs-
ergebnisse habe man sich selbst widerlegt. Es gehört eben die
ganz Unbefangenheit eines Anfängers dazu, solche Thesen aufzu-
stellen; man kann dieselben bei einer Promotion verzeihen, nicht
aber hingehen lassen, wenn sie unter der Aegide eines wissenschaft-
lichen Instituts erscheinen.

Es erübrigt mir nur noch die Besprechung einzelner Punkte,
die sich kurz erledigen lassen.

Die merkwürdige thatsache, dass Reizung des peripheren Endes des durch Atropin in seiner Hemmungswirkung gelähmten und durchschnittenen Vagus Blutdrucksteigerung veranlasst, hat mich seit 2 Jahren zu einer Reihe weiterer Versuche geführt, die ich im letzten Kapitel vorlegen werde.

Die paar Sätze, die Herr Harnack gegen meine Physostigmaminbeobachtungen ins Feld führt, beziehen sich wieder auf die Verwerfung der Methoden, mit denen er kurzer Hand auch die Resultate verwirft; ich verweise deshalb hierfür auf das bei meinen Atropinversuchen gelieferte Material und habe nur eine unrichtige Wiedergabe von Herrn Harnack zu berichten, wenn er sagt:

¹) Siehe meine pharmakolog. Untersuch. Bd. I.
Untersuchungen über d. physiolog. Wirkungen d. Atropin u. Physostigmin. 439
des Atropin erhielt, durch positive zu ersetzen, trotzdem dass ich
mit allen von Heidenhain angegebenen Cautelen den Gegenstand
von Neuem bearbeitet habe. Doch werde ich hierüber eigens zu
berichten haben.

IV.

Über die Ursachen der Blutdruckerhöhung, welche nach voraus-
gegangener Atropinvergiftung durch Reizung des peripheren
Halsvagusstumpfes hervorgerufen wird.

Einfluss des Bauchvagus auf den Blutdruck.

Reizt man einem gesunden, nicht vergifteten Thiere den peri-
pheren Stumpf eines durchschnittenen Halsvagus mit einer genügen-
den Stromstärke, so sinkt in Folge eines diastolischen Herztill-
standes der (in der Carotis gemessene) Blutdruck ausserordentlich
tief herab; war der Reiz weniger stark, so tritt nur Verlangsamung
der Herzthätigkeit und geringeres Absinken des Blutdruckes ein.
Nach Aufhören der Reizung und bei Wiederbeginn der Herzthätig-
keit steigt der Blutdruck rasch an und wird in den meisten Fällen
sogar höher, als er vor Beginn der Reizung im Normalzustande war.

Vergiftet man dann dieses Thier mit Atropin, so hat nach
Eintritt der Giftwirkung auch die stärkste Reizung des peripheren
Vagusstumpfes nicht den geringsten Effect mehr, weder auf die
Schnelligkeit der Herzcontraktionen, noch auf die Höhe des Blutdruckes.

Gegenüber dieser letzteren allgemeinen Annahme hatte ich be-
reits vor 2 Jahren bei einigen Kaninchen die Beobachtung gemacht,
dass nach Vergiftung mit Atropin auf electriche Reizung des peri-
pheren Halsvagusstumpfes eine bedeutende Erhöhung des
Blutdruckes in der Carotis zu beobachten ist.

Ich habe versucht, mich über diese merkwürdige Thatsache
durch eine grosse Reihe von Versuchen an Kaninchen, Hunden und
Katzen aufzuklären und lege die hierbei erhaltenen Resultate vor.

Zuerst suchte ich die Häufigkeit dieser bis jetzt nicht be-
kannten Erscheinung zu bestimmen, und gleichzeitig die zunächst
denkbaren ursächlichen Momente durch Modification der Versuchsan-
stellung zu ergründen. Ich habe zu diesem Behuf an 24 Kaninchen,
6 Hunden und 3 Katzen experimentirt.

Alle Versuche, bei denen auf electriche Reizung der peri-
pheren Halsvagusstümpfe an atropinisirten Thieren gleichzeitig mit der Erhöhung des Blutdruckes allgemeine Körperbewegungen oder gar Krämpfe auftraten, was einige Male vorkam, sind selbstverständlich nicht mitgerechnet, da Körperbewegung allein schon im Stande ist, den Blutdruck beträchtlich in die Höhe zu treiben. Alle vorzulegenden Beweisstücke sind deshalb nur von vollständig ruhig und bewegungslos verharrenden Thieren entnommen; eine Anzahl derselben waren zudem bis zu vollständiger Bewegungslosigkeit curarisirt. Eine Verwechselung der durch Körperbewegungen bedingten Blutdrucksteigerungen mit den durch Vagusreizung bedingten wäre aber auch schon deshalb nicht gut möglich, weil die durch erstere entstandenen Curven sehr unregelmässig, die letzteren im höchsten Grade regelmässig sind, wie ein Vergleich der Kaninchen-carotiscurve (auf Taf. IV Fig. 8), wo durch Vagusreizung und gleichzeitige Körperbewegungen der Blutdruck anstieg, mit allen übrigen lehrt.

Ich traf auch alle Vorsichtsmassregeln, dass bei Reizung des Vagus nicht etwa Zweigströme auf die Haut oder andere sensible Nerven gelangen und durch deren Reizung etwa Anlass zu Blutdrucksteigerung geben konnten. Ich präparirte den Vagus soweit als möglich frei, zog denselben vor der Reizung sanft in die Höhe und aplicirte die Electroden mit grösster Vorsicht. In dem zu starken Anziehen des angebundenen Halsvagusendes liegt nämlich eine Fehlerquelle, auf die ich hier aufmerksam machen möchte; bei einem Hunde sah ich sowohl vor wie nach der Atropinvergiftung durch die genannte Manipulation sehr beträchtliche Blutdrucksteigerung eintreten, obgleich die elektrische Reizung desselben Stumpfes vor der Vergiftung stets Herztillstand und Sinken des Blutdruckes bewirkte; wahrscheinlich liegt dieser eigenthümlichen Erscheinung eine Zerrung irgend eines sensiblen Nerven zu Grund; als ich dieselbe bei Kaninchen und anderen Hunden bewirken wollte, gelang es mir nicht mehr.

Weil es denkbar war, dass durch diese Halsvagusreizung Ver-
schluss der Stimmritze und in Folge dieses Vorgangs die Blutdruckerhöhung zu Stande käme, wurde fast bei allen Thieren eine Trachealfistel angelegt, durch welche dieselben entweder selbst athmen, oder durch welche die curarisirten Thiere künstlich respirirt wurden. Es zeigte sich, dass die Blutdruckerhöhung gerade so gut bei den durch die Trachealfistel athmenden oder künstlich respirirten, wie bei den unverletzten Thieren auftrat.

Ferner wurde bei einem Theil der Versuchsthiere nur der eine, bei einem anderen Theil beide Halsvagi, bei einem dritten Theil beide Halsvagi und sympathici durchschnitten; immer trat auf Atropin und Reizung des peripheren Halsvagusstumpfes Blutdruckerhöhung ein.

Ausserdem variirte ich die Grösse der vergiftenden Atropindosis zwischen 0,0005 — 0,02 Grm.; die Einspritzung geschah theils subcutan, theils in eine Vene (v. dorsalis pedis oder jugularis). Hier fand ich, dass nach Dosen über 0,008 Grm. Atropin auf die genannte Vagusreizung Blutdruckerhöhung nur noch sehr selten, unter 0,004 Grm. dagegen stets und unabsichtslos eintrat. Die meisten der oben bezeichneten 8 Kaninchen hatten eine zu grosse Dosis Atropin bekommen. Es ging daraus hervor, dass durch stärkere Atropingaben das die Blutdrucksteigerung bei Vagusreizung veranlassende Moment beseitigt wird. Um mich dessen noch genauer zu vergewissern, spritzte ich meinen Versuchsthiern nicht auf einmal, sondern in einzelnen kleineren Gaben die Atropinlösung ein und prüfte auf diese Weise genau die Grenze der Atropingabe, unterhalb deren noch Blutdrucksteigerung eintrat.

Die in obiger Weise an atropinisirten Thieren bewirkte Erhöhung des Blutdrucks war in 'den meisten Fällen eine sehr beträchtliche und betrug bei Kaninchen bis zu 40 mm., bei Hunden bis zu 50 mm. Quecksilber. Sie begann entweder fast unmittelbar nach Beginn der Reizung, stieg während derselben immer mehr an und sank nach Beendigung des Reizes rasch wieder auf die frühere Höhe zurück; oder sie begann erst am Ende, in einzelnen Fällen sogar einige Secunden nach Aufhören der Reizung. Ersteres Verhalten zeigten die meisten Thiere, Hunde, Katzen und Kaninchen; letzteres beobachtete ich an 2 Kaninchen; bei diesen blieb es sich gleich, ob man lange oder kurze Zeit reizte; mochte die Reizung 1 Secunde oder 15 Secunden dauern, immer trat die Blutdruckerhöhung erst nach Entfernen der Electroden ein. (Taf. III. Fig. 7
a. b. c. e. und Taf. IV Fig. 7). Dass die durch die Reizung des Vagusstumpfes gesetzten Veränderungen, welche die Ursache der Blutdruck erhöhung sind, die Reizung lang überdauern, zeigt sich ausser in diesen in noch vielen anderen Versuchen durch die nach Aufhören der Reizung noch lange fortbestehende Erhöhung des Blutdrucks. (Taf. IV. Fig. 3. b etc). Daraus durfte man folgern, dass der gesetzte Reiz Theile des Organismus trift, welche eine durch einen Reiz gesetzte Erregung längere Zeit zu erhalten vermögen.

Hatte ich durch Vagusreiz den Blutdruck bis zu seiner begehrten Höhe getrieben und reizte ich dann von Neuem, so konnte in vielen Fällen der Blutdruck über seine erste Maximalhöhe hinaus gesteigert werden.

Die Frequenz der Herztactionen und die Grösse der Herz hube blieb bei einem Theil meiner Versuche genau dieselbe, wie vor der Reizung, woraus hervorgeht, dass die Blutdrucksteigerung nicht einer Erregung gewisser, etwa motorischer durch den Hals vagusstamm zum Herzen verlaufender Fasern ihren Ursprung verdankt. (Taf. III. Fig. 7, Taf. IV. Fig. 1, Fig. 3, b., Fig. 4, b. c. d). In anderen Versuchen trat gleichzeitig mit der Blutdruckerhöhung eine bedeutende Verlangsamung der Zahl und Verstärkung der Grösse der Herz hube ein. (Taf. III. Fig. 8.) Wenn diese gleichzeitige Verlangsamung der Pulsfrequenz darauf bezogen werden darf, dass die hemmenden Herzvagusfasern und deren Endigungen noch nicht vollständig durch das Atropin gelähmt waren, was nach später vorzubringenden Versuchen sehr wahrscheinlich ist: so würde dies ein weiteres Licht darauf werfen, dass die Blutdrucksteigerung sicher nicht durch eine Einwirkung auf die Herzthätigkeit zu Stande kommt. In einzelnen Fällen endlich trat, ohne dass mit der Zunahme des Blutdrucks eine Veränderung in der Pulsfrequenz verbunden war, ein bedeutendes Anwachsen der Herz hube ein (wie Taf. IV, Fig. 7 zeigt).

Rutherford 1) hat angegeben, dass nach Durchschneidung der beiden Halsvagi und Atropineinspritzung bei Kaninchen auf Reizung des peripheren Vagusstumpfes nicht nur keine Verlangsamung, sondern sogar Beschleunigung der Herztaction eintrete. Ich habe mich sehr bestrebt, diese Beobachtung bestätigen zu können; allein bei keinem meiner 33 Versuchsthiere war es mir möglich,

1) The journal of anat. and physiol. Mai 1869.
Untersuchungen über d. physiol. Wirkungen d. Atropin u. Physostigmin. 449

auch nur eine Beschleunigung um 1 Schlag während der Reizung
der atropinisirten Halsvagi zu erzielen. So viel ich weiss, hat bis
jetzt auch noch kein anderer Forscher die Rutherford'sche Be-
obachtung bestätigt 1).

Rutherford hat übrigens auffallender Weise auf seine Rei-
zungsversuche am atropinisirten Vagus auch nie eine Steigerung des
Blutdrucks wahrgenommen und giebt sogar ausdrücklich an: „die
Beschleunigung der Herzthätigkeit in diesen Versuchen könne
nicht einer Zunahme des Blutdrucks zugeschrieben werden, da die
Reizung des unteren Vagusendes kaum einen Effect in letzterer
Richtung ausübe“. Es scheint mir daraus hervorzugehen, dass
Rutherford bei diesen Versuchen überhaupt nicht den Blutdruck
gemessen, und die Herzschläge nur auscultatorisch gezählt hat 2).
Bei der Schnelligkeit der Action des Kaninchenherzens kann aber
sehr leicht ein Zählungsfehler auch dem im Auscultiren Geübtesten
widerfahren.

Durch die Untersuchung der meisten Forscher steht fest,
 dass Reizung des peripheren Vagusstumpfes keinen Einfluss auf
die Stärke und Schnelligkeit der Respirationsbewegungen hat; auch
ich konnte dies in vielen Fällen bestätigen. Ich glaube deshalb
schon von vornherein annehmen zu dürfen, dass die Blutdruck-
steigerung nach Reizung des peripheren Halsvagusstumpfes bei
den atropinisirten Thieren keinesfalls von etwaigen Aenderungen der

1) Rutherford hat nicht, wie aus einem Referat Schmiedebergs
(Verh. d. k. sächs. Ges. d. Wiss. zu Leipzig Bd. 28, S. 151) hervorzuzeigen
scheint, aus der von ihm beobachteten Beschleunigung des Herzschlags nach
Reizung des peripheren Halsvagusstumpfes den Schluss gezogen, dass diese
Beobachtung die Gegenwart von beschleunigenden Fasern in diesem Nerven-
stamm darthue, sondern durch ein weiteres Experiment sogar ausdrücklich
zu zeigen versucht, dass eine andere Erklärung nöthig sei: „this acceleration
took place when the animal exhibited no signs of excitement, and it seemed
to indicate, that in the inferior cardiac branch of the vagus there are cardiac
motor fibres, which are not paralysed by sulphate of atropia; but another
experiment proved, that a different explanation is necessary“. Es folgt dieser
Versuch; und Rutherford schliesst dann mit den Worten: This experiment
seems to me give the finishing blow to the notion that the vagus is a motor
nerve of the heart“.

2) In dem citirten Aufsatz ist die genauer Versuchsanstellung nicht
angegeben.
Dr. M. J. Rossbach:

Respirationsbewegungen bewirkt wird, es spricht ausserdem für diese Annahme, wie bereits erwähnt, dass auch bei künstlich unterhalten Respiration an curarisirten Thieren diese Blutdrucksteigerung nach Atropinvergiftung eintritt.

Ausser nach Atropin fand ich auch nach Colchicineinvergiftung bei Katzen, bei denen letzteres Gift die Erregbarkeit der hemmenden Herzapparate ebenfalls herabsetzt, dass in diesem Stadium auf Reizung des peripheren Halsvagusstumpfes ein Ansteigen des Blutdruckes eintritt (Taf. IV, Fig. 2, e — g).

Versuch I.

Auf jede Reizung des einen peripheren Vagusstumpfes tritt diastolischer Herzstillstand und starkes Sinken des Blutdruckes ein; nach Beendigung der Reizung steigt der Blutdruck entweder auf die alte vor der Reizung inne gehabte Höhe (6mal), oder er steigt weit über diese hinaus (4mal).

Es werden je 0,001 Atropin 4mal subcutan injiziert.

Es wird jetzt der Vagus mit den früheren Rollenabständen gereizt; der Blutdruck geht in die Höhe bei unveränderter Pulsfrequenz. Es werden sodann die Rollenabstände variirt; die Blutdruckerhöhung ist um so bedeutender, je mehr die secundäre Rolle der primären angenehrt wird etc.

4h 12 min. Letzte (3te) Vagusreizung (100 mm. R. A.) vor der Atropinvergiftung.

Blutdruck

vor während nach d. Reizung
100 mm. Hg 54 116

4h 15 Es werden nach und nach 0,004 Atropin subcutan injiziert.

4h 20 10te Vagusreizung bei 100 mm. R. A. — Blutdruck steigt um 6 mm. Hg — Puls unverändert.

4h 22 11te " 80 " — " 22 " "

4h 24 12te " 80 " — " 10 " "

4h 34 13te " 80 " — " sinkt um 48 mm. Hg — Herz steht still.

Hier ist demnach die Einwirkung des Atropin auf die hemmenden Apparate des Herzens wieder geschwunden und es tritt auf Vagusreizung dieselbe Reaction wie vor der Vergiftung auf (Taf. IV Fig. 3 a).
Untersuchungen über d. physiol. Wirkungen d. Atropin u. Physostigmin. 445

h 36 min. Es wird neuerdings 0,001 Atropin unter die Haut gespritzt.

h 40 — 14te Vaguserregung bei 80 mm. R.A. — Blutdruck steigt um 8 mm. Hg — Pulsfrequenz unverändert.

h 41 — 15te
 " 80
 " —
 " 6
 " —

h 45 — 16te
 " 50
 " —
 " 24
 " —

Bemerkenswerth ist namentlich bei der 16. Reizung die lange Nachdauer der Blutdruckerhöhung (Taf. IV Fig. 8, b).

Versuch 2.

Einem Kaninchen, dessen Carotis mit einem Fik’schen Federmanometer verbunden ist, werden 0,002 Atropin injiziert. Es steigt die Pulsfrequenz auf 54 in 15 Sekunden.

Es wird der rechte periphere Vagustumpf gereizt; unter bedeutender Pulsverlangsamung steigt der Blutdruck von 90 auf 108 mm. Hg nach einem momentanen Absinken, das mit einer tiefen Inspiration zusammenfällt (Taf. III Fig. 8).

Dieser Fall kann in der Weise gedeutet werden, dass trotz 0,002 Grm. Atropin die zum Herzen laufenden Hemmungsfasern des Vagus noch etwas erregbar geblieben sind, so dass also die Pulsverlangsamung auf die durch die Reizung gesetzte Erregung der Hemmungsapparate zu beziehen wäre. Dass hier nicht etwa die Blutdrucksteigerung Ursache der Verlangsamung der Herzthätigkeit war, geht schon daraus hervor, dass die Verlangsamung der Herzthätigkeit vor der Blutdrucksteigerung eintrat. Die der Blutdrucksteigerung zu Grunde liegenden Ursachen scheinen demnach die Folgen der verlangsamten Herzthätigkeit überzocompensiren zu können.

Versuch 3.

Mit der linken a. carotis eines Kaninchens wird ein Federmanometer verbunden und der rechte Vagus am Hals durchschnitten.

Auf Injection von 0,002 Atropin in eine V. jugularis tritt auf Reizung des peripheren Vaguens des Blutdruckerhöhung von 90 auf 120 mm. Hg unter gleichzeitiger Verlangsamung der Herzaktion auf; gleichzeitig mit dem Ansteigen des Blutdruckes beginnen aber auch allgemeine Körperbewegungen, die sich auch in der Unregelmässigkeit der Pulscurve ausdrücken. Während das Thier sodann sich einige Augenblicke ruhig verhält, sinkt der Blutdruck ein wenig herab (auf 112 mm. Hg), erreicht aber nicht die ursprüngliche Tiefe, und das Herz zeichnet wieder regelmässige Curven an. Es beginnt das Thier zum zweiten Male allgemeine Körperbewegungen zu machen, der Blutdruck steigt nochmals in die Höhe und die Herzpulse werden wieder unregelmässig (Taf. IV Fig. 8).

Nachdem das Thier sich wieder beruhigt hat, wird das periphere Halsvagusende nochmals mit dem vorigen Rollenabstand gereizt; das Thier bleibt unbeweglich, aber der Blutdruck geht trotz der absoluten Ruhe bedeutend in die Höhe (von 105 auf 116 mm. Hg); Herzpulse verharren in derselben Ge-
Dr. M. J. Rossbach:

schwindigkeit und Stärke wie vor der Reizung und zeichnen sich mit äußerster Regelmäßigkeit an die rotierende Trommel.

Nach Ablauf einiger Minuten wird der Vagus wieder gereizt; es erfolgt eine Blutdruckerhöhung von 100 auf 118 mm. Hg bei unveränderter Pulsfrequenz, ohne Körperbewegungen.

Dasselbe ist bei 2 weiteren Reizungen der Fall.

Versuch 4.

Einem Kaninchen wird eine Canüle in die v. jugularis, eine zweite in die carotis eingebunden, letztere mit einem Federmanometer in Verbindung gebracht.

Hierauf werden die beiden nn. vagi am Halse durchschnitten; auf Reizung eines derselben an seinem peripheren Stumpfe tritt Pulsverlangsamung und tiefes Sinken des Blutdruckes ein.

Es wird 0,01 Grm. Atropin in die v. jugularis gespritzt, worauf so- gleich die Herzaktion sehr unregelmäßig werden und der Blutdruck sinkt. Reizung des peripheren Vagusstumpfes mit denselben Rollenabständen, wie vor der Vergiftung hat nicht den geringsten Effect, weder auf Pulsfrequenz, noch auf die Höhe des Blutdruckes.

Versuch 5.

Einem Kaninchen wird eine Canüle in die v. jugularis, eine andere in die a. carotis eingebunden, letztere mit einem Kautschukmanometer in Verbindung gesetzt.

Es werden beide Halsvagi durchschnitten, worauf der Blutdruck in die Höhe geht unter stärkerer Ausprägung der Respirationsbewegungen.

Auf Einspritzung von 0,02 Grm. Atropin in die v. jugularis sinkt so- gleich der Blutdruck. Reizung des peripheren Vagusstumpfes am Halse hat nicht den geringsten Einfluss weder auf Blutdruck noch auf Pulsfrequenz.

Versuch 6.

Untersuchungen über d. physiolog. Wirkungen d. Atropin u. Physostigmin. 447

Es wird eine zweite Injection von 0,005 Atropin in die Vene gemacht, worauf der Blutdruck sinkt.

Eine jetzt vorgenommene Reizung des peripheren Vagusstumpfes bewirkt Blutdruckerhöhung; dieselbe hält sich 30 Sekunden lang. Pulsfrequenz bleibt durchaus unverändert.

Es wird eine dritte Injection von 0,006 Atropin vorgenommen. Von da an haben ¼ Stunde lang selbst die stärksten Vagusreizungen nicht den geringsten Effekt mehr auf Blutdruck und Pulsfrequenz, und erst nach Ab-lauf einer halben Stunde bewirken starke Vagusreizungen wieder ein schwaches Ansteigen des Blutdruckes bei gleichbleibender Pulsfrequenz.

Ergebniss: 0,002 Atropin waren nicht im Stande, die hemmenden Hervagaufasern zu lähmen; 0,007 Atropin lähmte dieselben, und jetzt trat auf Vagusreizung Erhöhung des Blutdruckes bei gleichbleibender Pulsfrequenz auf. Durch im Ganzen 0,012 Atropin wurden aber auch diejenigen Fasern gelähmt, deren Reizung das Ansteigen des Blutdruckes bewirkt.

Versuch 7.

An einem Kaninchen wird die Tracheotomie gemacht und eine Canüle in die Luftrohre eingebunden, durch welche das Thier athmet; künstliche Respiration wird nicht eingeleitet.

Auf eine erste Einspritzung von 0,006 Atropin in die v. jugularis wurde das periphere Ende des linken abgeschnittenen Vagus auf Elektroden gelegt und bei verschiedenen Rollenabständen gereizt.

Blutdruck vor Atropinvergiftung 116 mm. Hg

Nach 88

Auf 1. Reizung (90 mm. R. A.) steigt der Blutdruck von 84 auf 194

(Taf. III, Fig. 7, a)

2. 76 auf 104

(Taf. III, Fig. 7, b)

3. 80 auf 116

(Taf. III, Fig. 7, c)

Bei der ersten und zweiten Reizung blieben die Elektroden ziemlich lange in Verbindung mit dem Vagusstumpfe; die Blutdrucksteigerung begann trotzdem erst eine kurze Zeit nach Entfernung der Elektroden, und es dauerte ziemlich lange, bis der Blutdruck sein Maximum erreicht hatte. Die dritte Reizung dauerte nur einen Moment; die Blutdruck erhöhung beginnt erst einige Zeit nach Entfernung der Elektroden.

Bei einer vierten und fünften Reizung zeigte sich in derselben Weise Blutdruckerhöhung, aber zugleich auch Verlangsamung der Pulsfrequenz; und 10 Minuten nach der dritten Reizung zeigten sich bei einer sechsten Reizung die Herzhemmungssapparate in der Bahn des Vagus schon wieder so erregbar, dass bei 80 mm. R. A. bedeutende Pulsverlangsamung und Sinken des Blutdruckes eintrat. Nachdem durch 8 weitere Vagusreizungen bei immer geringerem Rollenabständen (bis 90 mm.) die Constanz der wieder hergestellten

K. Fäßler, Archiv f. Physiologie. Bd. X. 30
Erregbarkeit der hemmenden Vagusfasern über allen Zweifel erhoben worden war (Taf. III, Fig. 7, d), versuchte ich die Grenze dieser Reizbarkeit zu bestimmen und machte biebei die überraschende Beobachtung, dass bei Herabsetzung der Stromstärke (100 mm. R. A.) zwar die hemmenden Fasern nicht mehr reagirten, wohl aber jetzt wieder die den Blutdruck steigernden Fasern, so dass jetzt wieder als Folge der Reizung Blutdruckerhöhung ohne Änderung der Pulsfrequenz eintrat. Durch Variierung der Stromstärke hatte ich es in der Hand, Blutdruckerhöhung ohne Änderung der Pulsfrequenz (bei weiten Rollenabständen), oder Absinken des Blutdruckes mit Verlangsamung der Herzthätigkeit (bei kleineren Rollenabständen) nach Belieben zu erzielen.

45 Minuten nach der ersten Atropinjection, als die Einwirkung auf die hemmenden Vagusfasern zum Theil wieder zurückgegangen war, machte ich eine zweite Injection von 0.006 Atropin in die Ingularvene. Auf Vagusreizung trat nun wieder genau mit dieselben Modalitäten Blutdrucksteigerung ein, wie unmittelbar nach der ersten Injection, wie 5 neue Vagusreizungen zeigten; eine derselben ist auf Taf. III, Fig. 7, e wiedergegeben.

Ich stadierte nun die Einwirkung sensibler Hautreize auf den Blutdruck an diesem Thiere, indem ich empfindliche Theile des Körpers einfach mit dem Finger berührte oder stark wickte; es trat stets unmittelbar nach Beginn der Hautreize Blutdruckerhöhung ohne Änderung in der Pulsfrequenz auf. Wenn ich dagegen die Bauchdecken kitzelte, wurde die Herzthätigkeit unregelmässig; es wechselten schnellere Pulse mit langsameren ab, und der Blutdruck stieg und fiel abwechselnd.

Zum Schlusse wurde das Thier bis zu vollständiger Bewegungslosigkeit curarisirt und künstlich respirirt. Schwache Reizung des peripheren Halvagustumpfes bewirkte wieder Blutdruckerhöhung ohne Änderung der Pulsfrequenz; doch erreichte die Blutdrucksteigerung nicht mehr die Höhe wie vor der Curarisierung.

Überblick der Ergebnisse.

1) Am atropinisirten Thiere tritt auf Reizung des peripheren Halvagustumpfes Blutdrucksteigerung ohne Änderung der Pulsfrequenz ein, auch nach vorausgehender Tracheotomie.

2) Diese Blutdrucksteigerung beginnt erst nach Beendigung der Vagusreizung und dauert sehr lange an.

3) Die durch das Atropin hervorgereufene Lähmung der hemmenden Herzsapparete geht rasch vorüber.

4) Nachdem die Hemmungsfasern wieder erregbar geworden sind, ruft starke Vagusreizung die Folgen der verstärkten Herzhemmung, Blutdruckabfall und Pulsverlangsamung, hervor, schwache Reizung dagegen Blutdrucksteigerung bei gleichbleibender Pulsfrequenz.

5) Durch die Vagusreizung wurden sowohl bei Blutdrucksteigerung, wie abfall die Herzluhe vergrössert.

6) Die Blutdrucksteigerung nach Reizung der atropinisirten Halvagus tritt auch nach Curarisierung und künstlicher Respiration auf.
Untersuchungen über d. physiolog. Wirkungen d. Atropin u. Physostigmin. 449

Versuch 8.

Kaninchen tracheotomirt. Carotis mit einem Kautschukmanometer verbunden.

Es werden beide Halsvasi durchschnitten. Auf Reizung eines derselben tritt Herzstillstand und bedeutendes Absinken des Blutdruckes ein.

Injection von 0,0016 Atropin in eine v. jugularis. Die nächsten 2 Vagusreizungen bewirken nun stets Blutdruck erhöhung bei unveränderter Pulsfrequenz. 5 Minuten nach der Atropininjection erzeugt eine dritte und vierte Vagusreizung hochgradige Pulsverlängsamung und Sinken des Blutdruckes; die hemmenden Hersapparate haben sich demnach wieder erholt und sind erregbar.

Auf eine zweite Injection von 0,0016 Atropin werden dieselben jedoch wieder gelähmt und Reizung des peripheren Vagusstumpfes erzeugt wieder Blutdruckerhöhung ohne Aenderung der Pulsfrequenz.

Versuch 9.

Einem Kaninchen werden die beiden Vagi und Sympathici am Halse durchschnitten. Blutdruck vor Vagusdurchschneidung 72 mm. Hg steigt nach Vagusdurchschneidung allmählich auf 104 mm. Hg.

Auf Reizung des einen Halsvagus an seinem peripheren Stumpf tritt Herzstillstand und bedeutendes Sinken des Blutdruckes ein, von 104 auf 48 mm. Hg.

Es wird 0,008 Atropin in die Jugularvene gespritzt, worauf die einzelnen Herzschläge schwächer werden und der Blutdruck absinkt von 92 auf 60 mm. Hg.

Eine schwache Vagusreizung bei 100 mm. R. A. hat keinen Effect; eine stärkere dagegen bei 50 mm. R. A. steigert den Blutdruck von 88 auf 112 mm. Hg und verstärkt die Herzschläge allmählich sehr bedeutend (Taf. IV, Fig. 7).

Ebenso eine dritte Reizung mit denselben Rollenabständen.

Versuch 10.

Grosser und starker Hund.

Es wird eine Canüle in eine Fussvene, eine zweite Canüle in die a. cruralis eingebunden; letztere mittels Schlauchkette mit einem Fick’schen Kautschukmanometer in Verbindung gesetzt.

Nachdem der Hund durch Einspritzung einer Morphinklösung in die Fussvene betäubt worden war, wurde die normale Pulscurve aufgenommen:

Pulsfrequenz in 20 Secunden: Mittlerer Blutdruck

21

147 mm. Hg.

Reizung des rechten peripheren Vagusstumpfes (100 mm. R. A.) bewirkt Herzstillstand und Sinken des Blutdruckes bis auf 28 mm. Hg (Taf. IV, Fig. 4, a).

Auf Einspritzung von 0,0005 Atropin in die Fussvene blieb die Pulsfrequenz und der Blutdruck 40 Secunden lang genau wie vor der Vergiftung. Eine während dieser Zeit gemachte Vagusreizung ergab starke Verlängsamung der Herzschläge und bedeutendes Absinken des Blutdruckes.
40 Secunden nach der Injection trat mit einem Male unter gleichzeitiger bedeutender Ansteigen des Blutdruckes enorme Pulsbeschleunigung ein:

- Pulsfrequenz in 20 Secunden: 75
- Mittlerer Blutdruck: 210 mm. Hg.

Vagusreizung bei 50 mm. R. A. bewirkt jetzt nicht die geringste Änderung in der Pulsfrequenz, wohl aber ein Ansteigen des Blutdruckes um 21 mm. Hg (Taf. IV, Fig. 4, b).

In der angeschriebenen Curve lässt sich eine vorübergehende Verlangsamung der Respirationsbewegungen erkennen.

Derselbe Effect zeigte sich bei 4 weiteren Reizungen des rechten peripheren Vagusstumpfes (bei 80 und 0 mm. R.A.).

Taf. IV, Fig. 4, c zeigt die vierte Vagusreizung nach Atropin bei 80 mm. R. A.; Fig. 4, d, unmittelbar nach c, bei 0 mm. R. A.; in letzterem Falle, wo also von der vorausgegangenen Reizung der Blutdruck noch wenig gesunken, treibt die neue Reizung denselben nochmals weiter in die Höhe.

Hierauf gemachte Einspritzung von nach und nach 0,1 Grm. Physostigmin vermag die Atropinwirkung in keiner Richtung aufzuheben.

Versuch 11.

Ein kräftiger Hund wird tracheotomirt. Durch eine in eine Faszwes gebundene Canüle wird Curare eingespritzt; nach erfolgter allgemeiner Lähmung wird künstliche Respiration eingeleitet.

Eine weitere Canüle wird in die a. cruralis dextra eingebunden und mit einem Fick'schen Kautschukmanometer in Verbindung gesetzt.

Es werden nach und nach 0,009 Atropin dem Kreislauf einverleibt.

Es wird der rechte Vagus abgebunden, abgeschnitten und an Electroden gelegt. Fast unmittelbar nach Durchleitung eines Stromes aus der secundäre Rolle tritt bedeutende Blutdruck erhöhung ohne Änderung der Pulsfrequenz auf.

Blutdruck

<table>
<thead>
<tr>
<th>vor Reizung</th>
<th>nach 1. Reizung</th>
<th>nach 2. Reizung</th>
<th>nach 3. Reizung</th>
</tr>
</thead>
<tbody>
<tr>
<td>119 mm. Hg</td>
<td>140 mm. Hg</td>
<td>147 mm. Hg</td>
<td>170 mm. Hg</td>
</tr>
</tbody>
</table>

(Taf. IV, Fig. 1).

Versuch 12.

Eine sehr kräftige junge weibliche Katze wird tracheotomirt; die Trachealcantüle passend mit einem Cardiographen in Verbindung gesetzt. Die Respiration geht durch einen Seitenzweig der Trachealcantüle vor sich.

Die rechte Carotis wird mit einem Fick'schen Kautschukmanometer in Verbindung gesetzt; der linke Hals-Vagus abgeschnitten.

Es wird eine Lösung von Merk'schem Colchicin in Einzeldosen von 0,02 Grm. unter die Haut gespritzt.

Schon nach 0,06 Colchicin war die Sensibilität, sowie das Auftreten von Reflexbewegungen auf äussere Reize vollständig aufgehoben, und auf die heftigsten Hauteinzig fand keine Spur einer Reaction mehr statt.

Während des ganzen 3 Stunden dauernden Versuches wurden die Atmungsbewegungen mit Hülfe des Cardiographen und die Vorgänge der Circu-
Untersuchungen über d. physiolog. Wirkungen d. Atropin u. Physostigmin. 451

lation mittelest des Kantschukmanometers an die rotirende Trommel ange- schrieben.

Die häufig vorgenommene Prüfung des Verhaltens des Vagus ergab, dass die Erregbarkeit der hemmenden Herzapparate allmählich abnahm.

Folgendes sind die hauptsächlichsten Ergebnisse in dieser Beziehung:

Nach Injection von 0,04 Colchicin hat Vagusreizung bei 70 mm. R. A. nur eine geringe Pulsverlangsamung ohne Sinken des Blutdruckes, bei 50 mm. R. A. dagegen diastolischen Herztillstand, starkes Sinken mit nachfolgender Erhöhung des Blutdruckes zur Folge.

Nach weiteren Injectionen von 0,04 ruft Vagusreizung bei 60 mm. R. A. Herztillstand, starkes Sinken und nachfolgendes Ansteigen des Blutdruckes hervor.

Nach ferneren Injectionen von 0,08 Colchicin ruft Vagusreizung nur noch bei 40 mm. R. A. Verlangsamung des Pules und viel geringeres Sinken des Blutdruckes hervor (ein längerer Herztillstand tritt nicht mehr ein), nach Schluss der Reizung tritt, wie auch in den früheren Reizungen, ziemlich starke Blutdrucksteigerung auf.

Einige Minuten später, nach einer neuen Injection von 0,02 Colchicin bewirkt Vagusreizung erst bei 20 mm. R. A. unter Pulsverlangsamung unbe- deutendes Absinken des Blutdruckes mit nachfolgender beträchtlicher Erhöhung des Blutdruckes.

Nach nochmaliger Injection von 0,02 Colchicin ruft Vagusreizung bei 20 und 10 mm. R. A. zwar Pulsverlangsamung, aber kein Sinken des Blutdruckes, sondern gleich Ansteigen desselben hervor.

Dasselbe bewirkt Reizung bei 0 mm. R. A.

Nach einer elften Injection von 0,02 Colchicin (also bis jetzt im Ganzen 0,22 C.) ruft Vagusreizung bei 0 mm. R. A. keine Veränderung in der Pulsfrequenz, aber sogleich starkes Ansteigen des Blutdruckes hervor (Vgl. Taf. IV, Fig. 2, a.—e).

Ergebnisse. Durch Colchicin werden diejenigen Vagusfasern, welche hemmend auf die Herzthätigkeit einwirken, allmählich gelähmt, während diejenigen Vagusfasern, durch welche eine Blutdrucksteigerung zu erzielen ist, intact bleiben.

Wie aus den vorgeführten Versuchen hervorgeht, werden bei Reizung des peripheren Halsvagusstumpfes offenbar 2 verschiedene Fasersysteme erregt: eines, das zum Herzen geht und dort mit den Hemmungsapparaten in Verbindung steht; ein anderes, welches an einen andern Ort (und sicher nicht zum Herzen) geht, und in er- regtem Zustande Anlass zu einer Blutdruckerhöhung giebt.

Außerdem, dass sie in verschiedenen Organen endigen und verschiedenen Funktionen vorstehen, müssen diese beiden Fasersysteme aber auch in ihrem chemischen Verhalten differiren, da sie gegenüber denselben Giften sich verschieden widerstandskräftig er-
weisen, da die hemmenden Fasern von Atropindosen gelähmt werden, durch welche die blutdrucksteigernden intact gelassen werden, und da die letzteren die 2- bis 5fache Menge des giftes zu ihrer Lähmung nöthig haben.

Wenn man im normalen unvergifteten Zustande des Thieres bei Reizung des peripheren Halsvagusstumpfes zwar nur die Folgen der Reizung der hemmenden Fasern beobachtet, so wird man nach obigen Versuchen wohl nicht umhin können, anzunehmen, dass trotzdem gleichzeitig auch die blutdrucksteigernden Fasern mitgereizt werden und auch ihrerseits Folgezustände nach sich ziehen. Da man aber deren Effect im Blutstrom nicht wahrnehmen kann, so wird man zur Annahme geleitet, dass die Folge der Reizung beider Faserarten hinsichtlich der Circulationsverhältnisse vielleicht in einem gewissen Antagonismus zu einander stehen, und dass die Wirkung der gereizten hemmenden die Wirkung der gereizten blutdrucksteigernden Fasern aufhebt und sogar übercompensirt; denn im normalen Zustande tritt ja nicht nur keine Steigerung, sondern sogar ein Sinken des Blutdruckes ein.

Werden die hemmenden Fasern nicht vollständig gelähmt, sondern nur in ihrer Erregbarkeit herabgesetzt, so hat man es in der Hand, durch stärkere auf den peripheren Halsvagusstumpf applizirte Ströme Pulsverlangsamung und Sinken des Blutdruckes, durch schwächere Ströme (die zu schwach sind, um die in ihrer Erregbarkeit geschwächten hemmenden Fasern zu erregen) Steigen des Blutdruckes ohne Veränderung der Pulfsfrequence hervorzurufen.

Während die Wirkung der gereizten hemmenden Vagusfasern auf den Blutstrom sehr kurze Zeit nach Beendigung der Reizung schwindet, ist dagegen die Nachwirkung der gereizten drucksteigernden Fasern auf den Blutstrom oft sehr lange andauernd, wie man nach der durch Atropin bewirkten Lähmung der ersteren sieht. Es ist denkbar, dass die dem Herztatstand nachfolgende Blutdrucksteigerung, wie man sie oft nach der Vagusreizung des unvergifteten Thieres beobachtet, eine Folge der Nachwirkung des Reizes im Gebiete der blutdrucksteigernden Fasern ist. Aus den vorgenannten Versuchen spricht namentlich der Colchicinkatzenversuch (Taf. IV, Fig. 2) sehr für diese Annahme; bei diesem sieht man mit der allmählichen Abnahme der Erregbarkeit der hemmenden Herzapparate, wie eine Erhöhung des Blutdruckes sich bei der Halsvagusreizung allmählich substituirt, und wie umgekehrt als im normalen Zustande die Folgen der erregten drucksteigernden Fasern die der hemmenden über-
Untersuchungen über d. physiolog. Wirkungen d. Atropin u. Physostigmin. 468
compensieren, und wie deshalb trotz noch fortwährend erzeugter Puls-
verlangsamung keine Druckerniedrigung, sondern -steigerung auftritt.
Die Herzhube werden in einzelnen Fällen, während der Blut-
drück-ansteigt, verstärkt; die Verstärkung scheint nur Folge der
Blutdrucksteigerung und nicht etwa Folge von zum Herzen auf der
Bahn des Vagus laufenden Reizen zu sein; für diese Annahme spricht
namentlich der Umstand, dass die Herzhube meistens erst dann
höher werden, wenn der Blutdruck nahezu sein Maximum erreicht
hat, zu einer Zeit also, wo bereits eine geräumige Weile die Electro-
den von den Vagis entfernt worden sind.
Nachdem ich die Sache soweit aufgeklärt hatte, suchte ich
weitergehend auch die Bahnen der blutdrucksteigernden Fasern, die
durch den Halsvagus hindurchlaufen, aufzufinden und diejenigen
Vorgänge kennen zu lernen, die nach Reizung dieser Fasern Anlass
zur Steigerung des Blutdruckes geben. Da aus obigen Versuchen
hervorging, dass die durch Reizung des peripheren Halsvagusstumpfes
am schwach atropinisirten Thiere bedingte Steigerung des Blutdruckes
nicht Folge von Zweigströmen auf sensible Nerven, nicht Folge
einer Einwirkung auf die Muskeln der Stimmitze, auf den Modus
der Respirationsbewegungen, ferner nicht Folge der Thätigkeit etwa
im Halsvagus verlaufender excitirender Herzvenenfasern sein kann,
blieben nur 2 Möglichkeiten über: entweder bewirkt obige Reizung
veränderte Zustände am Magen und Darm, und die blutdruckstei-
gernden Fasern verlaufen in den chordae oesophageae zu den Unter-
leiborganen, oder es bewirkt die Reizung veränderte Zustände im
Lungenkreislauf, und die Bahnen der blutdrucksteigernden Fasern
liegen in den Bronchialästen des Vagus.
Ich richtete mein Augenmerk auf die zu den Organen des
Unterleibes gehenden Vaguszweige. Von diesen ist schon lange
durch die Untersuchungen von Kupffer und Ludwig, Budge,
Martin, Valentine, Ravitsch etc. bekannt, dass darin moto-
rische Fasern zum Magen, Dünn- und Dickdarm gehen. Reizung
des durchschnittenen peripheren Vagusstückes ruft lebhafe Bewe-
gungen obiger Organe hervor, wie auch ich mit grosser Sicherheit,
wenigstens für Magen und Dünn darm, beobachtet habe.
Ueber den Einfluss der Bauchfasern des Vagus auf die Gefässe
der Unterleiborgane dagegen hat bis jetzt nur Rutherford 1) Untersuchungen angestellt. Wenn dieser Forscher die Vagishährend
der Verdauung trennte, fand er, »dass sich die vorher dilatirten
Gefässe des Magens contrahirten; das Erblasen der Magenwände
war mit bloßem Auge zu sehen; zugleich sah er gleichzeitig den Blutdruck in die Höhe steigen. Während des Hungerndes dagegen sah er bei Durchschneidung beider Vagi Alles beim Alten bleiben; die Blutgefäße des Magens verblieben in halb zusammengezogenem Zustande, und der Blutdruck veränderte sich gewöhnlich nicht. Rutherford bezieht daher die Blutdrucksteigerung, die man so häufig nach der einfachen Durchtrennung beider Halsvagi auftreten sieht, auf die in Folge dessen eintretende Contraction der Blutgefäße des Magens, und nicht, wie die meisten andern Forscher, auf eine durch Wegfall der hemmenden Momente bedingte Verstärkung der Herzaktion. »Es entscheide im Allgemeinen der Zustand der Magengefäße, ob nach einer Durchschneidung der Vagi der Blutdruck steigt oder nicht. Diese Thatsache zeige, dass während der Verdauung Reize durch die Vagi passiren, in Folge deren die Magengefäße erweitert werden; diese Reize wandern vom Magen zum verlängerten Mark und nicht in der entgegengesetzten Richtung; denn wenn man nach Durchschneidung des Vagus den peripheren Stumpf reize, so erfolge keine Veränderung in den Gefäßen; während, wenn das centrale Ende gereizt werde, dieselben sich, wenn sie auch contrahirt waren, bisweilen erweitern. Die zum Rückenmark laufenden Erregungen scheinen die den Unterleibsgefäßen vorstehenden Fasern des n. splanchnicus zu hemmen, weil Durchschneidung der Vagi keine Veränderung der Magengefäße erzeugt, wenn vorher die Cervicalportion des Rückenmarkes oder die beiden nn. splanchnici durchnitten worden sind.«

Diese Mittheilungen Rutherford's sind für die Physiologie des Vagus von grosser Wichtigkeit und würden in Verbindung mit seinen andern hier nicht weiter mitsaulieilenden Beobachtungen uns unbedingt zu wesentlichen Modificationen in den bisher herrschenden Anschauungen über die Bedeutung des Vagus und über seine wichtigsten Functionen zwingen.

In Folgendem theile ich diejenigen meiner Untersuchungen mit, welche einen Bezug auf mein Thema (auf die Ursachen der Blutdrucksteigerung nach Reizung des peripheren Halsvagusstumpfes am atropinisirten Thiere) haben 1).

1) l. c. pag. 412, 414, 415.
2) Die folgenden Untersuchungen habe ich in Gemeinschaft mit Herrn stud. med. Quellhorst angestellt, der die ausführlichen Versuchsproto-
kolle später veröfnlichen wird.
Um zu sehen, ob die blutsteigernden Fasern vom Halsvagus durch die chordae oesophageae zu den Unterleibsorganen verlaufen, muss man 2 Wege einschlagen: 1) muss man erforschen, welchen Einfluss die Reizung des peripheren Endes der durchschnittenen chordae oesophageae Vagi auf die Gefässe des Magen- und Darmkanales und auf den Blutdruck haben; und 2) muss man prüfen, ob am atropinizierten Thiere die nach Reizung des peripheren Halsvagusstumpfes auftretende Blutdrucksteigerung ausbleibt, nachdem man die Bauchäste des Vagus durchschnitten und somit von den oberen Theilen des abgetrennt hat.

Aus den Rutherford'schen Mittheilungen geht nicht mit Sicherheit hervor, wo er bei den oben mitgetheilten Untersuchungen den Vagus durchschnitt; jedoch ist es sehr wahrscheinlich, dass er dies am Halse gethan hat. Da dort aber noch eine Menge von Fasern verlaufen, die sich zum Herzen, zur Lunge, zum Kehlkopf abzweigen, so sind bei der Reizung des durchschnittenen Halsvagus auch diese letzteren mitgereizt und daher die aus den Ergebnissen zu ziehenden Schlüsse nicht zwingend. Ich ging aus diesen Gründen darauf aus, die Erscheinungen zu prüfen, die man erhält, wenn man die Bauchvagusäste von den oberen Theilen des Vagus abtrennt und dann das untere (stomachale) Ende des Bauchvagus reizt, wodurch man sicher ist, bei der Reizung nur die zum Unterleib gehenden Fasern zu treffen.

Nach einer Reihe von Vorversuchen fand ich folgende Methode als die zweckmässigste. Die Versuchsthiere werden curarisirt und künstlich respirirt; eine Cantile in eine Arterie (carotis oder cruralis) eingebunden und mit einem Manometer in Verbindung gesetzt. Sodaß werden unterhalb des unteren Schulterblattwinkels 2—3 Cm. vor den Dornfortsätzen (je nach der Grösse des Thieres) einige Rippenstücke resecirt. Durch geeignete vorausgegangene Umbindung kann die ganze Operation ohne jede Spur einer Blutung gemacht werden. Es wird sodann die Speiseröhre, die man durch eine eingeschobene Sonde dem Gefühl deutlicher gemacht haben kann, hervorgeholt, die beiden chordae oesophageae n. vagi durchschnitten und mit ihren peripheren Enden Electroden (die für tiefliegende Nerven passen) bleibend verbunden. Bei Kaninchen laufen die beiden Vagi am hinteren Umfang der Speiseröhre sehr nahe aneinander, sind sehr leicht zu fassen, leider aber auch sehr leicht zerreislich. Bei Hunden, an denen wir die meisten Versuche anstellten, ist na-
mentlich der linke Vagus schwer zu bekommen; doch gelingt es durch Übung, aller Schwierigkeiten Herr zu werden.

Bei so präparierten Thieren (Kaninchen und Hunden) ergab sich entgegen den Rutherford'schen Resultaten, dass Reizung des peripheren Endes des am unteren Drittheil der Speiseröhre durchschnittenen Vagus eine Verengerung der Blutgefäße des Magens und Darms und eine bedeutende Erhöhung des Blutdruckes in der carotis bewirkt, sowohl wenn nur ein, als auch wenn alle beide Vagi in die Elektroden eingespannt waren; die Pulsfrequenz bleibt unverändert.

Die Verkleinerung des Lumens der Darmgefäße konnte mit bloßem Auge deutlich wahrgenommen, ja sogar an einzelnen Mesenterialgefäßen gemessen werden; liessen wir durch Anstechen einer Arterie am Mesenterium spritzen, so hörte das Spritzen unmittelbar mit Beginn der Vagusreizung an der Speiseröhre auf.

Die Erhöhung des Blutdruckes folgte unmittelbar auf die Reizung.

Reizte man nach Durchtrennung beider Bauchvagi die peripheren Halsvagusstämpfe, so trat am Ende des dadurch bewirkten diastolischen Stillstandes nie mehr das starke Anwachsen des Blutdruckes über die alte Höhe hinaus ein, wie es bei intakten Bauchvagen die Regel ist; auch konnte, wenn die beiden Bauchvagi abgeschnitten waren, nach Vergiftung mit kleinsten Atropindosen vom Halsvagus aus nie mehr eine Erhöhung des Blutdruckes bewirkt werden.

Durch diese letzten Beobachtungen wird der denkbare Einwand, die blutdruckerhöhenden Fasern seien erst in der Brusthöhle zum Bauchtheil des Vagus getreten, hinfällig.

Es wurden nur diejenigen Fälle als beweiskräftig angenommen, wo durch Curare eine vollkommene Bewegungslosigkeit des Tieres erzielt worden war. Es folgen einige Beispiele aus einer an 8 Thieren angestellten Versuchsreihe:

Versuch 1 (3).

Weiblicher Rattenfängerhund mittlerer Größe, curarisirt, künstlich respirirt und, wie oben angegeben, präparirt. Der linke Speiseröhrenast des Vagus ist mit einer Elektrode für tiefliegende Nerven in ständige Verbindung gesetzt; der Strom wird durch einen im metallenen Stromkreis befindlichen Schlüssel geöffnet und geschlossen.
Untersuchungen über d. physiolog. Wirkungen d. Atropin u. Physostigmin. 437

<table>
<thead>
<tr>
<th>Nr. d. Reizung</th>
<th>Reizungs-</th>
<th>Vor Reizung</th>
<th>Während der Reizung</th>
<th>Bemerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>daneben</td>
<td>Puls in 16 Sec.</td>
<td>Blutdruck</td>
<td>Puls in 15 Sec.</td>
</tr>
<tr>
<td>1</td>
<td>10 Sec. 60mm R.A.</td>
<td>56</td>
<td>91mm Hg</td>
<td>56</td>
</tr>
<tr>
<td>2</td>
<td>4 x 60 x</td>
<td>56</td>
<td>98 x</td>
<td>57</td>
</tr>
<tr>
<td>3</td>
<td>5 x 60 x</td>
<td>56</td>
<td>91 x</td>
<td>58</td>
</tr>
<tr>
<td>4</td>
<td>20 x 60 x</td>
<td>57</td>
<td>91 x</td>
<td>57</td>
</tr>
<tr>
<td>5</td>
<td>3 x 60 x</td>
<td>57</td>
<td>91 x</td>
<td>57</td>
</tr>
<tr>
<td>6</td>
<td>3 x 60 x</td>
<td>57</td>
<td>91 x</td>
<td>57</td>
</tr>
<tr>
<td>8</td>
<td>5 x 50 x</td>
<td>60</td>
<td>91 x</td>
<td>57</td>
</tr>
<tr>
<td>12</td>
<td>8 x 50 x</td>
<td>57</td>
<td>91 x</td>
<td>57</td>
</tr>
</tbody>
</table>

V ersuch 2 (7).

Kräftiger Hand bis zu vollständiger Bewegungslosigkeit curarisiert und künstlich respiriert.

Linker Hals-Vagus wird abgeschnitten. Brusthöhle eröffnet und beide Bauchvagi am unteren Drittelteil der Speiseröhre präparirt, durchschnitten und deren peripheres Ende mit einer Electrode für tiefliegende Nerven verbunden; Oeffnung und Schliessung des Stromes geschieht durch einen in dem metallenen Kreis eingeschalteten Schlüssel.

Während des Versuches liess die Wirkung der ersten Curaregabe nach und es musste zum zweiten Male Curare eingespritzt werden; nach der zweiten Curaredosis sank der Blutdruck eine Zeit lang sehr tief herab.

Gegen Ende des Versuches wurde 0,001 Atropin (in 3 Einzeldosen von 0,00025, 0,00025 und 0,0005 Grm.) in eine Fusseone eingespritzt.

Es wurden die peripheren Enden des Halsvagus und der beiden Bauchvagi in verschiedenen Zwischenräumen electric und mechanisch (durch schwaches Zerre) oft gereizt; ich stelle die hierbei erhaltenen Resultate in Folgendem übersichtlich zusammen.

I. Electriche Reizung der peripheren Stümpfe beider Bauchvagi.

<table>
<thead>
<tr>
<th>Nr. der Reizung</th>
<th>Blutdruck in mm. Hg</th>
<th>Steigerung des Blutdrucks.</th>
<th>Rollenabstände</th>
<th>Bemerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) nach der ersten Curarisierung</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>126 mm. Hg, 161 mm. Hg</td>
<td>35 mm. Hg</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>147 x 189 x</td>
<td>42 x</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>126 x 129 x</td>
<td>8 x</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>119 x 161 x</td>
<td>42 x</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>119 x 168 x</td>
<td>49 x</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>119 x 140 x</td>
<td>21 x</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Nr. der Reizung</td>
<td>Blutdruck in mm. Hg</td>
<td>Steigerung des Blutdrucks.</td>
<td>Rollenabstände</td>
<td>Bemerkungen</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------------</td>
<td>---------------------------</td>
<td>---------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>vor Reizung</td>
<td>nach Reizung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>b) nach der zweiten Curareinspritzung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>91 mm. Hg</td>
<td>98 mm. Hg</td>
<td>7 mm. Hg</td>
<td>0</td>
</tr>
<tr>
<td>10.</td>
<td>85 > 49</td>
<td>142 > 14</td>
<td>0 > 0</td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>105 > 105</td>
<td>28 > 0</td>
<td>0 > 0</td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>84 > 138</td>
<td>49 > 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>c) nach der Atropineinspritzung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>59 mm. Hg</td>
<td>94 mm. Hg</td>
<td>35 mm. Hg</td>
<td>0</td>
</tr>
</tbody>
</table>

Hier war vorher schon der Blutdruck durch eine vorhergegangene Zerrung der Bauchvagen gesteigert.

Es trat also bei diesen Reizungen sowohl vor wie nach der Atropineinspritzung Blutdrucksteigerung ein, nur nach der zweiten, wahrscheinlich in großer Curaredosis ist dieser Effect vorübergehend gering und eine sehr kurze Zeit ganz aufgehoben; in diesem Stadium ist der Blutdruck überhaupt sehr niedrig.

II. Mechanische Reizung der peripheren Stämme beider Bauchvagi.

<table>
<thead>
<tr>
<th>Nr. der Reizung</th>
<th>Blutdruck in mm. Hg</th>
<th>Steigerung des Blutdrucks.</th>
<th>Bemerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>vor Reizung</td>
<td>nach Reizung</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>a) nach der ersten Curarisierung.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>126 mm. Hg</td>
<td>175 mm. Hg</td>
<td>49 mm. Hg</td>
</tr>
<tr>
<td></td>
<td>b) nach der 2. Curareinspritzung, durch welche der Blutdruck eine Zeit lang sehr niedrig wurde.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>49 mm. Hg</td>
<td>84 mm. Hg</td>
<td>35 mm. Hg</td>
</tr>
<tr>
<td>3.</td>
<td>87 > 140</td>
<td>58 > 5</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>91 > 119</td>
<td>28 > 0</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>84 > 129</td>
<td>45 > 0</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>77 > 188</td>
<td>56 > 0</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>91 > 186</td>
<td>45 > 0</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>77 > 188</td>
<td>56 > 0</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>91 > 186</td>
<td>45 > 0</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>77 > 119</td>
<td>42 > 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c) nach d. Einspritzung v. 0,00025 Atropin.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>68 mm. Hg</td>
<td>183 mm. Hg</td>
<td>70 mm. Hg</td>
</tr>
<tr>
<td></td>
<td>d) nach weiteren 0,00075 Atropin.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>84 mm. Hg</td>
<td>84 mm. Hg</td>
<td>0 mm. Hg</td>
</tr>
</tbody>
</table>

Die Druckerhöhung dauert $\frac{1}{2}$ Minute lang an.

Auch hier zeigt sich stets beträchtliche Blutdruckerhöhung; auch noch nach der ersten Atropininjektion; nach der zweiten allerdings nicht mehr.
Untersuchungen über d. physiol. Wirkungen d. Atropin u. Physostigmin. 469

III. Elektrische Reizung des linken peripheren Halsvagus-
stumpfes (nach abgetrennten Bauchvagis) bewirkte sowohl nach der
ersten, wie auch nach der zweiten Curareeinspritzung diastolische Herzstill-
ständen oder Pulsverlangsamung (je nach der Stärke der Reizung), sowie Sinken
des Blutdruckes.

<table>
<thead>
<tr>
<th>Nummer der Reizung</th>
<th>Blutdruck in mm. Hg vor der Reizung</th>
<th>Blutdruck in mm. Hg während der Reizung</th>
<th>Differenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) nach der ersten Curareeinspritzung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>147</td>
<td>73</td>
<td>74</td>
</tr>
<tr>
<td>2.</td>
<td>157</td>
<td>70</td>
<td>87</td>
</tr>
<tr>
<td>b) nach der zweiten Curareeinspritzung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>84</td>
<td>66</td>
<td>18</td>
</tr>
<tr>
<td>4.</td>
<td>77</td>
<td>59</td>
<td>18</td>
</tr>
<tr>
<td>5.</td>
<td>94</td>
<td>66</td>
<td>28</td>
</tr>
<tr>
<td>6.</td>
<td>126</td>
<td>59</td>
<td>67</td>
</tr>
<tr>
<td>7.</td>
<td>136</td>
<td>42</td>
<td>94</td>
</tr>
<tr>
<td>8.</td>
<td>87</td>
<td>70</td>
<td>17</td>
</tr>
<tr>
<td>9.</td>
<td>70</td>
<td>42</td>
<td>28</td>
</tr>
</tbody>
</table>

Während sonst nach Beendigung der diastolischen (Vagureiz) Stillstände
der Blutdruck sehr häufig über seine normale Höhe bedeutend hinüberschneidet,
ist dies hier nicht ein einziges Mal der Fall, der Blutdruck steigt hier nach
Schluss der Reizung nur zu der Höhe, die er vor der Reizung inne hatte.

Nach der Injection von 0,001 Atropin dagegen, wo bei allen meinen
früheren Versuchen durch Reizung des peripheren Halsvagusstumpfes Blut-
druckerhöhung eingetreten war, konnten in diesem Falle, wo die Bauchvagus-
äste vom Halsvagus abgetrennt waren, durch die stärksten Ströme keine Spur
einer Änderung des Blutdruckes erzielt werden.

<table>
<thead>
<tr>
<th>Blutdruck vor Reizung</th>
<th>Blutdruck nach Reizung</th>
</tr>
</thead>
<tbody>
<tr>
<td>73</td>
<td>73</td>
</tr>
</tbody>
</table>

Ich habe auch das Verhalten der Bauchvagi nach stärkeren Atropingaben (0,01 Grm.) durch directe Reizung ihres peripheren
geschnittenen Endes geprüft und hiebei die merkwürdige und mir vor-
läufig unerklärliche Thatsache gefunden, dass bei verhältnissmässig
schwachen Reizungen (bei Rollenabständen zwischen 40—50 mm.)
ebenso wie vor der Vergiftung Erhöhung des Blutdruckes eintrat,
dass dagegen bei starken Reizungen (bei Rollenabständen zwischen
0—30 mm.) stets unter Irregularität des Pulses der Blutdruck während der Dauer der Reizung absank, um allerdings nach Beendigung der Reizung wieder auf eine größere Höhe anzusteigen, als sie vor Beginn der Reizung war (Taf. IV, Fig. 6, a und b).

Folgendes sind die Ergebnisse der Reizung des durchschnittlichen peripheren Bauchvagusstumpfes nach einer Injection von 0,01 Atropin bei einem Hunde:

<table>
<thead>
<tr>
<th>Nr. d. Reizung</th>
<th>Reizungs- dauer.</th>
<th>Reizungsstärke</th>
<th>Vor Reizung</th>
<th>Während der Reizung</th>
<th>Bemerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Puls in 15 Sec.</td>
<td>Blutdruck in 15 Sec.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. 10 Sec.</td>
<td>50 mm-R.A.</td>
<td>56</td>
<td>70 mm Hg</td>
<td>56</td>
<td>84 mm Hg</td>
</tr>
<tr>
<td>2. 16 x 50</td>
<td></td>
<td>57</td>
<td>59 mm Hg</td>
<td>57</td>
<td>70 mm Hg</td>
</tr>
<tr>
<td>3. 3 x 0</td>
<td></td>
<td>56</td>
<td>50 mm Hg</td>
<td>unregelm.</td>
<td>63 mm Hg</td>
</tr>
<tr>
<td>4. 4 x 0</td>
<td></td>
<td>55</td>
<td>77 mm Hg</td>
<td></td>
<td>56 mm Hg</td>
</tr>
<tr>
<td>5. 4 x 50</td>
<td></td>
<td>55</td>
<td>63 mm Hg</td>
<td>55</td>
<td>91 mm Hg</td>
</tr>
<tr>
<td>6. 3 x 50</td>
<td></td>
<td>57</td>
<td>70 mm Hg</td>
<td>57</td>
<td>84 mm Hg</td>
</tr>
<tr>
<td>10. 4 x 30</td>
<td></td>
<td>56</td>
<td>91 mm Hg</td>
<td>unregelm.</td>
<td>62 mm Hg</td>
</tr>
<tr>
<td>18. 20 x 50</td>
<td></td>
<td>51</td>
<td>91 mm Hg</td>
<td></td>
<td>63 mm Hg</td>
</tr>
</tbody>
</table>

NACH DER REIZUNG
Puls in 15 Sec. Blutdruck

Aus meinen Versuchen scheint demnach hervorzugehen, dass
1) außer im Splanchnicus auch im Hals- und Bauchvagus vasomotorische Nervenfasern zu den Unterleibsorganen verlaufen, durch deren Reizung Contraction der Unterleibsgefäße und hierdurch Erhöhung des Blutdruckes im grossen Kreislauf bewirkt wird;
2) dass die Blutdruck erhöhung, die man am normalen Thiere nach Auftreten des Vagusreizherzstillstandes, und am atropinisirten Thiere unmittelbar auf Reizung des Halsvagus beobachtet, Folge der Reizung dieser vasomotorischen Fasern der Unterleibsorgane ist.

Würzburg, 18. März 1875.

Erklärung der Abbildungen auf Tafel III und IV.
Bemerkung. Alle Curven der beiden Tafeln sind von links nach rechts zu lesen.

Tafel III.

Fig. 1 (a—c) Froschherz mit in die linke Aorta eingebundener Canülé; Körperkreislauf durch die nicht unterbundene rechte Aorta erhalten. a Stäck aus einer vor Atropinvergiftung gezeichneten Curve.
b (a—γ) Die unmittelbar mit der Atropininjection (0,001) in die Bauchvene beginnende Curve ist in 3 Abschnitte α, β und γ zerlegt und zeigt in

α noch 3 Herzkontraktionen unmittelbar nach der Atropinvergiftung, und den Beginn, sowie den größten Theil der diastolischen Stillstandlinie; in

β den Schluss des diastolischen Stillstandes und den Wiedereinbeginn der Herzschläge; in

γ die Fortsetzung der letzteren.

c Herzthätigkeit desselben Frosches 2 Minuten später.

Die unterste Linie gibt immer die Zeit von je 15 Sekunden.

Fig. 2 (a—t). Froschherz mit in die linke Aorta eingebundener Canüle.

b Zweite Sinusreizung bei 200 mm. R. A. nach Injektion von 0,0005 Atropin bewirkt keinen diastolischen Stillstand.

c 8. Sinusreizung bei 150 mm. R. A. Diastolischer Stillstand.

d 4.

e 5.

f 6. nach vorausgegangener zweiter Injection von 0,0005 Atropin.

g 7. Sinusreizung bei 150 mm. R. A. Diastolischer Stillstand.

i 10. Sinusreizung 100 mm. R. A. erzeugt wieder einen diastolischen Stillstand.

k 11. Sinusreizung bei 100 mm. R. A. Diastolischer Stillstand.

l 12.

m 13. nach einer dritten Injection von 0,0005 Atropin. Sehr kurzer diastolischer Stillstand.

n 14. Sinusreizung bei 100 mm. R. A. Diastolischer Stillstand.

o 15.

p 16.

q Nach einer 4. Injection von 0,001 Atropin bewirkt eine 17. Sinusreizung bei 100 mm. R. A. keinen diastolischen Stillstand mehr, wohl aber eine Sinusreizung von 50 mm. R. A.

r Nach einer 5. Injection von 0,001 Atropin bewirkt die 28. Sinusreizung bei 50 mm. R. A. diastolischen Stillstand.

t 27. und 28. Sinusreizung bei 50 mm. R. A.

Anm. Der Augenblick des Beginns sämtlicher Sinusreize ist stets mit * bezeichnet.
Fig. 3 (a und b). Froschherzcurven.

Curve a ist aufgenommen, nachdem im Laufe einer Viertelstunde 0,004 Atropin subcutan injiziert worden war. Die Sinusreizungen (*) und (***) sind die 8. und 9. des Versuchs.

Curve b ist einige Minuten nach der Curve a aufgenommen und enthält die 10. Sinusreizung (*) mit exquisitem diastolischem Stillstand.

Fig. 4 (a—g). Froschherz.

a Injection von 0,002 Atropin in die Bauchvene.
b Sinusreizung mit 100 mm. R. A. (3 Minuten nach der Injection in a) hat einen deutlichen diastolischen Stillstand zur Folge.
c Sinusreizung mit 100 mm. R. A., ½ Minuten nach der Sinusreizung in b ruft keinen diastolischen Stillstand mehr hervor.
d Sinusreizung bei 0 R. A. (unmittelbar nach c) bewirkt keinen Stillstand mehr.
e Sinusreizung bei 0 R. A. (7 Minuten nach der Injection in a) ruft keinen Stillstand hervor.
f Fascizisation des Unterleibes.
g Einbindung der bis dahin noch offen gewesenen rechten Aorta.

Fig. 5. Nicotinstillstand eines Froschherzens.

Fig. 6 (a—c). Frequenz der Herzkontraktionen eines Kaninchens vor und nach Atropinisierung (Federmanometer).
a vor Atropinvergiftung;
b nach einer ersten Injection von 0,001 Grm. Atropin;
c " " zweiten " " 0,001 " " N. vagi nicht durchschnitten.

Fig. 7 (a—c). Tracheotomiertes Kaninchen mit durchschnittenen beiden Vagis. Kautschukmanometer mit der carotis in Verbindung gebracht. 0,006 Atropin in die v. jug. gespritzt.

a Auf Reizung des peripheren Vagusstumpfes (V. r.) bei 90 mm. R. A. steigt der Blutdruck von 84 auf 124 mm. Hg; diese Steigerung beginnt aber erst nach Beendigung der Reizung.
b Auf Vagusreizung (V. r.) bei 80 mm. R. A. tritt Blutdrucksteigerung von 78 auf 104 mm. Hg ein.
e Auf Vagusreizung (V. r.) bei 80 mm. R. A., die aber nur sehr kurz andauert, tritt die Blutdruckerhöhung verhältnismässig spät ein (von 80 auf 116 mm. Hg).
d 10 Minuten nach Curve c sind die hemmenden Herzvagusfasern schon wieder reizbar geworden.
e Nach einer nochmaligen Einspritzung von 0,008 Atropin bewirkt Vagusreizung wieder Erhöhung des Blutdruckes von 80 auf 100 mm. Hg.

Anm. Bei sämtlichen Curven (a—c) war die Umdrehungsgeschwindigkeit der Trommel verschieden schnell.

1 Millimeter der Ordinatenhöhe entspricht etwa 4 Mm. Quecksilber.
Untersuchungen über d. physiolog. Wirkungen d. Atropin u. Physostigmin. 463

Beginn und Dauer der Vagusreizung ist durch Einknickung der Ab-
scissenlinie bezeichnet.

Fig. 8. Kaninchen. Federmanometer.

Nach 0,002 Atropin tritt auf Reizung des peripheren Vagusendes (V. r.)
erstarrer Pulsverlangsamung Steigerung des Blutdruckes von 90 auf
108 mm. Hg ein.

1 Millimeter der Ordinatenhöhe = 2 mm. Hg.

Tafel IV.

Fig. 1. Curarizierter und künstlich respirirter Hund. Kautschukmanometer.

Nach 0,0009 Atropin wird eine Smalige Reizung des peripheren Hals-
vagustumpfes vorgenommen.

A n m. 1 mm. der Ordinatenhöhe = 7 mm. Hg. In die Nulllinie ist
der Beginn und die Dauer der 3 Vagusreizungen eingetragen.

Jeder horizontale Strich der 2. Linie bedeutet 1 Secunde Zeit.

Fig. 2 (a—g). Katze. Reizung des peripheren Halsvagustumpfes nach ver-
schieden grossen Dosen Colchicin. Kautschukmanometer.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Halsvagusreizung bei 50 mm. R. A.</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0,04 Colchicin</td>
<td>60</td>
</tr>
<tr>
<td>b</td>
<td>0,08 ''</td>
<td>40</td>
</tr>
<tr>
<td>c</td>
<td>0,16 ''</td>
<td>20</td>
</tr>
<tr>
<td>d</td>
<td>0,18 ''</td>
<td>20 und 10</td>
</tr>
<tr>
<td>e</td>
<td>0,2 ''</td>
<td>0</td>
</tr>
<tr>
<td>f</td>
<td>0,22 ''</td>
<td>0</td>
</tr>
</tbody>
</table>

Beginn und Dauer der Reizung ist stets in die Abscisse eingetragen.

1 Millimeter Ordinatenhöhe = 3 mm. Hg.

Fig. 3 (a, b). Kaninchenerzckuren mit dem Fick'schen Federmanometer an-
geschrieben. Beide nn. vagi durchschnitten.

a Reizung des peripheren Hals-Vagustumpfes (V. r.) bewirkt Herzstill-
stand und Sinken des Blutdruckes; die Wirkung einer früheren Atrop-
injection ist demnach geschwunden.

b Nach einer frischen Injection von 0,001 Atropin bewirkt Hals-Vagus-
reizung starke und lang anhaltende Blutdruckerhöhung ohne Ver-
änderung der Pulsfrequenz.

Beginn und Dauer der Vagusreizung (V. r.) ist in die Abscisse einge-
tragen.

An der auf die Abscisse aufgetragenen Ordinate entspricht immer je
1 mm. Höhe einer 2 mm. hohen Quecksilbersäule.

Fig. 4 (a—d). Hund. Kautschukmanometer. Reizung des Halsvagus.

a Puls und Herzstillstand durch V. r. (100 mm. R. A.) vor der Atro-
pinvergiftung.

R. Pfüger, Archiv f. Physiologie. Bd. X.
Nach 0,0005 Atropin ist der Blutdruck sehr in die Höhe gestiegen.
V. r. bei 50 mm. R. A.

V. r. bei 80 mm. R. A.

V. r. bei 0 mm. R. A., unmittelbar nach c.

Anm. 1 mm. der Ordinatenhöhe = 7 mm Hg. Unterste Linie ist die Nulllinie, in welche Beginn und Dauer des V. r. eingetragen ist.

Fig. 5 (a, b). Curarisirter Hund. Kaustschukmanometer. Reizung des linken peripheren Bauchvagusstumpfes in der Brusthöhle a bei 60, b bei 50 mm. R. A.;

Anm. Auf der untersten (Null-) Linie ist Beginn und Dauer der Reizung eingetragen.

Auf der zweiten Linie von unten bedeutet der Raum zwischen je 2 senkrechten Strichen 1 Secunde.
1 Millimeter Ordinatenhöhe = 7 mm. Hg.

Fig. 6 (a, b). Curarisirter Hund. Kaustschukmanometer. Reizung des peripheren Bauchvagusstumpfes unter verschiedenen Rollenabständen.

a Reizung bei 0 mm. R. A. bewirkt Sinken des Blutdruckes und irregularen Puls, bei 50 mm. R. A. Steigen des Blutdruckes.

b Reizung bei 84 und 80 mm. R. A. bewirkt Absinken des Blutdrucks und irregularen Puls.

Fig. 7. Kaninchen mit durchschnittenen Halsvagus und Sympathicus. Kautschukmanometer.

Nach 0,008 Atropin bewirkt Reizung des peripheren Halsvagusstumpfes Steigerung des Blutdruckes, bedeutende Verstärkung der Herzthubl ohne Veränderung der Pulsfrequenz.

Anm. In die unterste (Null-) Linie ist Beginn und Dauer der Vagusreizung (V. r.) eingetragen.

1 Millimeter der Ordinate entspricht etwa 4 mm. Hg.
Zeit von je 5 Secunden durch eine Erhebung der 2. Linie angedeutet.

Fig. 8. Kaninchen. Federmanometer.
Blutdrucksteigerung nach Reizung des atropinisirten Halsvagus bei gleichzeitigen Körperbewegungen.
1 mm. der Ordinatenhöhe = 2 mm. Hg.
Die Fortpflanzungsgeschwindigkeit der Reizung in der quergestreiften Muskelfaser.

Erwiderung an Herrn Prof. L. Hermann, von Prof. Chr. Aeby.

Nach der von mir aufgestellten Theorie des Lebens 1) sind die Leistungen der Organe durch Dissociation der lebendigen Materie bedingt, die im Wesentlichen eine besondere Modification von Eiweiss ist.

Ich zeigte durch Versuche, dass die Erregbarkeit ihren nächsten Grund im intramolekularen Sauerstoffe hat und dass sie erlischt, wenn derselbe zur Bildung von Kohlensäure verbraucht ist 2). Das bezieht sich ganz speziell auf das centrale Nervensystem, wenn es gewiss auch für alle Organe gilt.

Da die Kohlensäure sich fortwährend intramolecular durch Dissociation bildet, welche Metamerie d. h. Umlagerung der Atome erzeugt, so wandelt sich die hierbei verbrauchte chemische potentielle Energie zunächst in Wärme des neugebildeten Kohlensäuremoleküles um. Dies heisst mit anderen Worten, dass die Atome des Kohlensäuremoleküles mit dem Momente der Bildung desselben in die heftigsten Oscillationen versetzt werden, wie das bei einer Explosion geschieht. Diese intramolekularen Explosionen, die während des Lebens fortwährend ablaufen, erzeugen durch die Fortpflanzung der Stösse auf alle Theile der Moleküle starke Vibrationen aller Atome.

Ich verglich diesen Vorgang mit den singenden Flammen, die ein anschauliches Bild desselben geben.

So stelle ich mir alle lebendige Materie, ganz besonders aber so die graue Substanz des Gehirnes vor. Im wachen Zustande sind diese Vibrationen am stärksten, das Singen der Flammen am lautesten.

Meine Versuche, welche ich an Fröschen anstellte, die des

2) E. Pflüger, a. a. O. pg. 312 u. ff.
Sauerstoffs für lange Zeit beraubt waren, haben nun gelehrt, dass wenn die Kohlensäurebildung ganz oder fast ganz wegen des vollzogenen Verbrauches des hierzu bestimmten intramolekularen Sauerstoffs erloschen ist, auch das Leben schwindet, d. h. Scheintod eingetreten. Bei den Fröschen geht deutlich diesem Scheintod ein Stadium der Trägheit voraus: die Thiere erscheinen wie schlafrunken. Sobald der Scheintod sich ausgebildet hat, darf man sagen, dass die Uhr des Lebens abgelaufen sei, was für den wirklichen Tod ein unpaaender Ausdruck ist. Der Tod ist die Zertrümmerung der Uhr; dieser nach Verbrauch des intramolekularen Sauerstoffes eintretende Scheintod ist nur der nicht aufgezogenen, d. h. der abgelaufenen, sonst wohl erhaltenen Uhr vergleichbar. Denn wir vermochten durch Stunden lang wieder zugeführten Sauerstoff die Erregbarkeit des centralen Nervensystemes auf's Neue herzustellen.

Bei meinen Versuchen erhölte sich allerdings, weil die Frösche viel zu lange des Sauerstoffs beraubt waren, das centrale Nervensystem nicht ganz wieder. Wohl aber war dies bei den Versuchen anderer Forscher, die den Scheintod nicht so lange andauern liessen, vollkommen der Fall.

Es scheint mir deshalb keinem Zweifel zu unterliegen, dass eine bestimmte Summe intramolekularen Sauerstoffs insofern die Fundamentalsierung für den wachen Zustand abgibt, als diese Summe einen bestimmten Werth der Zahl der Explosionen ermöglicht, welche in der Zeiteinheit bei gegebener Temperatur ausgelöst werden können. Ich parallelisire also den durch Mangel an intramolekularem kohlensäurebildenden Sauerstoff bedingten Scheintod mit dem Schlaf, aus dem er hervorgeht. Dieser Scheintod ist der absoluteste Schlaf, wie er sonst kaum durch ein anderes Beispiel vertreten ist, was ich nachher noch besonders beleuchten will.

Alle bekannten Thatsachen weisen nun darauf hin, dass in der grauen Substanz des Gehirnes höchst labile Zustände vorhanden sind, welche eine sehr starke Dissociation zur Folge haben, die wahrscheinlich die in jedes anderen Organ des Körpers statthabende übertrifft.

Denn bei den Warmblütern und dem Menschen erscheint das Leben keines Organes so abhängig von der Zufuhr des Sauerstofes wie das des Gehirnes. Ja bei den Fröschen habe ich bewiesen, dass das Gehirn von der Sauerstoffzufuhr abhängiger, als irgend ein anderer Theil des Körpers ist und schneller sich total so weit zer-
setzt, dass keine Restitution mehr möglich ist, obwohl diese für das verlängerte Mark und Rückenmark noch gelingt 1).

Im Anschlusse hieran erinnere ich an meine Versuche, aus denen hervorgeht, mit welch erstaunlicher Geschwindigkeit die graue Substanz des Gehirnes der Warmblüter sogar bei einer wenig über 0°C. betragenden Temperatur unter Säurebildung sich zersetzt 2).

Nun bildet das ganze Nervensystem mit Einschluss der Muskeln und wahrscheinlich aller Secretionsdrüsen eine einzige continuirlich zusammenhängende Masse, das von mir sogenannte »animal e Zellen netz«. Diese festweichen Massen stelle ich mir aber nicht wie ein wässriges Lösungsgemenge in Hüllen vor, sondern als organisierte, d. h. mit einer Struktur behaftete Materie, wenn wir dieses auch mit dem Mikroskop nicht mehr im Einzelnen zu erkennen vermögen, weil es sich um zu feine Verhältnisse handelt. Ich denke mir die lebendigen Moleküle nämlich durch chemische Kräfte kettenartig aneinander geknüpft, so dass sie Fasern bilden, die einzel verlaufen oder mit anderen anastomosieren. In den Interstitien dieses Fasernetzes nehme ich wirkliche Lösungen an von Salzen, Zersetzungsprodukten, ja unter Umständen sogar von Nahrungseiweiß, das also noch nicht organisiert ist u. s. w. Die Zahl der Verknüpfungen der Fasern des Netzes wird ganz verschieden an verschiedenen Orten sein. Ich schliesse unter Umständen die Möglichkeit der Um schaltung nicht aus, d. h. dass Moleküle plötzlich sich anders verknüpfen können. Einen optischen Ausdruck gewinnt mein Molekular netz in der fibrillären Struktur der Ganglienzelle, des Axencylinders, der Muskelfaser, der Drüzenzelle. Doch sind diese sichtbaren Fibrillen wohl nur Fascikel noch feinerer Fäserchen. Diese Masse — organisirtes Netz + Lösung — ist es, welche den festweichen Zustand der Zellsubstanz, resp. des Protoplasma's darstellt. Da nun diese elementaren Fibrillen wie eine Perlschnur aus aneinander geknüpften Molekülen zusammengesetzt sind, deren Atome in fortwährenden Oscillationen sich befinden, so muss jede Veränderung der Schwingung eines Atomes eine Veränderung der Schwingungen der benachbarten Atome und so fort zur Folge haben.

Daraus folgt, dass weil in der grauen Substanz des Gehirnes die mächtigsten Vibrationen während des wachen Zustandes wesentlich

1) E. Pflüger, a. a. O. pg. 317. 324.
2) E. Pflüger, a. a. O. pg. 312.
in Folge der Kohlensäurebildung stattfinden, wellenartige Übertragungen der Erschütterungen nach allen oder vielen Richtungen des Körpers stattfinden werden. Jede Erschütterung der bereits in Dissociation begriffenen Moleküle des Körpers verstärkt aber die Dissociation, also den Kraftverbrauch. Deshalb bedingt der wache Zustand an sich eine Verstärkung der Consumtion der chemischen potentiellen Energie in allen Theilen des Nervensystems und seinen Annexen.

Aber der Verbrauch an chemischer Spannkraft in der grauen Substanz ist während des wachen Zustandes so gross, dass die während derselben Zeit mögliche Aufsaugung von Sauerstoff durch die lebendigen Gehirnmoleküle nicht gleichem Schritt hält, so dass die graue Substanz durch das Wachsein mehr verliert als gewinnt. Demnach muss endlich die Kohlensäurebildung stetig abnehmen, so dass die Explosionen weniger zahlreich werden. So nähert sich das Gehirn dem Zustande, den wir oben als Scheintod kennen gelernt haben.

Wie bei aller Ermüdung wird während des Wachseins bei Weitem nie die ganze Kraft des Gehirnes verbraucht, wohl aber doch so viel, dass, wenn alle äusseren Erregungen, die auf das Gehirn wirken, abgehalten werden, die gesunkene Kohlensäurebildung allein nicht mehr ausreicht, um die nothwendige Grösse der lebendigen Kräfte zu liefern, welche zur Erhaltung des wachen Zustandes erfordert wird.

Es ist ferner nach obigen Auseinandersetzungen klar, dass, sobald der grosse Herd mächtiger Explosionen zur relativen Ruhe gelangt, stärkere Erschütterungen nicht mehr secundär nach allen Theilen des animalen Systemes sich fortspinnen. Der Arbeitsverbrauch nimmt also in allen Organen ab, die unter der Herrschaft des Nervensystemes stehen. Dies spricht sich in der Trägheit des Schlaftrunkenen aus. Die Augenlider und der Kopf sinken herab, die Muskeln des Rumpfes versagen ihren Dienst, das Rückenmark kommt zur Ruhe, ja sogar das verlängerte Mark arbeitet schwächer. Die Ersparniss an Arbeitsverbrauch ermöglicht nun die Erholung in allen diesen Organen.

Eine scheinbare Schwierigkeit erwächst meiner Theorie aber aus der langen Dauer eines gesunden Schlafes, der also noch zu einer Zeit anhält, wann die Erholung bereits zum grössten Theile stattgefunden, so dass die Summe der Arbeitskraft des Gehirns auf Grund des wieder gewonnenen Vorrathes an intramolecularem Sauer-
stoff sicher viel grösser als vor dem Einschlafen ist. Die lebendigen Moleküle haben während des Schlafes natürlich zugleich ihren Verlust an verbrennbarem Materie, d. h. an Kohlenstoff und Wasserstoff ersetzt.

Die uns vorliegende Schwierigkeit lässt sich am einfachsten und wie mir scheint am natürlichsten überwinden, wenn man annimmt, dass diejenigen intramolekularen Vibrationen der Hirnmaterie, durch welche das Bewusstsein bedingt ist, eine grosse Trägheit besitzen, so dass sie wie eine einmal angestossene Saite sehr lange Zeit nachtönen. Hierfür sprechen ja auch viele psychologischen Thatsachen, z. B. die starke Beeinträchtigung der Fähigkeit zum Einschlafen nach starker geistiger Arbeit. Daraus würde sich ergeben, dass in demjenigen Stadium der Ermüdung des Gehirns, in welchem die Kohlensäurebildung bereits sehr stark herabgesetzt ist, doch noch so gewaltige Schwingungen, von früheren Kohlensäureexplosionen erzeugt, vorhanden sind, wie sie auf die Dauer durch die jetzt so geschwächte Kohlensäurebildung nicht erhalten werden können. Denn man darf sich denken, dass diese intramolekularen Oscillationen der Atome mit anderen Molekülen, z. B. denen des Wassers, welches die lebendigen arbeitenden Moleküle umspült, zuweilen in Conflicte kommen und somit wie eine schwingende Saite an der Luft lebendige Kraft verlieren. Ist nun die starke intramolekulare Bewegung allmählich zur Ruhe gekommen, das heisst sehr viel kleiner geworden, so genügt sie nicht mehr zur Vermittlung starker Dissociation. Denn die Kohlensäurebildung liefert die Kraft, welche aufs Neue Kohlensäurebildung auslöst und so fort in infinitum. Man kann auch sagen, die Kohlensäurebildung sei der Reiz, welcher auf die reizbare Substanz wirkend in dieser wieder Kohlensäurebildung veranlasst. Es findet aber auch hier zwischen Reiz und Effect eine gewisse Proportionalität statt. Weil also dieser Reiz — nämlich die Kohlensäurebildung — so klein geworden, häuft sich jetzt immer mehr ausgeruhte, oder restituirte Substanz an.

In dem Maasse aber als die lebendigen Hirnmoleküle mehr und mehr während des Schlafes mit intramolekularem Sauerstoff gesättigt werden, in dem Maasse muss die Kohlensäurebildung zunehmen. Also wird wieder ein Stadium erreicht, wo die Oscillationen der Atome in den Molekülen wachsen können, ohne dass die Grösse ihrer lebendigen Kraft ausreicht, diejenige Stärke der Dissociation zu bedingen, wie sie der wache Zustand erfordert und ohne dass also der Verbrauch grösser als die Einnahme an Kraft wird. So
muss die Intensität der lebendigen Kraft der intramolekularen Schwingung durch wachsende Kohlensäurebildung weiter zunehmen, bis entweder durch Summation der Wirkung aus inneren Gründen oder durch einen äußeren starken Anstoss, z. B. einen lauten Schall, eine mächtige Welle, die durch das Gehirn läuft, sofort eine grosse Summe von Dissociationen, also reichliche Kohlensäurebildung auslöst, die nun die weitere Auslösung zahlreicher Dissociationen fort und fort zur Folge hat.

Es kommt hier aber noch ein hochwichtiger Umstand in Betracht.

Im wachen Zustande gehen dem Gehirne fortwährend Erregungen vom Schmerz- und Hörnerven zu, während der Schlafende wegen der geschlossenen Augenlider in Dunkelheit ist und stille Orte zur Ruhe bevorzugt. Nimmt man hinzu, dass von allen Theilen des Organismus, besonders aber von den Hautflächen weitere Erregungen dem Gehirne zugeleitet werden, so kann man die Frage aufwerfen, ob diese das Gehirn continuirlich treffende und sich summirende Erregungsmasse nicht einen grossen Theil der lebendigen Kräfte liefert, von deren bestimmter Grösse der wache Zustand abhängt. Diese Erregungsmasse wird nothwendig verstärken müssen diejenigen Werthe der lebendigen Kräfte der intramolekularen Bewegungen der Gehirnatome, welche nur durch die Gesammtwärme des Gehirnes gegeben sind und also auch die Dissociationen vermehren und die Kohlensäurebildung steigern. Wie weittragend der Einfluss eines äusseren Impulses auf das Gehirn ist, geht daraus hervor, dass ein einziges Wort oder ein einziger Gesichtseindruck lang dauernde Gedankenreihen induciren kann. Gewiss ist jedenfalls, dass sehr starkes Getöse, heftige, also Schmerzen erzeugende Erregungen der Empfindungsnerven auch bei erschöpftem Gehirn den Schlaf unmöglich machen. Es lässt sich deshalb a priori nicht bestimmen, ob das Gehirn allein, wie es ist, bei Abhaltung der ihm fortdauernd durch die Nerven zugeführten Erregungen auf Grund seiner selbst, d. h. auf Grund seiner Gesammtwärme und Spannkraft den wachen Zustand aufrecht zu erhalten vermöchte. Diess würde leicht erklären, warum manche Menschen selbst bei sehr geringer Ermüdung des Gehirns, wenn sie den äusseren Reizen — Licht und Schall — möglichst entflehen, sich in Schlaf bringen können. Auch der Wille hat einen unläugbaren Einfluss. Man kann sich dies daraus erklären, dass gewisse Erregungsarten stärkeren Arbeitsverbrauch, also eine grössere Summe lebendiger Kraft induciren als andere Erregungen. Nur ein aussergewöhnlicher Umstand wird einen Schlaf-
trunkenen bestimmen, durch seinen Willen sich wach zu erhalten, d. h. eine bestimmte Einwirkung der Aussenwelt auf uns veranlasst einen bestimmten Erregungszustand des Gehirnes, der mit grossem Arbeitsverbrauch nothwendig auch bei Ermüdung verknüpft ist.

Der bei vielen, vielleicht allen Menschen vorhandene schlaftrunkene Zustand nach dem Erwachen scheint darauf hinzudeuten, dass erst nach einer Summation der äusseren und inneren Reize allmählich diejenige Grösse der lebendigen Kraft der intramolekularen Schwingungen erzielt wird, wie sie der ganz wache Zustand nothwendig voraussetzt.

Das erklärt auch, warum ein Wort, das vom wachen Menschen deutlich gehört werden kann, den Schlafenden nicht erregt.

Man darf aber auch im Auge behalten, dass wegen der Abnahme der Gesammtwärme die Cohäsion der wirksamen Hirnmoleküle gesteigert ist, so dass Impulse wirkungslos werden, die sonst eine deutliche Wirkung haben.

Wachen oder Schlaf hängt also primär für einen gegebenen Zeitpunkt nicht von der Grösse der in dem Gehirn enthaltenen potentiellen Energie, sondern von der Grösse der lebendigen Kräfte der intramolekularen Bewegung ab.

Die, trotz des Circulirens von sauerstoffhaltigem Blute, lange Dauer des Scheintodes, wie wir dies bei Fröschen, die lange des Sauerstoffs beraubt waren, feststellen mussten, erklärt sich meines Erachtens daraus, dass erst wenn diejenige Menge intramolekularen Sauerstoffs vorhanden ist, welche in der hierdurch bedingten Koh lensäurebildung eine gewisse höhere Summe lebendiger Kräfte in der Zeiteinheit als Minimum liefert, der wache Zustand wiederkehrt.

Meine Erörterungen über den Schlaf erklären die Periodizität desselben von selbst.

Die Theorie gibt auch eine einfache Erklärung des Winter- und Sommerschlafes.

Theorie des Schlafes.

wird es im Gehirn und secundär in allen Organen, deren Disso-
ciation durch die Kälte natürlich auch primär vermindert erscheint. Offenbar ist die Nötigung zum Schlaf in hoher Kälte auch beim Menschen eine analoge Erscheinung.

Die Richtigkeit der Ansicht, dass allein die Temperatur die wesentliche Ursache des wachen oder lethargischen Zustandes der Winterschläfer ist, wird dadurch bewiesen, dass jeder Winterschläfer zu jeder Jahreszeit durch Kälte in Schlaf verfällt und darin ver-
barrt, so lange die niedere Temperatur anhält, dass ferner jeder Winterschläfer aus irgend welchem Stadium seiner Lethargie durch künstliche Erhöhung der Temperatur erweckt werden kann und wach bleibt, wenn die Temperatur hoch bleibt. Von eminenter Be-
deutung ist ferner die Thatsache, dass immer die Intensität des Lebens in allen Organen der Winterschläfer wesentlich gegeben ist mit der Temperatur, welche die Organe besitzen, richtiger: mit der Quantität der intramolekularen Wärme der lebendigen Materie.

Je tiefer die Temperatur des Gehirnes ist, um so schwieriger ist der Winterschlaf zu erwecken, da die Disgregation erzeugende Wirkung der Wärme vermindert, also die Cohäsion der Moleküle zugenommen hat. Man kann sich vielleicht denken, dass sich auch die lebendigen Moleküle der Netze sowie die Fasern derselben Netze mit Verkleinerung der Maschen inniger an einander geschlossen haben, worauf die «Starrheit» der Organe hinzudeuten scheint.

Aber eine heftige, Schmerzen erzeugende Nervenreizung kann Erwachen zur Folge haben. Also eine grosse Quantität dem Ge-
hirne zugeführter lebendiger Kraft löst in ihm secundär lebendige Kräfte und also Kohlensäurebildung aus, weil die Reizung die intra-
molekulare Wärme des Gehirnes steigert. Höchst bezeichnend dauert dieser wache Zustand aber nur kurze Zeit. Denn wenn die so an-
geregten Schwingungen an die umgebende kalte Materie fortwährend zu viel lebendige Kraft verlieren, nehmen sie ab und das Thier ver-
sinkt, wenn ihm keine Wärme künstlich zugeführt wird, aufs Neue in Winterschlaf.

Einige Forscher sind an der richtigen Ansicht, dass nur die nie-
dere Temperatur die Ursache des Winterschlafes sei, deshalb irre ge-
worden, weil sehr heftige Kälte den warmblütigen Winterschläfer weckt.

Zum Verständniss dieser Thatsache hat man zu bedenken, dass die erweckend wirkenden Temperaturen unter 0° C. liegen, und dass die innere Temperatur des warmblütigen Winterschläfers, wie durch genaue bekannte Versuche festgestellt ist, ohne Gefähr-
dung der Gesundheit bestimmt beim Murmelthier bis auf + 4° R., bei der Fledermaus auf 3¹/₄° R., bei der grossen Haselmaus auf 2⁷/₈° R., beim Igel auf 2⁷/₈° R. und vielleicht noch tiefer herabgehen darf, während 0° tödlich ist. Es ist also die tödliche Temperatur, welche zur Erhaltung der Existenz weckt, sofortige Wärmebildung im Körper in Folge des wachen Zustandes anregt und es dem Thiere ermöglicht, sich tierer einzugraben und zu sicheren. So gehen in Sibirien die Winterschläfer nach Pallas bis 20 Fuss tief unter die Oberfläche der Erde.

Die tödtliche Kälte erweckt das Thier, weil und insofern sie grimmigen Schmerz erzeugt. Ganz unabhängig von jedweder Hypothese tritt uns hier die Thatsache entgegen, dass Kälte, d. h. verriingerte lebendige Kraft in der peripherischen Nervenfaser heftigsten Schmerz, d. h. vermehrte lebendige Kraft in der Ganglienzelle des centralen Nervensystemes hervorruft.

Wir besitzen von den Nervenwirkungen hinreichende Kenntniss, um zu wissen, dass solche Art von Mechanik vorkommt, indem z. B. Verminderung der Reizung, d. h. der lebendigen Kraft in den Herzästen des N. Vagus Vermehrung der Arbeit des Herzens zur Folge hat.

Bei dem reizenden Einfluss tödtlicher Kälte handelt es sich aber wohl um wirkliche natürlich secundäre Steigerung der lebenden Kräfte der von der Kälte direct getroffenen Nervenfaser.

Beim Menschen und wohl auch bei Thieren treten die grimmigen Schmerzen durch heftige Kälte indessen schon auf, wenn an
Theorie des Schlafes.

eine Veränderung des Aggregatzustandes des Wassers noch nicht zu denken ist und da doch wohl auch hier der Schmerz durch eine wirkliche Reizung des erkrankten Nerven bedingt ist, so fragt es sich, wie sich dies erklären lässt. Nach meiner Theorie ist eine Nervenfibrille des Axencylinders einer Perlschnurkette vergleichbar, die durch chemische Anziehung zusammengehalten wird. Sobald die Temperatur dieser Kette abnimmt, verkleinern sich die intra-molekularen Schwingungen der einzelnen Perlen, welche Eiweißmoleküle sind. In Folge der Abnahme der durch die Wärme bedingten Disregation der Atome des Eiweißmoleküles, schrumpft dasselbe zu einem kleineren Volum. Folglich vergrößern sich die Distanzen von einem Eiweißmolekül zu dem nächstfolgenden. Da Anfang und Ende der langen Axencylinderfibrille fest sind, so kann bei fortgesetzter Contraction der einzelnen Perlen, d. h. Eiweißmoleküle der Abstand zwischen zweien derselben so gross werden, dass die chemische Anziehung erlischt. So würde eine innere Sprengung der Molekülkette, weil sie endliche Ausdehnung hat, durch Kälte erzielt. So könnte ich mir eine dauernde Zerstörung der Nervenreizbarkeit durch eine nicht unter 0° C. herabgehende Temperatur wohl erklären.

Man darf sich aber auch denken, dass in Folge der Verdichtung, welche die einzelnen Eiweißmoleküle erfahren, solche Atome — wegen der bedeutenden Veränderung ihrer Abstände und lebendigen Kräfte — in Wechselverkehr gerathen, die sonst nicht auf einander gewirkt hätten, so dass die durch die Kälte bedingte veränderte Anordnung des ungeheuer grossen lebendigen Eiweißmoleküles die Ursache zu plötzlichen neuen chemischen festen Verbindungen wird oder mit anderen Worten, dass hier die Kälte Arbeitsverbrauch aushält.

Wir sehen nun ferner, dass nicht bloss sehr niedere, sondern auch sehr hohe Temperatur, welche das Lebensgefüge bedroht, heftigen Schmerz erzeugt, der ein grosses Mittel zur Erhaltung der Existenz ist. Wir wissen aber, wie wunderbar fein und fast zahllos die compensatorischen Vorrichtungen der lebendigen Organismen sind, die alle auf dieses Ziel hinweisen. Mit einer Aeusserung dieses Princips hatten wir es bei der erweckenden Einwirkung tiefer Kältegrade zu thun. Ich glaube sonach nicht, dass dieser auf den ersten Blick paradoxe Fall, zu dem im weiteren Umfange die Frage der Regulation der Temperatur der Warmblüter gehört, einen wirklichen Einwand gegen meine Theorie des Schlafes und Lebens abgeben kann.
Mit Rücksicht auf die Beurtheilung des Winterschlafes der warmblütigen Thiere ist es wesentlich, noch hervorzuheben, dass die selben ebenfalls wie alle anderen die constante hohe Temperatur ihres Blutes behaupten, aber gegen Kälte geringere Leistungen der compensatorischen Vorrichtungen zu entfalten vermögen, so dass dann ihre Körpertemperatur sinkt. Der Unterschied ist aber nicht wesentlich, weil für jeden Warmblüter eine untere Grenze der Temperatur der Umgebung existirt, der gegenüber er seine constante innere Temperatur nicht zu behaupten vermag. Die nächste Ursache der geringeren Widerstandskraft der Winterschläfer liegt in der auffallenden Kleinheit ihres Gehirns und, wie Einige behaupten, der schwach entwickelten Gehirnarterien, sowie der ebenfalls geringen Entwicklung des Respirationssapparates.

Aber auch der Sommerschlaf der Amphibien in heissen Klimaten erklärt sich leicht. Die Hirnmaterie dieser Thiere mit trägem Stoffwechsel ist für einen raschen Umsatz und schnelle Erneuerung nicht eingerichtet, d. h. nicht fähig in der Weise mit einer hohen Summe von Spannkraft (intramolekularem Sauerstoff) geladen zu werden, wie die der Warmblüter. Sobald also die hohe Temperatur des Sommers das Gehirn jener Amphibien erhitzt, findet bald eine Consumtion der spärlichen Spannkraft statt, d. h.: der Verbrauch übertrifft den Ersatz an Kraft. Es muss Schlaf eintreten, der in der That so lange dauert, bis die kühler Jahreszeit wiederkehrt.

Es ist in guter Uebereinstimmung mit meiner Theorie, dass der Winterschlaf bei Warmblütern und Kaltblütern vorkommt, der Sommerschlaf aber fast ausschliessliche Eigenthümlichkeit der Amphibien ist. Der einzige Fall des Tanrec ist wohl nicht sicher.

Man sieht also, dass es sehr verschiedene Zustände der Hirnmaterie sind, welche zum Schlaf führen, die aber alle Das gemeinsam haben, dass die intramoleculäre Wärme, also die Dissociation herabgesetzt ist.

Daraus lässt sich denn auch schliessen, dass die Art, wie die schlafmachenden Arzneimittel wirken, eine sehr verschiedene sein kann, wenn nur der eine wesentliche Effect erzielt, die intramoleculare Wärme verkleinert wird.

Schliesslich bitte ich den Leser, Alles, was ich über die Theorie des Lebens und Schlafes bis dahin publicirt habe, als eine Art vorläufiger Mittheilung zu betrachten.
Verlag von August Hirschwald in Berlin.

Soeben erschienen:

Seegen, Prof. Dr. J., Der *Diabetes mellitus. Auf Grundlage zahlreicher Beobachtungen dargestellt.*
Zweite vermehrte Auflage. Gr. 8. 1875. 8 M.

Waldenburg, Prof. Dr. L., Die *pneumatische Behandlung der Respirations- und Circulationskrankheiten im Anschluss an die Pneumatometrie, Spirometrie und Brustmessung* bearbeitet.
Gr. 8. Mit 30 Holzschnitten. 1875. 11 M.

LA METTRIE.

Rede
in der öffentlichen Sitzung der k. pr. Akademie der Wissenschaften zur Gedächtnissfeier Friedrich II. gehalten am 28. Januar 1875
von
EMIL DU BOIS-REYMOND,
beständigem Secretair.
1875. gr. 8. 1 M. 20 s.

In unserm Verlag ist eben erschienen:

Kurzes Lehrbuch der Anorganischen Chemie

wesentlich für

Studirende auf Universitäten und polytechnischen Lehranstalten sowie auch zum Selbstunterricht.

Von

Professor Dr. V. v. Richter.

Mit 62 Holzschnitten und 1 Spectraltafel.

Preis 7 Mark.

Die Verlagsbuchhandlung
MAX COHEN & SOHN (Fr. Cohen) Bonn.
Inhalt.

Ueber die Sauerkstoffaufnahme in den Lungen bei gewöhnlichem und erhöhtem Luftdruck. Von Dr. G. v. Liebig in Reichenhall 479

Ueber Peptone und Ernährung mit denselben. Von P. Plös z und A. Gyergyai in Budapest 536

Von nachstehenden Zeitschriften suchen wir complete Exemplare, einzelne Serien, Jahrgänge, Bände und Hefte und zahlen dafür die höchstmöglichen Preise. Gefällige Anerbietungen erbitten wir direct per Post, worauf sofort Antwort erfolgt:

Annalen der Chemie von Liebig.
Annalen der Physik von Poggendorff.
Centralblatt für die medic. Wissenschaften.
Jahresbericht über die Fortschritte der Chemie.
Journal für Mathematik von Crelle.

Buchhandlung Max Cohen & Sohn (Fr. Cohen) in Bonn.
Ueber die Sauerstoffaufnahme in den Lungen bei gewöhnlichem und erhöhtem Luftdruck.

Von

Dr. G. v. Liebig in Reichenhall.

Die ersten Arbeiten zur Begründung der Sache wurden von dem verstorbenen Rud. v. Vivenot im Vereine mit Dr. G. Lange, jetzt in Ems, gemacht. Unter der Voraussetzung, dass eine vermehrte Sauerstoffaufnahme eine gleichzeitige Vermehrung der Kohlensäureausgabe bedinge, bestimmten diese die Mengen der mit einzelnen tiefsten Athemzügen unter gewöhnlichem und erhöhtem Drucke ausgeatmeten Kohlensäure. Diesen folgte Panum mit einer verbesserten und erweiterten Methode, indem er während einer wechselnden Anzahl von Minuten in verschieden geänderter Weise

in ein Gasometer athmete. Die Bestimmungen dieser drei Forscher ergaben unter erhöhtem Drucke eine Vermehrung der ausgeatmeten Kohlensäure.

Da es mir aus früheren eigenen Beobachtungen 2) und aus den Arbeiten Regnault's und Reiset's von vornherein unwahrscheinlich war, dass aus einer vermehrten Ausathmung von Kohlensäure auf eine gleichzeitige Vermehrung der Sauerstoffaufnahme geschlossen werden könne, eine Ansicht, welche durch die Arbeiten von v. Pettenkofer und Voit bestätigt wurde, so schienen mir die Resultate von Vivenots und Panums ebenso wenig für, als meine eigenen gegen, die Möglichkeit einer vermehrten Sauerstoffaufnahme benützt werden zu können, und es blieb nichts übrig, als die Sauerstoffaufnahme direkt zu untersuchen.

Es handelte sich darum, ob man die mechanischen Wirkungen des erhöhten Luftdruckes auf Lunge und Gefässsystem, Athemweise und Circulation schon genauer bekannt waren, allein zur Grundlage für das Verständniss der beobachteten Veränderungen in der Körpertätigkeit nehmen müsse, oder ob eine unmittelbare Unterstützung des Athemprozesses in Form einer vermehrten Sauerstoffaufnahme noch mitwirke.

1) V. 1. 1866.
2) Ueber die Respiration der Muskeln. Muller's Archiv 1850.
der Weg angewiesen. Die Flasche wird am Ende des Versuches abgeschlossen und die Proben zur Untersuchung herausgenommen.

War die Menge des eingearbeiteten Sauerstoffs aus dem Stickstoff der Athemluft berechnet, dann erhielt man die Menge des in der Lunge aufgenommenen Sauerstoffs durch Abzug der aus der Analyse bekannten Menge des eingearbeiteten Sauerstoffs von der Menge des eingearbeiteten.

Der Winter 1869—70 wurde zur Einübung der Bunsen'schen Methode der Luftanalyse benützt, aber als im Frühjahr 1870 die Bestimmungen begonnen wurden, zeigte sich, dass der Verschluss der Proben nicht luftdicht gewesen war. Zugleich hatte es sich als wünschenswerth herausgestellt, mit einer weniger Zeit beanspruchenden Methode arbeiten zu können, denn es sollte für jede Athmung
dreimal der Sauerstoff und dreimal die Kohlensäure bestimmt werden, was bei der grossen Zahl der Bestimmungen mit meiner beschränkten Zeit nicht zu vereinigen war.

Ich benützte schliesslich einen neuen Apparat, welchen Herr Professor v. Jolly in München die Güte hatte nach seinen Angaben für mich ausführen zu lassen. Im Allgemeinen ist die Einrichtung dieses Apparates der des Frankland'schen 1) ähnlich, er unterscheidet sich von diesem, wie von allen andern zur Gasanalyse seither angewandten Apparaten durch das ihm eigenthümliche Princip der Messungen: nicht die Volumveränderungen werden gemessen, welche die Luft durch Absorption der Kohlensäure und des Sauerstoffs erfährt, sondern die Druckveränderungen bei gleichbleibendem Volum. Alle zu messenden Luftmengen werden in einem Messgefäss, dessen Inhalt nicht bekannt sein muss, durch entsprechende Änderung des Druckes auf das gleiche Volum gebracht, während man durch Umgebung des Messgefässes mit Eis oder Schnee die Temperatur von 0° herstellt. Es wird also die jedesmalige Spannung gemessen, unter welcher die zu untersuchende Luftmenge vor und nach Absorption eines Gemengtheiles jenes constante Volum einnimmt.

Dieses Verfahren hat gegenüber den seither üblichen Messungsverfahren manche Vorzüge — die Umrechnung der Gasvolumina auf Normaldruck und Temperatur wird überflüssig, die Anzahl der nöthigen Einzelbeobachtungen wird vermindert und endlich lassen sich bei einiger Vorsicht die Analysen in geheizten Räumen ausführen.

Ich gehe nun zur Beschreibung der einzelnen Theile über. Die cylindrische Absorptionsglocke A ist etwa 13 cm. hoch und 3 cm. weit und fasst nahezu 100 cc. Sie ist unten offen und trägt oben an der kuppelförmigen Wölbung ein angesetztes Capillarrohr, welches sich sogleich im rechten Winkel umbiegt und in der Entfernung von etwa 6 cm. von der Biegung mit einer fingerhutförmigen etwa 1.5 cm. langen Erweiterung endigt. Diese ist dazu bestimmt, das Ende eines ihr von dem Hahne des Messkolbens aus entgegenkommenden Capillarrohres aufzunehmen.

Der cylindrische Messkolben B hat einen ähnlichen Inhalt wie die Absorptionsglocke, er ist etwa 12 cm. hoch und 3.5 cm. weit und wo er oben und unten mit kuppelförmigen Wölbungen endigt, setzen sich ebenfalls capillare Röhren an seine Endpunkte an. Der obere dieser capillaren Fortsätze endigt mit 12 cm. Länge in einem kleinen Trichter g. In der Mitte trägt dieses Capillarrohr einen T-förmig gebohrten Glashahn h, und von diesem geht nach links hin das Capillaransatzstück aus, welches dazu bestimmt ist, die Verbindung mit der Absorptionsglocke herzustellen; es ist etwa 6 cm. lang.

Das Capillarrohr, welches sich von dem unteren Ende des Messkolbens fortsetzt, ist etwa 8 cm. lang und ragt einige cm. unterhalb des Messtisches senkrecht herab; in dieser Entfernung erweitert es sich konisch und geht in das Einstellungsrohr E über. Da wo dieser Übergang stattfindet, bei f, sitzt inwendig an der Wölbung des Konus ein kleiner etwa 1—2 mm. langer Dorn von schwarzem Glase, mit der Spitze nach abwärts gerichtet. Diese
Spitze dient dazu, die Oberfläche des in dem Einstellungsrohre sich bewegenden Quecksilbers sicher einzustellen, indem sie sich in der Fläche seines Meniskus spiegelt.

Das nahezu 1 Cm. im Durchmesser haltende Einstellungsrohr E verlängert sich noch etwa 45 Cm. nach abwärts und steht dann vermittelst einer stählernen Fassung mit dem umspornenen Kautschuckschlauch in Verbindung, durch welchen das Quecksilber heraufsteigt. Die Stahlfassung sitzt mit einem breiten Rande auf einer Holzleiste auf, welche also das Rohr mit dem Messkolben trägt.

Zur weiteren Befestigung des Messkolbens dient oben eine Holzklemme, welche vom Pfosten ausgehend das obere Capillarrohr gerade unterhalb des kleinen Trichters umfasst.

Die Verbindung zwischen dem Einstellungsrohr E und dem Sammelgefäße D wird, wie erwähnt, durch einen elastischen umspornenen Schlauch hergestellt, der einerseits an die Stahlfassung von E und andererseits an eine Stahlfassung, welche unten am Sammelgefäße sitzt, mit Bindfaden befestigt wird.

Das Sammelgefäss ist cylindrisch, etwas länger und weiter als der Messkolben. Es befindet sich rechts an der Vorderfläche des Pfostens und ist mit übergreifenden Bändern an einem seitlich an der rechten Fläche des Pfostens sitzenden verschiebbaren Träger befestigt, welcher über einer hölzernen Schiene läuft, so dass er leicht auf und ab geschoben werden kann. Eine Schraube in der Mitte dient zur Feststellung. Die Schiene hat seitlich hervorragende
Ränder, welche in entsprechende Vertiefungen am Träger passen, so dass sie eine sichere Führung gibt. Um die feinere Einstellung zu ermöglichen, ist der vordere Theil des Trägers, auf welchem das Sammelgefäss unmittelbar befestigt ist, gleichfalls mit einer eisernen Schiene beweglich dem Uebriegen angefügt, und eine Stellschraube i erlaubt eine feinere Auf- und Abwärtsstellung.

Die unten angebrachte stählerne Fassung des Sammelgefässes hat seitlich einen Stahlhahn, aus welchem man das Quecksilber entleeren kann.

Das Ablesungsrohr C, welches die senkrechte Verlängerung des Sammelgefässes nach oben bildet, läuft vor einer in der vorderen Fläche des Pfostens eingelassenen Spiegelscala mit Millimetertheilung. Der Nullpunkt dieser Theilung entspricht etwa der Höhe des Punktes f am Einstellungsrohr, wo der Glasdorn sitzt, und die Zählung geschieht vom Nullpunkte abwärts.

Das Ablesungsrohr wird mit Löschpapier gereinigt, welches an einem Stabe befestigt ist, wie für die Bunsen'schen Verbrennungsrohren. Die Absorptionsglocke reinigt man mit Wasser und Löschpapier.

Nach der Reinigung wird der Hahn mit Luftpumpenfett wieder frisch eingefettet.

Zusammensetzung des Apparates. Man schiebt nun den Messkolben mit Einstellungsrohr von oben durch das Loch im Arbeitstische ein und schraubt den Gummischlauch fest an, nachdem man etwas Luftpumpenfett auf die Lederscheibe der Fassung
gestrichen hat. Mit einer Holzklemme wird dann die Fassung an der Leiste befestigt und die obere Holzklemme ebenfalls geschlossen, nachdem man die Capillarröhre, soweit sie von der Klemme berührt wird, mit einem Stücke Kautschukrohr überzogen hat.

Prüfung des Apparats. Zunächst wird nun der Apparat mit Quecksilber gefüllt und auf seine Dichtheit geprüft. Das Quecksilber giesst man durch einen in die obere Mündung des Ablesungsrohres eingesetzten Trichter in das Sammelgefäss ein, welches man bis zur Höhe des unteren Theiles des Einstellungsrohres herabgelassen. Während sich das Sammelgefäss füllt, sieht man das Quecksilber im Einstellungsrohr gleichzeitig aufsteigen. Wenn das Sammelgefäss hinreichend gefüllt ist, unterbricht man die Einfüllung und schiebt es bis zur Höhe des Hahnes hinauf, worauf nun das aufsteigende Quecksilber den Messkolben anfüllt, dessen Hahn nach oben geöffnet ist, während sich das Sammelgefäss entleert.

Wenn das aufsteigende Quecksilber in dem kleinen Trichter oberhalb des Hahnes zum Vorschein kommt, schliesst man den Hahn und bringt das Sammelgefäss wieder herab, wobei das Quecksilber aus dem Messkolben wieder ausläuft und dort einen leeren Raum entstehen lässt. In diesem sammelt sich nun die inwendig dem Apparate anhängende Luft, die man dann oben hinaustreibt. Bei dieser Gelegenheit zeigt sich eine etwa noch vorhandene Undichtheit im Verschlusse, indem vom geschlossenen Hahne oder der Stahlfassung aus Luft in den Kolben eintritt. Es ist deshalb immer zweckmässig, etwas Quecksilber im kleinen Trichter oberhalb des Hahnes und im Capillarrohr, welches links am Hahn sitzt, zurückzulassen, indem dessen Gleichbleiben die Dichtheit von dieser Seite verbürgt.

Ist man nach mehrfacher Wiederholung dieses Vorgangs über die Dichtheit der Verschlüsse im Rein, dann stellt man nach Entleerung des Messkolbens dessen Verbindung mit der Absorptionsglocke her und füllt die pneumatische Wanne mit Quecksilber.

Es finden sich an der Verbindungsstelle der Capillarröhren, wo das Wachs am Glase anliegt, immer noch Stellen, an welchen Luft zurückbleibt, auch zwischen Wachs und Glas. Um diese herauszuschaffen, senkt man bei gefülltem Apparate das Sammelgefäss so tief als möglich und öffnet die Verbindung zwischen Messkolben und Absorptionsglocke. Indem nun das Quecksilber aus der pneumatischen Wanne rasch herüberströmt, reisst es die an der Verbindungsstelle haftende Luft zum grössten Theile mit sich fort, wo bei die betreffenden Stellen zwischen Wachs und Glaswand mit Quecksilber sich ausfüllen 1).

Ist endlich die Luft entfernt soweit es auf diese Weise möglich ist, dann ist der ganz mit Quecksilber gefüllte Apparat zur Aufnahme der Luftproben vorbereitet.

1) Durch eine neue Verbesserung wird diese Operation in Zukunft vermieden werden, indem die Capillaren konisch in einander passend endigen, so dass nur eine dünne Schicht Wachs zum Verschlusse nöthig ist.
und also die Verbindung gleichsam auszuwaschen. Diese Luft wird durch den Trichter wieder entfernt, wobei das in diesem stehende Quecksilber als Ventil dient, welches bei passender Stellung des Sammelgefässes zwar Luft hinaus aber keine hineintreten lässt.

Nun endlich wird die zu untersuchende Luft in die Absorptionsglocke übertragen, so dass unten noch 1 bis 2 Cm. Quecksilber über dem Spiegel der pneumatischen Wanne hervorsteht.

Messung. Zur Messung lässt man die Luftprobe jetzt in den Messkolben übertreten, entleert jedoch die Capillar-Röhre nicht vollständig, sondern schliesst den Hahn, wenn der Faden des nachrückenden Quecksilbers etwa 1 Cm. vor der Wachsverbindung angekommen ist. Dies geschieht deshalb, damit die später anzuwenden Absorptionsflüssigkeit nicht mit dem Wachs der Verbindung oder mit dem Fette des Hahnes in Berührung kommt.

Es bleibt dadurch ein schädlicher Raum, dessen Inhalt nicht mitgemessen wird. Die Correction des damit entstehenden Fehlers werde ich später angeben.

Man kann die Stelle, bis zu welcher man das Quecksilber und die Absorptionsflüssigkeiten treten lässt, mit einer Marke durch einen umgelegten feinen Draht bezeichnen. Durch langsame Verfahren und mit Benützung der feinen Stellschraube lässt sich der Flüssigkeits-Faden an jeder beliebigen Stelle des Capillarrohres zum Stehen bringen. Erst wenn er die richtige Stelle erreicht hat, schliesst man den Hahn. Jetzt wird durch weiteres Herablassen des Sammelgefässes der Messkolben ganz von Quecksilber entleert, so dass der Meniskus am Einstellungsrohr etwas unterhalb der Dornspitze steht.

Ehe man nun zur Ablesung genau einstellt, wird der Messkolben mit Schnee oder gestossenem Eis umgeben. Um das Eis anzubringen, bedient man sich eines senkrecht in zwei Hälften zerlegbaren Cylinders aus Eisenblech, welcher den Messkolben in der Entfernung von etwa 3 Cm. umgibt. Eine kleine Schüssel von Eisenblech, k, mit etwa daumenbreit aufstehendem Rande ist gerade unter dem Messkolben befestigt. Sie hat in der Mitte eine kreisrunde Öffnung, welche der Durchbohrung des Arbeitstisches entspricht und diese hat in ihrem Umfange ebenfalls einen aufstehenden Rand. Sie wird von oben durch eine Gummiplatte geschlossen, welche von dem Einstellungsrohr durchbohrt ist; man macht zu diesem Zwecke einen

Das Eis oder Schnee wird nun mit einem eisernen Löffel hineingebrochen und durch Nachdrücken möglichst gleichmässig ringsum vertheilt, endlich bis zum Hahne aufgehäuft. Auch nach der Füllung lassen sich die Hälften des Cylinders leicht auseinander nehmen und man kann sich so überzeugen, ob die Füllung gleichmässig geschehen ist.

Es ist nothwendig, den Messkolben nicht erst nach, sondern vor der Umgebung mit Eis von Quecksilber zu entleeren, damit eine Erkältung des Quecksilbers vermieden wird, welche einen Fehler in der Ablesung veranlassen würde.

Die Einstellung des Quecksilbers wird durch Verschieben des Sammelgefässes und zuletzt mit Hilfe der feinen Stellschraube vorgenommen, so dass die Oberfläche des Meniskus die äusserste Spitze des Dornes gerade berührt.

Ein kleines Spiegelchen, welches unterhalb des Messstisches mit Hilfe eines Bohrers und Wachs in der Höhe des Dornes angebracht wird, erleichtert die Einstellung. Sie ist erreicht, wenn die Spitze des Dornes und ihr Spiegelbild im Meniskus zusammentreffen.

Man beobachtet nun zunächst den Stand des Quecksilbers im Ablesungsrohr, den man auf der Spiegelscala abliest; zur Ablesung richtet man das Auge so, dass sich der Meniskus und sein Spiegelbild in der Scala gerade decken. Ist es nöthig, so benützt man zum Ablesen einen Beleuchtungsspiegel, in dessen Mitte durch Abschaben des Beleges eine kleine durchsichtige Stelle angebracht ist. Durch diese liest man ab wie bei’m Augenspiegel.

Da der Massstab in der Höhe der Dornspitze zu zählen beginnt, so erhält man durch die Ablesung die Höhe der Quecksilbersäule, welche, zusammengenommen mit der Spannung der eingeschlossenen Luftprobe dem äussern Luftdrucke das Gleichgewicht hält; indem man nun von der gleich darauf abgelesenen Barometerhöhe die beobachtete Quecksilbersäule abzieht, ergibt sich der Druck der eingeschlossenen Luft bei 0°.

Es ist gewöhnlich nöthig eine kleine Correction bei der Ablesung anzubringen, weil der Nullpunkt der Skala selten der Spitze

Behufs der Reduction des Quecksilbers im Einstellungsrohr auf 0° pflege ich ein feines vergleichenes Thermometer mit schmalem länglichen Gefässe dicht an das Einstellungsrohr zu befestigen und an der Berührungsstelle von aussen Watte umzulegen, damit eine Erwärmung des Thermometers durch die Person des Beobachters vermieden werde.

Bei jeder Ablesung muss man durch Klopfen dem Anhängen des Quecksilbers am Glase vorbeugen. Da sich der Stand des Quecksilbers im Apparate so lange ändert, als die Temperatur der Luftprobe nicht constant, d. i. 0° geworden ist, so macht man nicht eine, sondern mehrere Ablesungen, jedesmal nach vorhergegangener Verschiebung des Sammelgefässes und neuer Einstellung. Erst wenn zwei oder drei Ablesungen in kurzen Zwischenräumen hintereinander das gleiche Ergebniss haben und auch das Barometer constant bleibt, sind sie als richtig anzunehmen.

Das Barometer verändert sich oft während der Ablesungen und in diesem Falle ändert sich die Ziffer der Ablesung in gleichem Sinne, wenn die Temperatur der Luft im Messkolben 0° geworden ist. Die Ablesungen sind als richtig anzunehmen, wenn mehrere Male eine mit dem Barometerstande gleichlaufende Aenderung deutlich beobachtet worden ist.

Für gewöhnlich braucht man auf diese Weise 20 bis 30 Minuten, bis man mit den Ablesungen zu Ende ist.

Ist die Luftprobe gemessen, dann nimmt man zuerst das Eis weg und dann erst lässt man, um die Probe in die Absorptionsglocke zurückzubringen, das Quecksilber in dem Messkolben wieder aufsteigen, indem man das Sammelgefäss etwas über die gleiche Höhe mit diesem bringt. Sobald nun das aufsteigende Quecksilber fast die gleiche Höhe mit dem Quecksilberspiegel im Messkolben erreicht hat und aufhört zu steigen, kann man den Hahn öffnen, um die gemessene Luftprobe wieder in die Absorptionsglocke hintüberströmen zu lassen. Wenn man ihn zu früh öffnet, dann läuft man Gefahr, das Quecksilber oder die Absorptionsflüssigkeit in den Messkolben herüberzuziehen.

Analyse der Athemluft. Für die Analyse der Athemluft
nimmt man zuerst die Kohlensäure mit Kalilauge weg, dann den Sauerstoff mit Pyrogallussäure.

Kohlensäure. Bevor man die abgemessene Luftprobe zurück
in die Absorptionsglocke leitet, hat man mittelst einer Pipette eine
kleine Menge Kalilauge in die Absorptionsglocke eingeführt, gerade
genug um den gewölbten Theil der Glocke zu füllen. Die Kalilauge
steigt zwischen Glas und Quecksilber hinauf und nimmt in der Spitze
der Glocke ihren Platz.

Wenn nun die Luftprobe in die Absorptionsglocke zurücktritt,
findet sie sogleich die mit Kalilauge befeuchtete Wand vor. Inner-
halb 20 Minuten ist die Absorption vollendet, und man lässt, um
sie zu fördern, während dieser Zeit die Kalilauge mehrmals auf und
absteigen. Zur Abmessung lässt man die Luftprobe wieder in den
Messkolben übersteigen und hält den Flüssigkeitsfaden der Kalilauge,
der dem Quecksilber vorangeht, an der bestimmten Stelle des Capillar-
rohres an, welche man vorher mit einer Marke bezeichnet hat.

Sauerstoff. Ehe man nun die Messung der jetzt nur aus
Sauerstoff und Stickstoff bestehenden Luftprobe vornimmt, bringt
man einige Stückchen geschmolzener Pyrogallussäure vermittels
einer eisernen Pinzette unter dem Quecksilber in die Absorptions-
glocke, wo sie zu der obenstehenden Kalilauge aufsteigen und sich
langsам darin lösen kann. Zum Einbringen befeuchtet man die
Stückchen in einigen auf der Oberfläche des Quecksilbers der pneu-
matischen Wanne befindlichen Tropfen von Kalilauge, welche bei
Wegnahme der Pipette zurückgeblieben sind. Dies hat den Zweck,
die Oberfläche der Stückchen luftfrei zu machen, damit nicht an-
hängende Luftblasen mit hinaufgenommen werden.

Ich schmelze die Pyrogallussäure in einem Probirröhrchen und
giesse sie auf Glas oder Porzellan aus. Nach dem Erkalten lässt
sich die dabei entstandene Platte mit dem Messer zerteilen. Je
nach ihrer Dicke reichen Stückchen von einem bis drei Quadrat-
zentimeter Fläche aus.

Sogleich, wenn die zum zweitenmal gemessene Luftprobe in
die Absorptionsglocke zurücktritt, beginnt die Absorption des Sauer-
stoffs und die vorher ziemlich klare alkalische Lösung der Pyro-
gallussäure färbt sich lebhaft braunroth. Unter häufigem Auf- und
Absteigen der Lösung in der Glocke, während sich die Stückchen
nach und nach vollständig auflösen, ist die Absorption des Sauer-
stoffs nach 3—4 Stunden vollendet. Ihre Beendigung zeigt sich da-
durch an, dass die Lösung durch die damit befeuchtete Glaswand nicht mehr roth erscheint, sondern schwach bräunlich grün. Die anfängliche rothe Farbe kann man wieder hervorrufen, wenn man nach vollendeter Absorption einige Luftblasen in die Glocke ein treten lässt. Nach einigen Augenblicken tritt die rothe Färbung, welche die Absorption des Sauerstoffs begleitet, wieder auf.

Nach Frankland's Methode wird zur Kalilauge die Pyrogallussäure in Form ihrer concentrirten wässrigen Lösung zugesetzt, und die Absorption kann damit in einer Stunde beendet sein. Ich selbst zog das angegebene Verfahren vor, um unnötige Vermehrung und Verdünnung der Flüssigkeit zu vermeiden, und weil ich wegen des frühen Eintrittes der Dämmerung ohnedem oft gezwungen war, die Ablesung des Stickstoffs am nächsten Morgen erst vorzunehmen, so dass eine Beschleunigung keinen Nutzen gebracht hätte.

Stickstoff. Nachdem der Sauerstoff absorbirt ist, misst man die Spannung des zurückgebliebenen Stickstoffs.

Wasserdampf. Bei der Berechnung der Analyse muss der Wasserdampf berücksichtigt werden. Die Luftprobe ist immer bei 0° als mit Wasserdampf gesättigt anzunehmen, da die Athemluft feucht ist. Ueber Kalilauge hat zwar der Wasserdampf eine etwas geringere Spannung als über Wasser, allein die Verminderung ist nach Wüllner's Beobachtungen nicht so bedeutend, dass sie die Menge des Wasserdampfs in der Absorptionsglocke, welche die Temperatur des Arbeitraumes hat, unter die zur Sättigung bei 0° nötige Grösse herabsetzen könnte. Versuche ergaben, dass es durchaus gleichgültig ist, ob man noch besonders Feuchtigkeit in den Messkolben bringt oder nicht.

Die Spannung des bei 0° gesättigten Wasserdampfes, 4,6 Mm., zieht man bei der Berechnung jeder Messung von der erhaltenen Spannung im Messkolben ab. Ich gebe ein Beispiel für die Berechnung 1): die Spannungen in Mm. Quecksilberhöhe, die Temperaturen in °C. Unter Bar. stehen die Barometerstände, unter App. die Stände im Ablesungsrohr des Apparats, an welchem die Correction für den Nullpunkt schon angebracht ist. Durch Abzug des Standes App. von Bar., nach Reduktion des Quecksilbers auf 0°, erhält man die Spannung im Messkolben, feucht, und nach Abzug der Spannung des Wasserdampfs trocken.

1) Die Analyse wurde am 24. Febr. 1874 gemacht.
Sauerstoffaufnahme in d. Lungen bei gewöhnl. u. erhöhtem Luftdruck.

Bar. Temp. App. Temp. Luftprobe bei 0°
feucht trocken

I Ursprüngl. Volum 718.30 12.5 209.4 10.0 507.72—4.6==503.12 I.
II Nach Abs. d. Kohlensaure 718.10 12.4 229.9 10.0 487.06—4.6==482.46 II.
III Nach Abs. d. Sauerstoffs 715.95 12.0 311.4 10.0 403.61—4.6==399.01 III.

Man findet nun

die Spannung der Kohlensäure I— II== 20.66 mm.
> > des Sauerstoffs II—III== 88.45
> > Stickstoff III ==399.01
und die Summe der 3 Spannungen: 503.13 ist gleich der Spannung des ursprünglichen Volums.

Aus diesen Spannungen ergibt sich folgende procentische Zusammensetzung:

Stickstoff . . . 79.380
Sauerstoff . . . 16.586
Kohlensäure . . . 4.106
100.000

Correction für die Einstellung. Es ist schon erwähnt worden, dass bei der Einstellung zur Messung die Absorptionsflüssigkeit in dem Capillarrohre zwischen Absorptionsglocke und Messkolben nicht bis zum Hahne gelangen darf, sondern dass der Flüssigkeitsfaden etwa 1 Cm. vor der Wachsverbindung eingestellt wird. Eine Einstellung, welche über die Wachsverbindung hinausgeht, könnte eine Lösung des Wachses in Kali und dadurch Schmutz sowohl als Undichtheit der Verbindung herbeiführen. Eine Einstellung näher dem Hahne würde die Gefahr eines gelegentlichen Uebertrittens der Kalilösung in den Hahn erhöhen.

Durch die Lage des für die Einstellung gewählten Punktes bleibt ein schädlicher Raum von 5—6 Cm. Länge bis zum Hahne, dessen Inhalt der Messung entzogen wird. Man könnte wohl den Fehler durch eine grösseere Engigkeit der Capillarröhre noch bedeutend verkleinern, allein da man die Capillarröhre reinigen muss, so darf sie nicht unter 2 Mm. Durchmesser haben. Der Fehler, welcher dabei entsteht, lässt sich übrigens leicht ausgleichen, indem man die Spannung der in dem schädlichen Raume enthaltenen Luftmenge der gefundenen Spannung hinzufügt.

Diese Correction gründet sich auf folgende Betrachtung über die Beschaffenheit des Fehlers. In dem Augenblicke, in welchem bei der Einstellung der Flüssigkeitsfaden an der Marke des Capillarrohres einhält, besteht Gleichgewicht zwischen dem luftförmigen Inhalte des Messkolbens und Capillarrohres und dem äusseren Luft-
drucke, ohne Rücksicht auf die Grösse des zu messenden Inhalts. Dieser steht jedesmal, sobald der Flüssigkeitsfaden an der Marke angekommen ist, unter dem Drucke des Barometerstandes, vermindert um die Höhe h der Quecksilber-Säule, welche die Absorptionsglocke bis in das Capillarrohr erfüllt. Diese Höhe soll 13 Cm. über dem Spiegel der pneumatischen Wanne betragen.

Durch den Abschluss des Hahnes wird die in dem schädlichen Raume von der Marke bis zum Hahn, den ich v neunen will, enthaltene Luft von dem Inhalt des Messkolbens getrennt, ihre Spannung also nicht mitgemessen. Wenn nun bei einer folgenden Messung ein Theil der zu untersuchenden Luft durch Absorption weggenommen ist, so bleibt von dem kleineren Reste jetzt eine ebensogrosse Menge in dem Raume v von der Messung ausgeschlossen, als vorher von dem ganzen Volum. Daraus entsteht eine wenn auch unbedeutende Verschiebung in den relativen Werthen der Resultate und der Fehler wird um so grösser, je kleiner die angewandten Volume sind.

Um den Fehler zu corrigiren handelt es sich darum, den Druck zu trennen, welchen die Luftmenge v bei 0° ausübt, wenn sie auf die Grösse des Inhalts des Messkolbens ausgedehnt wird. Dieser Druck wird gefunden, indem man die Spannung einer beliebigen Menge Luft zuerst mit Ausschluss des Inhaltes des schädlichen Raumes v misst, und dann mit Hinzufügung desselben.

Für die erste Messung lässt man den trockenen Quecksilberfaden bis zur Marke treten, für die zweite bis dicht an den Hahn, und der Unterschied beider Messungen gibt den gesuchten Druck der Luftmenge v. Eine dritte Wiederholung der Messung mit Einstellung bis zur Marke wie zuerst, muss dasselbe Resultat ergeben wie die erste Messung und dient zur Controle. Folgendes Beispiel gibt eine am 28. Februar 1874 vorgenommene Messung:

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Einstellung bis zur Marke 720.1 14.2 140.2 12.7</td>
<td>578.45</td>
</tr>
<tr>
<td>bis zum Hahn 720.1 14.2 141.1 12.7 577.55</td>
<td></td>
</tr>
<tr>
<td>bis zur Marke 720.0 14.4 140.1 12.7 578.43</td>
<td></td>
</tr>
</tbody>
</table>

Die Druckvermehrung im Messkolben durch Hinzufügung des Volumens v betrug in diesem Falle 0.9 Mm.

Man kann die Luftmenge v für alle Grössen der zu messenden Luftproben als gleichbleibend annehmen, da die Aenderungen, welchen sie unterworfen ist, zu vernachlässigten sind, wie wir sehen.
Sauerstoffaufnahme in d. Lungen bei gewöhnl. u. erhöhtem Luftdruck. 496

werden. Diese Änderungen hängen vom Barometerstand und von der Temperatur des Arbeitsraumes ab und verhalten sich umgekehrt wie die Änderungen im Volume, welche eine bei mittlerer Temperatur und mittlerem Barometerstand den Raum v erfüllende Luftmenge erfährt.

Wir haben also nur die Volumveränderungen einer unter bestimmten Umständen gemessenen Luftmenge v in's Auge zu fassen.

Diese unterliegt im Capillarrohr dem Atmosphärendruck, vermindert um die Höhe h. Wenn b den mittleren Barometerstand in München bezeichnet und h = 13 Cm. ist, dann ist

\[b - h = 716 - 130 = 586 \text{ Mm.} \]

Die Temperatur des Arbeitsraumes sei \(t = 8^\circ \text{C.} \)

Das Volum \(\varphi \) der Luftmenge v ist den Veränderungen unterworfen, welche durch die Barometerschwankungen und den Temperaturwechsel im Arbeitsraume bedingt werden. Wenn die Temperatur \(t' \) und der Barometerstand \(b' \) wird, so wird

\[\varphi' = \varphi \frac{1 + \alpha t'}{1 + \alpha t} \cdot \frac{b}{b' - h} \]

\(\alpha \) ist der Ausdehnungscoefficient der Luft, 0.00386. Der Barometerstand soll nun zwischen den Grenzen von 700 und 730 Mm. wechseln, die Temperatur des Arbeitsraumes zwischen \(0^\circ \text{C.} \) und \(16^\circ \text{C.} \). Da die Temperatur- und Barometerschwankungen häufig entgegengesetzt sind, so nehme ich als die weitesten Gränzen für die Änderungen des Volumens \(\varphi \) auf der einen Seite den Barometerstand 730 mit der Temperatur \(0^\circ \text{C.} \), auf der andern den Barometerstand 700 mit der Temperatur \(16^\circ \text{C.} \). Im ersten Falle wird \(\varphi' = 0.95 \varphi \)

im zweiten \(\varphi'' = 1.06 \varphi \).

Die Änderungen des Volumes \(\varphi \) bewegen sich also zwischen den Grenzen von \(-5\) und \(+6\) Procent und die Menge der in v eingeschlossenen Luft in denselben Grenzen aber in dem umgekehrten Verhältnisse von \(+5\) und \(-6\) Procenten. In derselben Weise wie die Menge ändert sich auch die Spannung der im Raume v enthaltenen Luft, welche nach Ausdehnung von v auf das Volumen des Messkolbens 0.9 Mm. betrug, bei \(0^\circ \text{C.} \).

Die Änderungen im Luftdruck und in der Temperatur erreichen niemals in kurzen Zeiträumen die angenommenen Grenzen, und die thatsächlichen Änderungen in der Grösse von 0.9 Mm., fallen daher ausser dem Bereich der Messbarkeit.

Es ergibt sich aus dem Gesagten, dass wir die Luftmenge v
und ihren Druck bei 0° als eine constante Grösse ansehen dürfen, und als die gleiche für jede beliebige Menge einer zu messenden Luftprobe. Der durch den schädlichen Raum v entstehende Fehler würde daher für den betreffenden Apparat corrigirt werden, indem man, bei jeder Messung, der gefundenen Spannung die Grösse 0,9 Mm. hinzufügt.

Die Correction muss für jeden Apparat besonders bestimmt werden.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ursprüngl. Volumen</td>
<td>508,12 + 0,9 = 504,02</td>
<td>Stickat. 79,508</td>
</tr>
<tr>
<td>Nach Abs. d. Kohlens</td>
<td>482,46 + 9,9 = 483,36</td>
<td>Sauerst. 16,566</td>
</tr>
<tr>
<td>Nach Abs. d. Sauerst.</td>
<td>399,00 + 0,9 = 399,91</td>
<td>Kohlens. 4,106</td>
</tr>
</tbody>
</table>

Summe: 100,000 99,999

Die Capillaröhre unterhalb des Messkolbens bis zum Dorne kann nicht mit Eis umgeben werden und die Temperatur der darin eingeschlossenen Luft ist daher nicht 0°, obgleich sie durch Austausch mit der auf 0° erkaltenen des Messkolbens immer in der Nähe des Nullpunktes erhalten wird. Wenn man die Raumverhältnisse des Capillarrohres mit denen des Messkolbens vergleicht und die Geringfügigkeit des möglichen Temperaturunterschiedes beachtet, so ergibt sich, dass der hieraus entstehende Fehler ausserhalb der Grenzen der Messbarkeit liegen wird. Er ist übrigens geeignet, den aus der Bohrung des Hahnes entstehenden Fehler zu compensieren.

Fehlergrenzen. Man hat für gewöhnlich dreierlei Arten von Fehlern veränderlicher Grösse anzunehmen: 1) die Fehler aus der Ablesung, 2) die Fehler aus der Temperatur des Quecksilbers,
3) die Fehler aus dem ungleichen Gange des Barometers und des Quecksilberstandes im Ablenungsrohre des Apparats.

1) Die Ablesungen kann man bei Schätzung der Zehnten des Millimeters auf ± 0,1 Mm. genau annehmen, unter günstigen Umständen können sie genauer sein. Wenn man zwei Instrumente abzulesen hat, kommt bei rascherem Gange des Barometers eine etwas grössere Unsicherheit in die Ablesungen, weil man nicht gleichzeitig beide beobachten kann.

2) Die Fehler durch die Temperatur treten besonders hervor, wenn die Temperaturen des Arbeitsraumes rasch wechseln. Es kann in solchen Fällen die Temperatur des Quecksilbers in verschiedenen Theilen des Instrumentes ungleich sein oder die Erwärmung und Abkühlung der Thermometer und der Instrumente schreiten nicht in gleicher Weise vor. Im Apparat ist die Temperatur des Quecksilbers während der verschiedenen Verrichtungen kleinen theilweisen Aenderungen unterworfen. Wenn dieser Fehler sich bei jedem Instrumente auf einen halben halben Grad beläuft, so können die Abweichungen im reducirten Quecksilberstand 0.07—0.09 Mm. betragen.

3) Es kommt vor, dass bei sehr raschen Aenderungen des Luftdruckes unter Witterungswechsel die Anzeige im Apparate der Anzeige im Barometer vorausgeht oder zurückbleibt, dass also z. B. das Barometer unter aufeinanderfolgenden Ablesungen um 0.4 bis 0.5 Mm. sich ändert, während das Quecksilber im Ablenungsrohre einen gleichen Stand einhält oder Veränderungen geringerer Grösse in gleichem Sinne zeigt. Wenn man dann nicht Zeit hat, die Ausgleichung abzuwarten, ist das Resultat gewöhnlich mit einem grösseren Fehler behaftet. Kommt es auf die grösste Genauigkeit an, dann wird man unter solchen Umständen gemachte Beobachtungen ausscheiden.

Bei mässig raschen Aenderungen ist der Gang beider Instrumente gewöhnlich der gleiche oder der Fehler ist weniger bedeutend und gehört unter die gewöhnlichen Beobachtungsfehler. Wegen des raschen täglichen Wechsels in den ersten Nachmittagstunden sind diese für Ablesungen weniger geeignet.

1871 habe ich bei Barometerständen von 719—730 Mm. an verschiedenen Tagen 47 Messungen der beiden Menisken verzeichnet. Der Meniskus des längeren Schenkels im luftleeren Raume änderte sich im Ganzen zwischen den Grenzen von 0.8 und 1.3 Mm., während die Aenderungen des Meniskus im kürzern Schenkel in Berührung mit der Luft zwischen 0.6 und 1.8 Mm. sich bewegten. Die letzteren waren also von der doppelten Grösse. Man bemerkte bisweilen, dass während des Faltens im Laufe eines Tages der untere Meniskus zunahm, während der obere etwas abnahm. Das Verhalten während des Steigens wurde nicht beobachtet, weil in die Zeit von 10 Uhr Morgens bis zum Abend im Winter ein regelmässiges Steigen nicht fällt. An Tagen hohen Barometerstandes und geringer Schwankung waren beide Menisken von mittlerer Grösse, gleich, oder um nur 0.1 Mm. verschieden. Die grössten Massen und die bedeutendsten Unterschiede zeigten beide Menisken bei dem niedrigsten Barometerstande. Im Mittel hatten beide dieselbe Grösse, fast genau 1 Mm.

Die angegebenen Massverhältnisse können sich in der Weise kombinieren, dass Unterschiede in den Menisken zu einer Zeit nicht vorhanden sind, zu einer andern die Grösse von 0.5 Mm. erreichen, wodurch die Übereinstimmung der Beobachtungen leiden muss. Bei den wiederholten Ablsenungen der Spannung einer gleichen Menge Luft im Messkolben des Apparats trat dieser Einfluss im Laufe eines oder einiger Tage oder überhaupt so lange der Barometerstand sich nicht bedeutend änderte, nicht hervor, indem solche Beobachtungen in den gewöhnlichen Fehlergrenzen übereinstimmten. Der Einfluss wurde aber bemerklich, wenn Beobachtungen verglichen wurden, welche in Zwischenräumen von mehrtägigem Zeitdauer unter verschiedenen Witterungszuständen gemacht worden waren.

Je weiter der Durchmesser des Barometerrohres, um so weniger werden diese Ungleichheiten fühlbar werden. Äusser dem Meniskus des Barometers kommt auch noch der am Apparate in Betracht, welcher ebenfalls von wechselnder Grösse ist.

Sauerstoffaufnahme in d. Lungen bei gewöhnl. u. erhöhtem Luftdruck. 499

Barometer, welches in demselben Zimmer stand, wurde mit dem Fernrohr abgelesen.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>724.5</td>
<td>3.5</td>
<td>247.9</td>
<td>4.2</td>
<td>476.37</td>
</tr>
<tr>
<td>724.4</td>
<td>3.7</td>
<td>247.8</td>
<td>4.2</td>
<td>476.80</td>
</tr>
<tr>
<td>724.5</td>
<td>4.1</td>
<td>247.8</td>
<td>4.2</td>
<td>476.37</td>
</tr>
<tr>
<td>724.2</td>
<td>4.8</td>
<td>247.5</td>
<td>5.1</td>
<td>476.32</td>
</tr>
<tr>
<td>724.4</td>
<td>5.0</td>
<td>247.6</td>
<td>5.1</td>
<td>476.40</td>
</tr>
<tr>
<td>724.3</td>
<td>5.1</td>
<td>247.5</td>
<td>5.3</td>
<td>476.40</td>
</tr>
<tr>
<td>724.6</td>
<td>4.9</td>
<td>247.8</td>
<td>5.0</td>
<td>476.40</td>
</tr>
</tbody>
</table>

Das Mittel war 476.37; hier unter den günstigsten Umständen lässt die Gleichmässigkeit nichts zu wünschen übrig.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>727.9</td>
<td>13.8</td>
<td>333.8</td>
<td>13.9</td>
<td>396.17</td>
</tr>
<tr>
<td>728.0</td>
<td>14.4</td>
<td>333.9</td>
<td>14.9</td>
<td>396.15</td>
</tr>
<tr>
<td>728.8</td>
<td>14.9</td>
<td>334.1</td>
<td>15.4</td>
<td>396.22</td>
</tr>
<tr>
<td>728.9</td>
<td>15.5</td>
<td>334.6</td>
<td>14.0</td>
<td>396.15</td>
</tr>
<tr>
<td>728.1</td>
<td>14.4</td>
<td>333.8</td>
<td>14.1</td>
<td>396.30</td>
</tr>
<tr>
<td>728.0</td>
<td>14.7</td>
<td>333.8</td>
<td>14.1</td>
<td>396.16</td>
</tr>
<tr>
<td>727.9</td>
<td>14.9</td>
<td>333.7</td>
<td>14.3</td>
<td>396.15</td>
</tr>
<tr>
<td>727.4</td>
<td>15.3</td>
<td>333.2</td>
<td>14.4</td>
<td>396.15</td>
</tr>
<tr>
<td>727.5</td>
<td>15.5</td>
<td>333.3</td>
<td>15.0</td>
<td>396.17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>713.6</td>
<td>13.2</td>
<td>887.4</td>
<td>13.0</td>
<td>325.4</td>
</tr>
<tr>
<td>714.1</td>
<td>13.2</td>
<td>887.9</td>
<td>13.0</td>
<td>325.4</td>
</tr>
<tr>
<td>714.2</td>
<td>13.5</td>
<td>888.0</td>
<td>13.0</td>
<td>325.4</td>
</tr>
<tr>
<td>714.8</td>
<td>13.2</td>
<td>888.5</td>
<td>12.9</td>
<td>325.5</td>
</tr>
<tr>
<td>715.1</td>
<td>13.0</td>
<td>888.7</td>
<td>13.1</td>
<td>325.7</td>
</tr>
<tr>
<td>716.3</td>
<td>13.3</td>
<td>889.9</td>
<td>12.9</td>
<td>325.6</td>
</tr>
</tbody>
</table>

Die diesel Ungleichheit im Gange bei fallendem Barometer wurde eine Abweichung im entgegengesetzten Sinne zur Folge gehabt haben, die Spannung im Messkolben würde kleiner erschienen sein. Ich konnte diese Beispiele noch vermehren.

Nehmen wir unter gewöhnlichen Umständen für jede Ablesung einen möglichen grössten Fehler von ± o. 1 Mm. an, so könnte für die Verbindung zweier Ablesungen im schlimmsten Falle ein Fehler
von ± 0,2 Mm. vorkommen. Dieser könnte durch Irrung in der Temperatur des Quecksilbers um noch 0,07 bis 0,09 Mm. vergrößert werden, also im Ganzen eine Grösse von ± 0,28 Mm. erreichen.

Zur Analyse der atmosphärischen Luft braucht man unter Anwendung eines Gefässbarometers vier Beobachtungen und die Fehler von je 2 Ablesungen können sich zu solchen von der doppelten Grösse verbinden. Wäre die Spannung des ursprünglichen Volums im Messkolben 500 Mm., so würden unsere Fehlergrenzen in der Berechnung der procentischen Zusammensetzung für jeden Bestandtheil etwa ± 0,1 Prozent betragen.

Nach vielen vorausgegangenen Versuchen zur Prüfung des Apparats wurde nun im December 1872 zu den ersten Probobestimmungen geschritten, wozu die Analyse der Luft, nach Bunsen's Vorgang, am nächsten lag. Es wurden an drei aufeinanderfolgenden Tagen Bestimmungen gemacht. Der damals benutzte Apparat gestattete noch nicht die leichte und sichere Einstellung des Flüssigkeitsfadens, wie die seitdem verbesserte Einrichtung, und der Fehler der Einstellung war daher vorher schon für den Stand des Flüssigkeitsfadens in verschiedenen Entfernungen vom Glashahne bestimmt worden. Auch die feinere Einstellung am Dorn war nicht so bequem wie jetzt und es wurden deshalb für jede Bestimmung der Spannung im Meskolben drei Beobachtungen gemacht, von denen das Mittel genommen wurde. Die Ziffern für die Einstellung bedeuten die Entfernung des Flüssigkeitsfadens vom Hahne in Cm. und die Correction dafür in Mm. ist beigefügt. Das ursprüngliche Volum ist gemessen nach Abscheidung der Kohlensäure mit Kalilauge, die Correction für den Nullpunkt der Scala ist bereits angebracht (s. nebenstehende Tabelle).

Die folgenden Luftanalysen wurden mit dem verbesserten Apparate an 6 aufeinanderfolgenden Tagen im März 1874 in München gemacht, wo Herr Professor v. Jolly die Güte gehabt hatte, mir einen Arbeitsraum zur Verfügung zu stellen. Zwei davon, am 19. und 23. März, bei welchen ein rasches Fallen und Steigen des Barometers grössere Abweichungen herbeiführte, scheide ich aus und führe sie gesondert an, um die unter solchen Umständen möglichen Abweichungen nach beiden Seiten hin anschaulich zu machen. Die Einstellung war immer die gleiche und die Correction dafür betrug 0,9 Mm. Diese Correction sowie der Abzug des Wasserdampfs mit 4,6 Mm. sind an den Werthen der letzten Reihe, der corrigierten
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Dez. 1872</td>
<td>720.2</td>
<td>14.5</td>
<td>82.1</td>
<td>14.8</td>
<td>686.52</td>
</tr>
<tr>
<td>Ursprüngl. Volum.</td>
<td>720.1</td>
<td>14.5</td>
<td>82.0</td>
<td>14.0</td>
<td>686.52</td>
</tr>
<tr>
<td></td>
<td>720.1</td>
<td>14.5</td>
<td>82.1</td>
<td>16.2</td>
<td>636.48</td>
</tr>
<tr>
<td>Einst. 5.5 Corr. 0.66.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Corr. + 0.66</td>
</tr>
<tr>
<td>Nach Abs. d. Sauerst.</td>
<td>719.6</td>
<td>18.1</td>
<td>214.7</td>
<td>18.4</td>
<td>508.79</td>
</tr>
<tr>
<td></td>
<td>719.7</td>
<td>18.8</td>
<td>214.8</td>
<td>18.8</td>
<td>508.72</td>
</tr>
<tr>
<td></td>
<td>719.8</td>
<td>14.4</td>
<td>214.6</td>
<td>14.5</td>
<td>508.97</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Einst. 7.0 Corr. 0.84</td>
<td>Stickst. 79.037</td>
<td></td>
<td></td>
<td></td>
<td>500.07</td>
</tr>
<tr>
<td></td>
<td>Sauerst. 20.865</td>
<td></td>
<td></td>
<td></td>
<td>500.07</td>
</tr>
<tr>
<td></td>
<td>100.000</td>
<td></td>
<td></td>
<td></td>
<td>500.07</td>
</tr>
<tr>
<td>19. Dez. 1872</td>
<td>719.0</td>
<td>15.5</td>
<td>180.8</td>
<td>15.5</td>
<td>586.63</td>
</tr>
<tr>
<td>Ursprüngl. Volum.</td>
<td>719.0</td>
<td>15.5</td>
<td>180.8</td>
<td>16.1</td>
<td>586.63</td>
</tr>
<tr>
<td></td>
<td>719.0</td>
<td>15.8</td>
<td>180.8</td>
<td>16.3</td>
<td>586.66</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Einst. 7.0. Corr. 0.84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Corr. + 0.84</td>
</tr>
<tr>
<td>Nach Abs. d. Sauerst.</td>
<td>720.0</td>
<td>12.0</td>
<td>263.9</td>
<td>11.3</td>
<td>465.11</td>
</tr>
<tr>
<td></td>
<td>720.2</td>
<td>13.3</td>
<td>264.0</td>
<td>12.1</td>
<td>465.08</td>
</tr>
<tr>
<td></td>
<td>720.8</td>
<td>13.5</td>
<td>254.1</td>
<td>12.4</td>
<td>465.08</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Einst. 6.5. Corr. 0.78</td>
<td>Stickst. 79.135</td>
<td></td>
<td></td>
<td></td>
<td>461.27</td>
</tr>
<tr>
<td></td>
<td>Sauerst. 20.865</td>
<td></td>
<td></td>
<td></td>
<td>461.27</td>
</tr>
<tr>
<td></td>
<td>100.000</td>
<td></td>
<td></td>
<td></td>
<td>461.27</td>
</tr>
<tr>
<td>20. Dez. 1872</td>
<td>720.40</td>
<td>15.3</td>
<td>142.2</td>
<td>15.2</td>
<td>576.68</td>
</tr>
<tr>
<td>Ursprüngl. Volum</td>
<td>720.35</td>
<td>15.3</td>
<td>142.1</td>
<td>15.3</td>
<td>576.74</td>
</tr>
<tr>
<td></td>
<td>720.36</td>
<td>15.3</td>
<td>142.1</td>
<td>15.3</td>
<td>576.74</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Einst. 7.0. Corr. 0.84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Corr. + 0.84</td>
</tr>
<tr>
<td>Nach Abs. d. Sauerst.</td>
<td>721.90</td>
<td>18.1</td>
<td>264.4</td>
<td>18.6</td>
<td>456.51</td>
</tr>
<tr>
<td></td>
<td>722.15</td>
<td>14.1</td>
<td>264.4</td>
<td>14.6</td>
<td>456.67</td>
</tr>
<tr>
<td></td>
<td>722.80</td>
<td>14.2</td>
<td>265.5</td>
<td>16.0</td>
<td>456.78</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Einst. 7.0. Corr. 0.84</td>
<td>Stickst. 79.044</td>
<td></td>
<td></td>
<td></td>
<td>452.69</td>
</tr>
<tr>
<td></td>
<td>Sauerst. 20.856</td>
<td></td>
<td></td>
<td></td>
<td>452.69</td>
</tr>
<tr>
<td></td>
<td>100.000</td>
<td></td>
<td></td>
<td></td>
<td>452.69</td>
</tr>
</tbody>
</table>

Spannung, bereits angebracht. Das benutzte Barometer war ein Gefäßbarometer. Bei allen Bestimmungen wurde die letzte Able- sung des Stickstoffvolums erst am nächsten Morgen vorgenommen.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>18. März</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ursprüngl. Volum.</td>
<td>720.5</td>
<td>14.0</td>
<td>183.8</td>
<td>11.3</td>
<td>555.50</td>
<td>531.80</td>
</tr>
<tr>
<td>Nach Abs. d.Sauerst.</td>
<td>719.8</td>
<td>12.3</td>
<td>294.5</td>
<td>12.0</td>
<td>424.41</td>
<td>420.71</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>79.110</td>
<td>20.890</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100.000</td>
<td></td>
</tr>
<tr>
<td>20. März</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ursprüngl. Volum.</td>
<td>718.1</td>
<td>14.5</td>
<td>174.2</td>
<td>12.8</td>
<td>573.50</td>
<td>583.80</td>
</tr>
<tr>
<td>Nach Abs. d.Sauerst.</td>
<td>723.6</td>
<td>12.9</td>
<td>296.9</td>
<td>12.3</td>
<td>426.72</td>
<td>422.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>79.069</td>
<td>20.941</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100.000</td>
<td></td>
</tr>
<tr>
<td>21. März</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ursprüngl. Volum.</td>
<td>724.0</td>
<td>13.3</td>
<td>310.4</td>
<td>12.3</td>
<td>512.38</td>
<td>508.68</td>
</tr>
<tr>
<td>Nach Abs. d.Sauerst.</td>
<td>726.2</td>
<td>11.0</td>
<td>319.9</td>
<td>12.1</td>
<td>406.60</td>
<td>401.90</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>79.008</td>
<td>20.992</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100.000</td>
<td></td>
</tr>
<tr>
<td>22. März</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ursprüngl. Volum.</td>
<td>725.4</td>
<td>11.8</td>
<td>186.2</td>
<td>12.1</td>
<td>538.14</td>
<td>534.44</td>
</tr>
<tr>
<td>Nach Abs. d.Sauerst.</td>
<td>728.7</td>
<td>13.0</td>
<td>296.8</td>
<td>12.1</td>
<td>426.90</td>
<td>422.60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>79.078</td>
<td>20.927</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100.000</td>
<td></td>
</tr>
</tbody>
</table>

Sauerstoffaufnahme in d. Lungen bei gewöhnl. u. erhöhtem Luftdruck. 503

<table>
<thead>
<tr>
<th>30. März</th>
<th>1. April</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ursprüngl. Volum.</td>
<td>720.35</td>
</tr>
<tr>
<td>Nach Abs. d.Sauerst.</td>
<td>720.30</td>
</tr>
<tr>
<td>Stickst.</td>
<td>79.059</td>
</tr>
<tr>
<td>Sauerst.</td>
<td>20.941</td>
</tr>
<tr>
<td>100.000</td>
<td>100.000</td>
</tr>
</tbody>
</table>

Es wurden nun auch Probebestimmungen mit Athemluft gemacht, wobei als dritter Bestandtheil die Kohlensäure hinzukam. Die Athemluft wurde in einer gut verschliessbaren Flasche über Wasser aufgefangen, so dass nur das an den Wänden anhängende Wasser in der Flasche zurückblieb, und über Nacht stehen gelassen; dann wurden die Proben durch Wasserdruck ausgefüllt. Folgende drei Proben derselben Flasche wurden im März 1873 mit dem alten Apparat in Reichenhall untersucht.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ursprüngl. Volum.</td>
<td>722.10</td>
<td>721.70</td>
</tr>
<tr>
<td>Nach Abs. d.Kohlens.</td>
<td>720.80</td>
<td>721.10</td>
</tr>
<tr>
<td>Nach Abs. d.Sauerst.</td>
<td>721.85</td>
<td>721.45</td>
</tr>
<tr>
<td>Stickst.</td>
<td>209.4</td>
<td>128.2</td>
</tr>
<tr>
<td>Sauerst.</td>
<td>231.3</td>
<td>154.2</td>
</tr>
<tr>
<td>16.7</td>
<td>16.6</td>
<td>16.4</td>
</tr>
<tr>
<td>16.5</td>
<td>16.5</td>
<td>16.5</td>
</tr>
<tr>
<td>514.22</td>
<td>594.77</td>
<td>609.21</td>
</tr>
</tbody>
</table>

Die procentische Zusammensetzung ergibt sich daraus wie folgt:

<table>
<thead>
<tr>
<th>I.</th>
<th>II.</th>
<th>III.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stickstoff</td>
<td>80.531</td>
<td>80.765</td>
</tr>
<tr>
<td>Sauerstoff</td>
<td>4.530</td>
<td>4.489</td>
</tr>
</tbody>
</table>
Im März 1874 wurde eine etwa 15 Liter haltende Flasche auf dieselbe Weise mit Athemluft gefüllt und die Proben nach 24ständigem Stehen herausgenommen. Die Bestimmungen wurden mit dem verbesserten Apparate in München gemacht und es wurden vier Proben untersucht.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ursprüngl. Volum</td>
<td>722.5</td>
<td>11.9</td>
<td>232.7 9.7</td>
<td>486.72 486.02</td>
<td></td>
</tr>
<tr>
<td>Nach Abs. der Kohlensäure</td>
<td>722.5</td>
<td>12.0</td>
<td>251.85 9.7</td>
<td>469.58 365.88</td>
<td></td>
</tr>
<tr>
<td>Nach Abs. des Sauerstoffs</td>
<td>727.8</td>
<td>10.6</td>
<td>336.8 9.7</td>
<td>390.54 386.84</td>
<td></td>
</tr>
</tbody>
</table>

Ursprüngl. Volum	727.7	10.4	111.0 9.7	615.58 611.88
Nach Abs. der Kohlensäure	727.8	10.7	134.1 9.7	542.09 588.39
Nach Abs. des Sauerstoffs	719.9	10.5	226.4 9.7	492.58 468.88

III. 15. März 1874.

Ursprüngl. Volum	719.7	11.1	188.2 9.7	580.96 576.66
Nach Abs. der Kohlensäure	719.6	11.4	160.6 9.7	557.86 554.16
Nach Abs. des Sauerstoffs	724.7	11.6	269.7 9.7	469.94 460.29

Ursprüngl. Volum	724.9	12.0	129.15 10.0	594.48 590.78
Nach Abs. der Kohlensäure	724.8	12.3	152.2 10.0	571.34 567.64
Nach Abs. des Sauerstoffs	727.2	11.2	250.8 9.9	475.43 471.73

Danach berechnen sich folgende Procentgehalte:

<table>
<thead>
<tr>
<th></th>
<th>I.</th>
<th>II.</th>
<th>III.</th>
<th>IV.</th>
<th>Mittel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stickstoff</td>
<td>79.757</td>
<td>79.897</td>
<td>79.810</td>
<td>79.849</td>
<td>79.828</td>
</tr>
<tr>
<td>Kohlensäure</td>
<td>8.947</td>
<td>8.840</td>
<td>8.900</td>
<td>8.919</td>
<td>8.901</td>
</tr>
</tbody>
</table>

100.000 100.000 100.000 100.000 99.999

Ich gehe jetzt zur Mittheilung meiner Versuche über.

Eine Reihe von Athmungen wurde im November 1875 gemacht, eine zweite im Mai 1873. Von der letzteren waren jedoch nicht alle Athmungen brauchbar.

Die athmende Person war ein bei dem pneumatischen Apparat beschäftigter Diener, der ausserdem als Zimmermann arbeitete. Er stand im Alter von 39 Jahren, hatte eine mittlere Grösse, 17.1 M., war schmal gebaut und mager, übrigens gesund und wog 59 Kilo. Seine Lungencapacität betrug 3.9 Liter, nach den Sitzungen etwas mehr. Er war verheirathet und führte folgende Lebensweise: Um 7 Uhr Morgens Kaffee mit Brod, um 9 Uhr ½ Liter Bier und abermals Brod, um 12 Uhr Mittags Suppe, ½ Pfund Fleisch mit

Diese Beköstigung ist eine sehr mässige; überhaupt hatte er seiner Angabe nach nie so viel Appetit gehabt als seine Kameraden und beim Militär behielt er von seiner Portion immer noch übrig.

Die Sitzungen fielen in die Zeit von 10—12½ Uhr Morgens, es war also für ihn die Zeit des leeren Magens.

Die Probenflaschen wurden unter Quecksilber mit den gut schließenden und vorher geprüften Stöpseln verschlossen, die ausserdem mit Lutfumpenfett eingefettet waren. Von jeder Athmung wurden drei Proben ausgefüllt.

Unter dem erhöhten Druck wurde nicht eher mit den Athmungen begonnen, als bis der Druck langsam steigend bei 32 Cm. über der Barometerhöhe angelangt war. Hier wurden die nach dem Umfallen zugestöpselten Probenflaschen bis zur Beendigung der Athmungen stehen gelassen, und wenn dann der Druck wieder im Fallen war, wurden die Stöpsel vorsichtig ein paar Mal ganz leicht gelüftet, wobei die überschüssige Luft mit einem zischenden Geräusche entwich. Hätte man dies vernachlässigt, so würden bei der raschen
Abnahme des Drucks ausserhalb der Flaschen, die Stöpsel herausgeschleudert worden sein.

Die pneumatischen Kammern waren gut ventilirt, indem die Abzugshähne so gestellt wurden, dass der Luftwechsel für die doppelte Anzahl von Personen gereicht hätte — der aufsteigende Luftstrom war darin deutlich zu fühlen. Bei der bestmöglichen Hahnstellung für eine Zahl von Personen beträgt der Kohlensäuregehalt der Luft in der Kammer nach vielfachen jährlich wiederholten Bestimmungen nicht mehr als höchstens 1 pro Mille, gleich dem der Zimmerluft, so dass er nicht besonders in Rechnung gebracht werden musste.

Die Athemzüge wurden bei jeder Athmung gewöhnlich 8 Minuten, ausnahmsweise auch nur 7 oder 6 Minuten lang, unbemerkt von dem Athmenden, gezählt.
Nur bei der ersten Athmung war der Athmende durch die Un-
gewöhntheit der Sache zu ungewöhnlich tiefen Athemzügen veran-
lasst und atmete dadurch ein auserordentlich grosses Volum und die
ergebnisse dieser Athmung mussten deshalb für die Betrach-
tung des normalen Verhaltens der Athmung ausser Acht gelassen
werden, sie sind aber an sich zu Vergleichen gut geeignet. Die
übriegen Athmungen waren gleichmässig und ruhig, wie denn der
Athmende besonders gut für seine Aufgabe geeignet war, weil er,
von trägem Temperament, sich durch Nichts stören oder langweilen
liess. Er las während der Sitzungen gewöhnlich Bruchstücke von
alten Zeitungen oder ergab sich einem ruhigen Nachdenken.

Während dem Gange der Versuche wurde die Aufmerksamkeit
auf die Mülle r’schen Ventile nicht vernachlässigt, weil nach wie-
derholten Athmungen in Folge des Durchganges gewöhnlicher Luft
durch das eine und mit Wasser gesättigter Luft durch das andere
Ihre Wasserhöhe sich verschieden zu gestalten pflegt.

Die Berechnung der Volume auf 0° C. und den Normalbaro-
meterstand wurde nach Massgabe der gewöhnlichen Formel mit
Hülfe der Bunsen’schen Tabellen ausgeführt:

\[V = v \frac{1}{(1 + 0.00366 t)} \frac{b - e}{B}, \]

wobei \(V \) das Volum der ausgeathmten Luft bei 0° und 760 Mm.
Druck, trocken, \(v \) das corrigirte Volum nach Angabe der Gasuhr,
\(t \) die mittlere Temperatur der aus der Gasuhr ausströmenden Luft
bedeutet; \(e \) ist der Dunstdruck dieser Luft, \(B \) der Normalbarometer-
stand, \(b \) der mittlere Barometerstand während der Athmung.

Aus den so erhaltenen Volumen wurde nun mit Hilfe der
durch die Analyse gefundenen volum-procentischen Zusammensetzung
der ausgeathmten Luft das Volum eines jeden ihrer Bestandtheile
bei 0° und 0,76 M. Druck berechnet.

Wenn \(N \) das Volum des ausgeathmten Stickstoffes, \(O \) das des
Ausgeathmten Sauerstoffes, \(C \) das der Kohlensäure bezeichnet und
\(n, o \) und \(c \) die Procentgehalte der Athemluft an Stickstoff, Sau-
estoff und Kohlensäure sind, so wird

\[N = V \frac{n}{100}, \]

\[O = V \frac{o}{100}, \]

\[C = V \frac{c}{100}. \]
Das Volum des eingeathmeten Sauerstoffes, welches ich mit \(S \) bezeichnen will, berechnet sich nach der bekannten Zusammensetzung der Luft aus 79,04 Volumtheilen Stickstoff und 20,96 Volumtheilen Sauerstoff und mit Hilfe des für N gefundenen Werthes wie folgt:

\[
S = N \frac{20.96}{79.04}.
\]

Das Volum der eingeathmeten Luftmenge, soweit sie aus Stickstoff und Sauerstoff bestand, bei 0° und 0.76 M. Druck, war nun \(N + S \).

Die Gewichte des Sauerstoffes und der Kohlensäure wurden mit Hilfe der in den Bunsen'schen Tabellen gegebenen spezifischen Gewichte dieser Gase berechnet.

Um eine vergleichende Betrachtung der Ergebnisse unter gewöhnlichem und erhöhtem Druck zu ermöglichen, wurden die eingeathmeten Volume \(N + S \) wieder auf den zur Zeit der Athmungen herrschenden Luftdruck, die herrschende Temperatur und Feuchtigkeit berechnet, nach der Gleichung

\[
V' = (N + S) \left(1 + 0.00366 t'\right) \frac{B}{b - e'},
\]

wobei \(V' \) das Volum der eingeathmeten Luft ist, deren Temperatur \(t' \) und deren Luftdruck \(e' \) aus den mittleren Resultaten der Beobachtungen des Hygrometers entnommen sind; \(B \) ist wieder der Normalbarometerstand, \(b \) der während der Athmungen herrschende Druck.

Die Tiefe der Athemzüge ergab sich nun aus \(V' \), wenn dessen Werth durch die nach Massgabe der Zählungen auf 15 Minuten berechnete Zahl der Athemzüge getheilt wurde.

Ich gebe tabellarisch gedrängt die Ergebnisse der Beobachtung bei den einzelnen Athmungen. Die erste senkrechte Reihe enthält die Mittel der während der Athmungen gemachten Ablesungen des Hygrometers; die zweite die Zahl der Athemzüge auf eine Minute berechnet; die dritte das corrigirte Volum der Gasuhr, die vierte die mittlere Temperatur dieses Volums; die Temperaturen sind in °C. eines Normalthermometers. Ueber den Athmungen jeden Tages sind die mittleren auf 0° reducirten Barometerstände angegeben und die Athmungen stehen unter jedem Tage in der Reihenfolge wie sie gemacht wurden.
Tabelle I.
Beobachtungen.

<table>
<thead>
<tr>
<th>Gewöhnlicher Druck</th>
<th>Erhöhter Druck</th>
</tr>
</thead>
<tbody>
<tr>
<td>Veruchs-Nr.</td>
<td>Hygrometer</td>
</tr>
<tr>
<td></td>
<td>trocken</td>
</tr>
<tr>
<td>1872. 15. Nov. Bar. 719.7</td>
<td>16.4</td>
</tr>
<tr>
<td>1872. 22. Nov. Bar. 1083.9</td>
<td>16.4</td>
</tr>
<tr>
<td>1872. 22. Nov. Bar. 1083.9</td>
<td>16.9</td>
</tr>
<tr>
<td>16. Nov. Bar. 719.3</td>
<td>18.9</td>
</tr>
<tr>
<td>16. Nov. Bar. 719.3</td>
<td>15.1</td>
</tr>
<tr>
<td>16. Nov. Bar. 719.3</td>
<td>14.9</td>
</tr>
<tr>
<td>17. Nov. Bar. 721.8</td>
<td>12.9</td>
</tr>
<tr>
<td>17. Nov. Bar. 721.8</td>
<td>18.3</td>
</tr>
<tr>
<td>17. Nov. Bar. 721.8</td>
<td>18.1</td>
</tr>
<tr>
<td>18. Nov. Bar. 719.2</td>
<td>14.1</td>
</tr>
<tr>
<td>18. Nov. Bar. 719.2</td>
<td>14.0</td>
</tr>
<tr>
<td>18. Nov. Bar. 719.2</td>
<td>14.9</td>
</tr>
<tr>
<td>28. Nov. Bar. 720.2</td>
<td>16.1</td>
</tr>
<tr>
<td>28. Nov. Bar. 720.2</td>
<td>17.0</td>
</tr>
<tr>
<td>28. Nov. Bar. 720.2</td>
<td>17.4</td>
</tr>
<tr>
<td>1872. 17. Mai Bar. 709.6</td>
<td>17.1</td>
</tr>
<tr>
<td>1872. 17. Mai Bar. 709.6</td>
<td>18.1</td>
</tr>
<tr>
<td>1872. 17. Mai Bar. 709.6</td>
<td>17.8</td>
</tr>
<tr>
<td>1872. 17. Mai Bar. 709.6</td>
<td>18.3</td>
</tr>
<tr>
<td>1872. 17. Mai Bar. 709.6</td>
<td>18.3</td>
</tr>
</tbody>
</table>

Von den Proben wurden meist alle drei untersucht und daraus das Mittel genommen; wenn aber, wie es bisweilen vorkam, eine Bestimmung verunglückte oder ihre Brauchbarkeit zweifelhaft war, konnten nur zwei oder eine benützt werden. Am meisten Nachtteil brachte mir in dieser Beziehung die für die Umstellung nicht ganz geeignete Form der Probeflaschen.

Die Analysen stimmten innerhalb der möglichen Fehlergrenzen überein. Ich gebe die Mittel tabellarisch geordnet, und bei jedem Mittel bezeichnet die linkstehende Ziffer die Anzahl der Analysen, aus welchen es genommen wurde.
Die Correction für den Einstellungsfehler ist überall angebracht, sie betrug für die Analysen der ersten Athemreihe + 0.84 Mm., für die der zweiten + 0.90 Mm.

Tabelle II.
Prozentgehalt der Athemluft.

<table>
<thead>
<tr>
<th>Gewöhnlicher Druck</th>
<th>Erhöhter Druck</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Nov.</td>
<td></td>
</tr>
<tr>
<td>N 1. 80.860 1. 80.270 2. 79.923</td>
<td>3. 80.004 2. 80.094 2. 80.003</td>
</tr>
<tr>
<td>O 15.990 16.318 16.775</td>
<td>17.899 17.568 17.779</td>
</tr>
<tr>
<td>C 3.649 3.412 3.301</td>
<td>2.597 2.348 2.213</td>
</tr>
<tr>
<td>99.999 100.000 99.999</td>
<td>100.000 100.000 100.000</td>
</tr>
<tr>
<td>16. Nov. 4 5 6</td>
<td>23. Nov. 4 5 6</td>
</tr>
<tr>
<td>N 2. 80.219 3. 79.900 3. 79.706</td>
<td>2. 80.192 2. 79.804 3. 80.072</td>
</tr>
<tr>
<td>O 16.515 16.629 16.726</td>
<td>17.249 17.653 17.502</td>
</tr>
<tr>
<td>C 3.467 3.471 3.567</td>
<td>2.559 2.362 2.425</td>
</tr>
<tr>
<td>99.999 100.000 99.999</td>
<td>99.999 99.999 99.999</td>
</tr>
<tr>
<td>17. Nov. 7 8 9</td>
<td>25. Nov. 7 8 9</td>
</tr>
<tr>
<td>N 3. 80.088 3. 80.329 3. 79.746</td>
<td>3. 80.245 3. 79.760 3. 79.798</td>
</tr>
<tr>
<td>O 16.162 15.843 16.485</td>
<td>17.812 17.254 17.452</td>
</tr>
<tr>
<td>C 3.774 3.885 3.818</td>
<td>2.443 2.865 2.750</td>
</tr>
<tr>
<td>99.999 100.000 99.999</td>
<td>100.000 99.999 100.000</td>
</tr>
<tr>
<td>N 3. 80.088 2. 79.985 3. 80.290</td>
<td>3. 79.944 3. 79.602 3. 79.655</td>
</tr>
<tr>
<td>O 16.010 15.925 16.356</td>
<td>17.589 17.582 17.269</td>
</tr>
<tr>
<td>C 3.957 4.092 3.864</td>
<td>2.462 2.816 2.066</td>
</tr>
<tr>
<td>100.000 100.000 100.000</td>
<td>100.000 100.000 100.000</td>
</tr>
<tr>
<td>N 3. 80.071 3. 79.866 3. 79.920</td>
<td>3. 79.984 3. 79.927</td>
</tr>
<tr>
<td>C 3.393 3.234 3.111</td>
<td>3.087 2.989</td>
</tr>
<tr>
<td>100.000 100.000 99.999</td>
<td>99.999 100.000</td>
</tr>
<tr>
<td>17. Mai 16 17</td>
<td>21. Mai 15 16 17</td>
</tr>
<tr>
<td>N 2. 80.086 3. 79.494</td>
<td>3. 80.047 2. 79.788 3. 74.873</td>
</tr>
<tr>
<td>O 16.954 17.052</td>
<td>17.084 17.422 17.555</td>
</tr>
<tr>
<td>C 3.809 3.473</td>
<td>2.369 2.790 2.571</td>
</tr>
<tr>
<td>99.999 99.999</td>
<td>100.000 100.000 99.999</td>
</tr>
<tr>
<td>N 2. 80.283</td>
<td>2. 80.192 2. 80.049 3. 79.854</td>
</tr>
<tr>
<td>O 15.967</td>
<td>17.440 17.479 17.554</td>
</tr>
<tr>
<td>C 3.750</td>
<td>2.431 2.472 2.591</td>
</tr>
<tr>
<td>100.000</td>
<td>100.000 100.000 99.999</td>
</tr>
</tbody>
</table>

Die mittleren Werthe aus allen Bestimmungen sind:

<table>
<thead>
<tr>
<th>für gewöhnlichen Druck</th>
<th>für erhöhten Druck</th>
</tr>
</thead>
<tbody>
<tr>
<td>N 80.027</td>
<td>N 79.967</td>
</tr>
<tr>
<td>O 16.403</td>
<td>O 17.424</td>
</tr>
<tr>
<td>C 3.570</td>
<td>C 2.639</td>
</tr>
<tr>
<td>100.000</td>
<td>100.000</td>
</tr>
</tbody>
</table>

Die Menge des zurückbleibenden Sauerstoffs wechselt unter dem gewöhnlichen Drucke zwischen 15.8 und 17.0 Procent, unter dem erhöhten Drucke zwischen 16.9 und 17.8 Procent, also unter dem Letzteren in engeren Grenzen. Die Schwankung der Kohlensäure zeigt einen geringeren Unterschied; sie bewegt sich unter gewöhnlichem Druck zwischen 3.1 und 4.0 Procent, unter erhöhtem Druck zwischen 2.2 und 3.0 Procent.

Bei den letzten Bestimmungen der zweiten Reihe war wegen Zeitmangels eine Beschleunigung der Arbeit nothwendig geworden, und deshalb wurden bei den Nummern 18 des gewöhnlichen Druckes und 16, 18, 19, 20 des erhöhten Druckes nur je zwei Analysen gemacht, aber für eine derselben die zu gleichen Theilen gemischte Luft von zwei Proben (Probe 1 und 3) verwandt, und dieser Bestimmung musste dann zur Berechnung des Mittels das doppelte Gewicht beigefügt werden, so dass jedes Mittel doch das Ergebniss von 3 Proben darstellt.

Um die Beurtheilung der unbedeutenden Grössenunterschiede, welche hier in Frage kommen, zu ermöglichen, gebe ich die Verhältnisse des Stick-
stoffs zum Sauerstoff bei den einzelnen Bestimmungen. Für die Berechnung dieser Verhältnisse wurde immer die gleiche Verhältniszahl des Stickstoffs, 79.04 zu Grunde gelegt.

<p>| Versuchs- | A | B | Mittel |</p>
<table>
<thead>
<tr>
<th>Nummer</th>
<th>Gem. Pr.</th>
<th>Probe</th>
<th>2A+B</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>15.77</td>
<td>15.72</td>
<td>15.75</td>
</tr>
<tr>
<td>16</td>
<td>17.28</td>
<td>17.36</td>
<td>17.29</td>
</tr>
<tr>
<td>18</td>
<td>17.40</td>
<td>15.93</td>
<td>17.24</td>
</tr>
<tr>
<td>19</td>
<td>17.13</td>
<td>17.63</td>
<td>17.38</td>
</tr>
<tr>
<td>20</td>
<td>17.38</td>
<td>17.48</td>
<td>17.41</td>
</tr>
</tbody>
</table>

Bei Nr. 16 des gewöhnlichen Druckes war die Flasche lange genug stehen geblieben und die beiden genau übereinstimmenden Analysen daher ausreichend. Bei Nr. 17 des erhöhten Druckes war die Luft der 3 Proben zu gleichen Theilen gemischt und das Ergebniss (Sauerstoff 17.41) schliesst sich den beiden anderen Atemungen dieses Tages im gewöhnlichen Verhältnisse an, es konnte also beibehalten werden.

Tabelle IIIa.

Gewöhnlicher Druck.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>15. Nov.</td>
<td>14.1</td>
<td>0.64</td>
<td>185.4</td>
<td>85.747</td>
<td>8.924</td>
</tr>
<tr>
<td></td>
<td>1.8</td>
<td>0.51</td>
<td>116.5</td>
<td>80.786</td>
<td>7.171</td>
</tr>
<tr>
<td></td>
<td>1.7</td>
<td>0.50</td>
<td>117.9</td>
<td>80.969</td>
<td>6.465</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------------------------</td>
<td>----------------------------</td>
<td>---------------------</td>
<td>--------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>16. Nov.</td>
<td>15.5</td>
<td>0.56</td>
<td>129.2</td>
<td>34.485</td>
<td>8.019</td>
</tr>
<tr>
<td>17. Nov.</td>
<td>15.5</td>
<td>0.56</td>
<td>129.2</td>
<td>34.485</td>
<td>8.019</td>
</tr>
<tr>
<td>18. Nov.</td>
<td>17.0</td>
<td>0.50</td>
<td>127.5</td>
<td>33.974</td>
<td>8.346</td>
</tr>
<tr>
<td>19. Nov.</td>
<td>15.0</td>
<td>0.51</td>
<td>114.8</td>
<td>30.607</td>
<td>6.833</td>
</tr>
<tr>
<td>20. Nov.</td>
<td>16.0</td>
<td>0.44</td>
<td>129.6</td>
<td>34.410</td>
<td>7.972</td>
</tr>
<tr>
<td>21. Mai</td>
<td>16.2</td>
<td>0.46</td>
<td>111.0</td>
<td>40.527</td>
<td>7.374</td>
</tr>
<tr>
<td>22. Mai</td>
<td>15.8</td>
<td>0.47</td>
<td>107.2</td>
<td>41.401</td>
<td>7.719</td>
</tr>
<tr>
<td>23. Mai</td>
<td>15.5</td>
<td>0.42</td>
<td>102.9</td>
<td>34.608</td>
<td>7.298</td>
</tr>
<tr>
<td>Tabelle IIIb. Erhöhter Druck.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22. Nov.</td>
<td>15.0</td>
<td>0.50</td>
<td>113.4</td>
<td>43.550</td>
<td>7.883</td>
</tr>
<tr>
<td>23. Nov.</td>
<td>15.6</td>
<td>0.47</td>
<td>111.5</td>
<td>42.625</td>
<td>7.887</td>
</tr>
<tr>
<td>24. Nov.</td>
<td>15.6</td>
<td>0.45</td>
<td>106.4</td>
<td>40.518</td>
<td>6.563</td>
</tr>
<tr>
<td>25. Nov.</td>
<td>16.4</td>
<td>0.46</td>
<td>114.5</td>
<td>43.794</td>
<td>8.273</td>
</tr>
<tr>
<td>26. Nov.</td>
<td>15.4</td>
<td>0.47</td>
<td>107.8</td>
<td>41.192</td>
<td>6.481</td>
</tr>
<tr>
<td>27. Nov.</td>
<td>16.2</td>
<td>0.46</td>
<td>111.0</td>
<td>42.027</td>
<td>7.374</td>
</tr>
<tr>
<td>28. Nov.</td>
<td>15.8</td>
<td>0.47</td>
<td>107.2</td>
<td>41.401</td>
<td>7.719</td>
</tr>
<tr>
<td>29. Nov.</td>
<td>16.5</td>
<td>0.42</td>
<td>102.9</td>
<td>34.608</td>
<td>7.298</td>
</tr>
<tr>
<td>30. Nov.</td>
<td>16.2</td>
<td>0.44</td>
<td>105.8</td>
<td>40.540</td>
<td>7.107</td>
</tr>
<tr>
<td>31. Nov.</td>
<td>15.2</td>
<td>0.46</td>
<td>104.6</td>
<td>40.283</td>
<td>8.554</td>
</tr>
<tr>
<td>32. Nov.</td>
<td>15.9</td>
<td>0.45</td>
<td>107.4</td>
<td>41.071</td>
<td>6.783</td>
</tr>
<tr>
<td>33. Nov.</td>
<td>16.2</td>
<td>0.44</td>
<td>107.6</td>
<td>41.052</td>
<td>7.494</td>
</tr>
<tr>
<td>34. Nov.</td>
<td>15.5</td>
<td>0.48</td>
<td>112.1</td>
<td>43.360</td>
<td>8.814</td>
</tr>
<tr>
<td>35. Nov.</td>
<td>15.8</td>
<td>0.48</td>
<td>118.5</td>
<td>45.494</td>
<td>8.879</td>
</tr>
<tr>
<td>36. Nov.</td>
<td>16.1</td>
<td>0.48</td>
<td>115.1</td>
<td>44.196</td>
<td>7.804</td>
</tr>
<tr>
<td>37. Nov.</td>
<td>16.1</td>
<td>0.48</td>
<td>115.2</td>
<td>44.085</td>
<td>7.546</td>
</tr>
<tr>
<td>38. Nov.</td>
<td>15.6</td>
<td>0.44</td>
<td>104.0</td>
<td>40.043</td>
<td>7.185</td>
</tr>
<tr>
<td>39. Nov.</td>
<td>15.7</td>
<td>0.46</td>
<td>109.4</td>
<td>41.980</td>
<td>7.413</td>
</tr>
<tr>
<td>40. Nov.</td>
<td>15.6</td>
<td>0.45</td>
<td>105.9</td>
<td>40.667</td>
<td>6.954</td>
</tr>
</tbody>
</table>

Für die Berechnung der mittleren Ergebnisse der Atmungen konnte die erste Atmung unter gewöhnlichem Druck nicht zu Hülfe genommen werden. Mit Weglassung derselben ergaben sich folgende Mittelwerthe für eine 15 Minuten dauernde Atmung. Es wurden

<table>
<thead>
<tr>
<th></th>
<th>eingeathmet Liter</th>
<th>aufgenommen Sauerstoff Grm.</th>
<th>ausgeathmet Kohlensäure Grm.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unter gewöhnlichem Druck</td>
<td>118</td>
<td>7.058</td>
<td>7.182</td>
</tr>
<tr>
<td>Unter erhöhtem Druck</td>
<td>110</td>
<td>7.481</td>
<td>7.197</td>
</tr>
</tbody>
</table>

Während also die geathmete Luftmenge unter dem erhöhten Druck kleiner war, war die Menge des aufgenommenen Sauerstoffs grösser, die Menge der abgegebenen Kohlensäure aber etwa die gleiche. Vergleicht man die Ergebnisse des Gassauthausches im gewöhnlichen Druck mit den Ergebnissen von v. Pettenkofer und Voit — in ihrer Arbeit über den Stoffverbrauch des normalen Menschen —, so finden sie ihre Stelle zwischen den dort mitgetheilten Ergebnissen der Hungertage und der Tage mittlerer Kost, bei Ruhe. Dies stimmt mit den obwaltenden Umständen insofern

1) Zeitschrift für s. Biologie. Bd. II. 545.
Sauerstoffaufnahme in d. Lungen bei gewöhnl. u. erhöhtem Luftdruck.

...über ein, als der Athmende eine sehr mässige mittlere Kost genoess, und als er die Athmungen zur Tageszeit des grössten Nahrungsbedürfnisses machte, vor seiner Mittagsmahlzeit, die immer an den Versuchstagen etwas verspätet wurde. Wenn man die Ergebnisse auf 24 Stunden berechnet, so würde unser Athmender, der 59 Kilo gramm wog, im Tage 678 Grm. Sauerstoff aufgenommen und 685 Grm. Kohlensäure ausgeathmet haben. Unter dem erhöhten Druck würde er um 41 Grm. Sauerstoff mehr aufgenommen haben, obgleich dort die gewechselte Luftmenge sowohl, als die Zahl und Tiefe der Athemzüge geringer war.

Der Athmende bei P. und V. wog 71 Kilo und nahm in 24 Stunden im Verhältniss seines Gewichtes im Mittel etwa ebensoviel Sauerstoff auf als der unsrige, wenn man die fünf Tage bei Hunger, mittlerer Kost und Ruhe nimmt.

Das Verhältniss des aufgenommenen Sauerstoffes zu dem in der Kohlensäure ausgeathmeten war bei P. und V. im Hungerzustande mit Ruhe wie 100:68 und 69; bei Ruhe und mittlerer Kost wie 100:74, 78 und 79; bei uns im Mittel wie 100:73. Unter dem erhöhten Druck war die Menge der zur Zeit der Athmungen abgeschiedenen Kohlensäure ebenso gross wie mit dem gewöhnlichen Druck; ihr Verhältniss zu dem in gröserer Menge aufgenommenen Sauerstoff musste also geringer erscheinen; es war wie 100:70.

Vergleicht man die Art des Athmens unter verschiedenem Druck, so fällt es auf, dass der Spielraum, in welchm sich die Athemzüge und Volume bewegen, unter dem gewöhnlichen also geringeren Druck ein viel grösserer ist. In den Mitteln der einzelnen Athmungen wechseln die Athemzüge zwischen 14.1 und 19.6 in der Minute, dagegen unter dem erhöhten Drucke in engeren Grenzen, zwischen 15.0 und 16.5. Die Volume wechseln bei ruhigem Athmen unter gewöhnlichem Druck zwischen 103.2 bis 129.6 Liter, unter dem erhöhten Druck zwischen 102.9 und 118.5 Liter.

Das seltner Athmen ist eine Folge der mechanischen Wirkung des erhöhten Druckes und die Athemthätigkeit wird dadurch im Ganzen gleichmässiger, während unter dem geringeren Drucke sie sich leichter dem Bedürfniss und der Stimmung des Augenblickes anpassen kann. Sie kann aber verschiedenartig beeinflusst werden, in erster Reihe wohl durch das Bedürfniss der Sauerstoffaufnahme und der Kohlensäureabgabe, dann durch die Erfordernisse der Circulation, wahrscheinlich auch durch die Verhältnisse, welche die...
Abgabe des Wasserdampfes beeinflussen, endlich durch gemütliche und durch äussere Einwirkungen auf das Nervensystem.

<table>
<thead>
<tr>
<th>Gewöhnlicher Druck</th>
<th>Erhöhter Druck</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume Athemzüge</td>
<td>Volume Athemzüge</td>
</tr>
<tr>
<td>Liter. in 1 Min.</td>
<td>Liter. in 1 Min.</td>
</tr>
</tbody>
</table>

Febr. 1869. Herr M. Nach häufigen Athmungen unter Druck

- 90.6 Liter in 4.8 Minuten
- 91.1 Liter in 4.6 Minuten

Ostbr. 1870. Herr M.

- 89.7 Liter in 4.1 Minuten
- 82.7 Liter in 3.9 Minuten

Des. 1868. Herr K. zum ersten Male unter Druck

- 101.0 Liter in 8.3 Minuten
- 101.7 Liter in 7.0 Minuten

Nov. 1869. Herr K.

- 102.8 Liter in 7.2 Minuten
- 98.4 Liter in 7.1 Minuten

So wie der erhöhte Druck die Ausathmung verzögert, befördert er auch die Einathmung, welche rascher wird, und erleichtert das tiefe Athmen. Die Ursache, welche diesen Erscheinungen zu Grunde liegt, ist der Druck selbst, und die Art seiner Wirkung wird aus folgendem Bilde vielleicht verständlich werden.

Man denke sich einen weiten Topf, der mit einer elastischen Haut oben überbunden ist. Nun versuche man aus dem Topf durch ein unten eingesetztes Rohr die Luft herauszupumpen — man wird beobachten, dass die Haut sich dabei nach innen wölbt. Je stärker der äussere Luftdruck ist, um so tiefer wird sich die Haut in den Topf hinein wölben, je schwächer er ist, um so weniger wird sie herabtreten, da ihre eigene Spannung in einer dem Luftdruck entgegengesetzten Richtung wirkt.
Bei der Einathmung versuchen wir durch Ausdehnung der Brustwände und Hinabziehen des Zwerchfelles einen luftleeren Raum um die Lungen zu bilden, den diese um so leichter auffüllen werden, je stärker der äussere Luftdruck im Verhältniss zu ihrer eigenen Spannung ist. Aus demselben Grunde aber ist die Ausathmung erschwert, weil der äussere Luftdruck der Zusammenziehung der Lungen einen Widerstand entgegengesetzt.

3) Die Zählungen wurden mit der Secundensuhr gemacht und man rechnete den Beginn der Einathmung von dem Augenblick des deutlich sichtbaren und hörbaren Eintrittes der Luft in das eine Ventil, die Ausathmung vom Beginn des Austritts der Luft durch das andere.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Zeitdauer der Einathmungen in Secunden</td>
<td>4.5 Secunden</td>
<td>4.2 Secunden</td>
</tr>
<tr>
<td>Ausathmung</td>
<td>8.7</td>
<td>11.6</td>
</tr>
<tr>
<td>Dauer eines ganzen Athemzuges</td>
<td>13.2</td>
<td>15.8</td>
</tr>
<tr>
<td>H. Nov. 1872. Zahl der Beobachtungen</td>
<td>35</td>
<td>38</td>
</tr>
<tr>
<td>Zeitdauer der Einathmung in Secunden</td>
<td>1.6</td>
<td>1.2</td>
</tr>
<tr>
<td>Ausathmung</td>
<td>2.3</td>
<td>2.8</td>
</tr>
<tr>
<td>Dauer des ganzen Athemzuges</td>
<td>3.9</td>
<td>4.0</td>
</tr>
<tr>
<td>Auf 15 Minuten berechnet giebt dies bei</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herrn M. für Einathmung für Ausathmung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Minuten</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Man hat also unter dem erhöhten Druck eine um etwa 10 Prozent verlängerte Dauer der Ausathmung, einschliesslich der sogenannten Athempause und die unter dem erhöhten Drucke länger in der Lunge verweilende Luft kann sich demnach vollständiger mit Kohlensäure sättigen.

1) Näheres hierüber bei v. Vivenot l. c.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>135.4</td>
<td>8.92</td>
<td>8.42</td>
<td>8.92</td>
<td>8.42</td>
<td>8.92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>129.6</td>
<td>7.97</td>
<td>7.48</td>
<td>7.97</td>
<td>7.48</td>
<td>7.97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>129.2</td>
<td>8.02</td>
<td>7.72</td>
<td>8.02</td>
<td>7.72</td>
<td>8.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>128.0</td>
<td>7.30</td>
<td>7.65</td>
<td>7.30</td>
<td>7.65</td>
<td>7.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>127.5</td>
<td>8.34</td>
<td>8.71</td>
<td>8.34</td>
<td>8.71</td>
<td>8.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>123.8</td>
<td>7.94</td>
<td>8.13</td>
<td>7.94</td>
<td>8.13</td>
<td>7.94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>120.2</td>
<td>7.19</td>
<td>8.01</td>
<td>7.19</td>
<td>8.01</td>
<td>7.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>118.5</td>
<td>6.93</td>
<td>6.89</td>
<td>6.93</td>
<td>6.89</td>
<td>6.93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>116.5</td>
<td>7.17</td>
<td>6.77</td>
<td>7.17</td>
<td>6.77</td>
<td>7.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>115.2</td>
<td>6.38</td>
<td>7.09</td>
<td>6.38</td>
<td>7.09</td>
<td>6.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>114.8</td>
<td>7.63</td>
<td>8.12</td>
<td>7.63</td>
<td>8.12</td>
<td>7.63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>112.4</td>
<td>6.66</td>
<td>6.78</td>
<td>6.66</td>
<td>6.78</td>
<td>6.66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>110.9</td>
<td>7.35</td>
<td>7.10</td>
<td>7.35</td>
<td>7.10</td>
<td>7.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>109.1</td>
<td>5.79</td>
<td>6.01</td>
<td>5.79</td>
<td>6.01</td>
<td>5.79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>108.4</td>
<td>5.67</td>
<td>5.75</td>
<td>5.67</td>
<td>5.75</td>
<td>5.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>103.2</td>
<td>5.11</td>
<td>6.08</td>
<td>5.11</td>
<td>6.08</td>
<td>5.11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Die Größe des gewechselten Volums ist der Ausdruck für die Größe der Athemthätigkeit und unsere drei Gruppen stellen also die Ergebnisse der höchsten, mittleren und niederksten Stufe der Athemthätigkeit unter gewöhnlichen Verhältnissen vor.

Wir erkennen in diesen Abstufungen deutlich eine Abhängigkeit der Größe der Sauerstoffaufnahme von dem Volume. Die in gewöhnlichem Druck erscheinenden Sauerstoffmengen der ersten Gruppe bewegen sich zwischen 7 und 8 Gramm und hinzugefügten
Bruchtheilen, die der zweiten enthalten schon Grössen von 6 Gramm, aber keine von 5 Gramm, die der dritten enthalten Grössen von 5—7 Gramm, aber keine mehr von 8 Gramm. Unter dem erhöhten Druck enthält die dritte schon keine Grössen unter 6 Gramm, die zweite nur von 7 Gramm, die erste von 7 und 8 Gramm.

Die Abnahme der Kohlensäurremengen verhält sich ähnlich, wenn auch nicht ganz so regelmässig.

Man bemerkt bei den gleichen oder nahezu gleichen Volumen Abweichungen in der Sauerstoffaufnahme durchschnittlich bis zu 1 Gramm, bisweilen etwas darüber, deren Grund, wie schon erwähnt, in der nicht immer gleichen Aufnahmefähigkeit des Blutes für Sauerstoff zu suchen ist. Sie erreichen unter dem erhöhten Druck nicht die Grösse wie unter dem gewöhnlichen. Ich fasse die mittleren Resultate der drei Gruppen zusammen, und füge die entsprechenden mittleren Mengen des in der eingethehten Luftmenge enthaltenen Sauerstoffs bei.

Tabelle V. Gewöhnlicher Druck.

<table>
<thead>
<tr>
<th>Umfang der Gruppen</th>
<th>Mittlere Volumen</th>
<th>Eingehathmeter (H) Sauerstoff</th>
<th>Aufgenommen Sauerstoff</th>
<th>Ausgeathmte Kohlensäure</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. 121—130</td>
<td>127.6</td>
<td>34.0</td>
<td>7.91</td>
<td>7.94</td>
</tr>
<tr>
<td>II. 112—121</td>
<td>117.8</td>
<td>31.2</td>
<td>7.12</td>
<td>7.13</td>
</tr>
<tr>
<td>III. 108—112</td>
<td>108.8</td>
<td>28.4</td>
<td>6.11</td>
<td>6.33</td>
</tr>
</tbody>
</table>

Erhöhter Druck.

<table>
<thead>
<tr>
<th></th>
<th>I. 118—118</th>
<th>II. 108—113</th>
<th>III. 108—108</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mittlere Volumen</td>
<td>115.8</td>
<td>111.5</td>
<td>106.0</td>
</tr>
<tr>
<td>Eingehathmeter (H) Sauerstoff</td>
<td>44.3</td>
<td>42.5</td>
<td>40.6</td>
</tr>
<tr>
<td>Aufgenommen Sauerstoff</td>
<td>8.26</td>
<td>7.56</td>
<td>7.04</td>
</tr>
<tr>
<td>Ausgeathmte Kohlensäure</td>
<td>7.96</td>
<td>7.04</td>
<td>6.89</td>
</tr>
</tbody>
</table>

Man erkennt sogleich, dass die Resultate der mittleren Gruppen II fast genau mit den mittleren Ergebnissen sämtlicher Atmungen übereinstimmen, wie sie oben mitgetheilt wurden. Wie in den Gesammtmitteln des gewöhnlichen Druckes, so ist auch in jeder Gruppe desselben die Menge der Kohlensäure um eine Kleinigkeit grösser als die des Sauerstoffs, unter dem erhöhten Druck ist sie immer etwas kleiner.

In jeder Gruppe des erhöhten Druckes ist die aufgenommene Sauerstoffmenge höher als in der entsprechenden des gewöhnlichen Druckes, während die Kohlensäuremengen sich unregelmässig verhalten und in den entsprechenden Gruppen wenig abweichen.
Sauerstoffaufnahme in d. Lungen bei gewöhnl. u. erhöhtem Luftdruck. 591

Es ist schon hervorgehoben worden, dass bei gewöhnlichem Athmen unter erhöhtem Drucke die gebrauchten Luftmengen im Ganzen wie im Einzelnen geringer sind, als unter gewöhnlichem Druck, sie werden mit weniger zahlreichen und mit weniger tiefen Atemzügen gewechselt. Trotzdem beobachtet man grösse Mengen aufgenommenen Sauerstoffes unter dem erhöhten Drucke.

Es ist in dieser Richtung bemerkenswerth, dass unter dem erhöhten Druck schon mit der geringsten Athemthätigkeit, der III. Gruppe, welche die zahlreichsten Fälle umfasst, sehr nahe diejenige Sauerstoffmenge aufgenommen wird (7.04), welche unter dem gewöhnlichen Druck das mittlere Ergebniss sämtlicher Athmungen ist (7.06).

Untersuchen wir jetzt die Unterschiede, d. h. die Zu- oder Abnahmen der Sauerstoffaufnahme zwischen den drei Gruppen eines jeden Drucks.

Die Abweichungen der oberen und unteren Gruppen von den mittleren bezeichnen die Ergebnisse des unter gewöhnlichen Verhältnissen regelmässig vorkommenden Wechsels in der Athemthätigkeit. Indem wir die aufeinanderfolgenden Gruppen von einander abziehen, also die II. von der I., die III. von der II., erhalten wir die mittleren Abweichungen in der Sauerstoffaufnahme nach beiden Richtungen, wobei wir die Hunderttheile vernachlässigen.

Tabelle VI.

<table>
<thead>
<tr>
<th>Abweichung</th>
<th>Gewöhnlicher Druck</th>
<th>Erhöhter Druck</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ueber das Mittel I—II ..</td>
<td>2,8 Grm.</td>
<td>0,8 Grm.</td>
</tr>
<tr>
<td>Unter das Mittel II—III ..</td>
<td>2,8</td>
<td>1,0</td>
</tr>
<tr>
<td>Summen der Abweichungen ..</td>
<td>5,6</td>
<td>1,8</td>
</tr>
</tbody>
</table>

Es ergibt sich, dass, kleine wohl zufällige Unterschiede abgerechnet, die Abweichungen im Durchschnitt nach beiden Seiten hin etwa gleich gross angenommen werden können und zwar betragen
sie unter gewöhnlichem Druck im Mittel \(\pm 0,9 \) Grm., unter dem erhöhten Druck \(\pm 0,6 \) Grm. Sie sind also unter dem erhöhten Druck geringer, als unter dem gewöhnlichen. Man sollte vermuten, dass diese Abweichungen in einem bestimmten Verhältnisse zur Zu- oder Abnahme der eingeathmeten Sauerstoffmengen stehen, und dies ist in der That der Fall, denn wenn wir die Summen der Abweichungen nehmen, um zufällige Ungleichheiten zu vermeiden, so verhalten diese sich zu einander, bis in die zweite Stelle genau, wie die Aenderungen in den Mengen des eingeathmeten Sauerstoffs:

\[
5.6 : 3.7 = 1.8 : 1.2.
\]

Dieses unerwartet deutlich ausgesprochene Verhältniss ermutigt uns, die näheren Beziehungen zwischen der Athemthätigkeit und den Ergebnissen der Sauerstoffaufnahme zu untersuchen. Dazu muss unter den drei Gruppen jeder Abtheilung ein gleiches Aufnahmsvermögen, d. h. gleiche Qualität des Blutes und ein gleicher Sättigungsstand mit Sauerstoff vorausgesetzt werden; beides zusammen begreife ich unter dem Worte Aufnahmefähigkeit. Diese kann nun für unsere Gruppen als die gleiche angenommen werden, weil jede aus Einzelbeobachtungen erwachsen ist, welche Aufnahmefähigkeit höherer und niederer Art voraussetzen, also gegenseitig sich zu einem mittlern Werthe ergänzen.

Es liegt nahe zu vermuten, dass die aufgenommenen Sauerstoffmengen jedesmal im Verhältniss der athmenden Oberfläche und auch im Verhältniss des geathmeten Sauerstoffs stehen werden.

Wenn wir die der Kugelform sich annähernde Gestalt der kleinsten Lungenabtheilungen erwägen und die Elasticität ihrer Wandungen, so dürften die Veränderungen der ganzen athmenden Lungenfläche sich vergleichen lassen mit den Veränderungen der Fläche einer sich vergrößernden und verkleinernden Kugel. Bei tieferen Athemzügen wird die Oberfläche größer, bei flacheren kleiner sein. Das Verhältniss, in welchem die Athemflächen bei verschiedener Tiefe zu einander stehen, wird sich also durch die Quadrate der Halbmesser von Kugeln ausdrücken lassen, deren Inhalt gleich dem Inhalt des Athemmuzuges ist. Da die Luft eines Athemzuges in unzählige kleine Kugeln fein zerteilt wird, so darf man im Allgemeinen auch eine gleichförmige Berührung der Wände mit dem jedesmal geathmeten Sauerstoff voraussetzen.

Das Mass der Wirksamkeit für die Athemflächen wird aber erst vollständig erhalten, wenn man sie mit der Zahl der Athemzüge
in der Zeiteinheit multipliziert, denn bei jedem Athemzuge kommt die Fläche einmal zur Wirkung.

Ich setze die mittleren Zahlen und Tiefen der Athemzüge der drei Gruppen jeden Druckes hieher und füge die Quadrate der Halbmesser von Kugeln dazu, welche einen dem Volum der Tiefe gleichen Inhalt haben. Die Tiefen sind in Kubikcentimetern ausgedrückt.

Tabelle VII.

<table>
<thead>
<tr>
<th>Zahl der Athemzüge in 1 Minute</th>
<th>Tiefe (Co.)</th>
<th>(r^2)</th>
<th>Zahl der Athemzüge in 1 Minute</th>
<th>Tiefe (Co.)</th>
<th>(r^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>17.3</td>
<td>490</td>
<td>23.9</td>
<td>I</td>
<td>16.1</td>
</tr>
<tr>
<td>II</td>
<td>15.8</td>
<td>500</td>
<td>24.2</td>
<td>II</td>
<td>15.6</td>
</tr>
<tr>
<td>III</td>
<td>16.8</td>
<td>490</td>
<td>21.9</td>
<td>III</td>
<td>15.6</td>
</tr>
</tbody>
</table>

Das Ergebniss der Athmung wird ferner durch die Menge des in der Zeiteinheit die Fläche berührenden Sauerstoffs bestimmt werden, welche wieder in geradem Verhältniss zu dem in der Zeiteinheit geathmeten Sauerstoff steht.

Wenn wir für jede Gruppe nach Maassgabe dieser Erwägung die Quadrate der gefundenen Kugelhalbmesser mit den Zahlen der Athemzüge und den Gewichtsmengen des eingeathmeten Sauerstoffs multipliziren, so werden wir Zahlen erhalten müssen, welche untereinander im Verhältniss stehen wie die Gewichtsmengen des in den 3 Gruppen jeden Druckes aufgenommenen Sauerstoffs. Ich füre die Rechnungen aus und runde die Produkte auf die vierte Stelle ab.

Gewöhnlicher Druck. Erhöhter Druck.
I. 17.3 \(\times 23.9 \times 34.0 = 1406 \) I. 16.1 \(\times 23.6 \times 44.3 = 1682 \)
II. 15.8 \(\times 24.2 \times 31.2 = 1195 \) II. 15.6 \(\times 23.2 \times 42.5 = 1542 \)
III. 16.8 \(\times 21.9 \times 28.4 = 1046 \) III. 15.6 \(\times 22.6 \times 40.6 = 1431 \)

Die Übereinstimmung ist gross genug, dass man die Betrachtung, welche der Berechnung zu Grunde liegt, zu weiteren Schlüssen wird benützen können.

Nach den neueren Arbeiten Pflüger's und seiner Schüler über den Sauerstoffgehalt des arteriellen Blutes ist dieser unter normalen Verhältnissen von dem Punkte der vollständigen Sättigung nicht weit entfernt, und die Schwankungen in der Sauerstoffaufnahme haben daher nach Aufwärts ein begrenztes Gebiet. Die Grössenunterschiede in der Sauerstoffaufnahme der entsprechenden Gruppen unter beiden Druckarten sollten deshalb abnehmen, je höher die Sauerstoffaufnahme wird, was in der That der Fall ist, denn der Unterschied zwischen den beiden obem Gruppen I beträgt mit Vernachlässigung der Hunderttheile 0.3 Grm., während der der beiden unterm Gruppen III 0.9 Grm. beträgt.

Über die Art und Weise, wie der erhöhte Druck die Sauerstoffaufnahme befördert, erhalten wir aus den gefundenen Grössen einige Anhaltspunkte.

Es ist klar, dass die Sauerstoffaufnahme nicht im geraden Verhältniss stehen kann zum Luftdrucke, denn die Blutkörperchen, welche die Träger des Sauerstoffs sind, verhalten sich zu dem Sauerstoff der Luft nicht wie eine Flüssigkeit, deren Gasgehalt mit dem Drucke ins Unbegrenzte steigt, sondern sie nehmen vermöge ihrer chemischen Anziehung Sauerstoff auf, nur so lange sie noch nicht damit gesättigt sind. Der Luftdruck oder vielmehr die Sauerstoffspannung der Atmosphäre hat nur insofern Einfluss auf den Vorgang, als die Verbindung zwischen Blutkörperchen und Sauerstoff bei sehr niederen Spannungen nicht mehr in denselben Verhältnissen bestehen kann 1). Bei niederen Spannungen überwiegt die Elastizität des Sauerstoffs die chemische Anziehung des Hämoglobin's der Blutkörperchen.

Aus der Arbeit von Ewald 2) entnehme ich, dass bei den dort besprochenen Versuchen der Sauerstoffgehalt des Venenblutes von Hunden bei mehr oder weniger normalem Athem zwischen 60 und

2) Pflüger's Archiv 1873. p. 575.
70 Procent der vollen Sättigung betrug, dass er bei dem Durchgang durch die Lunge auf 93 Procent und darüber erhöht wurde. Nehmen wir dieses beispielsweise als die mittlere normale Sättigung des arteriellen Blutes an, so sind zur vollen Sättigung nur noch 7 Procent nötig. Mehr als dieser Menge entspricht, würde überhaupt nicht aufgenommen werden können; es ist aber nach Ewald schon möglich, durch starke künstliche Respiration eine nahezu vollständige Sättigung in Verbindung mit dem Zustand der Apnoe bei Hunden hervorzubringen. Übereinstimmend hiermit zeigen die Untersuchungen von Bert 1), der den Sauerstoffgehalt des Blutes bei Thieren unter verschiedenen Drucke bestimmte, dass bei Hunden die Erhöhung des Luftdruckes auf 3 Atmospähen eine Erhöhung von nur 7 Procent im Sauerstoffgehalt des Blutes zur Folge hatte.

Der Zufuss des Sauerstoffs erfolgt durch Vermittlung der mit seröser Feuchtigkeit durchtränkten feinen Gewebe der Lungenbläschen und Capillaren und man darf also annehmen, dass er nach den Gesetzen der Absorption von Gasen in Flüssigkeiten vor sich geht. Der Zufuss würde hiernach im Verhältniss des Luftdruckes vermehrt werden, wodurch der Abgang an Sauerstoff, den das Blut im grossen Kreislauf erleidet, rascher und vollständiger ersetzt werden muss. Durch einen dauernd vermehrten Zufuss wird aber nothwendig der mittlere Sauerstoffgehalt des Blutes überhaupt, also auch der des venösen erhöht werden und dadurch auch der Mittelpunkt, um welchen die mit der Athemthätigkeit verbundeneu Schwankungen in der Sauerstoffaufnahme sich bewegen. Der Spielraum für die Schwankungen wird damit verkleinert werden, denn er ist abhängig von der Entfernung zwischen der mittleren Sättigung des venösen Blutes und der vollständigen Sättigung des Blutes mit Sauerstoff.

Mit diesen Ausführungen stimmen die gefundenen Thatsachen überein. Die Schwankungen in der Sauerstoffaufnahme um ihr Mittel sind unter dem erhöhten Drucke kleiner und der Unterschied in der Sauerstoffaufnahme unter beiden Drucken vermindert sich, je höher diese wird. Das Mittel selbst ist erhöht.

Wir sind bei der oben gegebenen Berechnung der Verhältnisse zwischen den Ergebnissen der Abstufungen der Athemthätigkeit eines jeden Druckes von der Voraussetzung ausgegangen, dass die Aufnahmsfähigkeit für die drei Gruppen desselben Druckes die gleiche

1) Jahresberichte über die Fortschritte der Anat. u. Physiol. von Dr. F. Hofmann u. Dr. G. Schwabe, p. 441.

<table>
<thead>
<tr>
<th>Gewöhnlicher Druck</th>
<th>Erhöhter Druck</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. (\frac{1406}{s} = 7.9) s = 177</td>
<td>(\frac{1682}{s'} = 8.3) s' = 203</td>
</tr>
<tr>
<td>II. (\frac{1195}{s} = 7.1) s = 168</td>
<td>(\frac{1542}{s'} = 7.6) s' = 203</td>
</tr>
<tr>
<td>III. (\frac{1046}{s} = 6.1) s = 171</td>
<td>(\frac{1481}{s'} = 7.0) s' = 204</td>
</tr>
</tbody>
</table>

Mittel 172
Mittel 203

Hieraus ergibt sich das mittlere Verhältniss der Sättigung des venösen Blutes unter den beiden Druckhöhen \(s : s' = 172 : 203 \).

Aus den Gesammtmitteln berechnet ist es \(172 : 202 \).

Wenn demnach die mittlere Sättigung des venösen Blutes unter gewöhnlichem Drucke beispielsweise 60 Procent betragen hätte, so würde sie unter dem erhöhten Drucke auf 70 Procent gestiegen sein (172 : 202 = 60.0 : 70.5). Mit einer Erhöhung des Sauerstoffgehaltes im venösen Blute unter erhöhtem Druck sind die Eingangs erwähnten Beobachtungen der helleren rothen Farbe desselben im Einklang.

Der erhöhte mittlere Sättigungszustand ist das Ergebniss eines neuen Gleichgewichts zwischen dem Aufnahmevermögen des Blutes einerseits, dem unter erhöhtem Druck der Sauerstoffatmosphäre vermehrten Zufluss und dem im grossen Kreislaufe stattfindenden Verbrauche andererseits. Es ist wahrscheinlich, dass bei einem erhöhten Sauerstoffgehalte und der damit verbundenen grösseren Spannung des Sauerstoffs der Blutkörperchen seine Abgabe im Körper
Sauerstoffaufnahme in den Lungen bei gewöhn. und erhöhtem Luftdruck. 527

begünstigt werde1). Eine vermehrte Abgabe an die Gewebe zur Zeit der Einwirkung des höheren Druckes geht für unsern Fall aus der während der Dauer des Aufenthalts unter dem erhöhten Drucke sich gleichbleibenden Erhöhung der Sauerstoffaufnahme hervor. Wie sich dieses Verhältniss bei längerem Aufenthalte unter dem erhöhten Drucken gestalten werde oder wie sich der Körper überhaupt dabei verhalten werde, ist eine Frage, zu deren Beantwortung unsere Beobachtungen nicht ausreichen und deren Untersuchung zu weit führen würde.

Eine Beschränkung erleidet der Zufluss des Sauerstoffs zum Blute unter dem erhöhten Drucke durch die beobachtete Verminderung der Athemthätigkeit.

Was die Kohlensäure betrifft, so fand Losten, dass ihre Ausgabe genaue mit der Luftung der Lungen zusammenhängt und meine eignen schon erwähnten Beobachtungen stimmten damit über ein. Bei meiner damaligen Versuchsperson, die nur 7—8 Atemzüge in der Minute machte, fand ich, dass bei gewöhnlichem Athmen die absolute Grösse der Kohlensäureabgabe in näherer Beziehung stand zur Zahl der Athemzüge als zu den Aenderungen der Volumina. Ausserdem zeigte sich aber immer ein höherer Procentgehalt an Kohlensäure, wenn die Athemzüge seltner wurden und die Volumina geringer.

In dem vorliegenden Falle gestalteten sich die Unterschiede in der ausgeatmeten Kohlensäure zwischen den einzelnen Gruppen, Tabelle V, ziemlich gleichmässig, bis auf die III. Gruppe des erhöhten Druckes, welche die geringste Athemthätigkeit zeigt, aber verhältnismässig einen hohen Procentgehalt an Kohlensäure. Es ist wahrscheinlich, dass das Letzttere mit die Folge des langsameren Athmens ist, wobei die an Menge verminderte Lungenluft sich vollständiger sättigen konnte. Diese Gruppe umfasst die Hälfte aller Beobachtungen unter dem erhöhten Druck und während ihre Sauerstoffaufnahme der normalen des gewöhnlichen Druckes fast gleichkommt, bleibt die Kohlensäure noch etwas hinter der normalen zurück. Erst im Mittel aller Beobachtungen wird sie durch die grössere Ausgabe in den höheren Gruppen zur normalen ergänzt.

Um den Einfluss der Zahl und Tiefe der Athemzüge kennen zu lernen, ordnete ich die Athmungen nach ihrer Zahl, und die

1) I. W. Müller, Arbeiten aus der physiologischen Anstalt zu Leipzig, mitgetheilt von C. Ludwig 1870.

2) Pfüger, Archiv f. Physiologie. Bd. X.
Atemmungen gleichzahlig nach dem Volum. Die abnorme Atemmung I füge ich bei, weil sie die Grösse der Sauerstoffaufnahme bei möglichst tiefen Atemzügen anzeigt.

Tabelle VIII.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>19.6</td>
<td>0.44</td>
<td>130</td>
<td>7.97</td>
<td>7.48</td>
</tr>
<tr>
<td>13</td>
<td>18.2</td>
<td>0.48</td>
<td>119</td>
<td>6.93</td>
<td>6.99</td>
</tr>
<tr>
<td>15</td>
<td>18.2</td>
<td>0.40</td>
<td>106</td>
<td>5.67</td>
<td>5.75</td>
</tr>
<tr>
<td>5</td>
<td>17.6</td>
<td>0.48</td>
<td>128</td>
<td>7.30</td>
<td>7.65</td>
</tr>
<tr>
<td>10</td>
<td>17.0</td>
<td>0.50</td>
<td>137</td>
<td>8.34</td>
<td>8.71</td>
</tr>
<tr>
<td>7</td>
<td>17.1</td>
<td>0.48</td>
<td>124</td>
<td>7.94</td>
<td>8.13</td>
</tr>
<tr>
<td>18</td>
<td>17.6</td>
<td>0.42</td>
<td>111</td>
<td>7.38</td>
<td>7.10</td>
</tr>
<tr>
<td>14</td>
<td>17.0</td>
<td>0.48</td>
<td>109</td>
<td>5.79</td>
<td>6.01</td>
</tr>
<tr>
<td>9</td>
<td>16.0</td>
<td>0.50</td>
<td>120</td>
<td>7.19</td>
<td>8.01</td>
</tr>
<tr>
<td>4</td>
<td>15.5</td>
<td>0.56</td>
<td>129</td>
<td>8.02</td>
<td>7.72</td>
</tr>
<tr>
<td>8</td>
<td>15.5</td>
<td>0.51</td>
<td>118</td>
<td>8.03</td>
<td>6.37</td>
</tr>
<tr>
<td>3</td>
<td>15.7</td>
<td>0.50</td>
<td>118</td>
<td>6.46</td>
<td>6.63</td>
</tr>
<tr>
<td>2</td>
<td>15.8</td>
<td>0.51</td>
<td>116</td>
<td>7.17</td>
<td>6.77</td>
</tr>
<tr>
<td>11</td>
<td>15.0</td>
<td>0.51</td>
<td>115</td>
<td>7.65</td>
<td>8.12</td>
</tr>
<tr>
<td>16</td>
<td>15.7</td>
<td>0.48</td>
<td>112</td>
<td>6.66</td>
<td>6.78</td>
</tr>
<tr>
<td>17</td>
<td>15.5</td>
<td>0.44</td>
<td>108</td>
<td>5.11</td>
<td>6.03</td>
</tr>
<tr>
<td>6</td>
<td>14.6</td>
<td>0.51</td>
<td>115</td>
<td>6.88</td>
<td>7.09</td>
</tr>
<tr>
<td>1</td>
<td>14.1</td>
<td>0.64</td>
<td>135</td>
<td>8.92</td>
<td>8.42</td>
</tr>
</tbody>
</table>

Erhöhter Druck.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>16.5</td>
<td>0.48</td>
<td>118</td>
<td>8.88</td>
<td>8.45</td>
</tr>
<tr>
<td>16</td>
<td>16.1</td>
<td>0.48</td>
<td>115</td>
<td>7.80</td>
<td>8.01</td>
</tr>
<tr>
<td>17</td>
<td>16.1</td>
<td>0.48</td>
<td>115</td>
<td>7.55</td>
<td>7.96</td>
</tr>
<tr>
<td>4</td>
<td>16.4</td>
<td>0.46</td>
<td>114</td>
<td>8.27</td>
<td>7.25</td>
</tr>
<tr>
<td>6</td>
<td>16.2</td>
<td>0.46</td>
<td>111</td>
<td>7.37</td>
<td>6.60</td>
</tr>
<tr>
<td>12</td>
<td>16.2</td>
<td>0.44</td>
<td>108</td>
<td>7.49</td>
<td>8.19</td>
</tr>
<tr>
<td>9</td>
<td>16.1</td>
<td>0.44</td>
<td>106</td>
<td>7.11</td>
<td>7.84</td>
</tr>
<tr>
<td>8</td>
<td>16.5</td>
<td>0.42</td>
<td>103</td>
<td>7.30</td>
<td>7.69</td>
</tr>
<tr>
<td>18</td>
<td>15.3</td>
<td>0.50</td>
<td>116</td>
<td>8.81</td>
<td>8.74</td>
</tr>
<tr>
<td>1</td>
<td>15.0</td>
<td>0.60</td>
<td>113</td>
<td>7.83</td>
<td>7.35</td>
</tr>
<tr>
<td>14</td>
<td>15.5</td>
<td>0.48</td>
<td>112</td>
<td>7.87</td>
<td>8.06</td>
</tr>
<tr>
<td>2</td>
<td>15.6</td>
<td>0.47</td>
<td>111</td>
<td>7.89</td>
<td>6.48</td>
</tr>
<tr>
<td>19</td>
<td>15.7</td>
<td>0.46</td>
<td>109</td>
<td>7.41</td>
<td>6.79</td>
</tr>
<tr>
<td>5</td>
<td>15.4</td>
<td>0.47</td>
<td>108</td>
<td>6.48</td>
<td>6.82</td>
</tr>
<tr>
<td>7</td>
<td>15.1</td>
<td>0.47</td>
<td>107</td>
<td>7.72</td>
<td>6.53</td>
</tr>
<tr>
<td>11</td>
<td>15.9</td>
<td>0.45</td>
<td>107</td>
<td>6.78</td>
<td>6.35</td>
</tr>
<tr>
<td>20</td>
<td>15.6</td>
<td>0.45</td>
<td>106</td>
<td>6.86</td>
<td>6.94</td>
</tr>
<tr>
<td>3</td>
<td>15.6</td>
<td>0.45</td>
<td>106</td>
<td>6.86</td>
<td>6.66</td>
</tr>
<tr>
<td>10</td>
<td>15.2</td>
<td>0.46</td>
<td>105</td>
<td>7.18</td>
<td>6.42</td>
</tr>
<tr>
<td>18</td>
<td>15.6</td>
<td>0.44</td>
<td>104</td>
<td>6.86</td>
<td>6.30</td>
</tr>
</tbody>
</table>
Zuvor erkennt man, dass bei jeder Zahl von Atmungszügen grosse und kleine Luftmengen gefördert werden können, ja nach der Tiefe, und dass demgemäß auch verschiedene Ergebnisse des Gas austausches auftreten.

Tabelle IX.

Mittlere Ergebnisse bei Vermehrung der Zahl der Atmungszüge.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I. 18,2</td>
<td>0,41</td>
<td>119</td>
<td>6,30</td>
<td>6,39</td>
<td>5,55</td>
<td>5,57</td>
</tr>
<tr>
<td>II. 17,5</td>
<td>0,46</td>
<td>120</td>
<td>7,34</td>
<td>7,52</td>
<td>6,13</td>
<td>6,28</td>
</tr>
<tr>
<td>Gesamtmittel</td>
<td>16,5</td>
<td>0,48</td>
<td>118</td>
<td>7,06</td>
<td>7,13</td>
<td>6,99</td>
</tr>
<tr>
<td>III. 15,4</td>
<td>0,50</td>
<td>118</td>
<td>7,04</td>
<td>7,05</td>
<td>6,05</td>
<td>6,06</td>
</tr>
</tbody>
</table>

Gewöhnlicher Druck.

<table>
<thead>
<tr>
<th>Gewöhn. Druck.</th>
<th>Gesamtmittel</th>
<th>16,5</th>
<th>0,46</th>
<th>110</th>
<th>7,48</th>
<th>7,90</th>
<th>6,81</th>
<th>6,56</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erhöhter Druck.</td>
<td>Gesamtmittel</td>
<td>15,5</td>
<td>0,47</td>
<td>109</td>
<td>7,32</td>
<td>6,98</td>
<td>6,73</td>
<td>6,87</td>
</tr>
</tbody>
</table>

Grösse der Aenderung.

<table>
<thead>
<tr>
<th>Gewöhn. Druck.</th>
<th>II—III.</th>
<th>+ 1,9</th>
<th>— 0,04</th>
<th>+ 4</th>
<th>+ 0,8</th>
<th>+ 0,5</th>
<th>+ 0,1</th>
<th>+ 0,2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erhöhter Druck.</td>
<td>I—II.</td>
<td>+ 0,8</td>
<td>— 0,01</td>
<td>+ 2</td>
<td>+ 0,4</td>
<td>+ 0,7</td>
<td>+ 0,2</td>
<td>+ 0,4</td>
</tr>
</tbody>
</table>

Bezüglich der Erhöhung der absoluten Werthe wirkt die Vermehrung der Athemzüge, indem sie die athmende Fläche und deren Berührung mit der Luft vervielfacht, und obgleich die Fläche wegen der verminderten Tiefe etwas abnimmt, so überwiegt doch der Einfluss der Zahl, weil die Tiefenabnahme sehr gering ist.

Die relative Grösse des Gas austausches bedeutet das Verhältniss der Mengen aufgenommenen Sauerstoffs und abgegebener Kohlensäure zu den Mengen der in gleichen Zeiten geathmeten Luft.

Bei geringen Aenderungen der Tiefe, wie hier, dürfen wir eine gleichartige Luftmischung in den Lungen voraussetzen und die Wirkung der Thätigkeit der Lungenoberfläche wird dann im Verhältniss der Grösse dieser Fläche stehen. Wenn wir also die Tiefe eines Athemzuges als den Inhalt einer Kugel betrachten, so wird bei verschiedenen Tiefen die Grösse des Gas austausches in geradem Verhältnisse stehen zu den Quadraten der Halbmesser, während sich die geathmeten Luftmengen verhalten wie die Kuben der Halbmesser. Der relative Werth des Gas austausches für eine bestimmte Tiefe wird sich also ausdrücken lassen durch das Verhältniss

\[
\frac{r^2}{r^3} = \frac{1}{r}
\]

oder, alles übrige gleich gesetzt, verhalten sich die relativen Werthe des Gas austausches umgekehrt wie die Halbmesser von Kugeln von dem Inhalt der Athemzüge. Wenn die Zahl der Athemzüge sich vermehrt und ihre Tiefe etwas abnimmt, so dass der Halbmesser jetzt \(r - 1 \) wird, so haben wir für den relativen Werth dieser Tiefe

\[
\frac{(r-i)^3}{(r-i)^3} = \frac{1}{r-i}
\]
Es ist aber \(\frac{1}{r-1} \) grösser als \(\frac{1}{r} \). Mit Worten ausgedrückt heisst dieses: bei Vermehrung der Zahl der Athemzüge, die von einer nur geringen Verminderung der Tiefe begleitet ist, nimmt die Grösse der Lungenoberfläche weniger ab als die Luftmenge eines Athemzuges und Werthe des Gasaustausches wachsen relativ.

Um auch den Einfluss der Tiefe unvermischts kennen zu lernen, wurden für den gewöhnlichen Druck die Mittel aller zwischen 0.48 und 0.56 Liter liegenden Athemzüge unter A und die Mittel der Athemzüge zwischen 0.40 und 0.44 Liter unter B aus der Tabelle gebildet. Für den erhöhten Druck die Mittel zwischen 0.47 und 0.50 Liter unter A, zwischen 0.42 und 0.46 Liter unter B. Zum Vergleiche wiederhole ich hier ebenfalls die Gesammtmittel an den passenden Stellen.
Tabelle X.

Mittlere Ergebnisse bei Vermehrung der Tiefe der Athemzüge.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>15.9</td>
<td>0.50</td>
<td>120</td>
<td>7.58</td>
<td>7.45</td>
<td>6.14</td>
<td>6.20</td>
</tr>
<tr>
<td>Gesammtmittel</td>
<td>16.5</td>
<td>0.48</td>
<td>118</td>
<td>7.06</td>
<td>7.18</td>
<td>5.99</td>
<td>6.05</td>
</tr>
<tr>
<td>B.</td>
<td>17.6</td>
<td>0.43</td>
<td>113</td>
<td>6.47</td>
<td>6.54</td>
<td>5.71</td>
<td>5.77</td>
</tr>
<tr>
<td>Erhöhter Druck.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A.</td>
<td>15.6</td>
<td>0.46</td>
<td>110</td>
<td>7.48</td>
<td>7.20</td>
<td>6.81</td>
<td>6.56</td>
</tr>
<tr>
<td>Gesammtmittel</td>
<td>15.8</td>
<td>0.46</td>
<td>110</td>
<td>7.48</td>
<td>7.20</td>
<td>6.81</td>
<td>6.56</td>
</tr>
<tr>
<td>B.</td>
<td>15.9</td>
<td>0.46</td>
<td>107</td>
<td>7.20</td>
<td>6.97</td>
<td>6.72</td>
<td>6.50</td>
</tr>
</tbody>
</table>

Grösse der Aenderung.

| Gewöhnl. Druck. | A—B. | +0.07 | + 7 | + 0.9 | + 0.9 | +0.4 | +0.4 |
| Erhöhter Druck. | A—B. | +0.08 | + 6 | + 0.6 | + 0.5 | +0.2 | +0.1 |

Bei der mittleren Tiefezunahme nimmt die Zahl der Athemzüge etwas ab, die gewechselte Luftmenge nimmt in grösserem Verhältniss zu als in den Ergebnissen der vorigen Tabelle, ebenso die absoluten und relativen Werthe des Gasautausches und zwar gleichmässig für Sauerstoff wie für Kohlensäure.

Zum Verständniss der scheinbar widersprechenden Ergebnisse dieser und der vorigen Zusammenstellung will ich versuchen, den Vorgang des Luftwechsels in der Lunge etwas näher zu beleuchten.

Von dem Mischungsverhältnisse der rückständigen Luft mit
der frischen hängt die Tätigkeit der atmen den Oberfläche ab. Je mehr Kohlensäure und je weniger Sauerstoff diese Luft enthält, um so langsamer wird die Abscheidung der ersteren und die Aufnahme der letzteren vor sich gehen, und umgekehrt.

Betrachten wir nun zuerst die Wirkung einer über die Grenzen des gewöhnlichen Athmens hinausgehenden Vermehrung der Athemzüge.

Nimmt die Schnelligkeit des Athmens so stark zu, dass mit der abnehmenden Tiefe der Zufloss frischer Luft erheblich vermindert wird, dann muss auch dadurch das Mischungsverhältniss für den Gasaus tausch ungünstiger werden. Wenn die Menge der zuströmenden Luft bedeutend kleiner ist, als die Menge der rückständigen, dann wird ausserdem die Mischung weniger vollständig, sie wird gleichsam nur auf der Oberfläche stattfinden können. Endlich kann man sich eine derartige Abnahme der Tiefe vorstellen, dass die unveränderlichen Bronchialräume, die dem Athmen nicht dienen, einen verhältnissmassig grossen Theil der eingehathetem Luft in sich zurückbehalten.

Alle diese Umstände vereinigen sich, um bei einem übermassig beschleunigten Athmen, selbst unter Vermehrung des Volums, die absoluten und noch mehr die relativen Werthe des Gas austausch zu vermindern, wie es L ö ss e n bei seinen absichtlich bis zur äussersten Grenze beschleunigten Athmungen gefunden hat.

Die Grenze nun zwischen einer den Gasaus tausch fördernden und einer ihn hemmenden Wirkung des beschleunigten Athmens wird praktisch dort liegen, wo die relativen Werthe des Gas aus tausches nicht mehr zunehmen und unsere Athmung No. 12 mit 19,6 Athemzügen scheint diese Grenze erreicht zu haben, denn ihre relative Sauerstoffaufnahme — 6,15 — ist nicht grösser, als die der II. Gruppe Tab. IX mit 17 Athemzügen, und ihre relative Kohlensäureabgabe ist geringer — 5,76. — Auf dieser Grenze kann die absolute Grösse des Gas austauschese durch Vermehrung des Luftwechsels immer noch zunehmen, erst wenn sie überschritten wird, muss mit dem abnehmenden relativen Werthe auch der absolute sinken. Die grössere Beschleunigung des Athmens in No. 12 beruhte nicht auf einer inneren, sondern auf einer äusseren zufälligen Ursache, sie hatte also schon mehr die Wirkung einer künstlichen Beschleunigung, wie bei L ö ss e n.
Betrachten wir nun die Vorgänge bei grösserer Vertiefung der Athemzüge.

Wir haben oben gesehen, dass sich die relativen Werthe des Gasausstausches umgekehrt verhielten wie die Kubikwurzeln aus der Tiefe oder dem Inhalt des Athemzuges; sie müssten also mit zunehmender Tiefe kleiner werden. Dies war auch der Fall bei einer nur geringen Zunahme der Tiefe über das Mittel in den Ergebnissen der Tab. IX. Nach Tab. X aber, wo die Tiefenzunahme grösser ist, wachsen die Werthe des Gasausstausches anstatt zu fallen und zwar unter gewöhnlichem Druck, wo die Tiefenzunahme bedeutender ist, mehr.

Hierbei kommt nun die vermehrte Beimischung von frischer Luft zur Lungenluft zur Geltung, deren Bedeutung für die Kohlensäureathmung schon von C. Ludwig in der I. Ausgabe seines Lehrbuchs der Physiologie betont wird. In der Lungenluft wird durch Zumischung frischer die Spannung des Sauerstoffes vermehrt, die der Kohlensäure vermindert, und in demselben Verhältniss wächst die Geschwindigkeit des Gasausstausches, also die Thatigkeit der Lungenoberfläche.

Nehmen wir an, diese Thatigkeit wachse im Verhältniss der zugemischten Menge frischer Luft, also mit dem Inhalt des Athemzuges, so werden unter sonst gleichen Bedingungen die relativen Werthe ebenfalls mit dem Inhalt des Athemzuges, also im Verhältniss des Kubus seines Halbmessers oder von \(r^3 \) zunehmen.

Wir haben vorher gesehen, dass die relativen Werthe im Verhältniss der Lungenoberfläche und im umgekehrten Verhältniss der Luftmenge eines Athemzuges stehen, und der Ausdruck dafür war

\[
\frac{r^2}{r^3} = \frac{1}{r}.
\]

Jetzt kommt die günstige Einwirkung der verbesserten Luftmischung noch hinzu, deren Einfluss nach unserer Annahme ebenfalls durch \(r^3 \) ausgedrückt wird. Wir hätten also

\[
\frac{r^2}{r^3} \times r^3 = r^2.
\]

Indem der den relativen Werth vermindernde Einfluss der Luftmenge aufgehoben wird durch den fördernden der Zumischung frischer Luft, erhalten wir für das Verhältniss der relativen Werthe den Ausdruck

\[
\frac{r^3}{r^2},
\]

das heisst, sie verhalten sich wie die Lungenoberflächen. Die That-
sächlichen Verhältnisse der Zunahme in den relativen Werten des Gasausstausches Tab. X entsprechen den Annahmen dieser Betrachtung.

Eine mitwirkende Größe, welche bei diesen Erwägungen noch in Frage kommen kann, ist das Verhältniss des in der rückständigen Lungenluft vorhandenen Sauerstoffs. Es lässt sich dieses nicht mit hinreichender Sicherheit feststellen, aber man darf voraussetzen, dass die unmittelbar vor dem Beginn eines neuen Athemzuges in den Lungen herrschende Luftpischen eine ziemlich gleichbleibende sein wird. Der relativ geringeren Lüftung des rascheren Athmens steht die längere Dauer der tieferen Athemzüge entgegen, welche darauf hinwirkt, die eingetauchte Luft völliger auszunutzen und dadurch kann bis zum Beginn eines neuen Athemzuges der Einfluss der besseren Lüftung des tieferen Athmens ausgeglichen werden. Der Fehler, welcher durch Vernachlässigung des Mischungsverhältnisses der rückständigen Luft entstehen könnte, wird also jedenfalls sehr unbedeutend sein.

Es bleibt noch übrig des Einflusses zu gedenken, welchen die längere oder kürzere Dauer der Athemzüge auf die Ergebnisse des Gasausstausches haben kann. Wenn auch in den ersten Augenblicken nach der Einatmung die Thätigkeit der Lungenoberfläche am kräftigsten sein muss, wegen der erneuerten Lüftung, so ist doch klar, dass der den Gasausstausch begünstigende Einfluss einer häufigen Lufterneuerung unter sonst gleichen Umständen vorzugsweise die absoluten Werthe treffen wird, weil die Zeitdauer des Athemzuges dabei verkürzt ist. Immerhin wird jedoch die kräftigere Thätigkeit der Lungenoberfläche in den ersten Augenblicken einen bestimmten Einfluss auf die relativen Werthe haben, welchen wir unter den Resultaten der Tab. IX hauptsächlich in dem höheren Verhältniss der unter beschleunigtem Athmen ausgeschiedenen Kohlensäure erkennen. Auch das relativ stärkere Wachsen der Sauerstoffaufnahme unter erhöhtem Druck, Tab. IX, scheint auf diesem Einfluss zu beruhen, indem bei dem stark erhöhten Sauerstoffgehalt des erhöhten Druckes die kräftigere Thätigkeit der Lungenoberfläche zu einer ausgiebigern Wirkung gelangt.

Das längere Verweilen der Luft in der Lunge bei tieferen Athemzügen muss vorzugsweise auf die relativen Werthe eine erhöhende Wirkung haben, weil sich die Ergebnisse des Gasausstausches in aufeinanderfolgenden Zeitabschnitten anhäufen. Dies gilt aber selbstverständlich nur in bestimmten Grenzen, denn wenn z. B. die
Kohlensäuremenge ein gewisses Verhältniss überschritten würde, dann müsste ihre Ausscheidung aus dem Blute aufhören.

Betrachten wir die vielen verschiedenartigen Umstände, welche, wie wir gesehen haben, fördernd und hemmend, einander unterstützend und aufhebend, bei den gewöhnlichen Aenderungen in der äusseren Athemthätigkeit die Werthe des Gasaussustausches beeinflussen, so hätten wir kaum erwarten dürfen, dass bei unserem Versuche, mit Hülfe der Rechnung die Sauerstoffaufnahme zu verfolgen, die thatsächlichen Verhältnisse mit den Voraussetzungen der Rechnung so nahe übereinstimmten. Diesse wurde gewiss nur dadurch möglich, dass in den benützten Mittelzahlen diejenigen Einfälle, welche man nicht in Rechnung bringen konnte, sich gegenseitig aufhoben. Die für die Sauerstoffaufnahme aufgestellte Gleichung wird deshalb, wenn man sie zum Vergleiche einzelner Athmungen benutzen will, nur unter besonders günstigen Umständen verlässige Resultate geben können.

Ueber Peptone und Ernährung mit denselben.

Von

P. Plösz und A. Gyergyai
in Budapest.

Die geschichtliche Entwicklung der in dieser Arbeit behandelten Frage ist in neuester Zeit Gegenstand wiederholter Besprechung geworden. Wenn wir dieselbe trotzdem wieder berühren, so geschieht dies bloss, um in Kurzem einige Bemerkungen an dieselbe zu knüpfen, die, wie wir glauben, zur Beleuchtung unserer Ansichten von Belang sind.

Nach der Entdeckung der Peptone nahm bald allgemein die Ansicht Platz, wonach sämtliches Eiweiss der Nahrung nur nach dem Ueberführen in Peptone resorbirt wird. Man stützte sich dabei einerseits auf das Factum der Peptonbildung selbst, deren Zweck man sich eben dadurch erklärte, dass man dieselbe als nothwendig für die Resorption des Eiweisses hinstellte, anderseits aber auf die grössere Diffusibilität der Peptone gegenüber dem einfach gelösten Eiweiss.
Ueber Peptone und Ernährung mit denselben.

Dieser herrschenden Ansicht trat zuerst Brücke entgegen, der in Folge theils neuer Beobachtungen, theils schon früher bekannten Thatsachen die Theorie aufstellte, wonach ausser den Peptonen auch unverändertes Eiweiss resorbirt wird. Der Brücke'schen Ansicht traten bald Voit, J. Bauer, Fick, Eichhorst und andere Forscher bei. Es bildete sich durch die Arbeiten derselben nach und nach die der vorigen gegensätzliche Anschauung aus, wonach neben den Peptonen auch unverändertes Eiweiss, nicht nur resorbirt wird, sondern die Resorption von solchem eben zur wichtigsten Function des Eiweisses, zur Gewebebildung nöthig ist; da aus mehrfachen Gründen angenommen wurde, dass die Peptone im Organismus rasch der Oxydation und Zersetzung anheimfallen, ohne vorher zur eigentlichen Gewebebildung zu gelangen. Diese Anschauung, durch welche, wie Meissner bemerkt, die Peptonbildung als etwas beinahe Ueberflüssiges hingestellt wird, schien ziemlich gut allen über Verdaugung und Ernährung bekannten Thatsachen zu entsprechen, so dass man hoffte, dieselbe zur Erklärung einer Reihe von Erscheinungen benützen zu können, durch welchen Zusammenhang dieselbe wieder neue Stützen erhielt.

Wenn wir uns jedoch die Gründe, die für diese Ansicht beigebraucht werden, näher betrachten, so finden wir, dass es keine einzige Thatsache unter denselben giebt, die einwürfsfrei wäre, und keine andere Deutung, als eben die geforderte, zulässse. Es sei uns erlaubt, hier die Hauptpunkte, die zur Vertheidigung dieser Ansicht angesührt werden, kurz zu erwähnen.

Brücke 1), der erste, der sich für die Resorption von unverändertem Eiweiss aussprach, führt als Stütze seiner Theorie an:

Erstens, dass die Zeit, während welcher die Albuminate im Darmkanal verweilen, zu kurz dazu ist, dass während derselben alles Eiweiss der Nahrung in Peptone verwandelt werden könnte, worauf sich jedoch entgegen lässt, dass nicht bloss der Magensaft, sondern auch das Pancreassecret eiweissverdauend wirkt, und wir von der Raschheit der Peptonbildung im Magen und im Darme

bisher kein so vollständiges Bild besitzen, um das a priori bestimmen zu können, wie lange die Verdauung dauern muss, damit alles Eiweiss einer Mahlzeit in Peptone verwandelt werde. Die Versuche über Pepsinverdauung können hierin nicht als maßgebend betrachtet werden, da in denselben einerseits die gebildeten Peptone, die der Weiterverdauung hindernd in den Weg treten, nicht weggewischt werden. Anderseits aber, wie bekannt, das Pancreassecret auf gelösten Eiweiss ungemein rasch und energisch wirkt, so dass wenn dasselbe nur in genügender Menge vorhanden ist, und die gebildeten Peptone immer resorbirt werden, die Möglichkeit dessen, wonach alles Eiweiss der Nahrung vor der Resorption peptonisirt wird, kaum geleugnet werden kann.

Drittens beruht sich Brücke auf die Resorption der durch das coagulable Eiweiss des Pancreassecretes emulgirten Fettkörnchen, und meint, dass man hier die Möglichkeit der Resorption der emulgirten Fettkörnchen anzunehmen geneigt ist, dagegen aber das Eiweiss, das dieselben emulgirt, für nicht resorbirbar erklärt, wo doch die Eiweissmoleküle kaum für so gross angenommen werden können, dass sie diejenigen Öffnungen nicht passiren könnten, welche für das Fettkörnchen durchgängig sind. Aber auch hierauf lässt sich entgegengen, dass die Art und Weise des Durchganges, sowie die Kräfte, welche die Resorption der Fette ermöglichen, bisher durchaus nicht festgestellt sind. Und dass man die Resorption durchaus nicht ohne Weiteres mit einem Filtrationsprozesse vergleichen kann, wo einfach die Grösse der Poren der Filter und die Durchmesser der Körnchen, die dieselben passiren sollen, in Betracht kommen.

Auch Diakonow 1) spricht sich für die Brücke’sche Theorie

aus und bemerkt, dass die Physiologen eigentlich gar keinen logischen Grund dazu haben, anzunehmen, dass ausschließlich die Peptone es sind, die resorbiert werden, da man eben diese im Blute niemals in wesentlicher Menge findet. Diese scheinbar für die Brücke'sche Theorie günstige Bemerkung verliert von ihrer Beweiskraft, sobald man weiss, wie die hier zu beschreibenden Versuche zeigen, dass die Peptone im Kreislaufe rasch verändert werden, dieselben sich im Blute demnach aus diesem Grunde nicht anhäufen können.

P. Plösz und A. Gyergyai:
auch nicht reizend wirken, doch immerhin die peristaltische Bewegung des Darmrohres beschleunigen könnten.

Auf einem anderen Wege als die bisher genannten Forscher versuchte bekanntlich Fick1) sich der Frage zu nähern. Der selbe injicirte nephromitirten Knächen eine wässerige Lösung von durch Alkohol gefällten Peptonen, die demnach in Alkohol unlöslich sein sollten, und fand darauf im Alkoholextrakte des Blutes die durch Quecksilbernitrat fällbaren Substanzen gegenüber dem normalen Blute vermehrt, was nach der Injection einer entsprechenden Menge von Blutserum nicht geschah. Er schloss daraus, dass die Peptide im Organismus sofort in Alkohol lösliche, dem Harnstoff nahestehende Stoffe zersetzt werden, während das injicirte Eiweiß dieser Zersetzung nicht sogleich unterliegt, die Peptide demnach

Zersetzt werden, ohne vorher zu Gewebsbestandtheilen zu werden, das Eiweiss dagegen vor der Zersetzung in den Geweben abgelagert wird.

Abgesehen davon, dass nach diesem Versuchsresultate keineswegs der gezogene Schluss der einzig mögliche ist, haftet diesen Versuchen auch noch eine Fehlerquelle an, die in denselben kaum umgangen wurde, wie dies auch M a l y 1) bemerkt. Die Peptone sind nämlich, auch wenn sie durch Fällung mittelst Alkohol dargestellt wurden, in Alkohol nicht vollkommen unlöslich, in Folge dessen dieselben in das Alkoholextract des Blutes übergehen und dort eine Vermehrung der durch Quecksilbernitrat fällbaren Substanzen erzeugen konnte, ohne vorher in Harnstoff oder harnstoffähnliche Körper zerlegt werden zu müssen.

Wir führen dies Alles an, nicht um zu zeigen, dass kein Eiweiss resorbirt wird, sondern blos um aufmerksam zu machen, dass das aus keiner der bisherigen Untersuchungen mit Gewissheit hervorgeht, dass demnach diese Frage trotz dieser Arbeiten noch immer als eine vollständig offene bezeichnet werden muss. Und es scheint auch, soweit uns bisher ersichtlich, dieselbe durch in der bisherigen Richtung geführte directe Versuche kaum zu entscheiden sein, da bisher keine Methode bekannt ist, um die Darmschleimhaut von den ihr anhaftenden und von ihr selbst bereiteten peptide Fermenten so zu befreien, dass eine noch resorptionsfähige Schleimhaut zurückbleiben sollte.

Mehr Aufschluss als auf diesem directen Wege liess sich auf dem umgekehrten erwarten, durch Fütterung mit Peptonen bei Ausschluss von Eiweiss. Man konnte dadurch Aufschluss über das nächste Schicksal der Peptone erwarten. Es musste sich zeigen, ob die Peptone das Thier ernähren können oder nicht. Und man konnte daraus dann weiter schliessen bezüglich der Resorption von unverändertem Eiweiss, indem, im Falle das Thier durch Peptone nicht ernährt werden könnte, dadurch die Nothwendigkeit der Resorption von unverändertem Eiweiss dargethan wäre; im entgegengesetzten Falle aber die Nothwendigkeit einer solchen Annahme, die durch keine weiteren unumstösslichen Gründe gestützt wird, bis

auf Weiteres wegfällen müsste. Es stellte zu diesem Zwecke einer von uns¹) Fütterungsversuche mit Peptonen bei Ausschliessung von Eiweiss an. Dieselben ergaben, dass das Thier durch Peptone ernährt werden kann, resp. das Eiweiss bezüglich seiner Rolle als ernährende Substanz durch Peptone ersetzt wird. Obwohl die damals veröffentlichten Versuche ein ausgesprochenes Resultat ergaben, das kaum anders zu deuten war, wurde doch die weitere Bekräftigung desselben durch vergleichende quantitative Bestimmungen der ein- und ausgeschiedenen Stickstoffmengen als wünschenswerth bezeichnet und in Aussicht gestellt.

Bevor wir zur Veröffentlichung unserer in dieser Richtung angestellten Versuche gelangt wären, hat das von einem von uns gefundene Factum, wonach das Eiweiss der Nahrung durch Peptide ersetzt werden kann, durch Maly's²) Versuche eine Bestätigung erhalten. Derselbe stellte seine Fütterungsversuche an Tauben in der Weise an, dass er das Weizenfutter der Taube nach und nach durch Pillen ersetzte, in denen die Bestandtheile des Weizens möglichst genau nachgeahmt, das Eiweiss des Weizens aber durch Pepsinpeptide des Fibrins ersetzt war. Maly fand in diesen Versuchen, dass das vor dem Versuche constante Körpergewicht der Taube in der Zeit, wo dieselbe statt dem Weizen immer mehr und mehr Pillen erhielt, nicht nur nicht fiel, sondern gewöhnlich um ein Geringes (2—3 pCt) stieg. Von der Ansicht ausgehend, dass das unverändert resorbirte Eiweiss dasjenige ist, welches zur Ersetzung der abgenützten Gewebestandtheile verwendet wird, und diese Abnutzung immer nur einen kleinen Bruchtheil des gesammten Stickstoffumsatzes darstellt, könnte gegen die Maly'schen Versuche immerhin der Einwurf geltend gemacht werden, dass das Thier nicht genüg lange Zeit hindurch vollkommen das Eiweiss der Nahrung entbehrt hat, da in allen übrigens, auf längere Zeit ausgedehnten Versuchereihen höchstens 2 Tage hindurch sämtliches Eiweiss der Nahrung durch Peptone ersetzt wurde; gegen diesen, übrigens bloss theorethischen Einwurf jedoch werden die Versuche Maly's allem Anschein nach

²) Maly dieses Archiv, Bd. IX. S. 585.
geschützt durch das constante Eintreffen desselben Erfolges, wonach das Körpergewicht in den ziemlich langen Versuchsreihen niemals gesunken ist, sondern im Gegenteil meistens, wenn auch nur um ein Geringes stieg.

Nicht so können wir uns einverstanden erklären mit dem ersten Theile der M a l y ’schen Arbeit, die chemische Zusammensetzung der Peptone betreffend. M a l y hat Peptone dargestellt aus sehr gut gereinigtem, namentlich sorgfältig entfettetem Fibrin, mittelst Salzsäure, und nach einer besonderen Methode bereitetem Pepsin. Die vom Neutralisationspräcipitale freifreiten Peptone wurden dann in eingeengter concentrirter Lösung fractionirt durch Alkohol gefällt, und die auf solche Art gebildeten getrockneten Niederschläge der Analyse unterworfen, wobei analytische Resultate gewonnen wurden, die zeigten, dass diese Niederschläge in der procentischen Zusammensetzung sich nur wenig vom Fibrin unterscheiden, und auch untereinander nur geringe Differenzen zeigen, immerhin jedoch solche, dass auch M a l y selbst dieselben nicht als isomer mit dem Fibrin zu betrachten geneigt ist, und sogar ausdrücklich hervorhebt, dass die analytischen Resultate zu der Annahme führen, wonach es mehrere Peptone giebt, die kleine Unterschiede untereinander zeigen, und auch vom Fibrin, wenn auch nur in geringem Grade abweichen.

Wenn wir die Versuche M a l y ’s mit denjenigen von M ö h l e n f e l d vergleichen, so stellt es sich heraus, dass dieselben eigentlich nichts weiter als ein negatives Resultat darstellen über denselben Gegenstand, über welchen die Untersuchungen M ö h l e n f e l d’s bereits ein positives ergeben haben. M ö h l e n f e l d hat mittelst einer Methode, bei welcher — soweit ersichtlich — keine nachträglich Zersetzung zu befürchten sind, aus den Peptonen mehrere in procentischer Zusammensetzung wesentlich von einander verschiedene Substanzen erhalten, wobei es für die vorliegende Frage ohne Belang ist, ob die analysirten Stoffe chemisch reine Körper waren oder nicht. M a l y dagegen erhielt zwar auch Körper von verschiedener Zusammensetzung, die Unterschiede zwischen denselben waren aber weniger scharf ausgeprägt. Es ist evident, dass diese divergirenden Angaben am einfachsten so erklärt werden können, indem man annimmt, dass die Trennung der Körper von verschiedener Zusammensetzung bei M ö h l e n f e l d eine schärfere ist, als bei M a l y. Der letztere beweist demnach gegenüber den M ö h l e n f e l d’schen
Versuchen nicht, dass in der Masse, die wir Peptone nennen, Körper von verschiedener Zusammensetzung nicht existiren, sondern zeigt bloss, dass dieselben durch fractionirte Fällung mit Alkohol nicht mit genugender Genauigkeit getrennt werden können, um in den einzelnen Niederschlägen in procentischer Zusammensetzung wesentlich verschiedene Substanzen unterscheiden zu können. Mäly zeigt nicht, dass die Peptone aus homogenen oder beinahe homogenen Körpern bestehen, sondern zeigt bloss, dass seine Alkoholmethode weniger leistet, als die Methode von Möhlenfeld.

Und wenn wir trotzdem der Ansicht sind, dass man den nächstliegenden Schluss, der aus den Ergebnissen der Peptonfütterung und der Möhlenfeld'schen Untersuchung folgt — wonach nicht das Eiweiss, sondern dessen Zersetzungsprodukte 1) es sind, womit sich das Thier ernährt — noch immer nicht auszusprechen berechtigt ist, so liegt der Grund dessen nicht darin, dass es uns trotz der Untersuchung von Möhlenfeld zweifelhaft scheint, ob in dem Peptonen wirklich Körper von wesentlich vom Eiweiss verschiedener Zusammensetzung enthalten sind, sondern darin, dass auch die Untersuchung Möhlenfeld's die Frage unberücksichtigt lässt, ob nicht in dem Pepton, wenn auch in geringer Menge, Körper vorhanden sind, die in der Zusammensetzung mit dem Eiweiss übereinstimmen. Erst wenn durch quantitativ geführte Versuche nachgewiesen wird, dass die ganze Peptonmasse aus Körpern besteht, die vom Eiweiss verschieden sind oder aber wenn das Umgekehrte gefunden wird, dass nämlich neben den vom Eiweiss wesentlich verschiedenen Körpern auch dem Eiweiss ähnliche vorhanden sind, erst dann wird man über diese Frage entscheiden können.

1) Möhlenfeld hat wie es scheint sein Fibrin keiner so sorgfältigen Entfettung untersogen, wie dies Mäly von seinem Fibrin angiebt. Der eventuelle Fettgehalt des Möhlenfeld'schen Fibrins konnte aber auf das Endresultat nur in entgegengesetztem Sinne eingewirkt haben, da alle hier in Betracht kommenden, durch Asther-Alkohol extrahirbaren Substanzen einen höheren C-Gehalt besitzen als das Eiweiss, somit zur Erhöhung des C-Gehaltes, nicht zur Verminderung desselben beitragen konnten. Was die Annahme Möhlenfeld's bezüglich der Abspaltung von Kohlensäure bei der Verdaunung betrifft, so haben wir uns auf verschiedene Art überzeugt, dass bei der Pepsinverdaunung keine Kohlensäure entwickelt wird, und überhaupt erst bei deutlicher Fäulnis Gasentwicklung eintritt.
Über Peptone und Ernährung mit denselben.

1) Trotzdem der von einem von uns ausgeführte Versuch, sowie die Versuche von Maly so ausgesprochene Resultate ergaben, so halten wir es doch nicht für überflüssig, unsere seither angestellten Versuche zu veröffentlichen, in welchen wir den bei Peptonfütterung etwa statthabenden Stickstoffansatz direct durch Vergleichen der eingeführten und ausgeschiedenen Stickstoffmengen zu bestimmen suchten.

Da uns zu solchen quantitativen Versuchen junge, im Wachsen begriffene Hunde, bei welchen in kurzer Zeit ein Gewebeansatz zu erwarten gewesen wäre, nicht brauchbar schienen, indem dieselben sich als weniger reinlich erwiesen, so nahmen wir ein erwachsenes Thier, das wir dadurch zum Stickstoffansatz tauglich zu machen suchten, dass wir das Körpergewicht desselben durch mehrtägiges Hungern herabsetzten, und erst dann, wenn sich das Körpergewicht merklich vermindert hat, wir mit dem eigentlichen Versuch begannen.

Das genaue Sammeln der Excremente war um so mehr von Wichtigkeit, als jede Ungenauigkeit ein Minus an ausgeschiedenem Stickstoff ergeben, und somit ein Plus an angesetztem Stickstoff vorgetäuscht hätte. Das Einführen der Peptone geschah immer durch Injection in den Magen, wobei die eingeführten Mengen immer genau abgemessen werden konnten.

Die Stickstoffbestimmungen geschahen nach der Methode von Seegen, wobei immer aus mehreren gut übereinstimmenden Analysen die Mittelzahl genommen wurde. Die hierbei statthabenden Ungenauigkeiten konnten bei der grossen Zahl der Bestimmungen keinesfalls einen solchen Einfluss ausüben, dass dieselben die Sicherheit des Endresultates gefährdet hätten. Das Thier bekam neben der Peptonlösung noch eine Lösung von Traubenzucker, Stärkekleister
ausgekochter Butter, welche in 100 Ccm. enthielt: 8,0 Traubenzucker, 4,0 Stärke und 6,0 Butter.

Die injicirte Peptonlösung enthielt in 100 Ccm., in jeder Lösung ca. 5,0 Grm. Peptone (organ. Substanz), daneben die nöthigen Salze, und noch immer etwas zurückgebliebenes Calciumsulphat. Die Peptone wurden dargestellt aus gekochtem und getrocknetem Fibrin, mittelst künstlicher Verdauungsflüssigkeit, welche aus Schweinemagen, durch Extraction mit 0,1 procentiger Schwefelsäure bereitet wurde. Die Verdauung des Fibrins ging im Brüttofen bei 36—40°C. vor sich, und wurde bei jeder Portion 20—25 Tage hindurch ununterbrochen fortgesetzt, und zwar so, dass die auf das Fibrin gegossene Verdauungsflüssigkeit, nachdem dieselbe nach 5—6 Tagen kein Fibrin mehr zu lösen schien, von demselben abgegossen und durch frischen Magensaft ersetzt wurde, die klar abgegossenen Lösungen aber vereint, etwas nachgesäuert und weiter digerirt wurden. Um etwaiger Fäulniss oder Pilzbildung vorzubeugen, wurde den Flüssigkeiten etwas Aether zugesetzt, der, wie bekannt, durchaus nicht störend auf die Pepsinverdauung wirkt.

Ueber Peptone und Ernährung mit denselben.

... dem ungelöst Zurückbleibenden durch Filtration getrennt und dieses Verfahren nach nochmaligem Eindampfen nöthigenfalls wiederholt.

Die vorliegende Tabelle zeigt den Verlauf des Versuches.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>2753</td>
<td>500 cm. Wass.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+ 8</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>2761</td>
<td>" "</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>2757</td>
<td>" "</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>2655</td>
<td>" Zuckerslös.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>121</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>2551</td>
<td>480</td>
<td>200</td>
<td>2.258</td>
<td>2.988</td>
<td>+ 0.730</td>
<td>104</td>
</tr>
<tr>
<td>6.</td>
<td>2680</td>
<td>488</td>
<td>200</td>
<td>2.457</td>
<td>1.967</td>
<td>- 0.490</td>
<td>99</td>
</tr>
<tr>
<td>7.</td>
<td>2715</td>
<td>482</td>
<td>200</td>
<td>2.531</td>
<td>2.426</td>
<td>+ 0.105</td>
<td>38</td>
</tr>
<tr>
<td>8.</td>
<td>2772</td>
<td>495</td>
<td>180</td>
<td>2.588</td>
<td>2.120</td>
<td>+ 0.468</td>
<td>69</td>
</tr>
<tr>
<td>9.</td>
<td>2769</td>
<td>484</td>
<td>180</td>
<td>2.439</td>
<td>2.149</td>
<td>+ 0.290</td>
<td>3</td>
</tr>
<tr>
<td>10.</td>
<td>2809</td>
<td>488</td>
<td>160</td>
<td>2.178</td>
<td>1.818</td>
<td>- 0.360</td>
<td>+ 19</td>
</tr>
<tr>
<td>11.</td>
<td>2790</td>
<td>" "</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Das Thier hat im Gansen in den Peptonen N. eingeführt 14.461 mit den Excrementen ausgeschieden 15.463 Stickstoffansatz 0.998

Dasselbe hat während der Peptonfütterung an Gewicht zugenommen von 2551 auf 2790 demnach um 239 Grm., wobei es das Körpergewicht vor den Hungertagen nicht nur erreichte, sondern sogar etwas überstieg. Nach günstiger als in dieser Zusammenstellung gestaltet sich der Stickstoffansatz, wenn wir den eingeführten und ausgeschiedenen Stickstoff erst vom zweiten Tage der Peptonfütterung in Rechnung ziehen, wo dann in 4 Tagen 1.715 Grm. N. angesetzt wurde, was ca. 10 Grm. trockenem Eiweiss entspricht.

Wenn in der beigefügten Tabelle bei den verfütterten Peptonmengen und den stickstofffreien Nahrungsmitteln nicht die gewünschte Regelmäßigkeit eingehalten wurde, so liegt dies hauptsächlich daran, dass es uns in erster Linie darum zu thun, war in wenigen Tagen einen deutlichen Stickstoffansatz zu erzielen, und wir zu diesem Zwecke vor Allem die Verdauungorgane des Thieres berücksichtigen mussten. Zu concentrirte Peptonlösungen konnten wir nicht anwenden, da solche, wie wir fanden, leicht Erbrechen erregten. Unsere verdünnte Lösung konnte wegen der grossen Menge des Wassers, welche mit derselben eingeführt wurde, wieder nur mit möglichster Schonung der Verdauungsgänge eingeführt werden.

Die Tabelle zeigt ganz deutlich:

Erstens, dass das Thier bei einer Fütterung, wö...
das Eiweiss durch Peptone vertreten ist, an Gewicht zunehmen kann.

Zweitens aber, dass neben dieser Gewichtszunahme auch Stickstoff, resp. stickstoffhaltige Gewebssubstanz angesetzt wird.

So dass wir die Frage in dieser Beziehung glauben als erledigt betrachten zu müssen, und demnach dem Eingangs dieser Arbeit Besprochenen gemäss glauben aussprechen zu müssen, dass jetzt keine zwingende Notwendigkeit für die Annahme der Resorption von unverändertem Eiweiss zu finden ist, wobei die Möglichkeit einer solchen, durch künftige Untersuchungen darzutuendenden Resorption durchaus nicht in Abrede gestellt werden kann.

Außer der Thatsache des Stickstoffansatzes glauben wir bei diesen Versuchen die Gewichtszunahme betreffend noch eine Beobachtung gemacht zu haben. Wie aus der Tabelle hervorgeht, hat nämlich das Thier schon am ersten Tage an Gewicht zugenommen, trotzdem dasselbe an diesem Tage noch mehr Stickstoff ausgab als es eingenommen hat. Wir sind durch diesen Versuch nicht in die Lage gesetzt weiteres über diesen Punkt zu berichten, namentlich können wir nicht entscheiden, ob die am ersten Tage auftretende Gewichtszunahme nicht der grösseren Wasseraufnahme zuzuschreiben ist, obwohl das Thier auch während des Hungerns Wasser bekam.

2) Die nächste Frage, die sich nach Feststellung der Nährfähigkeit der Peptone aufdrängt, ist einerseits die Frage über die chemische Natur der Peptone, andererseits aber über die Art und Weise, wie und wo aus den resorbirten Peptonen wieder Eiweisskörper, resp. Gewebsbestandtheile gebildet werden. Es ist kaum nöthig zu betonen, wie innig diese zwei Fragen mit einander zusammenhängen.

In den hier zu beschreibenden Versuchen stellten wir uns die Aufgabe zu untersuchen, in welchen Organen, unter welchen Um-
ständen, in wie langer Zeit die eingeführten Peptone aus dem Organismus wieder verschwinden, resp. in ihren Reaktionen so verändert werden, dass dieselben nicht mehr für Peptone angesehen werden können. Wir konnten dann Aussicht haben die neben dieser Veränderung der Peptone auftretenden Produkte aufzufinden, dieselben als Umwandlungsprodukte der Peptone zu erkennen, und somit Aufklärung über das nächste Schicksal der Peptone zu erhalten.

Da jedoch die meisten Extracte tierischer Flüssigkeiten etwas Kupferoxyd bei Gegenwart von Alkali in Lösung erhalten, und so eine bläuliche Färbung annehmen, ohne dass diese in jedem Falle auf Peptongehalt zurückzuführen wäre, so wird der Werth dieser Peptonprobe dadurch sehr verringert, und es musste deshalb ausser dieser Probe immer noch die Millon'sche Reaction und die Xanthoproteinsäureprobe angestellt werden, welche beiden Reactionen mit Peptonen viel schneller vor sich gehen, als mit coagulablem Eiweiss.

Wir haben diesen Versuch mehrere Mal angestellt, und immer dasselbe Resultat erhalten, auch wenn wir das Thier später töteten, als im Darmkanal nur mehr sehr wenig der eingebrachten Peptide zu finden war. Immer sahen wir, dass die Peptide die Leber nicht passiren können ohne dort festgehalten, oder aber verändert zu werden.

3) Durch weitere Versuche suchten wir uns Aufklärung zu verschaffen, wie sich das in das Blut injicirte Pepton verhält, wie
lange es dort nachweisbar bleibt, wie es vertragen wird, ob es in
den Harn übergeht etc.

Wir injizierten zu diesem Zweck Hunden und Katzen verschie-
dene Mengen von Pepton und fanden, dass 10—20 Grm. Pepton
in 100—200 Ccm. Wasser gelöst von kleineren Hunden oder von
Katzen, wenn dasselbe nur langsam genug (2—3 Ccm. per Minute)
in die Vene injiziert wird, ohne jede sichtbare Störung vertragen
werden. Rasch injiziert oder in weniger Wasser gelöst bewirkten
unsere Peptone (die immer noch etwas Salze enthielten) Schrumpfung
der Blutkörperchen, und wirkten demnach wie eine stärkere Salz-
lösung. Wir haben nicht weiter untersucht, in wieweit diese Wirk-
kung den Peptonen oder den beigemengten Salzen zukommt. Be-
züglich der Zeitdauer, während welcher die Peptone im Blute nach-
weisbar waren, beobachteten wir, dass z. B. ein Hund von ca. 4500 Grm.,
der 20 Grm. Peptone in 200 Ccm. Wasser gelöst in 1½ Stunde
injiziert erhielt, im Blute der Carotis nach 3 Stunden noch eine
geringe Menge von Peptonen zeigte. Nach 4 Stunden dagegen waren
keine mehr nachweisbar.

Wenn die Peptone in grösserer Menge in den Kreislauf inji-
cirt werden, so erscheint ein geringer Theil derselben auch im
Harn. So enthielt in dem erwähnten Versuch der nach 3¼ Stunden
mittelst Katheter entleerte Harn noch deutlich nachweisbare
Mengen von Pepton, wogegen in dem 5 Stunden nach der Injection
entleerten Harn keine Peptone mehr nachweisbar waren. Die in
den Harn übergehenden Mengen sind jedoch immer nur sehr kleine
Bruchtheile der injizierten Gesammtmenge. — Sind die Peptone ein-
amal aus dem Blute verschwunden, so sind dieselben auch in keinem
Organe mehr aufzufinden.

Wir ersehen aus allen diesen Versuchen übereinstimmend, dass
die Peptone im Organismus rasch solche Veränderungen erleiden,
wonach dieselben durch jene Reactionen, die früher für dieselben
charakteristisch waren, nicht mehr zu erkennen sind.

Bezüglich des Ortes, wo diese Veränderungen vor sich gehen,
mussten wir, nach den Fütterungsversuchen geschlossen, die Leber
als eine Hauptstätte derselben ansehen, da wir eben beobachteten,
dass das Pepton des die Leber durchströmenden Blutes in der
Leber verändert wird. Anderseits deuteten aber die Injectionsver-
suche auf die Möglichkeit hin, dass nicht nur die Leber, sondern
Ueber Peptone und Ernährung mit denselben.

558

auch andere Gewebe des Organismus die Fähigkeit besitzen, die Peptone zu verändern.

4) Auf diese Möglichkeit gestützt stellen wir Versuche mit herausgeschnittenen Organen an, durch welche wir frisches defibriniertes Blut durchleiteten, dem Peptonlösung zugesetzt war. Der Versuch zeigte, dass auch in diesem künstlichen Kreislaufe die Peptone in kurzer Zeit so verändert werden, dass sie durch die erwähnten Reactionen nicht mehr aufzufinden sind.

ca. 7500 Grm. wiegenden hinteren Extremitäten getrieben wurden, nach welcher Zeit im Blutextracte keine Peptonreactionen mehr zu bekommen waren.

Nachdem wir uns überzeugten, dass das wirklich der Fall ist, wurde das Durchleiten beendigt, das Blut gesammelt, und der in den Gefässen zurückgebliebene Rest aus denselben durch NaCl-Lösung von 0,75 % ausgewaschen, hierauf sowohl Blut als Gewebe gesondert mit Wasser bei schwach saurer Reaction zum Sieden erhitzt. Nach dem Coagulieren der Eiweissstoffe wurde das Coagulum einigemale mit heissem Wasser, dann mit Alkohol extrahirt.

Diese Extracte mussten alle Stoffe enthalten, die aus den Peptonen entstanden sein konnten, den einzigen Fall ausgenommen, wenn aus denselben sofort wieder coagulables Eiweiss entstanden wäre, wo dasselbe natürlich im Coagulum hätte enthalten sein müssen. Unsere diesbezüglichen Untersuchungen haben jedoch bisher kein solches Resultat ergeben, dass wir in diesen Lösungen Stoffe gefunden hätten, die wir als Derivate der Peptone hätten ansprechen können. Wir richteten vorerst unser Hauptaugenmerk auf einen Körper, von dem man bestimmt weiss, dass derselbe nach der Resorption von eisweisshaltiger Nahrung in reichlicher Menge im Hamme auftritt, und der wahrscheinlich zu dieser Zeit auch im Blute in vermehrter Menge vorhanden ist. Wir suchten nachzuweisen, ob der Harnstoff nach dem Durchleiten im Blute oder in den Geweben vermehrt ist oder nicht, ohne dass uns ein solcher Nachweis bisher mit Sicherheit gelungen wäre. Zu den gewöhnlichen Schwierigkeiten einer quantitativen Harnstoffbestimmung gessen sich in diesem Falle noch andere, die dieselbe noch mehr erschweren. Die Peptone werden nämlich, wie bekannt, durch Quecksilbernitrat ebenso gefällt, wie der Harnstoff, gehen zum Theil auch in den Alkohol über, und entwickeln, wie wir fanden, mit salpetriger Säure oder mit Chlor behandelt, Kohlensäure so wie der Harnstoff, so dass die Abscheidung des Harnstoffes durch Quecksilbernitrat, und die Bestimmung desselben durch die Quantität der entwickelten Kohlensäure durch diesen Umstand vereitelt wurde, die Bestimmung desselben aber durch Wägung, nach der Reindarstellung, ebenso wie die Bestimmung nach der entwickelten Stickstoffmenge uns bisher kein genügend sicheres Resultat ergab, wir demnach auch in dieser Beziehung unsere weiteren Untersuchungen abwarten müssen.
Wenn wir die Resultate, die wir über die Art und Weise, auf welche aus den Peptonen wieder stickstoffhaltige Gewebsbestandtheile gebildet werden, erhielten, noch einmal kurz zusammenfassen wollen, so glauben wir dieselben folgendermassen formuliren zu müssen: Die beschriebenen Versuche haben gezeigt, dass die Peptone im Organismus schnell verändert werden, ohne dass man sich darüber bestimmt aussprechen könnte, ob dieselben sofort zu Eiweiss werden, oder aber vorerst anderweitigen Veränderungen unterliegen, und das Eiweiss erst nachträglich durch Zellenthätigkeit aus den Bruchstücken der Peptone und aus anderen Substanzen des Thierkörpers zusammengesetzt wird.

Den Ort anbelangend, wo diese Veränderung der Peptone vor sich geht, fanden wir, dass dieselbe nicht an ein bestimmtes Organ gebunden ist. Wir glauben gefunden zu haben, dass zellige Organe, wie z. B. die Leber, der Muskel, in gleicherweise befähigt sind, diese Veränderungen zu bewirken. Wobei wir mit einiger Wahrscheinlichkeit annehmen können, dass nicht Oxydation der Hauptvorgang dabei ist, sonst wäre es nicht wahrscheinlich, dass dieselbe auch in einem Organe vor sich ginge, dessen Blut relativ weniger Sauerstoff führt, als dasjenige anderer Organe.
In unserem Verlag ist eben erschienen:

Kurzes Lehrbuch

der

Anorganischen Chemie

wesentlich für Studirende auf Universitäten und polytechnischen Lehranstalten sowie auch zum Selbstunterricht.

Von **Professor Dr. V. v. Richter.**

Mit 62 Holzschnitten und 1 Spectraltafel.

Preis 7 Mark.

Die Verlagsbuchhandlung

MAX COHEN & SOHN (Fr. Cohen) Bonn.
ARCHIV

FÜR DIE GESAMMTE

PHYSIOLOGIE

DES MENSCHEN UND DER THIERE.

HERAUSGEGEBEN

VON

DR. E. F. W. PFLÜGER,

ORD. ÖFFENTL. PROFESSOR DER PHYSIOLOGIE AN DER UNIVERSITÄT
UND DIRECTOR DES PHYSIOLOGISCHEN INSTITUTES ZU BOHN.

ZEHNTER BAND.
ZWÖLFTES HEFT.
MIT 1 TAFEL.

BONN, 1875.
VERLAG VON MAX COHEN & SOHN.
(FR. COHEN.)

Ausgegeben am 25. Juni 1875.
Inhalt.

Beiträge zur Kenntniss des Pancreas. Von R. Heidenhain. Seite 557
Hierzu Tafel V. (Aus dem physiologischen Institut zu Breslau.)

Ueber das Fieber der Kaltblütler. Von Dr. O. Lassar. 633

Bemerkung zur Fortpflanzungsgeschwindigkeit der Erregung im Muskel. Von L. Hermann. 639

Nachtrag zu meinem Aufsatz „Ueber die physiologische Verbrennung in den lebenden Organismen“. Von E. Pflüger. 641

Von nachstehenden Zeitschriften suchen wir complete Exemplare, einzelne Serien, Jahrgänge, Bände und Hefte und zahlen dafür die höchstmöglichen Preise. Gefällige Anerbietungen erbitten wir direct per Post, worauf sofort Antwort erfolgt:

Annalen der Chemie von Liebig.
Annalen der Physik von Poggendorff.
Centralblatt für die medic. Wissenschaften.
Jahresbericht über die Fortschritte der Chemie.
Journal für Mathematik von Crelle.

Buchhandlung Max Cohen & Sohn (Fr. Cohen) in Bonn.
Beiträge zur Kenntniss des Pancreas.

Von

R. Heidenhain.

Hierzu Taf. V.

In Folge dessen wandte ich mich zu einem andern Auskunftsmittel, zu methodischen Fütterungsreihen, die denn in der That in die Augen sprungende Veränderungen der secretorischen Pancreas-Elemente während des Ablaufes der Verdauung ergaben.

Um die physiologische Bedeutung dieser anatomischen Wand-

1) R. Heidenhain, Studien des physiologischen Instituts zu Breslau. Heft 4. (Speicheldrüsen.)

R. Pfüger, Archiv f. Physiologie. Bd. X.
lungen zu ermitteln, stellte ich den histologischen Beobachtungen parallel gehende Untersuchungen über die Bildung der Secretbestandtheile, namentlich des Albuminat-Fermentes, in der Drüse an, welche zu manchen überraschenden Aufschlüssen führten.

Endlich suchte ich mich über die doch immer noch nicht erledigte Frage zu orientieren, aus welchen Ursachen die Drüse nach Anlegung einer permanenten Fistel ein Secret von wesentlich anderem Charakter liefere, als im Normalzustande.

Im Laufe dreier Jahre habe ich nur zu oft die grossen Schwierigkeiten kennen gelernt, welche das Pancreas in höherem Masse, als alle andern Verdauungsdrüsen, den wissbegierigen Angriffen entgegengestellt. Oft genug sind sie mir unüberwindlich gewesen, so dass die Forschung, statt mit sicherer Antwort auf die gestellte Frage, mit einem Fragzeichen schloss. Immerhin ist eine Anzahl neuer Gesichtspunkte, die sich mir erschlossen haben, der Aufmerksamkeit auch in weiteren Kreisen werth; deshalb trage ich kein Bedenken, die folgenden Mittheilungen trotz ihres häufig nur fragmentarischen Charakters den Fachgenossen vorzulegen.

Erstes Kapitel.

Histologische Veränderungen des Pancreas während des Ablaufes der Verdauung.

§ 1. Die absondernden Zellen in dem Pancreas hungernder Hunde.

Die beste der bisherigen Beschreibungen der Bauchspeicheldrüse von P. Langerhans 1) unterscheidet an den secretorischen Zellen der Drüsenschläuche — denn die Secretionsräume haben, wie Latschenberger 2) mit vollem Rechte hervorhebt, nicht so wohl die Gestalt rundlicher Acini, als die Form gestreckter Schläuche — drei Zonen: eine innere, d. h. nach dem Lumen hin gekehrte, ausgezeichnet durch die Einlagerung dunkler Körnchen, eine mittlere, den Kern enthaltende und endlich eine periphere, welche in den meisten Fällen an frischen Präparaten vollkommen homogen und durchscheinend ist, nicht ganz selten aber eine geringe Zahl dunkler

Körnchen enthält, die dem äussern Umfange des Kernes aufge- lagert sind.

Eine gute Vorstellung von dem Verhältniss der körnigen zur homogenen Zone der Zellen bekommt man an in Alkohol erhärte- ten Präparaten, die in Carmin tingirt und in Glycerin aufgeheilt werden. Wie immer, leistet der Alkohol seine vortrefflichen Dienste nur dann, wenn man ganz frische, dem eben getödteten Thiere entnommene Stückchen der Drüse in eine verhältnissmässig grosse Quantität der Erhärtungsflüssigkeit bringt. Dabei ist es geboten,
nicht die dünnsten Drüsenlappchen, welche in nur flacher Schicht zwischen den Mensenterialplatten ausgebreitet liegen, zu wählen. Denn in Alkohol schrumpft das Bindegewebe der Serosa ungemein stark und presst das Drüsengewebe so zusammen, dass die Gestalten der Schläuche und der in ihnen enthaltenen Zellen unnatürlich verzerrt werden. Ich suche deshalb dickere Stellen der Drüse aus und entferne das Mesenterium möglichst vor der Erhärtung. Fig. 1 giebt ein Bild eines derartigen Präparates. Man sieht theils quer, theils schräg durchschnittene Schläuche, umgeben von sparsamen Bindegewebe. Die Zellen, an Grösse ziemlich veränderlich, haben eine kurz cylindrische oder abgestutzt kegelförmige Gestalt, die Basis des Kegels der Peripherie, die abgestutzte Spitze dem Lumen des Schlauches zugekehrt. In den Zellen der meisten Schläuche beschränkt sich die roth tingirte, homogene Aussenzone auf einen wenig breiten Saum, während die körnige Innenzone, viel heller als an frischen Präparaten, den bei weitem grössten Theil der Zellen einnimmt. Vereinzelt kommen dazwischen (S. rechts oben bei a) Schläuche mit viel kleineren Zellen vor, bei welchen die körnige Zone eine relativ viel geringere Ausdehnung hat. Ueber die Bedeutung dieser Abweichung kann ich erst später handeln. — Die Kerne der Zellen haben nicht constante Gestalt; bemerkt sei noch, was der gezeichnete Schnitt allerdings nirgends zeigt, dass im Lumen der Schlauchdurchschnitte öfters sehr schmale spindelförmige Kerne zu sehen sind, den »centroacinären« Zellen von Langerhans angehörig.

Ein näheres Studium der secretorischen Zellen wird durch ihre ungemeine Veränderlichkeit sehr erschwert. Immerhin habe ich einige früherhin nicht gewürdigte Besonderheiten derselben hervorzuheben, die auf einen sehr verwickelten inneren Bau hinweisen.

Die Aussenzonen verdienen das Prädicat »homogen« nicht im strengen Sinne, denn es ist an ihnen oft eine sehr eigenthümliche Structur zu sehen. Man bemerkt nicht selten schon an ganz frischen Präparaten des Hunde- oder Kaninchenpankreas in der hellen Grundsubstanz der Aussenzone eine Anzahl grader, sehr feiner, ab und zu mit leichten Varicositäten versehener Linien, an dem Aussenrande der Zellen beginnend und nach der Innenzone hin convergirend. An der Grenze der letzteren bilden ihre Fortsetzung ab und zu Reihen feiner Körnchen, die sich in dem Körnerhaufen der
Innenzone verlieren; ja hier und da sind alle Körnchen der letzteren in graden Reihen geordnet, die nach aussen unmerklich in jene feinen Linien übergehen.

Die beschriebene eigen tümliche Structur tritt zuweilen schärfer hervor an Stückchen der Drüse, die in Ueberosmiumsäure-Lösungen von 1,5—2 p. M. erhärret worden sind — in verdünnter Lösungen quellen die Zellen schnell auf, die Körnchen der Innenzone werden zum grössten Theile unsichtbar, so dass sich der Unterschied zwischen Aussen- und Innenzone verwischt.

Am meisten Belehrung über die jener Streifung zu Grunde liegenden Structurverhältnisse habe ich der in Anwendung einer fünfprocentigen Lösung von neutralem chromsaurem Ammoniak zu verdanken. In derselben bleiben die Zellen während des ersten Tages ziemlich unverändert. Wenn im Laufe des zweiten Tages durch allmählich eintretende Reduction der Chromsäure etwas Ammoniak frei wird, beginnt eine langsam fortschreitende Quellung, zuerst an dem homogenen Theile der Zellen. Wenn diese einen mässigen Grad erreicht hat, werden jene feinen Linien sichtbar, wie sie in Fig. 5 a abgebildet sind. Man gewinnt schon jetzt bei Untersuchung mit starken Vergrösserungen den Eindruck, dass dieselben der optische Ausdruck selbstständiger, in eine helle Grundsubstanz eingebetteter Gebilde sind. Ist die Einwirkung des Reagens weiter gediehen, so löst sich die Grundsubstanz auf, meist früher als die Körnerzone. In diesem Stadio bekommt man Zellenfragmente zu Gesicht wie Fig. 5 b: die Körnchen bilden noch einen compacten Haufen, aus dessen bei natürlicher Lagerung der Zellen nach aussen gerichtetem Umfange feine Fäden hervorragen, allenfalls noch durch geringe Reste nicht gelöster Grundsubstanz zusammengehalten. Endlich bei noch energischerer Einwirkung des chromsauren Ammoniaks zerfallen die Zellen ganz und Fragmente jener fadenartigen Bildungen schwimmen in Menge frei umher. (Vgl. Fig. 5, c.) Ueber die Bedeutung derselben vermag ich etwas Sicheres nicht auszusagen. Wenn ich aber überlege, dass nicht selten aus der Körnerzone ausserst feine Reihen von Körnchen in die homogene Zone hineinrangen, welche die genauen Fortsetzungen der in dieser sichtbaren Streifen bilden, so möchte ich fast vermuten, dass es sich um feine Röhrchen handelt, welche die Grundsubstanz der Zelle durchsetzen und in denen die reihenförmig angeordneten Körnchen liegen. In keinem Falle sind sie mit den Stäbchen zu verwechseln, welche ich
an den Epithelien der Tubuli contorti und der breiten Schleifen-
schenkel in der Niere beschrieben habe. Diese sind viel derbare
Gebilde, resistent gegenüber der Einwirkung von concentrirter Kali-
Laune, Alkohol, Maler'scher Flüssigkeit, welche alle jene Fäden
der Pancreas-Epithelien zerstören.

Beiläufig bemerkt, eignet sich das chromsaure Ammoniak auch
vortrefflich zur Isolation der von Langerhans u. A. beschriebenen
spindelförmigen Epithelien der feinsten Ausführungsgänge, sowie der
zahlreichen in dem Pancreas vorkommenden Stämmchen markloser
Nerven und der in diese eingebetteten Ganglien.

Von sonstigen Macerationsflüssigkeiten habe ich wenig Gutes
zu melden. In Jodserum quellen die hellen Theile der Zellen kuglig
auf, während die Körnchen sich in dem Innentheile concentrieren. Nach
einigen Tagen treten hier in dem Körnchenhaufen Vacuolen auf,
indem sich mitten in denselben Tropfen einer hellen Flüssigkeit
auscheiden, welche die Körnchen auseinanderdrängen.

Sehr empfehlenswerth für die Isolation aller zelligen Gebilde
der Bauchspeicheldrüse ist eine fünffprocentige Lösung von Chloral-
hydrat, welche, wenn die eingelegten Bruchstücke des Organes sich
längere Zeit brauchbar halten sollen, öfters erneuert werden muss.
Die Epithelien der Gänge, die Nervenstämmchen und Ganglienzenlen
des intertubulären Bindegewebes, die secretorischen Zellen isoliren sich
auf das Trefflichste, letztere mit Conservirung ihrer Gestalt, aber
freilich mit Zerstörung ihres natürlichen Aussehens, weil die Körn-
chen der Innenzone verschwinden und die Zellen ganz durchsichtig
werden. Die im frischen Zustande schwer sichtbaren, blassen runden
Kerne schrumpfen ziemlich stark und werden dadurch so undurch-
sichtig, dass sie sehr leicht in die Augen fallen. An solchen
Präparaten überzeugt man sich unschwer von der häufigen Anwe-
senheit mehrerer Kerne in den Zellen.

So weit das morphologische Verhalten der Zellen. Was ihr
chemisches Verhalten anlangt, so besteht ihre Grundsubstanz aus
einer in Wasser ganz ungemein stark quellbaren Verbindung. Lässt
man zu einem frischen Präparate destillirtes Wasser hinzutreten,
so schwilt die Aussenzone schnell auf, während der grösste Theil
der Körnchen der Innenzone erblasst und sich löst. Noch schneller
werden die Zellen zerstört bei Behandlung mit selbst sehr verdünnt-
ten Alkalien (Natronlauge von 0,1 pCt., Ammoniak von derselben
Concentration). Die fast augenblickliche Lösung der meisten Körn-
Beiträge zur Kenntnisse des Pancreas.

chen beweist, dass dieselben nicht, wie die bisherigen Autoren, Langerhans eingeschlossen, fast alle annehmen, aus Fett bestehen. Nur ein kleiner Theil derselben bleibt als leicht erkennbare Fetttröpfchen zurück, der grösste Theil besteht aus einer eigenthümlichen chemischen Verbindung, von welcher erst späterhin die Rede sein kann.

Bei Zusatz verdünnter Essigsäure (0,1—1 pCt.) zu den Zellen trübt sich die Aussenzone so stark durch dunkelkörnige Niederschläge, dass der Unterschied der beiden Zellhälften sich verwischt. Ersetzt man die verdünnte Säure durch Eisessig, so hellen sich die Zellen wieder auf und lassen nur noch feine Granulationen erkennen, während die Kerne scharf hervortreten.

Mineralsäuren (Salpetersäure) bringen eine noch weit stärkere und dichtere Trübung der Aussenzone hervor, als die niederen Concentrationen der Essigsäure.

Endlich habe ich noch der eigenthümlichen Einwirkung der Wärme auf die Zellen zu gedenken. Ich wollte untersuchen, ob diese etwa bei der Temperatur des Körpers Contractilitäts-Erscheinungen zeigen, und beobachtete deshalb ein einem lebenden Kaninchen entnommenes Präparat auf Strickers heizbarem Objekttische bei langsam steigender Temperatur. In der Gegend der Scala, bei welcher amöboide Bewegungen an dazu befähigten Zellen einzutreten pflegen, konnte ich keinerlei Veränderungen wahrnehmen. Als aber das Thermometer auf etwa 50° C. gestiegen war, begann die bis dahin vollkommen homogene Aussenzone der Zellen, die nicht isolirt, sondern in ihrer natürlichen Lagerung innerhalb eines Schlauches beobachtet wurden, plötzlich eine schwer genau beschreibbare Veränderung zu zeigen. Die Durchsichtigkeit derselben wurde geringer, indem theils eine sehr feine Granulation auftrat, theils stellenweise verwaschene, wachsglänzende Flecken erschienen. Dabei verschob sich die Grenze zwischen Aussen- und Innenzone in merkwürdiger Weise: aus der letzteren drangen Reihen von Körnchen strahlig mehr oder weniger weit in die erstere vor, so dass die gesamte Breite des homogenen Bezirkes abnahm, um so mehr, als auch der äussere Rand der Zellen sich von der Schlauchmembran, welcher er bis dahin dicht angelegen hatte, zurückzog. Mit einem Worte, mit der Trübung der Aussenzone ging eine geringgradige Schrumpfung der ganzen Zelle und eine Einwanderung von Körnchen der Innenzone in das benachbarte Territorium auf gradlinigen Stras-
sen einher. Als ich darauf das Präparat wieder abkühlte, wurden alle diese Veränderungen rückgängig: die in die Aussenzone vorgedrungenen Körnchen traten wieder in die Innenzone zurück, jene erlangte ihre völlige Durchsichtigkeit und ihren früheren Umfang wieder, indem die Granulationen verschwanden und die Begrenzung der Zelle wieder bis zur Schlauchmembran vornähte. Der ganze Ablauf der Veränderungen konnte durch wiederholte Temperaturerhöhung und Temperaturherabsetzung mehrmals herbeigeführt werden. Das Alles machte zunächst den Eindruck eines aktiven vitalen Vorganges und dieser Eindruck wurde dadurch verstärkt, dass Induktionsströme hoher Intensität in ganz entsprechender Weise wirkten, wie Erwärmung auf 50° C. Aber trotz der Möglichkeit, die durch die Wärmezufuhr hervorgerufenen Erscheinungen durch Wärme-Entziehung zum Verschwinden zu bringen, liegt doch eine lediglich physikalische Erscheinung vor, denn die Zellen eines gefrorenen und wieder aufgezehrteten Pancreas verhielten sich in ganz ähnlicher Weise. Ich kann nur annehmen, dass die Temperaturerhöhung, wie die mit Erwärmung des Präparates verbundene elektrische Behandlung desselben, die Ausscheidung eines Albuminates unter gleichzeitigem geringem Wasseraustritt aus der Zelle veranlasst, während bei der Abkühlung das geronnene Albuminat unter gleichzeitiger Wiederaufnahme des ausgeschiedenen Wassers sich wieder löste. Freilich war, als ich jene Beobachtungen anstellte, ein Eiweisskörper von so merkwürdigem Verhalten nicht bekannt. Seitdem aber haben die interessanten Beobachtungen von Heynsius (Pfütgers Archiv IX, 532) eine derartige Eiweissverbindung im Hühnerweiß, wie in dem Blutserum kennen gelehrt.

Ganz besonders muss ich noch auf den Umstand die Aufmerksamkeit lenken, dass beim Erwärmen die Körnchen der Innenzone häufig — immer ist es nicht der Fall — in der Richtung grader Linien sich in die Aussenzone verschrieben. Auf den Wegen ihres Vordringens müssen die Widerstände für ihre Bewegung geringer sein, als an den dazwischen gelegenen Stellen, denn sonst liese sich nicht einsehen, weshalb bei der Schrumpfung der Zelle nicht an der ganzen Grenze der beiden Zonen gleichmässiges Vorrücken der Körnchen stattfindet. Ich bin sehr geneigt anzunehmen, dass die Wege der Körnchen in den früher beschriebenen fadenartigen Bildungen der Aussenzone gegeben sind, worauf schon der ebenfalls bereits erwähnte Umstand hinzuweisen scheint, dass man oft an frischen
Präparaten aus der Innenzone feine Reihen von Körnchen hervor-
ragen sieht, deren geradlinige Fortsetzung in einer feinen dunkeln,
einen isolierbaren Faden andeutenden Linie liegt.

§ 2. Veränderungen der secretorischen Zellen des
Pancreas während des Ablaufes der Verdaunung.

Der Versuchung, auf Grund der in dem vorigen Paragraphen
mitgetheilten Beobachtungen eine Vorstellung von dem innern Baue
der Absonderungsgorgane des Pancreas zu entwerfen, muss ich vor-
läufig noch widerstehen, um zunächst die überaus merkwürdigen
und lehrreichen Veränderungen zu schildern, welche jene Zellen
während des Ablaufes der Verdaunung erfahren.

Wenn man einen gesunden Hund durch etwa zweitägiges Hun-
gern auf guten Appetit vorbereitet hat, verschlingt er von einer
ihm zu discretion vorgesetzten Fleischmahlzeit häufig mehrere Pfunde.
Die Magenverdaunung nimmt nach solcher Überladung des Organs
erhebliche Zeit in Anspruch. Man findet die letzten Speisereste
nicht selten noch nach 16—20—22 Stunden in dem Magen vor.
Doch sind solche Ziffern selbstverständlich nicht allgemeingültig,
sondern deshalb nicht, weil auch das genosseene Fleischquantum sehr
schwankt. Um einen Anhaltspunkt für die nachfolgenden Beschrei-
bungen zu haben, will ich an »gute Fresser« denken, bei denen der
überfüllte Magen sich erst nach etwa 20 Stunden ganz entleert
hat. Mit Bezug auf das Verhalten des Pancreas zerrät diese Zeit
in zwei ungefähr gleiche Abschnitte von je 10 Stunden. Die Schil-
derung, die ich von diesen beiden Abschnitten zu entwerfen habe,
wird aber für Hunde, die weniger gefressen haben und deshalb mit
dem Verdaunungsgeschäfte schneller fertig geworden sind, zeitlich
nicht zutreffen; dieselben qualitativen Veränderungen werden sich
in kürzeren Perioden gestalten, was ich nachdrücklichst zu betonen
nicht unterlassen will.

In den ersten Stunden nach reichlicher Speiseaufnahme zeigen
Alkohol-Präparate des Pancreas eine stärkere und dichtere Trü-
bung der Innenzone der Zellen, als während des Hungerzustandes.
Schon um die vierte Stunde ist diese Veränderung stark ausgeprägt.
Um die sechste bis siebente Stunde erscheint ausserdem der Um-
fang der Schläuche im Allgemeinen verkleinert. Die secretorischen
Zellen bieten ein wesentlich anderes Bild als das in Fig. 1 wiedergegebene. Entsprechend der Abnahme des Schlauchdurchmessers
sind die Zellen im Ganzen verkleinert. (Vgl. Fig. 2.) Dieser Schwund bezieht sich aber allein auf die körnige Innenzone, welche ganz im Gegensatze zu dem Hungerzustande den bei weitem kleineren Theil der Zellen ausmacht, ja nicht selten nur als kleine Innenspitze derselben erscheint oder selbst ganz verloren gegangen ist. Die homogene, roth gefärbte Aussenzone dagegen hat an Breite ungemein gewonnen, sie erstreckt sich über den grössten Theil der Zelle oder nimmt hier und da, beim Mangel der Körnchenzone, den ganzen Umfang derselben ein. Die Veränderung ist an Hämatoxylin-Präparaten fast noch auffälliger, als nach Carmin-Tination. Bei beiden Färbungsmethoden bleibt die Innenzone der Zellen während des Hungerzustandes farblos; während des Verdauungszustandes nimmt sie Farbstoff auf, aber das Hämatoxylin in viel höherem Masse als das Carmin. Deshalb zeigen Hämatoxylinbilder der beiden Zustände noch grellere Unterschiede, als Carminbilder. — Auch die Zellkerne sind während des Hungerzustandes und der ersten Verdauungsperiode nicht ganz identisch. In der unbeschädigten Drüse sind sie häufig nicht rund, sondern oval, eckig, verzerrt, in der thätigen Drüse immer scharf kreisrund und mit in die Augen springenden Kernkörperchen versehen, — Verhältnisse, die sich im Präparate leicht sehen, aber in der Zeichnung schwer wiedergeben lassen 1).

1) Für die thätige Drüsenzelle ist nicht blos hier, sondern auch in den Speichel- und Magendrüsen eine scharfausgeprägte runde Form des Kernes mit deutlichen Kernkörperchen charakteristisch gegenüber der platten oder unregelmässigen Form in der unthätigen Zelle, ein Moment, welches ich fernern Aufmerksamkeit empfehlen möchte.
serrn Saum oder fehlt selbst ganz. Das Verhältniss habe ich oft bei Kaninchen, denen einen Tag lang jedes Futter entzogen war, gefunden, aber es kommt bei ihnen auch der erste Zustand vor, — Schwankungen, die sich gewisse aus der Unmöglichkeit, die Verdauungsorgane hier sicher zur Unthätigkeit zu bestimmen, erklären.

Es braucht wohl kaum besonders hervorgehoben zu werden, dass sich niemals alle Schläuche der Drüse in gleichem Zustande befinden. Meine Schilderungen beziehen sich immer nur auf das durchschnittliche Verhalten, wie es sich bei der Mehrzahl findet. Grade wie man in einer Gld. submaxillaris nach energischer Reizung der Chorda neben zahlreichen veränderten Acinis immer einzelne, die sich der Anregung zur Tätigkeit entzogen zu haben scheinen, vorfindet, wie ferner die Schlauchdrüsen des Magens an dicht neben einander liegenden Stellen differente anatomische Zustände, den auf einander folgenden Secretionsphasen entsprechend, zeigen können, grade ebenso begegnet man im Pancreas neben verkleinerten Schläuchen mit stark veränderten Zellen einer Minderzahl, die noch dem Hungertypus folgt, ja in Drüsen von hungernden Thieren vereinzelten von dem Charakter, den ich seheen als für das erste Verdauungsstadium charakteristisch geschildert habe. (Vgl. Fig. 1 rechts oben a.) Die einzelnen Abtheilungen einer Drüse fungiren eben unabhängig von einander, verschieden unter sich durch innere Bedingungen, die sich niemals für alle gleichzeitig in gleicher Weise gestalten.

Was ist nun mit den Pancreas-Elementen während der ersten sechs Verdauungsstunden vorgegangen? Die Antwort wird durch die Objecte selbst in unzuweideutiger Weise gegeben.

Nachdem die Secretion des pancreaticischen Saftes, welche bekanntlich nach Bernstein sofort mit dem Eintritt von Speisen in den Magen schnell ansteigt, bald ein Maximum erreicht, dann langsam wieder sinkt, um gegen die sechste Stunde nochmals anzusteigen, — nachdem diese Absonderung eine Reihe von Stunden gewährt hat, ist die körnige Innenzone der Zellen zum grössten Theile oder selbst ganz geschwunden. Nichts liegt näher, als der Schluss, dass sie verbraucht worden ist, um das organische Material des Secretes herzugeben.

Aber gleichzeitig ist die homogene Aussenzone an Volumen erheblich gewachsen. Mit der Zerstörung der Innenzone für die Secretbildung an dem centralen Ende der Zellen ist also eine
Massenzunahme an dem peripherischen (der Schlauchwandung zugekehrten) Ende einhergegangen.

In der zweiten Hälfte der Verdauungszeit gestaltet sich an den Zellen ein neuer Umwandlungsprozess, ungefähr gegen die Zeit, wo der Magen sich bereits fast ganz entleert hat, und in den darauf folgenden Stunden. Die Schläuche haben an Volumen wieder sehr erheblich zugenommen. Die einzelnen Zellen erscheinen jetzt als mächtige cylindrische Gebilde, länger und breiter als im Hungerzustande (vgl. Fig. 3) die körnige Innenzone, vorher so ungemäss reduziert, erstreckt sich fast über die ganze Zelle, die homogene Aussenzone bildet nur einen schmalen Saum, in den meisten Zellen weniger breit als während des Hungerzustandes, ja in nicht weniger bis auf einen kleinen, den Kern umgebenden Rest geschwunden. Die Fig. 3 ist nach einem Präparat gezeichnet, in welchem diese Reduction der homogenen Zone nicht den grösstmöglichen Grad erreicht hat, denn sie ist in allen Zellen deutlich sichtbar, während man oft nur Spuren derselben in der Nähe des Kerns entdeckt. Die Kerne selbst sind nicht mehr rund, sondern platt und oft nicht mehr glattrandig, sondern leicht zackig. Ganz besonders interessant ist es, wenn man in denselben Präparaten dicht neben einander Schläuche trifft, von denen die einen dem Charakter der Fig. 2, die andern dem Charakter der Fig. 3 entsprechen. Die letzteren sind in dem Ablaufe der Veränderungen den ersteren vorangeeilt. Man kann Drüsen eines solchen gemischten Verhaltens sehr leicht schon mit blossem Augen erkennen. Sie haben auf ihrer Oberfläche ein röthliches Aussehen, aber in dem rothen Grund sind stecknadelkopf- bis linsengrosse weissgelbe Flecke eingesprengt, so dass die Drüse wie marmorirt erscheint. Wenn man einen Hund zwei Mal hintereinander in einem Zwischenraum von 12 Stunden füttert und 6 Stunden nach der letzten Mahlzeit tötet, wird man die Drüse in der Regel in dieser Verfassung finden. Die gelben Flecke entsprechen den Schlauch-Complexen, welche das Bild der Fig. 3 zeigen, während die rothen Stellen in dem durch Fig. 2 repräsentirten Zustande befindlich sind. — Diese neue Metamorphose der Zellen in der zweiten Verdauungsperiode entspricht dem Sinken und Aufhören der Absonderungstätigkeit der Drüse. Der Verbrauch der körnigen Innenzone ist geringer geworden und hört selbst ganz auf. Jetzt beginnt dieselbe sich zu regeneriren, auf Kosten der während der ersten Verdauungsperiode so sichtlich gewachsenen
Aussenzonen. Diese wird zur Wiederherstellung des körnigen Materials verbraucht, indem sie sich, von Innen nach aussen fortschreitend, in körnige Masse umwandelt, bis sie zuletzt auf einen kleinen Rest reduziert ist.

Nach längerem Hungern nimmt das gesamte Zellvolumen wieder ab. Dabei wächst die Aussenzone, welche zum grössten Theile verloren gegangen, wieder in mässigem Grade, so dass sich zuletzt das der Fig. 1 entsprechende Bild der Drüse wieder herstellt.

Wir haben also an den Zellen folgende sich aus einander entwickelnde Zustände und Vorgänge beobachtet.

1. Hungerzustand: die körnige Innenzone nimmt den grösseren, die homogene Aussenzone den kleineren Theil der Zellen ein.

2. Erste Verdauungsperiode, innerhalb deren lebhafteste Absonderung stattfindet. Verkleinerung der gesammten Zellen durch Verbrauch der körnigen Innenzone, daneben Ansatz neuen Materials an die Aussenzone, so dass diese sich vergrössert.

4. Bei längerem Hungern allmähliche Zunahme der letzteren bis zu der ursprünglichen Ausdehnung, dabei geringe Verkleinerung der Innenzone. — An den Zellen findet also während ihrer physiologischen Thätigkeit ein fortwährender Wandel statt: Stoffverbrauch innen, Stoffansatz aussen. Innen Umwandlung der Körnchen in Secretbestandtheile, aussen Verwendung des Ernährungsmaterials zur Bildung der homogenen Substanz, die sich ihrerseits wieder in körnige Masse umsetzt. Das Gesammtbild der Zelle hängt von der relativen Geschwindigkeit ab, mit der sich diese Processe vollziehen. In der ersten Verdauungsperiode findet schneller Verbrauch innerhalb und schneller Ansatz aussen statt; in der zweiten Periode vollzieht sich die lebhafteste Veränderung an der Grenze der Innen- und Aussenzone, indem die Substanz der letzteren sich in die der ersteren umwandelt. Während des Hungerzustandes ist der Verbrauch ein minimaler, der Ansatz ein ebenfalls langsamer, er macht sich aber doch in der sichtbaren Verbreiterung der fast ganz geschwundenen Aussenzone merklich geltend. Wohl kaum dürften in einem andern Organe die innern Vorgänge, die sich behufs seiner Thätigkeit an
den Zellen vollziehen, in dem mikroskopischen Bilde einen so prägnanten Ausdruck finden.

Um aber diesen Gestaltswechsel seiner Bedeutung nach zu verstehen, wird es nunmehr nothwendig, die den verschiedenen anatomischen Zuständen der Drüsen entsprechenden physiologischen Zustandsänderungen zu ermitteln. Da die Aufgabe des Organes in der Bildung von Verdauungsfermenten besteht, wird sich diesen die Aufmerksamkeit vor Allem zuzuwenden haben 1).

Zweites Capitel.

Die Bildung des Albuminatfermentes in der Drüse.

§ 3. Vorversuche.

Um in erschöpfender Weise feststellen zu können, ob an die auffallenden histologischen Veränderungen, welche die Drüse während des Ablaufes einer Verdauungsperiode erfährt, sich nachweisbare Differenzen ihres functionellen Verhaltens knüpfen, hätte ich den Gehalt derselben an ihren drei bekannten Fermenten für die mikroskopisch so wohl charakterisirten verschiedenen Zustände der Secretionszellen vergleichen müssen. Ich habe aber diese Untersuchung auf das Albuminatferment beschränkt, welches ich künftig der Kürze wegen mit dem schon oft gebräuchten, aber doch noch nicht allgemein legalisirten Namen des Pancreatins bezeichnen will.

Nachdem zuerst Corvisart2) dieses Ferment in der Drüse aufgefunden, hat Kahne3) in seinen bahnbrechenden Untersuchun-

2) Sur une fonction peu connue du pancréas. Paris 1867—68.

Beiträge zur Kenntniss des Pancreas.

571

Diese Beobachtung sowie die bekannte Thatsache, dass der pancreatische Saft sehr reich an kohlensauren Alkalien ist, legten es nahe zu versuchen, ob der Zusatz von Salzen zu wässrigen Fer-
mentlösungen die zur Faserstofflösung notwendige Zeit nicht erheblich abkürze.

In der That lehrten gleich die ersten Erfahrungen, welche ich auf diesem Wege machte, dass schon ein geringer Zusatz eine bedeutende Verringerung der Lösungszeit im Gefolge habe.

Beispiel. Mit einem fermentreichen Glycerinextracte werden folgende drei Verdauungslosungen in drei Reagensgläsern bereitet:

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gy</td>
<td>0,5 Cem.</td>
<td>0,5 Cem.</td>
<td>0,5 Cem.</td>
</tr>
<tr>
<td>1%</td>
<td>Lösung von kohlensaurem Natron</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Wasser</td>
<td>10</td>
<td>9</td>
<td>7</td>
</tr>
</tbody>
</table>

Mit gleichen Mengen von Faserstofflocken versehen, wurden die drei Gläser um

1.15': in das Wasserbad gestellt,
1.30': In III ist ein erheblicher, in II ein geringer Theil, in I noch Nichts gelöst.
1.50': In III ist nur noch ein geringer Rest übrig, in II die Lösung merklich vorgeschritten, in I noch nicht begonnen.
2.30': In III Lösung vollendet, in II sehr kleiner Rest, in I höchstens der dritte Theil gelöst.

Bei diesem Versuche hat also schon der Zusatz von 0,1% bis 0,3% an Soda einen sehr erheblichen Einfluss auf die Lösungsgeschwindigkeit. Bei dem Gehalte von 0,1% verhält sich der Faserstoff äusserlich wie in rein wässriger Fermentlösung. Bei 0,3% macht sich schon eine geringe Quellung desselben merklich, die bei höherem Gehalte sehr erheblich wird. Doch hängt der Grad der Quellung nicht allein von der Grösse des Sodaersatzes, sondern auch von der Gehalte an Fermentgehalte ab. Denn in einer fermentreichen Soda-losung erfolgt bei gleichem Sodaehalte immer eine stärkere Quellung als in einer fermentfreien Lösung.

Diese ersten Erfahrungen veranlassen mich nun zu eingehenderer Untersuchung der Faserstofflösung in Flüssigkeiten mit wechselndem Ferment- und Sodaehalte. Um allen Einwendungen zu begegnen, betone ich die schon früher gemachte Bemerkung, dass ich stets nebem den Versuchen mit fermenthaltigen Soda-Lösungen Controllbeobachtungen mit fermentfreien Lösungen gleicher Concentration ausgeführt habe. In ihnen tritt nur, wenn der Gehalt an kohlensaurem Natron eine gewisse Grenze übersteigt, Quellung, aber

R. Pfüger, Archiv f. Physiologie. Bd. X.
selbst bei 24ständiger Digestion in der Wärme, die Lösung des Fibrins ein.

Die für das Spätere belangreichen Ergebnisse meiner Beobachtungen lassen sich in folgenden Sätzen zusammenfassen:

a) Bei gleichem Gehalte an kohlensaurem Natron wächst mit steigendem Fermentgehalte die Lösungsgeschwindigkeit bis zu einer gewissen Grenze des Fermentreichthums, über welche hinaus weitere Fermentzusatz die Lösungszeit nicht mehr abkürzen vermöge. Diese Grenze wird bei um so niedrigeren Fermentwerthen erreicht, je höher der Gehalt an kohlensaurem Natron.

Den zweiten Satz sei es gestattet durch einige Versuchsbeispiele anschaulicher zu machen.

Versuch. Mit einem fermentreichen Glycerinextracte und einer 1-prozentigen Lösung von kohlensaurem Natron werden zwei Reihen von Verdauungslösungen in folgender Weise bereitet.
Beiträge zur Kenntnisse des Pancreas.

Erste Reihe: Fünf Gläschen (1—5). Jedes erhält 0,1 Co. des Glycerinextractes und 0,9 Co. reinen Glycerin, ausserdem

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wasser</td>
<td>9 Co.</td>
<td>8 Co.</td>
<td>6 Co.</td>
<td>4 Co.</td>
</tr>
</tbody>
</table>

10% Lösung von Soda 0 » 1 » 3 » 5 » 7 »

Zweite Reihe (fünf Gläschen). Jedes Gläschen (I—V) erhält 1 Co. des Glycerinextractes und ausserdem ganz wie oben

<table>
<thead>
<tr>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wasser</td>
<td>9 Co.</td>
<td>8 Co.</td>
<td>6 Co.</td>
<td>4 Co.</td>
</tr>
</tbody>
</table>

10% Sodalösung 0 » 1 » 3 » 5 » 7 »

Der Fermentgehalt der Gläser beider Reihen verhält sich also wie 1:10, der Gehalt an kohlensaurem Natron ist in den entsprechenden Gläsern 1 und I, 2 und II u. a. f. gleich. Alle Gläser wurden, mit gleichen Mengen von Faserstoffロックen versehen, um 940° in das Wasserbad gesetzt.

11°10°: Erste Reihe: In 1 Lösung noch nicht merklich, in 2 deutlich begonnen, von den Gläsern 3, 4 und 5 hat jedes folgende mehr gelöst als das vorhergehende.

11°50°: Jetzt hat auch in 1 die Lösung deutlich begonnen. In den folgenden Gläsern ist sie überall weiter vorgeschritten mit deutlichen Unterschieden der einzelnen Glieder: in 5 nur noch sehr kleiner Rest.

1°: 1 hat etwa die Hälfte gelöst, 2 zeigt einen mässigen, 3 einen noch kleineren Rest, in 4 und 5 sind nur noch Spuren vorhanden.

Wenn man bei derartigen Versuchen auch ein bestimmtes Maass der Lösungsgeschwindigkeit nicht besitzt, sondern nur auf die Schätzung angewiesen ist, so zeigen doch die obigen Reihen mit Sicherheit: 1) dass in beiden mit steigendem Gehalte an kohlensaurem
Natron die Lösungsgeschwindigkeit im Allgemeinen zunimmt; 2) dass bei hohem Fermentgehalte die Soda-Concentrationen von 0,5 und 0,7% einen Unterschied der Lösungsgeschwindigkeit nicht mehr erkennen lassen; dass aber 3) bei geringerem Fermentgehalte (1/4 des vorigen) jene Concentrationen eine Differenz der Lösungsgeschwindigkeit noch unzweifelhaft zeigen.

Bei der Langwierigkeit und Langweiligkeit derartiger Versuchsprotocollen würde es für den Leser ungeniessbar sein, wollte ich aus meinem Tagebuche noch weitere Einzelbeispiele exzerpiren. Ich will nur bemerken, dass bei einer Concentration des kohlensauren Natrons von 0,9—1,2% auch für geringen Fermentgehalt das bei diesem überhaupt erreichbare Maximum der Lösungsgeschwindigkeit erzielt wird.

Geht man über diese letztere Concentration erheblich hinaus so sinkt die Lösungsgeschwindigkeit wieder merklich. Bei geringen Fermentgehalten macht sich eine solche Abnahme bei einer Sodaconcentration von 3% schon zweifellos geltend, bei 6% ist sie sehr bedeutend, doch wird die Fermentwirkung nicht gänzlich unterdrückt.

bei Zusatz von Salpetersäure nur noch eine sehr mässige Trübung, der erstere gerann bei beiden Proceduren noch ebenso stark wie 6 Stunden vorher. Es hatte sich also anfangs viel gerinnbares Albumininat gebildet, welches nach längerer Dauer des Verdauungsprocesses sich weiter umsetzte.

Um eine genauere Einsicht in den Gang des Verdauungsprocesses mit und ohne Zusatz von kohlensaurem Natron zu erhalten, stellte ich folgenden Versuch an, bei welchem mein Assistent Prof. Dr. G. Scheidlen die quantitativ Bestimmungen machte.

Zwei Portionen von je 30 Grm. gut ausgewaschenem und sorgfältig ausgepresstem Fibrin, welche nach Bestimmung einer besonders Probe je 8,209 Grm. bei 100° getrockneter Substanz entsprachen, wurden, die eine (I) mit 100 Ccm. Wasser, die andre (II) mit 100 Ccm. einer einprocentigen Lösung von kohlensaurem Natron und je 0,1 Grm. trocknen Pancreatin um 10h30' zur Verdauung auf das Wasserbad gebracht. Um 11h15' war die Portion II bereits bis auf mässige Fibrinfetzen zu einer trüben Flüssigkeit gelöst, während die Lösung der andern Portion eben erst begonnen hatte. Die Verdauung wurde um 8h Abends unterbrochen, beide Portionen in Eis gestellt und am nächsten Tage die Untersuchung der Verdauungsprodukte begonnen. Die wesentlichen Unterschiede waren folgende:

1) Die Portion II lieferte nur 0,17 Grm. oder 2,07% bei 100° getrockneten ungelösten Rückstandes, Portion I 0,556 Grm. oder 6,77%.

2) Portion II ergab 0,812 Grm. (9,89%o) in der Siedhitze nach Essigsäurezusatz coagulirbaren Albuminates, Port.I 0,579 Grm. (7,05%o).

3) Portion II gab 0,596 Grm. (7,26%o) Pepton, Port.I 0,723 Grm. (8,80%o).

4) Portion II lieferte 1,584 Grm. (19,39%o) in siedendem Alcohollöslicher, wesentlich aus Leucin und Tyrosin bestehender Substanzen, Port. I 2,075 Grm. (25,27%o).

Im Grossen und Ganzen verläuft also der Verdauungsprocess in rein wässriger und in Sodalösung sehr ähnlich. In der letzteren bleibt ein geringerer unlösslicher Rückstand, dagegen eine grössere Menge coagulirbaren Albuminates übrig, während die Peptonmengen weniger differieren, wogegen ohne Sodazusatz grössere Mengen von Leucin und Tyrosin gebildet werden.

Setzt man die Verdauung noch weiter fort, so ergiebt sich darin
R. Heidenhain:

eine constante Verschiedenheit, dass die durch die bekannten übels Gerüche (Indol) sich charakterisierenden Fäulnissprocesse ohne Sodazusatz viel früher eintreten. Die Anwesenheit von Salzen verzögert also die Störung des eigentlichen Verdauungsprocesse durch die Fäulniss.

Wenn ich eine Reihe von Reagensgläsern, welche je 10 Ccm. einer Lösung von kaustischem Natron von dem Gehalte 0,1%o—0,3%o—0,5%o—0,7%o—0,9%o enthalten, mit gleichen Mengen Fibrins bei 35° C. digerire, so erfolgt in allen Gläsern schnelle Quellung und nach kürzerer oder längerer Zeit Lösung des Fibrins, am frühesten in dem Gläsern mit dem höchsten, am spätesten in dem Gläsern mit dem geringsten Alcali gehalt.

Setze ich zu einer eben solchen Reihe von Alcali-Lösungen je 1 Ccm. eines fermentreichden Glycerinextractes, so erfolgt die Lösung in den Gläsern mit 0,1%o früher, als in den stärker alcalisirten und viel schneller als bei gleichem Alcali gehalt ohne Fermentzusatz.
oder bei gleichem Fermentgehalt ohne Alcalizusatz. Die Wirkung des Pancreatin wird also durch geringe Mengen freien Alcalis begünstigt, während bei stärkerem Alcali-Gehalt eine solche Förderung nicht mehr erkennbar ist.

7. Schwächung des Fermentes durch Digestion in der Wärme. Endlich lag im Interesse der festzustellenden Methode die Beantwortung der Frage, ob Digestion von Fermentlösungen in der Wärme eine Aenderung derselben herbeiführe. Einfache Versuche geben eine sehr bestimmte Antwort. Ich stellte ein Gläschen (I) mit 1 Cc. eines wirksamen Glycerinextractes und 7 Cc. Wasser in das Wasserbad und digerirte dasselbe 24 Stunden lang bei 35 °C. Dann bereitete ich eine gleiche Mischung (II) frisch, setzte zu beiden 2 Ccm. einer dreiprozentigen Lösung von kohlensaurem Natron und versah sie mit gleichen Mengen von Fibrinflöcken. Um 10h30 wurden beide in das Wasserbad zurück-
gebracht; schon um 10h40' hatte II den grössten Theil gelöst, um 11h war die Lösung vollendet, während sie um dieselbe Zeit in noch nicht begonnen hatte und sich erst um 11h30 unfrägig bemerklich machte. Durch lange Digestion in wässriger Lösung wird also die Fermentwirkung erheblich geschwächt, offenbar durch theilweise Zerstörung des Pancreatinis. Dasselbe geschieht, wie drei andre Versuche lehrten, wenn das Pancreatin nicht in reinem Wasser, sondern in 1% Sodalösung gelöst ist.

8. Methode zur Vergleichung verschiedener Glycerinextracte auf ihren Gehalt an Pancreatin. Nachdem ich im Vorhergehenden die Bedingungen der Wirksamkeit des Albuminatfermentes nach denjenigen Richtungen, welche für die künftige Ermittlungen von Interesse sind, untersucht hatte, stellte sich das folgende Verfahren als das angemessenste heraus, wenn es sich um die Vergleichung des Pancreatingehaltes verschiedener Glycerinextracte handelt. In einer Reihe von Reagensgläschen werden Mischungen bereitet aus je 1 Cc. der Extracte, 5 Cc. Wasser und 4 Cc. einer 3%igen Lösung von kohlensaurem Natron, so dass die Lösungen 1,2% des letzteren Salzes enthalten. Ich wählte diese Concentration, weil bei derselben für jeden Fermentgehalt das Maximum der bei derselben überhaupt erreichbaren Lösungsgeschwindigkeit hergestellt zu werden schien. Ist die Differenz des Fermentreichthums in den zu vergleichenden Extracten nicht zu gering, so ergeben sich schon bei der Digestion jener Mischungen im Wasserbade mit gleichen Faserstoffmengen Unterschiede der Lösungsgeschwindigkeit, welche die Unterschiede des Pancreatingehaltes erkennen lassen. Für diejenigen Extracte dagegen, welche unter den obigen Bedingungen ihren Faserstoff gleich schnell lösen, muss eine zweite Prüfungsreihe angestellt werden, behufs welcher ich die Extracte auf das 5—15-fache mit Glycerin verdünnne, um von Neuem analoge Mischungen wie die obigen anzufertigen. Treten auch jetzt noch keine Unterschiede der Lösungsgeschwindigkeit hervor, so nehme ich mit den verdünnten Extracten eine dritte Prüfungsreihe vor, bei welcher ich mit der Soda-Concentration auf 0,1—0,3% herabgehe. Bei diesem Verfahren werden durch die letzteren Versuchsreihen oft noch Unterschiede des Fermentgehaltes nachweisbar, welche bei der ersten Versuchsreihe sich nicht herausstellen. Erst wenn auch die letzten Proben keine deutlichen Differenzen der Lösungsgeschwindigkeit ergeben, darf man eines nahezu identischen Fermentgehaltes der ver-
glichenen Extracte versichert sein. — Neben diesen Proben mit Zusatz von kohlensaurem Natron zu den Fermentlösungen wird es aber unter gewissen Bedingungen auch nothwendig, Prüfungen der Extracte in rein wässrigen Lösungen anzustellen. Über die Um-

stände, welche hierzu nöthigen, kann ich erst an späterer Stelle berichten 1).

Die ersten Erfahrungen über die Eigenschaften des Pancreatin waren an dem Glycerin-Extracte eines Ochsen-Pancreas gewonnen worden, welches Nachmittags vom Schlachthofe in mein Institut gebracht und daseit bis zum nächsten Morgen aufbewahrt worden war, bevor es zerrieben und mit Glycerin übergossen wurde.

Bei einer nächsten Extract-Bereitung erhielt ich die Drüse un-
mittelbar aus der Schlächterei noch warm und infundierte sie so-
fort, selbstverständlich nach vorgängigem Zerreiben, mit Glycerin. Obschon das Verhältniss der Drüsensubstanz zum Glycerin genau dasselbe war, wie in dem ersten Falle (1 : 10), und die Extraction ebenso lange fortgesetzt wurde (drei Tage), erwidies sich das Extract unter den günstigsten Bedingungen (in einer Soda-Lösung von 1,2%) absolut wirkungslos.

Ich vermutete, eingedenk der Angaben früherer Forscher, dass es Drüsenzustände gebe, in welchen das Ferment gänzlich fehle, auf eine sogenannte »ungeladene« Drüse gestossen zu sein. Um diesem vermeintlichen, bei dem Bezuge des Materials vom Schlachthofe immer drohenden, Ubelstande zu entgehen, fütterte ich nach den jetzt üblichen Vorschriften einen Hund reichlichst mit Fleisch und tödtete ihn um die 7. Verdauungstunde, in welcher die »La-

1) Ich will nochmals hervorheben, dass alle in diesem Paragraphen mitgetheilten Erfahrungen sich nur auf rohen Faserstoff beziehen. Mir kam es ganz allein darauf an, mir in dem Verhalten desselben gegen das Pancreatin ein sicheres Reagens für dieses Ferment zu schaffen. Ob andere Albuminate andere Lösungsverhältnisse bei Einwirkung des Pancreatin für sich oder bei gleichzeitiger Gegenwart von Salzen zeigen, wird eine besondere Untersuchung lehren müssen.

Bei genauerer Erwägung, ob wohl Verschiedenheiten bei der Herstellung des ersten so wirksamen Ochsenpancreas-Extractes und der letzten unwirksamen Extracte den Grund des verschiedenen Ergebnisses gebildet haben möchten, stellte sich als einziger Unterschied des Verfahrens der Umstand heraus, dass das erste wirksame Extract aus einer Drüse nach 18stündigem Liegen, die drei letzten unwirksamen aus ganz frischen Drüsen gewonnen worden waren.

Bei einem neuen Hunde theilte ich deshalb das Pancreas in zwei Hälften; beide wurden nach sorgfältigem Zerreiben mit Glaspulver mit Glycerin (1 : 10) infundirt, die erste aber sofort nach dem Tode, die zweite nach 24 Stunden. Das erste Extract war in Sodalösung von 1,2% absolut unwirksam, das zweite stark wirksam.

Glycerinextraktion bedenklich sein, wenn das Ferment des Drüsensecretes sich nicht bemerklich machte, und ich zweifle nicht, dass man solche Fermentspuren in jedem frischen Pancreas finden wird, wenn man grössere Quantitäten des Glycerinextractes durch Alcohol fällt und den Niederschlag in einer kleinen Flüssigkeitsmenge wieder löst. Ich werde also in dem Folgenden die lebenden Drüsenzellen als fermentfrei ansehen, wenn schon ich die Möglichkeit eines minimalen Pancreatingehaltes derselben nicht mit vollständiger Sicherheit ausschliessen kann.

Wie dem auch sei, in jedem Falle lässt sich nachweisen, dass dieselben unter normalen Umeiständen stets in mehr oder weniger reichlicher Menge einen Körper enthalten, der, in dem Secrete fehlend, unter gewissen Bedingungen Ferment bildet.

Diese Substanz, welche dem Pancreatin seinen Ursprung giebt, will ich als Zymogen (zygogen, Hefe, Ferment) bezeichnen. Da alle Vermuthen nach auch andre Fermente in den Organen, in welchen sie gebildet werden, aus ähnlichen Mutterkörpern entstehen — für das Pepsin ist ein solcher Ursprung durch Ebstein und Grützner bereits nachgewiesen — so wird das Wort "Zymogen" als allgemeine Bezeichnung für Ferment bildende Körper gebraucht werden und man wird von einem Zymogen des Pancreatin, des Pepsin, des Ptyalin u. s. f. reden können.

Das uns beschäftigende Zymogen hat folgende Eigenschaften:
1) Dasselbe ist löslich in concentrirtem Glycerin, ohne sich zu spalten 1),
2) die Abspaltung von Pancreatin aus demselben tritt ein
 a) in wässriger Lösung, schneller in der Wärme, langsamer bei gewöhnlicher Temperatur;
 b) bei Einwirkung von Säuren.
3) Die Umsetzung wird dagegen erschwert bei Gegenwart von Salzen (kohlensaures Natron, Kochsalz), bei reichlicher Anwesenheit derselben (z. B. in Sodalösungen von 1—1,5%o) fast ganz gehindert.

Diese Angaben habe ich jetzt genauer zu begründen.

Das Glycerinextract einer frischen Drüse enthält, wie wir sehen, kein fertiges Ferment oder doch höchstens Spuren desselben.

1) Bei monatelanger Aufbewahrung der Glycerinlösung scheint mitunter eine langsame Pancreatinbildung in derselben zu beginnen.
R. Heidenhain:

Während das Extract einer Drüse, welche längere Zeit nach dem Tode gelegen hat (ich will der Kürze wegen derartige Extracte II-Extracte, die der frischen Drüse als I-Extracte bezeichnet), in einer Lösung von 1,2% kohlensaurem Natron sehr kräftig wirkt, ist das I-Extract in derselben Lösung in der Regel vollständig unwirksam. Wenn man aber das I-Extract, mit dem 9fachen Volumen Wasser verdünnt, auf seine verdauende Fähigkeit prüft, so erhält man in der mehr oder weniger schnellen Lösung des Faserstoffes einen bündigen Beweis für dieselbe. Wenn man ferner das I-Extract in der obigen Verdünnung bei 35°C. einige Zeit digerirt und erst jetzt mit kohlensaurem Natron bis zu dem Gehalte von 1,2% versetzt, so löst es den Faserstoff schnell. Das I-Extract mus also einen Körper enthalten, der noch nicht Pancreatin ist, der sonst würde es in 1,2% Sodalösung von vornherein kräftig wirksam sein, — der aber in wässriger Lösung Pancreatin bilden kann. Dieser Körper ist eben das Zymogen.

Die Verschiedenheit des Fermentes und seines Mutterkörpers wird sehr anschaulich, wenn man von beiden Extrakten in je drei Gläsern ganz gleiche Lösungen von dem Soda-Gehalte 0—0,3—1,2% bereitet und beide in der Wärme mit Faserstoff digerirt. Für die Pancreatin-Proben nimmt die Wirksamkeit mit steigendem Soda-Gehalte zu, für die Zymogen-Gläschen ab; das Gläser mit 1,2% ist ganz unwirksam. — Ein absolutes Hinderniss für die Pancreatin-Bildung ist die Gegenwart selbst reichlicher Mengen von kohlensaurem Natron nicht, obschon sie die Entstehung des Fermentes ungemein erschwert, wie der folgende Versuch lehrt.

Von einem Hundepancreas infundirte ich 12 Grm. nach gründlichem Zermahlen mit Glaspulver mit 120 Ccm. Wasser, eine gleich grosse Quantität mit 120 Ccm. einer zweiprocentigen Sodalösung. Beide Portionen wurden aon 1h ab bei 40°C. auf dem Wasserbade digerirt. Um 3h wurden von jeder Portion 50 Ccm. in der Kälte filtrirt und im Eiskasten aufbewahrt (w, die wässrige, n1 die Sodalösung). Der Rest wurde weiter digerirt. Um 12h Nachts entwickelte das Wasserinfus Schwefelwasserstoff, am nächsten Morgen noch dasselbe pestilensialisch. Das Sodalinfus wurde noch bis zum nächsten Nachmittage weiter digerirt, ohne übelriechend zu werden und dann ebenfalls filtrirt (n2). Die Prüfung der vier Flüssigkeiten n1, n2, w1 und w2 auf ihren Fermentgehalt ergab:

1) w1 ist sehr fermentreich, n1 sehr fermentarm. — Denn 5 Ccm. w1 mit 5 Ccm. einer zweiprocentigen Sodalösung vermischen, so dass der Gesamtgehalt an Soda 1% betrug, lösten Faserstoff in 25 Mi-
nuten vollständig; 5 Ccm. n₁₁, mit 5 Cc. Wasser verdünnt, so dass das Gemenge ebenfalls 1% an Soda enthielt, branchten dazu 5 Stunden. — Ferner: 1 Ccm. w₁, mit 1 Cc. 2% Sodalösung und 8 Cc. Wasser versetzt, lösten Faserstoff in 2½ Stunden, 1 Cc. n₁ mit 9 Ccm. Wasser verdünnt, noch nicht in 24 Stunden. — Es fehlte also in n₁ das Ferment nicht ganz, war aber doch nur in unverhältnismässig geringer Menge zugegen.

2) Die Portion n₂ enthielt zwar bei Weitem nicht so viel Ferment, wie w₁, aber doch merklich mehr als n₁. In 26 Stunden musste also in dem Sodainfus die Fermentbildung doch einige Fortschritte gemacht haben. w₁ war ganz fermentfrei; das entwickelte Ferment war bereits wieder zerstört worden.

Einen ähnlichen Unterschied zwischen dem wässrigen und dem Sodainfus des Pancreas beobachtet man nicht, wenn man zur Infusion nicht eine frische, sondern eine 24 Stunden bei Zimmertemperatur aufbewahrte Drüse verwendet, die also bereits fertiges Ferment enthält. Eine solche gibt das Ferment an die Sodalösung mindestens ebenso leicht, ja, wie es in einem Versuche unzweifelhaft der Fall war, sogar leichter ab, als an Wasser, so dass das Sodainfus einer solchen Drüse dem Wasserinfus an Wirksamkeit nicht nachsteht.

Der Leser sieht, wie vortreffliche Eigenschaften das kohlen- saure Natron in sich vereinigt, um es zu einem für das Studium der Fermentbildung sehr wichtigen Reagens zu machen. Der Umstand, dass dasselbe bei steigender Concentration die Einwirkung des freien Fermentes auf den Faserstoff beschleunigt, dagegen die Umsetzung des Zymogen in Ferment verzögert oder nahezu verhindert, macht dasselbe zu einem unentbehrlichen Unterscheidungsmittel jener beiden Körper. In wässriger Lösung verdauen beide das Fibrin, das Pancreatin unmittelbar, das Zymogen nach vorgängiger Umsetzung. Wird eine frisch bereitete wässrige Lösung, von welcher es fraglich ist, welcher der beiden Körper sie enthält, nach Zusatz von 1,2% kohlensaurem Natron wirksam, so ist die Gegenwart des Fermentes selbst, wird sie dadurch unwirksam, so ist die Gegenwart seines Mutterkörpers nachgewiesen.

Kochsalz verhält sich dem Zymogen gegenüber ähnlich, wie Soda; aber jenes hindert die Bildung des Pancreatin doch in viel weniger entschiedener Weise als dieses, — ganz ähnlich wie es ja auch die Wirkung des fertigen Fermentes weniger energisch unterstützt, als das kohlen saure Natron.

Die Abspaltung des Pancreatin in dem Drüsegewebe zu, wie ich im Laufe meiner Untersuchungen fand, durch Zusatz von Essigsäure in kürzester Zeit bewerkstelligt werden. Wenn man frisches Pancreas zuerst mit Glaupolver zu feinem Schlamm erreibt, dann auf je 1 Grm. der Drüensubstanz 1 Ccm. einprozentige Essigsäure hinzusetzt, die Mischung noch fernere 10 Minuten gründlich durcharbeitet und darauf mit Glyzerin (1 : 10) infundirt, so hält man nach drei Tagen ein sehr wirksames Filtrat, das in gewisser Beziehung vor dem Glyzerinfusse der 24 Stunden aufbewahrten Drüse grosse Vortheile bietet. Das letztere filtrirt nämlich immer langsam und mehr oder weniger trübe, das erstere schnell und klar. Leider habe ich diese Methode erst kennen gelernt, als die im nächsten Paragraphen zu besprechenden Versuche schon zu weit vorgerückt waren, um sie für dieselben noch in ausgiebiger Weise zu verwerten, deshalb sind meine Erfahrungen darüber nicht so zahlreich und so gesichert, wie betreffs der ersten Methode; doch hat mich in den Fällen, in denen ich sie versuchte, die Essigsäure nie im Stiche gelassen, wenn schon bei grosser Zymogenarmuth des Pancreas die Einwirkung der Säure auf das frische Organ entschieden weniger Ferment frei machte, als 24stündige Aufbewahrung der Drüse.

In der ärztlichen Praxis scheint sich die Benutzung des Pancreas-Fermentes ähnlich einbürgeren zu wollen, wie die des Pepsins. Für die Darstellung wirksamer Fermentlösungen in grösseren Qua-
titätten würde ich vorschlagen, die Drüse erst nach 24ständigem Liegen in der obigen Weise mit Essigsäure und Glycerin zu behandeln; man wird dann sowohl möglichst ergiebiger Fermentbildung als schneller und klarer Filtration des Glycerinextractes sicher sein.

Ich darf hier nicht unerwähnt lassen, dass Kühne in einem besonders Falle Ähnliches beobachtet hat. Er giebt von den un- wirksamen Drüsen, die sich durch besondere Durchsichtigkeit auszeichnen, an, dass sie zwar nicht Pancreatin enthalten, wohl aber eine in Wasser löschliche Substanz, welche in schwach saurer (nicht in alcalischer) Lösung bei Digestion in der Wärme Ferment bildet. Was Kühne für eine Eigenthümlichkeit nur eines besonderen Drüsenszustandes hält, hat Allgemeingültigkeit für jedes Pancreas.

§ 5. Der Gehalt des Pancreas an Zymogen während des Ablaufes einer Verdauungsperiode.

Jetzt endlich, nachdem die Erfahrungen der beiden letzten Paragraphen gesammelt worden, können wir an die ursprünglich gestellte Aufgabe treten, die in dem zweiten Capitel mitgetheilten histologischen Befunde auf ihre physiologische Bedeutung zu prüfen.
Als hauptsächliche Veränderungen der secretorischen Drüsenzellen während des Ablaufes der Verdauung hatten sich folgende ergeben: In der ersten Periode verkleinern sich die Zellen im Ganzen. Das Volumen ihrer körnigen Innenzone nimmt ab, nicht selten bis zum gänzlichen Schwinden derselben; der Umfang der homogenen Aussenzonen nimmt verhältnismässig zu.

In der zweiten Periode schwellen die Zellen im Ganzen an. Dies beruht ganz wesentlich auf mächtiger Entwicklung der körnigen Zone, neben welcher die homogene Aussenzone sehr zurücktritt, oft auf einen kleinen, die Umgebung des Kernes einnehmenden Rest geschwunden.

Bei längerer Nahrungsentziehung (über 30—40 Stunden) tritt während die Zellen mittlere Grösse annehmen, die Aussenzone wird stärker hervor, die Innenzone wird durchgehends etwas kleiner gleichzeitig etwas weniger hell.

Diese mit den bisherigen Angaben wenig congruierenden Sätze werde ich jetzt genauer zu begründen haben.

durchfiltrirten Kubikcentimeter zur Prüfung verwandt werden, man muss vielmehr die Ansammlung einer grösseren Menge Filtrates abwarten. Die Glycerin-Extracte II filtriren in der Regel merklich schneller als die Extracte I. Die Prüfung der Extracte geschieht nach den in §. 3 sub 7 dargelegten Grundsätzen, die der I-Extracte in destillirtem Wasser, die der II-Extracte in einer Soda-Lösung von 1,2/6.

Zu einer ersten Versuchsreihe benutzte ich folgende Hunde:

<table>
<thead>
<tr>
<th>Stunde nach der letzten Fütterung</th>
<th>Zustand des Magens und der Chylusgefäße</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 4 3/4</td>
<td>Leer</td>
</tr>
<tr>
<td>C 5 1/4</td>
<td>Stark gefüllt</td>
</tr>
<tr>
<td>D 10</td>
<td>Nicht notirt</td>
</tr>
<tr>
<td>E 14</td>
<td>Magen bereits leer, Chylusgefäße stark gefüllt</td>
</tr>
<tr>
<td>F 19</td>
<td>Im Magen noch mässige Reste, Chylusgefäße gefüllt</td>
</tr>
</tbody>
</table>

Die II-Extracte, in Sodalösung von 1,2/6 geprüft (indem 1 Cc. Extract zu 4 Cc. einer dreiprocentigen Sodalösung und 5 Cc. Wasser gesetzt wurde), ergaben, dass D, E, F viel stärker wirkten, als C. A stand in der Mitte zwischen C einerseits und D, E, F anderseits. Um die Differenzen der letzteren drei Extracte zu finden, mussten Verdauungslösungen, die in 10 Cc. bei einem Sodagehalte von 1,2/6 nur 0,3 Cc. Extract enthielten, bereitet werden. So ergab sich, dass F stärker als E, und dieses stärker als D wirkte. Die Reihenfolge des Zymogengehaltes war also, von C, als dem schwächsten Extracte, be-ginnend:

C A D E F.

Die I-Extracte wurden, je 1 Cc. mit 9 Cc. Wasser versetzt, unter-
B. Heidenhain:

sucht und ergaben ganz dieselbe Reihenfolge, nur liess sich zwischen E und F kein Unterschied erkennen.

Bei einer zweiten Versuchsreihe wurden folgende Hunde verwandt:

<table>
<thead>
<tr>
<th>Stunde nach der letzten Mahlzeit</th>
<th>Zustand des Magens und der Chylusgefäße</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>6</td>
</tr>
<tr>
<td>J</td>
<td>12</td>
</tr>
<tr>
<td>K</td>
<td>18</td>
</tr>
<tr>
<td>L</td>
<td>24</td>
</tr>
<tr>
<td>M</td>
<td>49</td>
</tr>
<tr>
<td>N</td>
<td>116</td>
</tr>
</tbody>
</table>

Sechs Prüfungen der II-Extracte mit Veränderungen der Ferment- und Soda-Concentration ergaben ohne Ausnahme als Reihe der Wirksamkeit in aufsteigender Folge H I K L.

N wirkte schwächer als M; für diese beiden war es zweifellos, dass sie schwächer als L wirkten, ob ihnen aber in der Reihe vor oder hinter K der Platz gebühre, konnte nicht mit völliger Sicherheit bestimmt werden.

Die I-Extracte ergaben die mit der obigen ganz übereinstimmende Reihe

H I M K L,

hier blieb aber die Stellung von N, ob vor, ob hinter M, fraglich.

Beide Reihen weisen also nach, dass das Pancreas 14—24 Stunden nach der Nahrungsaufnahme reicher an Zymogen ist, als 5—12 Stunden nach derselben, dass aber bei längerer Nahrungsentziehung der Zymogengehalt wieder geringer wird, ohne das während der ersten Hälfte der Verdauung nachweisliche Minimum zu erreichen.

In vollständigster Übereinstimmung mit dem Zymogengehalte stand bei allen Drüsen das Verhalten der secernirenden Zellen; die Ausbildung ihrer körnigen Zone giebt einen sichern Massstab für das zu erwartende Resultat der physiologischen Prüfung.

Dieses Ergebniss widerspricht nun aber freilich in denkbar schroffester Weise den heute vertretenen Anschauungen. Nach diesen soll die Drüse eines Thieres, welches längere Zeit gehungert hat, fermentarm sein und erst nach erfolgter Nahrungszufuhr sich mit

Die erste umfasste wiederum 4 Hunde, welchen aber statt beliebiger Fleischquantitäten nur etwa die Hälfte der Portionen, welche gefässige Hunde zu verschlingen pflegen, gegeben worden waren.

<table>
<thead>
<tr>
<th>Std. nach der letzten Fütterung</th>
<th>Zustand des Magens und der Chylusgefäße</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ . . . 6$\frac{1}{2}$</td>
<td>Magen ziemlich stark gefüllt; Chylusgefäße sehr stark gefüllt.</td>
</tr>
<tr>
<td>α . . . 14$\frac{1}{4}$</td>
<td>Im Magen mässige, ganz erweichte Reste, Chylusgefäße schwach gefüllt.</td>
</tr>
<tr>
<td>β . . . 21</td>
<td>Im Magen nur noch Knorpelreste; Chylusgefäße leer.</td>
</tr>
<tr>
<td>δ . . . 31</td>
<td>Chylusgefäße leer.</td>
</tr>
</tbody>
</table>

Bei diesen Thieren bereitete ich die II-Extracte in gewöhnlicher Weise, die I-Extracte aber nach der Methode der sofortigen Ansäuierung der zerriebenen Drüsenubstanz mit 10% Essigsäure. Beide Extracte ergaben, dass die Drüse des Hundes δ am stärksten wirkte, dann folgte β, dann aber γ und zuletzt α. Der Unterschied zwischen β und δ unter sich, wie zwischen α und γ unter sich war gering, dagegen die Differenz zwischen β und δ einerseits, α und γ andererseits sehr ausgeprägt. Dass der Zymogengehalt zwischen der 6.—7. Stunde (γ) noch nicht so tief gesunken war, als um die 14. Stunde (α), hatte vielleicht seinen Grund in der geringeren Dosierung des Futters.

In einer ferner Reihe wurden zwei Hunde benutzt.

<table>
<thead>
<tr>
<th>St. nach d. Fütterung</th>
<th>Zustand des Magens u. der Chylusgefäße</th>
</tr>
</thead>
<tbody>
<tr>
<td>U . . . 7</td>
<td>Magen enthält reichliche, z. Th. noch ganz unangegriffene Fleischstücke; Chylusgefäße mässig gefüllt.</td>
</tr>
<tr>
<td>V . . . 20</td>
<td>Im Magen mässige, ganz erweichte Reste. Chylusgefäße stark gefüllt.</td>
</tr>
</tbody>
</table>

Von beiden Thieren konnte, da der grösste Theil des Pancreas zu andern Zwecken benutzt wurde, nur eine Portion von je 8 Grm. zur Glycerin-Infusion verwandt werden. Die zerriebene Drüsenub-
stanz wurde vor dem Aufgessen des Glycerins mit einprocentiger Essigsäure 10 Min. lang behandelt, um das Ferment abzuspalten. Beide Extracte waren wirksam, aber V in sehr viel höherem Maße, entsprechend der Differenz des mikroskopischen Bildes, welches für U sehr ausgeprägt das erste, für V sehr ausgeprägt das zweite Stadium zeigte.

Sodann habe ich noch die Drüsen zweier Hunde verglichen, nach der letzten Nahrungsaufnahme.

| X | 48 1/2 | Magen leer. |
| Y | 29 | Magen enthält noch kleine Reste, Chylusgefäße schwach gefüllt, |

Wenn schon meine Erfahrungen über den Wechsel des Zymogengehaltes in dem Pancreas während des Ablaufes einer Verdauungsperiode unter sich eine solche Uebereinstimmung zeigten, dass ich in denselben einen im Wesentlichen unverfälschten Ausdruck des wirklichen Geschehens gewonnen zu haben glaube, so musste es mir doch wünschenswerth sein, über die Ursachen, welche frühere Beobachter zu andern Resultaten geführt haben, ins Klare zu kommen. Leider muss ich von vornherein bemerken, dass mir
Diese Ermittlung keineswegs vollständig gelungen ist. Aber bei meinen hierauf gerichteten Bestrebungen haben sich doch einige die Beurteilung der ganzen Frage brauchbare Winke gegeben.

Alle jene Beobachter haben die Wirksamkeit wässriger Infuse der Drüse untersucht. Das in das Infus übergegangene Ferment entwickelt sich aber aus dem in der frischen Drüse enthaltenen Zymogen erst allmählich während der Dauer der Digestion. Die Wirksamkeit des Infuses wird mithin abhängen nicht bloss 1) von dem Reichthum des Organs an Zymogen, sondern auch 2) von der Geschwindigkeit, mit welcher sich aus diesem das Pancreatin absättelt. Dieser letztere Process wird, so weit ich sehe, von vielerlei Umständen beherrscht; er wird u. A. beschleunigt durch Säuren, verzögert oder selbst gehemmt durch Salze. Aus der grösseren oder geringeren Wirksamkeit eines Infuses darf man also nicht ohne Weiteres auf den grösseren oder geringeren Reichthum der Drüse an — ich will gar nicht sagen Ferment, denn dieses ist ja niemals in wesentlicher Quantität präformirt, sondern an zymo-

3 Grm. Pancreassubstanz des Hundes R, welcher 8 Stunden vor dem Tode reichlich mit Fleisch gefüttert war, wurden nach vorgängigem Zerreiben mit Glaspulver mit 30 Ccm. Wasser um \(\frac{3}{4} \) d Nachmittags ins Wasserbad gebracht. Um 6h wurde das Infus in der Kälte filtrirt, um 7h wurde 1 Ccm. des im Eiskasten aufbewahrten Filtrates zur Prüfung auf seinen Gehalt an freiem Ferment mit 4 Ccm. Sodalösung von \(\frac{3}{4} \)° und 5 Ccm. Wasser mit Faserstoff in das Wasserbad gebracht; gleichzeitig zur Prüfung auf Zymogen ein zweiter Cubikcentimeter mit 9 Ccm. Wasser verdünnt mit Faserstoff angestellt. Um 11h45' Abends hatte die letztere Probe ihren Faserstoff bis auf einen sehr kleinen Rest gelöst, während an der ersteren weder um diese Zeit noch am nächsten Morgen eine merkliche Lösung sich zeigte. Die Prüfung wurde am nächsten Tage mit demselben Erfolge wiederholt. Das Pancreasinfus enthielt also nach \(\frac{1}{2} \) stündiger Digestion keine merklichen Mengen freien Fermentes, dagegen merkliche Mengen Zymogen gelöst.

Gleichzeitig mit dem obigen Versuche wurde ein zweiter ganz genau ebenso mit dem Pancreas eines 18 Stunden vorher gefütterten Hundes S angestellt. Das Infus enthielt reichlich freies Ferment (Probe mit kohlen. Natron), dagegen verdaute die mit Wasser verdünnte Probe beträchtlich langsamer als die entsprechende des ersten Hundes: das Infus war also arm an Zymogen.

Die im Eiskasten aufbewahrten filtrirten Infuse wurden am nächsten Morgen von 11h bis 3h bei 35° C. weiter digerirt. Das Infus des Hundes S entwickelte jetzt Schwefelwasserstoff, ein Zeichen
der beginnenden Fäulniss, das des Hundes R war noch vollständig geruchlos und gab keine Schwefelwasserstoffreaction. Eine neue Prüfung auf freies Pancreatin (Probe mit kohlensaurem Natron) ergab jetzt für das früher fermentfreie Infus R einen reichlichen Fermentgehalt, während der des Infusses S fast ganz geschwunden war.

Wir sehen also, dass das Infus der Drüse R nach 21/2 stündiger Digestion keine merklichen Mengen freien Fermentes, nach sechsständiger Digestion reichliche Quantitäten enthielt; das Infus der Drüse S nach 21/2 stündiger Digestion umgekehrt an Ferment ziemlich reich, nach 6 stündiger Digestion fast fermentfrei war. Nach 21/2 Std. war die eine Drüse »wirksam«, nach 61/2 Std. die andere. Welche Drüse war nun die »geladene«?

An Zymogen enthielt U1 schon merkliche Mengen, wenns schon nicht so viel wie V1. Bei der weiteren Digestion sank der Zymogen-Gehalt in dem Infuse V, während er in U stieg, so dass er von der Probe U5 ab grösser wurde als in V2. Er erreichte in U6 sein Maximum und nahm von da bis U7 wieder ab. Es kann also ein Drüseninfus (U) während der ganzen Dauer der Digestion frei von Pancreatin sein, dagegen nicht unerhebliche Mengen von Zymogen enthalten. Dieses setzt sich in dem Infuse selbst nicht ohne Weiteres in Pancreatin um, denn keine mit Zusatz von Soda (1,2%) angestellte Probe ergab eine Fibrinlösung, dagegen fand eine solche Umsetzung statt nach starker Verdünnung des ursprünglichen Infuses mit Wasser, denn alle 7 Proben wurden verdaunungsfähig, nachdem sie mit dem 9fachen Volumen Wasser versetzt worden waren. In dem unverdünnnten Infuse müssen also Hindernisse der Umsetzung
Beiträge zur Kenntniss des Pancreas.

wirksam gewesen sein, welche durch den Wasserzusatz beseitigt wurden. Nichts liegt näher als die Annahme, dass ein zu hoher procentischer Salzgehalt die Hemmung herbeigeführt habe.

Ein in letzterer Beziehung sehr ähnliches Resultat ergab ein dritter Doppelversuch, angestellt mit den Hunden X (Tötung 43 1/2 St. nach reichlicher Fleischmahlzeit) und Y (Tötung in der 19. Verdauungshälfte). Von beiden Hunden wurden 10 Grm. Pancreas-
substanz mit 100 Ccm. Wasser um 9h40' in das Wasserbad gebracht. Proben der Infuse wurden um 11h (X₁ und Y₁), 12h (X₂ Y₂), 1h30' (X₃ Y₃), 3h (X₄ Y₄), 5h (X₅ Y₅), 7h (X₆ Y₆), 9h (X₇ Y₇) entnommen, alle Proben im Eiskasten filtrirt und am nächsten Tage untersucht. Das Infus X begann um 6h, das Infus Y um 9h Schwefelwasser-
stoff zu entwickeln.

Die Prüfung auf freies Pancreatin ergab für das Infus X den Mangel desselben in X₁, X₃, X₅, X₆, während X₂, X₄, X₇ ziemlich reich daran waren, X₅ am meisten, X₇ am wenigsten. Alle Proben des Infuses Y enthielten zwar Ferment, aber nur Y₁ und Y₇ in einiger, obschon geringerer Menge als die obigen drei X-Proben, während die andern Y-Proben nur Spuren nachweisen liessen.

Zymogen war in allen Proben vorhanden; der Gehalt daran nahm in beiden Infusen bis zur vierten Stunde zu, dann wieder ab.

Wenn ich nun diese Erfahrungen mit der schon früherhin behandelten Thatsache, dass 1) die Bildung freien Fermentes durch Zusatz von Salzen und durch Gegenwart freier Säure modificirt wird, 2) Digestion in der Wärme freies Ferment zerstört, zusammenhalte, so scheint es mir unzweifelhaft, dass in einem wässrigen Pancreas-
infuse eine grosse Anzahl variabler Bedingungen zusammenwirkt, welche die Entwicklung freien Fermentes und den jeweiligen Gehalt an demselben beherrschen, so dass wenig Aussicht vorhanden ist, aus dem Grade der Wirksamkeit solcher Infuse einen einigermassen sichern Rückschluss auf den Zymogen-Gehalt der Drüse ableiten zu dürfen. Von der weiteren Verfolgung dieses Gegenstandes habe ich mich durch die ungemein grosse Verwicklung desselben abhalten lassen, die mir bei jedem Schritte nur zeigte, dass ohne eine eingehendere Kenntniss der chemischen Constitution des Pancreasge-
webes, namentlich aber des Zymogens und des Pancreatin, hier schwerlich lohnende Früchte zu pflücken sind. Von den mancherlei vereinzelten Beobachtungen, welche mir bei Gelegenheit der obigen und einiger anderer Versuchsreihen aufgestossen sind, will ich nur
noch zwei hervorheben: 1) dass der Fäulnissprocess des Pancreas-
gewebes bei der Digestion mit Wasser, soweit derselbe sich durch
Schwefelwasserstoffentwicklung kund giebt, von ganz andern Bein-
gängen als der Fermententwicklung in demselben abhängen scheint;
denn sonst müsste die zymogenreichere Drüse auch schneller faul,
was durchaus nicht immer der Fall ist; 2) dass Zusatz von Salzen,
welche ja die Umsetzung des Zymogen in Pancreatin erschwert
noch den zweiten Einfluss hat, den Eintritt der Fäulniss in den
Pancreas-Infuse sehr wesentlich hinauszuschieben.

Dritte Capitel.

Einiges über die Absonderung des pancreaticum Saftes.

Eine überraschend grosse Zahl von Pancreasfisteln, welche ich im
Verlaufe dreier Jahre angelegt habe, um den Einfluss des Nerven-
systems auf den Secretionsvorgang zu studiren und um die Ur-
sachen der Veränderungen, welche allmählich das Secret bei längerem
Bestande einer Fistel erleidet, kennen zu lernen, hat mir reichlich
Gelegenheit gegeben, mich über die Eigenschaften dieser inter-
essanten und doch noch ihrer Genese nach so wenig bekannten
Flüssigkeit zu informiren. Da meine Untersuchung ganz spezielle
Zielpunkte im Auge hatte, wurde die Erreichung dieser besonderen
Zwecke auch natürlich bei den Versuchen stets in den Vordergrund
gestellt. Dennoch kann ich es, weil ich im Folgenden mich darauf
zurückzubeziehen habe, nicht umgehen, meine Erfahrungen über
die allgemeinen Eigenschaften des Bauchspeichels vorzustellen.

Sie schliessen sich vollständig den Schilderungen an, welche
an verschiedenen Orten C.l. Bernard gegeben hat. Dieser geniale
Forscher betonte bei allen seinen zu den verschiedensten Zeiten
ggebenen Darstellungen die ungemeine Veränderlichkeit des pan-
creatischen Saftes bezüglich seiner chemischen Zusammensetzung.
Die extremsten Unterschiede zeigen auch nach meinen Erfahrungen
auf der einen Seite eine Flüssigkeit, welche äusserst langsam secer-
nirt wird, eine zähe, fast fadenziehende Beschaffenheit hat, in der
Kälte zu einer durchsichtigen, bei Körpertemperatur sich wieder ver-
Beiträge zur Kenntniss des Pancreas.

Was normaler Drüsenzustand sei, dafür giebt Bernard scharfe Criterien nicht an. Er betont nur immer wieder und wieder in all-

So wird auf der einen Seite ein abnormer Zustand des Pancreas als Ursache einer permanenten Erregung der Drüse zur Thätigkeit und einer damit einhergehenden Aenderung der secrernirten Flüssigkeit angesehen. Andrerseits liegen aber auch Andeutungen dafür vor, dass auch eine normale Drüse ein dünnflüssiges Secret liefern könne. Bern ard selbst giebt an, dass gegen das Ende der Verdaunung das Secret ärmer an gerinnger Substanz werde. Kühne (Lehrbuch der physiologischen Chemie S. 113) bemerkt, dass man unter Umständen auch aus temporären Fisteln ein verdünntes Secret erhalten kann, nämlich in späteren Stunden nach der Operation, zuweilen auch gleich von Anfang an, wenn die Fistel in der 12.—15. Stunden nach der Nahrungsaufnahme angelegt wurde. »Man hat deshalb Grund zu vermuten, dass die dünnflüssige Secretion allein nicht immer eine Veränderung in der Drüse bezeugt, sondern dass nur das Fehlen einer sehr concentrirten Beimischung, wenn es dauernd stattfindet, das Abnorme repräsentirt.« Kühne vermutet ferner, dass das, was die Drüse zur Secretion veranlasst, in Reizvorgängen sensibler Apparate des Magens und der Darmschleimhaut zu suchen sei, von denen aus reflectorisch auf die Pancreassmenn gewirkt werde. Bei der, bereits von Cl. Bernard angewandten, Reizung der Magenschleimhaut durch Aether könne man zwar Secretion herbeiführen, aber die Beschaffenheit des Secretes nicht beeinflussen, das 6 Stunden nach der Nahrungsaufnahme stets zäh-
flüssig, 15 Stunden nach derselben auch aus einer soeben angelegten Fistel selbst nach Aetherinjection in den Magen stets dann fließt.

Abhängigkeit der Concentration von der Absonderungsgeschwindigkeit
deutlicher hervortrat, als ohne diese Operation.

Wie der Leser sieht, enthält die vorliegende Literatur ums
Gegenstandes noch keineswegs ausreichende Gesichtspunkte, um die
Bedingungen, von denen der Eintritt der Secretion überhaupt und
von denen der Gehalt des Secretes an festen Bestandtheilen abhängt,
mit Sicherheit zu beurtheilen. Meine Beobachtungen bringen einige
neue Material zu dem vorhandenen hinzu, sind jedoch weit entfernt,
die Einsicht bis zu dem Grade zu fördern, wie sie für andre Drüsen,
a. B. für die Speicheldrüsen, glücklicher Weise gefördert worden ist.

§. 8. Die histologischen Veränderungen des Pancreas
bei permanenten Fisteln.

Die Störungen, welche nach Anlegung permanenter Pancreas-
fisteln in die secretorische Function der Drüse eingeführt werden,
sind bei verschiedenen Versuchstheieren sehr verschiedenem Grades.
Cl. Bernard führt vereinzelte Beispiele glücklich verlaufener Fistel-
operationen an, bei welchen die Secretion mehrere Tage nach der
Operation ihren intermittirenden Typus beibehielt und der nur nach
der Aufnahme von Speisen spärlich fliessende Saft beim Kochen
vollständig gerann. Derartige Fälle sind zwar im Ganzen selten.
Doch habe auch ich mehrere beobachtet, die ein ähnliches Resultat
liefern. In der Regel wird bereits am Tage nach der Operation
ein sehr dünnes Secret geliefert, das in glücklicheren Fällen, wie
eine Anzahl der von Bernstein veröffentlichten wie der von mir
beobachteten zeigt, während des Hungerns nur langsam oder selbst
gar nicht fliesset, in den meisten Fällen dagegen nach einigen Tagen
continuirlich mit solcher Geschwindigkeit abtropft, dass die Thiere
fortwährend von Saft triefen und die Haut ihres Bauches von der
sie netzenden Flüssigkeit stark angeätzt wird.

Wie oben bemerkt, nimmt Cl. Bernard an, dass in einer
solchen Drüse der specifische Secretbestandtheil, die coagulable Sub-
stanze, erschöpft sei, weil keine Secretionspausen für die Bildung derselben
eintreten. Er hat mit dem feinen Beobachtungstache, der
seine Arbeiten so oft charakterisirt, das wirkliche Verhalten geahnt,
ohne freilich positive Nachweise für seine Behauptung durch Unter-
suchung der Drüse zu geben.

Eine Drüse, welche einige Zeit continuirlich, ohne Pausen währ-
Beiträge zur Kenntniss des Pancreas.

rend des Hungerzustandes, abgesondert hat, entwickelt nach dem Tode bei 24ständigem Liegen nur geringe Mengen Ferment, um so geringere, je prägnanter der gleich zu beschreibende anatomische Zustand entwickelt ist. Das mikroskopische Bild der Fisteldrüse hat nämlich gegenüber dem einer normalen, wesentliche Veränderungen erfahren, die, mit der Dauer des Bestehens der Fistel und der damit verbundenen Secretionsstörung immer augenfälliger sich herausbildend, in kurzen Worten darin bestehen, dass die secretorischen Zellen ihre körnige Innenzone bis auf hier und da erhaltene sehr spärliche Reste verlieren. Ein Blick auf die Fig. 4 und ein Vergleich derselben mit den Figuren 1 und 2 ersetzt die weitläufige Beschreibung. Der Unterschied des mikroskopischen Bildes einer normalen und einer solchen Fisteldrüse ist so enorm, dass die beiden Bilder kaum demselben Organe zu entsprechen scheinen. Ich muss ausdrücklich bemerken, dass ich das Material für die mikroskopischen Präparate nie von der die Fistel unmittelbar umgebenden Parthie der Drüse entnommen habe, welche in der Regel die deutlichsten Zeichen der Entzündung zeigt und durch Adhäsionen mit der Umgebung verlötet ist, sondern von den Enden der beiden Hauptlappen der Drüse, welche dem Orte der Verwundung so fern liegen, dass an ihnen unmittelbare Folgen des Traumas und der auf dieses folgenden entzündlichen Reaction nicht mehr zu sehen waren.

Die Natur der Veränderung, welche die Drüsenzellen erlitten haben, ergiebt sich aus einem Vergleiche der Fig. 4 mit der Fig. 2. Die letztere zeigt (s. Cap. 1 §. 2) die Gestaltung der Drüse, nachdem sie während der ersten 6—10 Stunden nach der Ingestion von Speisen stark secernirt hat und ihr Zymogenehalt sehr erheblich gesunken ist. Die Zellen der secernirenden Schläuche lassen hier durchgängig eine erhebliche Verkleinerung ihrer körnigen Innenzonen sehen, ab und zu ist dieselbe ganz geschwunden. Bei der Fisteldrüse ist das letztere fast ausnahmslos der Fall. Die Metamorphose, welche die secretorischen Elemente während eines Verdauungsactes durchmachen, sind bei der continuirlichen Secretion, die eine länger bestehende permanente Fistel hervorruft, bis zu einem noch höheren Grade gediehen. Dort werden sie bei dem Nachlasse der Secretion gegen das Ende der Verdauung und nach demselben wieder rückgängig, die Zellen erfahren eine restitution ad integrum, indem sie aus dem Zustande Fig. 2 in die in der Fig. 3 und 1 gezeichnete
Verfassung übergehen. Die continuirliche Absonderung bei kager
bestehender Fistel macht diese Reconstruction der Zellen unmöglich,
deshalb kann hier das Secret auch niemals die Beschaffenheit wieder
annehmen, welche dem Absonderungsprodukte einer normalen Drüse
entspricht.

Ich brauche wohl nicht besonders darauf hinzuweisen, dass in
diesen Erfahrungen der bündigste Beweis für meine bereits oben
vertheidigte Annahme liegt, dass das Material für die Ferment-
bildung in dem körnigen Theile der Zellen gegeben ist. Die Ver-
bindung der mikroskopischen Analyse der Fisteldrüse mit der phy-
siologischen Erfahrung, dass das continuirlich abgesonderte Secret
derselben fermentfrei oder doch mindestens im Vergleich zu den
Safte einer normalen Drüse äusserst fermentarm ist und dass eine
solche Drüse auch nach dem Tode nur geringe Mengen von Fer-
ment bildet, scheint mir jeden Zweifel auszuschliessen 1).

1) Ich habe mir unsägliche Mühe gegeben, in den Duct. pancreatics
eine Cæuli einzubeihen, um zu ermitteln, ob nach Beseitigung des durch
die Operation in den ersten Tagen herbeigeführten Reizzustandes die Drüs
im Stande sei, zu ihrem normalen anatomischen und physiologischen Ver-
halten zurückzukommen. Meine Bemühungen sind aber trotz aller erdenkbar
Abänderungen des Versuchsverfahrens durchaus gescheitert. Nach einigen
Tagen fiel die Cæuli stets wieder aus. In dem glücklichsten Falle, der mir
vorgekommen ist, blieb sie bis zum 7. Tage liegen. Am besten bin ich nach
vielfachem Experimentiren bei folgender Operationsweise fortgekommen: Ich
eröffne die Bauchhöhle in der Línæ alba an einer Stelle, die etwa 2 Fächer
breit unter dem Proc. xiphoideos beginnt und sich nur auf wenige Centi-
meter nach abwärts erstreckt. Nachdem ich mittels des Zeigefingers der
rechten Hand das Duodenum aufgesucht, welches man bei leerem Magen in
seiner abgeplatteten Gestalt leicht erkennen lernt, ziehe ich das absteigende
Theil desselben nur soweit aus der Bauchwunde heraus, dass die Einmün-
dungstelle des pancreatischen Ganges zugänglich wird. Dieser Gang wird
in den meisten Fällen nach folgendem Merkzeichen leicht gefunden. Wo
der untere Lappen des Pancreas sich von der concaven Seite des Duodenums
entfernt, um sich weiter in das Mesenterium zurückzuziehen, so dass zwischen
Darm und Drüse eine durchsichtige Mesenterialbrücke über allen bleibt, geht in
diese eine constant vorkommende dicke Vene hinein. Oberhalb der Ueb-
gangstelle dieser Vene liegt das Pancreas der Darmwand unmittelbar an;
in geringen Abständen unter einander sind zwischen beiden größere Gefä-
brüchel ausgespannt. Die Mündung des Ganges liegt in der Regel zwischen
dem ersten und zweiten, seltener zwischen dem zweiten und dritten Bündel.
im ungünstlichsten Falle grade von einem der Bündel bedeckt. Man findet
Ich will nicht unerwähnt lassen, dass ähnliche Veränderungen in dem Pancreas bei viel weniger eingreifenden Operationen, als es die Etablierung einer Dauerfistel ist, zur Beobachtung gelangen. Ich zog einem Hunde am 22. November 1873 einen Faden durch einen Lappen des Pancreas und vernähte die Bauchwunde sofort. Schon am nächsten Tage frass das Thier begierig und zeigte kein Zeichen des Uebelbefindens. Am 25. wurde, während der Hund sich in voller Verdauung befand und die Chylusgefäße prall milchweiss angefüllt waren, eine Fistel angelegt. Das Secret floss zwar mit mässiger Geschwindigkeit (in 34 Min. wurden 0,719 Grm. aufgefangen), enthielt aber nur 3,3% an festen Bestandtheilen. Die Drüse selbst war so hochgradig verändert, wie bei lange bestehender permanenter Fistel. Der Faden war eingekapselt, das Peritonäum an der verwundeten Stelle verdickt. Der Reiz des Fremdkörpers hatte hier also genügt, eine Veränderung der Drüse, wie sie continuirlicher Secretion entspricht, und eine dem entsprechende Con-
sm und. Endlich wird die Bauchwunde mittelst Knopfnath geschlossen, nachdem der an der Canüle befestigte Gummischlauch aus der Wunde herausgeleitet worden ist. Das aus dem Bauche herausragende Schlauchstück darf höchstens 1 Cm. lang sein. — Bei dieser Operationsweise wird der Darm mit der Bauchwand so verlöst, dass der Pancreasgang der Wunde sehr nahe liegt, also in der Bauchöhle sich ausser der kurzen Canüle nur ein ebenfalls sehr kurzes Stück Schlauch befindet. Die Fäden, welche den Darm fixiren, werden nach 24 Stunden entfernt, die Wunde möglichst oft mit Carbol-
wasser gewaschen, die Wundnähte nach etwa 36 Stunden herausgenommen.

centrationsabnahme des während voller Verdauung aufgefangenen Secretes herbeizuführen.

§. 9. Einfluss des Nervensystems auf die Absonderung des pancreatischen Stoffes.

Das hauptsächlichste Ergebniss beider Versuchsreihen besteht darin, dass durch Reizung des verlängerten Markes die stockende Secretion des Pancreas hervorgerufen oder die vorhandene beschleunigt werden kann. Ich muss aber von vornherein bemerken, dass die zum grössten Theile noch unbekannten Störungen, welche bei allen Versuchen über das Pancreas die Bestrebungen des Experimentators so oft vereiteln, auch bei den vorliegenden häufig genug sich geltend machen. Oft genug gelingt es trotz aller Geduld nicht, die Drüse nach Anlegung der Fistel zur Secretion zu bewegen, oft genug bewährt sie allen Reizungen zum Trotze ihren eigenen Willen oder gehorchts diesen doch nur in so träger Weise, dass man an einer Wirkung der Reizung überhaupt irren würde, wenn nicht diesen Misserfolgen doch eine stattliche Zahl so überaus schlagender Erfolge gegenüber stände, dass an dem Einflusse der Med. oblongata auf die Thätigkeit der Drüse kein Zweifel obwalten kann. Die Bedingungen der negativen Versuche sind mir nicht vollständig bekannt. Nur so viel kann ich mit Sicherheit angeben, dass sie 1) nicht bloss
lokalen Einwirkungen auf die Drüse liegen, denn auch bei permanenten Fisteln, bei welchen die Secretion im Gange ist, erfährt diese durch die den Versuch vorbereitenden Operationen an dem Thiere (Curarisierung, künstliche Athmung, Einführung von Nadeln in das verlängerte Mark) nicht selten eine dauernde Störung, die keine Reizung der Medulla wieder beseitigt; 2) dass eine Drüse, welche nach Anlegung einer Dauerdüse in den Zustand profuser permanenter Secretion gekommen ist, eine Beschleunigung der Absonderung bei Reizung des verlängerten Markes nie mehr erkennen lässt.

In einer Anzahl von Fällen hat schon die mit der Verwendung des verlängerten Markes durch die Nadeln verbundene mechanische Reizung einen ganz evidenten Einfluss auf die Absonderung: sie kann plötzlich eintreten, wenn sie vorher lange stockte, oder sich beschleunigen, wenn sie vorher langsam war.

Die Absonderungsgeschwindigkeit wurde in der Weise controlirt, dass mit der Fistelzantil durch einen kurzen Gummischlauch eine dünne geteilte Glasröhre in Verbindung gesetzt wurde, die durch einen Halter in der Höhe der Fistel horizontal befestigt war. Die Inductionsströme lieferte ein Schlitten-Inductorium, in dessen primären Kreis 4 kleine Grove'sche Elemente eingeschaltet wurden.

Unter denjenigen Versuchen, welche von positivem Erfolge begleitet waren, befanden sich solche, in denen von vorherein die Secretion stockte, nach wiederholter Reizung aber eintrat, um in den Pausen wieder zu stocken; ferner solche, in denen vor Beginn der Reizungen eine sehr langsame Secretion stattfand, die durch die Reizung nur in mässigem Grade beschleunigt wurde; endlich solche, in denen von vornherein die Absonderung lebhaft von statten ging, durch die Reizung aber in sehr erheblichem Grade beschleunigt wurde.

Bei allen Versuchen ermittelte ich die wirksamen Stromstärken

1) Dasselbe zeigt eine neuere Versuchereihe an Kaninchen.

Der Erfolg der einzelnen Reizung, die stets mehrere Minuten fortgesetzt wurde, bedarf noch besonderer Besprechung.

In der Mehrzahl der Fälle macht sich, wenn dieselbe überhaupt wirksam ist, in der ersten Reizminute eine Beschleunigung geltend, die aber sehr bald aufhört, um einer Verlangsamung, ja selbst völligem Stillstande zu weichen. Nach Schluss der Reizung oft erst in der zweiten bis dritten Minute tritt die hauptsächlichste Beschleunigung ein, die einige Minuten anhält und allmählich wieder sinkt. Der wesentlichste Erfolg der Reizung tritt also als Nachwirkung auf. Doch ist dieser Ablauf der Erscheinungen, der für die Mehrzahl der Beobachtungen gilt, nicht durchaus constat. Nach oft wiederholten Reizungen beginnt die Hauptbeschleunigung oft schon während der späteren Reizminuten, ja mitunter schon von der ersten ab, was bei den früheren Reizungen zwar nicht umgekehrt, aber doch im Ganzen selten ist.

Der Grund dieses sonderbaren Ablaufes der Reizwirkung kann in verschiedenen Momenten gesucht werden. Erstens liegt er möglicher Weise in der eigenthümlichen Reaction der Centralorgane gegen Inductionsströme, welche von der der peripheren Nerven wesentlich abweicht. Wenn man an schwach curarisirten Thieren mit starken Inductionsströmen arbeitet, die dem verlängerten Mark zugeführt werden, sieht man beim plötzlichen Hereinbrechen der Ströme ein Zusammenzucken der gesamten Körpermusculatur, auf welches vollständige Ruhe folgt, so lange die Ströme durch das Mark hindurchgehen. Blendet man dieselben nach einigen Minuten durch Schliessung eines zwischen der secundären Rolle und den
Electroden eingeschalteten Schlüssels ab, so folgt zunächst wieder eine Zuckung des ganzen Körpers, dann längere Ruhe. Nach 1 bis 2 Minuten aber beginnen ausgebreitete klonische Zuckungen, oft von sehr erheblicher Heftigkeit, die längere Zeit anhalten können und sich erst allmählich wieder beruhigen. Es ist also klar, dass die Erregung des verlängerten Markes durch die Inductionsströme für die motorischen Nerven der quergestreiften Muskeln eine verhältnismässig spät eintretende Nachwirkung von langer Dauer im Gefolge hat, während, so lange die Ströme das Mark durchsetzen, abgesehen von der „Anfangszuckung“ bei hinreichend starken Strömen eine Reizwirkung nicht sichtbar ist. Damit ist offenbar die Möglichkeit gegeben, dass der zeitliche Ablauf der Erregung für die secretorischen Nerven des Pancreas sich ähnlich gestaltet.

Aber eine Nachwirkung der Inductionsströme auf die Med. oblongata erklärt noch nicht den häufigen Stillstand des Secretabflusses während der Dauer der Ströme. Man könnte hier entweder an blosse Verhinderung des Abflusses aus dem Gange durch

Ich gebe nunmehr eine Anzahl von Versuchsbeispielen, theils sehr prägnante, theils absichtlich auch weniger prägnante Fälle, zur Erläuterung der mitgetheilten allgemeinen Resultate.

Versuch I (Landau S. 24). Frische Fistel. Nachdem der in voller Verdauung befindliche Hund curarisiert worden, wurde an der mit der Fistel Canüle verbundenen horizontalen Röhre jede Minute das Vorrücken des Secretes nach Theilstrichen abgesehen. Dasselbe betrug:

I. 4,25—8,75—2,5—3—2—3—1—1,25—0,75—0,5—0,75—1—1,25—1,75—1,25—1—0,75—1,25—1—0,5 Theilstriche.

II. Nach Einführung der Nadeln in die Medulla oblongata: 1,5—1,5—1,5—2,75—1,5—1,5—0,75—1,25—1—1.

III. Reizung (XIII) 1): 0,75—1—(XII) 1—0,75.

IV. Nach derselben: 1—1,25—0,75—1—1—1,25—0,75—1,25—1,75.

V. Reizung (XII): 1,75—(XI) 2—2,25—2—(IX) 2—0—(IX, 5) 1,5—1,75.

XI. Schluss derselben: 0,5—0,75—2—1,25—1,5—1,25—1,25—1,25—1,25—1—1—1,25—1—1—1.

VII. Reizung (XII—XI allmählich vorrückend): 1,25—1,25—1,75—1,5—1,25.

1) Die römischen Ziffern bedeuten die Entfernung der secundären Rolle des Magnet electromotors von der primären in Centimetern.
Beiträge zur Kenntniss des Pancreas.

VIII. Schluss: 0,5—0,5—0,75—0—0,25—0,5—0,25—0,5—0,25—0,5—0,25—0,5—0,25—0,5
 —0,25—0,5—0,25—0,25—0,5—0,5—0,25—0,5—0,25—0,5—0,25—0,5
 X. Schluss: 0—0—0—0—0—0,25—0—0,25—0,25—0,25—0,5—0,25—0,25
 —0,25—0,25—0,25—0,25—0.
IX. Reizung (XII—VIII) 0,5—0,5—0,5—1,5—1,5—0,75.
XI. Reizung (XI—VII): 0,5—1,25—0,75—1,0—0,75—1,0.
XII. Schluss: 0—7,75—22,5—10,5—7—4,5—5—4—2,25—2,25—3—3—1,5
 —1,25—1,5—1,25—0,75—0,75—0,25—0,25.
XIII. Reizung XI—VII, 5): 1—1—1,75—1,75—1,5—2,5—5,75.
XV. Reizung (X—VI, 5): 5,0—1,5—0,5—1—18,5—57,5—70—75—66—47.
XVI. Schluss: 87—12—5—8—1,5—1,5—1,5—1,0.

Versuch II. (Landau S. 31). Nach der Anlegung der Fistel und Curarisierung betrug die Secretion pro Minute nach Einführung der Nadeln
I. Vor der Reizung; 1—0—0?—0,25—0,5—1,5—2,5—1,0—1,5—1,5—1,75—1
 —1,25—0,75—1—1.
III. Schluss: 0,5—0,25—1,0—0,5—1,25—(5 Min. Pause wegen Verlagerung der Canüle) 0—0—0—0—0,25—0—0,25—0,25—0,25—0,5
 —0,75.
IV. Reizung (XI—VII): 0,25—0,25—0,25—0,25—0.
V. Schluss: 0,75—3,25—2,0—1,25 (Suspens. der Athmung) —0,75—2—
(Wiederaufnahme der Athmung) —1,5—0,75—0,5—0,75—0,25—0,25—0,5—
 —0,25.
VI. Reizung (XI—VII): 0,25—1,0—0,25—0—0.
VII. Schluss: 0,25—0—0,5—0,25—0,25—1—0,25—0,25—0—0,25.
VIII. Reizung (X—V): 0—0—0,75—0,25—0—0.
IX. Schluss: 1,25—5,5—11,5—9,5—4,5—3,5—3—2—1,5—1—1,75—1,25
 —0,75—0,5—0,75.
X. Reizung (IX—V): 0,75—0,5—0—0—0.
XI. Schluss: 0,25—12,25—18,75—2,75—6—2,5—3—2,5—1,25—1,25—
 1,75—0,5—0,25—0—0,25—0——
XII. Reizung: (VII—III, 5) 0,25—0—0,25—0,5—0,25—0—0.
XIII. Schluss: 0,5—12,25—10—2,75—2,25—1,5—2,5—2,5—2—0,75—
 1,5—0,75—0,25—0,25.
XIV. Reizung (VI—I): 0,25—0,25—0—0,5—0—0—18—18.
XV. Schluss: 16—7,5—4,5—3—1 u. s. f.

Diese beiden, der Dissertation von Landau entnommenen und an temporären Fisteln angestellten Versuchsreihen zeigen recht auffällig, dass die wesentlichste Beschleunigung der Secretion erst nach Schluss der Reizung eintritt, während im Laufe derselben die Absorberung oft ganz stockt. In dem zweiten Beispiele begann bei der letzten Reizung (XIV), die sehr lange fortgesetzt wurde, das

Versuch III. Frisch angelegte Fistel; Hund, wie immer, curarisirt. Nachdem einige Reizungen mit schwächeren Strömen ohne Erfolg angestellt worden waren, ergab sich folgende Reihe:

I. Vor der Reizung: 0—0—1—0—0—

II. Reizung (VI—III): 1—1—0—0—

III. Schluss: 0,5—5—5—2—2—1—1,5—1—1—1—

IV. Reizung (VI—III): 1—1—1—1,5—1,5—

V. Schluss: 3,5—3,0—3,5—3,5—1,5—1,5—

VI. Reizung (V—II), 1,5—0—0—0—

VII. Schluss: 9—10—5—5—

VIII. Reizung IV—I: 1—0—4—32—31—

IX. Schluss: 19—1—9—1—1—

X. Reizung (III—I): 1—0—9—11—6—

XI. Schluss: 0—1—1—0,5—0,5—

XII. Reizung (II—0): 0—0—0—3—1,5—

XIII. Schluss: 0—0—1—0—0—

Versuch IV. Permanente Fistel, angelegt am 24. Juni 1873. Am 25. tritt vor jeder Nahrungsaufnahme mässige Secretion ein (in 10 Min. 0,375 Cem.). Am 26., nachdem das Thier gefressen, wird die Absonderung lebhafter (in 10 Min. 1,7 Cem.) — Am 27. seernirte der Hund unmittelbar nach Nahrungsaufnahme, sehr langsam (in 10 Min. 0,8 Cem.); nach einiger Zeit stockte die Absonderung ganz. Der Hund wird jetzt curarisirt und künstliche Atmung eingeleitet. Nachdem 1/2 Stunde lang vergeblich auf den Wiederschein der Secretion gewartet worden war, wurden die Elektroden-Nadeln in das verlängerte Mark eingelegt. Die damit verbundene mechanische Reizung rief die Secretion hervor (Vgl. ein ähnliches Beispiel bei Landau S. 82). Das Vorrücken des Secretes wurde in einer Röhre abgelesen, deren einzelne Theilstriche 0,01 Cem. entsprachen.

I. Vor jeder Reizung: 5—3,5—2,5—2,5—3,5—1—1,75—1,75—

II. Reizung der med. obl. (XV—XIII): 0,75—1,0—0,5—

III. Schluss: 0,5—0,5—0,25—0,25—0,5—

IV. Reizung (XII—VIII): 0,5—0,75—0,25—0,25—0,5—

V. Schluss: 0,25—0,5—0,75—0,25—0,25—0,5—

VI. Reizung (IX—V): 0—0,25—0,75—0,75—1,25—

VI. Schluss: 3,0—2,25—2,0—2,75—1,25—1,10—2,75—2,5—2,0—1,75—2,0—

VII. Reizung: 1,0—4,75—2,0—1,5—2,0—

VIII. Schluss: 2,0—4,5—4,5—2,5—6,0—8,5—8,25—3,0—3,5—8,0—
Beiträge zur Kenntniss des Pancreas.

IX. Reizung: 1,0—1,0—1,5—2,0.
X. Schluss: 4,0—4,5—8,25—2,0—1,5.

In diesem Versuche steigt nach wiederholter Reizung die Absonderung, welche ursprünglich ganz stockte, allmählich mehr und mehr auch in den Reizungspausen an; die hauptsächlichste Steigerung erfolgt jedesmal in der ersten Zeit nach Schluss der Reizung. Die Beschleunigung ist aber nirgends so bedeutend, wie in den früheren Versuchen.

Versuch V. Am 30. Juni Morgens wurde das Thier, welches, wie alle Hunde vor Anlegung permanenter Fisteln, die letzte Mahlzeit vor fast 24 St. eingenommen hatte, operirt. Sofort nach der Operation trat eine sehr lange, eine Secretion ein: in 6 Stunden konnten nur 1,5 Ccm. eines vollständig gerinnenden Secretes aufgefangen werden. Nachdem am nächsten Morgen der Hund gefressen hatte, secernierte er ziemlich lebhaft einen nur schwach gerinnbaren Saft. Nach wiederholter Curara-Injektion nahm die Secretionsgeschwindigkeit so sehr ab, dass die anfänge benutzte, in 0,01 Ccm. geteilte Röhre mit einer dünneren vertauscht werden musste, um die Ausflussgeschwindigkeit in erforderlicher Weise kontrolliren zu können. 1 Thlstr. dieser Röhre entsprach 0,0067 Ccm. Von dem vor der Curarisirung gelieferten Secret wurden 5,7808 Grm. zur Bestimmung des festen Rückstandes benutzt. Sie ergeben 2,91%.

I. Vor der Reizung: 2,5—3,0—1,0—2,5—1,0—1,0—1,5—1,5.
II. Reizung (XI—VIII): 0—0—0—0—0—.
III. Schluss: 2,5—1,5—1,5—2,5—2,0—1,5—0,5—1,0—1,0.
IV. Reizung (VIII—V): 0—0—1,0—2,0—6,5.
V. Schluss: 18,5—15,0—10,0—7,0—8,5—3,5—8,0—2,0—1,0.
VI. Reizung (VII—IV): 2,0—0,5—1,5—1,0—1,0.
VII. Schluss: 6,0—7,0—5,0—3,0—2,0—2,0—1,0—1,0—1,0.
VIII. Reizung (V—II): 2,0—0—0—1,0.
VIII. Schluss: 0,0—1,5—2,5—3,0—3,0—1,0—1,5—2,5—0,5—0,5—0.

Versuch VI. Anlegung der Fistel am 7. Juli. Tags darauf, ohne vorhergegangene Nahrungsaufnahme, Secret von 7,67% am nächsten Tage Secret von 1,7%. Am dritten Tage riss das Thier die Canüle heraus; sie liess sich aber nach der Curarisirung leicht wieder einlegen. — Ablesung in der in 0,01 Ccm. geteilten Röhre.

I. Vor der Reizung: 0,75—0,75—0,5—0,75—0,75—1,0—0,5—1,5—0,75—1,25—0,75—1,0.
II. Reizung (XII—X): 4,75—2,75—3,25—2,0.
III. Schluss: 1,0—1,5—2,25—1,75—1,5—1,0—1,25—1,75—1,0—1,75—2,0
—2,0—1,25.
IV. Reizung: 12,0—10,5—5,5—5,0—1,75.
V. Schluss: 5,25—4,5—3,5—4,0—2,25—2,5—2,25—3,5—4,0—2,0—2,5
VI. Reizung: 4,0—7,0—7,0—7,5—8,0.
VII. Schluss: 7,0—3,0—8,5—3,0—2,0—4,0—7—5,0—3,1—5,5—2,5—3,5.
VIII. Reizung: 11,5—7,5—4,5—0.
Während der Reizung stirbt das Thier.

Versuch VII. Anlegung der Fistel am 13.7.73. Am nächsten Morgen friet der Hund begierig. Zur Bestimmung des festen Rückstandes werden 4,5 Ccm. Secret aufgesogen; sie ergaben 2,17 %. — Nach der Curarisierung und vor Einleitung der Nadeln in das verlängerte Mark wurde eine Probe aufgenommen, welche 2,46 % enthieilt. Die ersten mit zu schwachen Strömen angestellten Reizungen ergaben keine Beschleunigung. Erst beim Vorrücken des Schüttens auf VI trat erhebliche Beschleunigung ein, wie folgende Zahlen lehren:

I. Vor der Reizung: 0,5—0,5—0,0—0,5—0,75—0,25—0,0—?—1,5—0,5—1,25.
II. Reizung (IX—VI): 1,5—0,75—0,0—0,25. —
III. Schluss: 1,25—27,5—40,0—?1)—12,0—9,5—3,25—2,75—2,0—0,75.
IV. Reizung (IX—VI): 0,25—1,5—0,25—0,25.
V. Schluss: 0,5—26,75—26,0—9,5—?—3,0—1,5—2,0—1,75—0,75.

Das während der wiederholten Reizungen gebildete Secret wurde aus der Röhre entleert, um den Procentgehalt zu bestimmen. Es ergaben sich 6,01 %. Die Reizung hat also die Absorption der festen Bestandtheile in noch höherem Masse beschleunigt, als die des Wassers.

Versuch VIII. Anlegung der Fistel am 23.7.73. Nach 4 Stunden tritt langsame Secretion ein; in 2 % Stunden wurden 1,5 Ccm. erhalten mit einem Procentgehalt von 10,42 %. — Am 24., nachdem der Hund nur ein wenig Wasser getrunken, wurde in 1 Stunde 2,2 Ccm. mit 6,84 % aufgefangen. — Am 25. verweigert das Thier noch immer die Nahrung. In 1 % St. werden 1,8 Ccm. mit 4,78 % gesammelt. — Am 26., während fortdauernden Hungerzustandes, werden in 25 Min. 1,8 Ccm. mit 4,36 % aufgefangen. Nachdem das Thier curarisirt worden, verlangsammt sich die Secretion ausserordentlich, steigt jedoch nach Einlegung der Nadeln in das verlängerte Mark wieder so bedeutend an, dass in 12 Minuten 2,5 Ccm. erhalten werden, welche 4,15 % fester Theile ergeben. Darauf wird der Versuch in ge-

1) Wegen Entleerung der Röhre konnte nicht abgelesen werden. Die Secretionsgeschwindigkeit war aber sehr hoch.
wöchlicher Weise fortgesetzt. Zuerst wird die Ableitung an der in 0,01 Ccm.
geteilten Röhre gemacht.

I. Vor der Reizung: 2,5—0,5—3,0—2,0—2,0.

II. Reizung (X—VIII, 5): 3,5—13,0—11,5.

III. Schluss: —12,75 —8,0—2,0—1,5—1,25—0,75.

IV. Reizung (IX—VII): 1,5—8,75—5,5—7,25.

V. Schluss: 15,5—22,5—12,5—4,5—2,0.

Da die erste Röhre gefüllt ist, wird an die Canüle eine andre gesetzt,
bei welcher ein Theilstrich 0,0088 Ccm. entsprach.

VI. Vor der Reizung: 3—3—1.

IX. Reizung (VI—IV): 1,5—1,5—3,0—6,0.

X. Schluss: 4,0—5,0—3,0—2,0—2,0.

Das während der Reizungen in den Röhren gesammelte Secret
enthielt 3,81 % feste Theile.

Versuch IX. Anlegung der Fistel am 26. Oktober. Am 27. Oktober
wurden vor der Curarisirung in 22 Minuten 2 Ccm. aufgefangen, welche
2,82 % feste Theile enthielten. Nach der Curarisirung und der Einführung
der Nadeln in das verlängerte Mark wurde in 17 Min. 1 Ccm. Secret erhalten
mit 2,39 % an festen Theilen. Es war also mit der Secretionsgeschwindig-
keit auch der Procentgehalt gesunken.

Die Reizungen zeigten folgende Wirkung:

I. Vor der Reizung: 0,4—0,5—0,4—0,3—0,4—0,4—0,3—0,4—0,4—0,5—0,4—
0,6—0,4—0,5—0,5—0,6—0,6—0,3—0,4—0,6—0,6—0,5—0,4.

II. Reizung (XI—VII): 0,5—0,6—0,4—0,6—0,4.

III. Schluss: 0,2—0,7—1,0—0,9—0,8—1,3—0,7—0,6—0,4—0,8—0,7—0,6—
0,4—0,7—0,5—0,4—0,6—0,5—0,8—0,7—0,5—0,8—0,2—1,0—0,4—0,6—
0,4—0,4—0,5—0,4—0,5—0,4—0,4—0,5—0,4—0,5—0,4—0,5—0,4.

IV. Reizung (IX—V): 0,8—0,2—0,3—0,3—0,1—0,1.

V. Schluss: 0,5—2,0—2,3—2,9—1,8—1,5—2,0—0,9—0,8—1,7—0,9—
0,9—1,0—0,9—0,9—0,9.

VI. Reizung (VIII—IV): 1,2—0,6—0,2—0,0—0,5.

VII. Schluss: 0,3—1,5—3,0—3,5—2,4—1,2—1,0—1,0—0,9—0,9—1,2—1,1—
1,0—1,1—0,9—1,0—0,8.

IX. Reizung (VII—III): 0,8—0,4—0,3—0,3—0,3.

X. Schluss: 0,4—0,7—0,8—1,5—1,7—1,0—0,8—1,5—2,0—1,3—1,7—1,3—
1,7—1,0—2,0.

XI. Reizung (VI—II): 0,7—0,3—0,4—0,3—0,4—0,5.

XII. Schluss: 0,5—3,0—1,4—1,7—2,0—1,5—1,2—1,2—1,0—1,2—1,4—1,5—
1,0—1,2.

XIII. Reizung (IV—I): 0,6—0,2—0,4—0,4—0,7.

XIV. Schluss: 0,8—3,0—3,0—2,5—2,0—2,3—2,7—1,5—2,0.
In diesem Versuche blieb die absolute Geschwindigkeit dauernd ziemlich gering. Die Beschleunigung durch die Reizung tritt const-
ant als Nachwirkung ein. Das aus der Röhre gesammelte Secret ergab 4,31 % an festen Theilen.

Versuch X. Anlegung der Fistel am 21. October. Das Thier friest bereits am Nachmittage, ebenso nächsten Morgen reichlich Fleisch. Unmit-
telbar darauf werden in 15 Minuten 8 Ccm. Secret aufgefangen, welches beim Kochen nur opalescent wird, mit Essigäure sehr stark aufbraust. Das Secret enthält 1,92 % feste Theile. Nach der Curarisirung werden in 5 1/6 Minuten 10,5 Ccm. aufgefangen. Darauf wird das Halsmark durchschnitten und mit Electroden-Nadeln versehen. Die Secreation sinkt sehr schnell, denn in den nächsten 10 Minuten werden 1,25 Ccm. und in den darauf folgenden 10 Minuten nur 0,4 Ccm. erhalten. — An der in 0,01 Ccm. getheilten Röhre wird nunmehr abgelesen:

I. Vor der Reizung: 0,4—0,8—0,4—0—0.
II. Reizung (X—VI): 0,5—0,4—0,8—0,7—0,5.
III. Schluss: 0,1—0—0—0—0.
IV. Reizung (VIII—IV): 0,1—0,3—0,5—0,2—0,2.
V. Schluss: 0—0,1—0,1—0—0,1—0,2—0,1.
VII. Reizung (VII—III): 0,7—0,2—0,1—0,1.
VIII. Schluss: 0,1—0,2—0,6—0,6—0,5—0,5—0,4—0,3—1,1—0,9—0,8—0,9—0,4—0,5—0,4.
IX. Reizung (VI—II): 0,7—0,6—0,8—0,7—0,8.
X. Schluss: 0,4—1,3—3,9—2,8—1,5—1,1—0,7—0,5—0,3—0,4—0,3.
XI. Reizung (V—I): 1,1—0,8—0,1—1,4—4,8—8,5—4,8—2,8.
XII. Schluss: 1,5—1,5—1,4—1,0—0,9—0,8—0,5—0,5—0,3—0,1—0,2—0,4—0,1.
XIII. Reizung (IV—0): 0,7—0,4—0,5—1,0—3,5—5,5—9,0—6,0—7,5—4,0—?—2,7—0,6.

Das aus der Röhre gesammelte Secret enthielt 6,57 %.

Versuch XI. Anlegung der permanenten Fistel am 20. October 1874. Am 22. früh 7 Uhr wird das Thier um 7 1/8 Uhr Morgens gefülltart. Um 9 1/8 Uhr werden, nachdem das Thier curarisirt ist, in 6 Minuten 3,9001 Ccm. Secret mit 1,69 % Rückstand aufgefangen. Nachdem darauf die Nadeln ein-
gelegt waren, wurden in 5 Minuten 2,9741 Grm. mit 2,13 % Rückstand erhalten.

Darauf folgende Versuchsserie, bei welcher mit der Canüle eine diekere Röhre als gewöhnlich, in Mm. getheilt, in Verbindung gesetzt wurde. Nach-
dem zwei Reizungen mit zu schwachen Strömen erfolglos gewesen, wurde notirt.

I. Vor der Reizung: 0—0,25—0,75—1—0—0,25—1—0—0,25—1—1,25
—1,25.
Beiträge zur Kenntniss des Pancreas.

II. Reizung (VII—IV): 0—1,5—0—0,5.
III. Schluss: 0,5—5—4,75—0,75—0,5—0,25—0—0,25—0,25.
IV. Reizung (VI—III, 5): 0,25—0,5—0,25—0.
V. Schluss: 0,5—1—2—1—1,5—2,5—0,5—1—1,75—1,25—0,5—0.
VI. Reizung (V—II, 6): 1—1—0,5—0,75—2—5—7—4,25.
VII. Schluss: 3—3,5—1—0,25—0—0—0,5—0.
X. Schluss: 3—7—4—2—2,5—1—1,5—1—1,25—1,5—1,5.
XII. Schluss: 0,5—4,5—2,5—1,0

Das aus der Röhre und Canüle entleerte Reizungssecret enthielt 3,34 % feste Theile.

I. Reizung (VIII—V): 0—0—0—0—0.
II. Schluss: 0,5—2,5—2,25—3,25—2—3—0,75—0,5—0,25.
III. Reizung (VII—IV): 1,5—0—0—0.
IV. Schluss: 0,5—2,5—1,25—1,25—2—3,5—5,5—3—1,5—1,75—3,75—1,75—2,25—1,25—0,75—1,0.
VI. Schluss: 3,25—4—4,5—4,75—2—2,25—1,5—0,25—0,75—0,5—0,25.
VII. Reizung (V—III): 1—0,75—0,25—1,25.
VIII. Schluss: 3,0—5,5—3,0—4,5—2,5—9,5—7,5—7,25—2,25.
X. Schluss: 6,0—1,5—3—7—9—2,5—0,25—0,75—1,0.
XI. Reizung (III, 5—2): 15,0—3—2—2,5.
XII. Schluss: 7—5—1—2—1,25—1,75—2—1—2.
XIII. Reizung (III—0): 11—3—2—1,5.
XIV. Schluss: 1,25—3,25—1,75 u. a. f.
Diese Versuchseispiele werden hinreichen, um zu zeigen, dass die Absonderung des Pancreas von dem verlängerten Marke aus beeinflusst werden kann. Die Nervenbahnen, auf welchen die Erregung von jenem Centraltheile aus zu der Drüse vordringt, zu ermitteln, ist mir bis jetzt nicht gelungen. Wer die mit den Gefässen verlaufenden Drüsennerven präparirt hat, wird es begreiflich finden, dass Reizversuche an diesen selbst zu einem Ziele kaum führen können: die feinen, plexusartig mit einander verbundenen Fäden lassen sich nicht in einer für die Reizung geeigneten Weise zugänglich machen, ohne die Drüse durch längeres Freiliegen und mechanische Einwirkungen zu stark zu ertönten, so dass ein negativer Erfolg derartiger Reizversuche, deren ich mehrere angestellt habe, nicht überraschen darf.

In der Erhöhung der Absonderungsgeschwindigkeit des Wassers liegt aber nicht der einzige Einfluss des Nervensystems auf die Thätigkeit der Bauchspeicheldrüse; ein zweiter besteht darin, dass auch für die Schwankungen des Procentgehaltes des Secretes nervöse Einflüsse wenigstens mit bestimmend sind, wie die Erwägungen des folgenden Paragraphen zeigen werden.
§ 10. Der Gehalt des Bauchspeichels an festen Bestandtheilen.

Die Gehaltssarmuth des continuirlich fließenden Secretes, welches eine durch eine permanente Fistel hochgradig veränderte Drüse liefert, hat bereits in der materiellen Veränderung des Absonderungsorgans (s. oben §. 8) ihre Deutung gefunden. Wir sehen deshalb hier davon ab.

Für die normale Drüse hat man die hohe Concentration des Verdauungs- und die geringe des Hungersecretes so erklären zu können gemeint, dass nach Einführung von Speisen in den Magen die Drüse an organischem Secretionsmaterial bereichert werde (*Ladung* der Drüse). Allein diese Deutung kann nicht zutreffend sein. Denn

1) Die Drüse ist 16—20 Stunden nach der Nahrungsaufnahme reicher an Zymogen, als 6—7 Stunden nach derselben, und doch ist das um jene Zeit gelieferte Secret das gehaltärmere.

2) Ich habe sehr wiederholt nach Anlegung von permanenten Fisteln bei Hunden, die schon 24 Stunden vor der Operation ihre letzte Mahlzeit genossen hatten, wenn am ersten oder zweiten Tage nach der Operation die Absonderung begann, ein Secret von sehr hoher Concentration und vollständiger Gerinnbarkeit erhalten.

Der Reichthum des Secretes an coagulabler Substanz, um deren Schwankungen es sich bei den Schwankungen des Procentgehaltes ganz wesentlich handelt, hängt also weder unmittelbar von der Nahrungszufuhr, noch von dem Reichthum der Drüse an Zymogen ab. Eine zymogenreiche Drüse kann ein dünnnes Secret liefern, — was man freilich nicht umkehren darf, denn die durch continuirliche Absonderung an Zymogen sehr verarmte Fisteldrüse, deren
Zellen kaum Spuren einer körnigen Innenzone besitzen, liefert nie ein concentrirtes Secret.

Wenn also der Procentgehalt des Secretes keinesfalls einfach parallel geht dem Gehalte der Drüse an secretionfähigen Material, so müssen für die Höhe desselben noch andre Bedingungen massgebend sein. Ich sage ausdrücklich, "noch andre Bedingungen", denn eine der Bedingungen liegt jedenfalls in einem ausreichenden Vorrathe an Zymogen oder, um es anatomisch auszudrücken, in einer ausreichenden Ausbildung der körnigen Innenzone der Zellen.

Einem Hund wurde nach 24stündigem Hungern am 31. März eine permanente Fistel angelegt. 4 Stunden nach der Operation floß sehr langsam ein vollständig gerinnbares Secret aus. Abends fress das Thier, welches eigentlich zum Hungern bestimmt war, einen für den nächsten Tag bereitgestellten Fleischvorrrath und secernirte die Nacht darauf sehr stark. Am nächsten Tage war die Secretionsgeschwindigkeit sehr heruntergegangen. Es wurde jetzt aufgefangen:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Vor der Fütterung . .</td>
<td>9h—10h 5'</td>
<td>2,165</td>
<td>0,030</td>
</tr>
<tr>
<td>II. Unmittelbar nach Fleisch-</td>
<td>1) 10h 15'—30'</td>
<td>4,0606</td>
<td>0,270</td>
</tr>
<tr>
<td>fütterung</td>
<td>2) 10h 30'—40'</td>
<td>3,8700</td>
<td>0,387</td>
</tr>
<tr>
<td>III.</td>
<td>3h 35'—50'</td>
<td>3,5244</td>
<td>0,235</td>
</tr>
<tr>
<td>IV.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>
Beiträge zur Kenntnisse des Pancreas. 621

Am nächsten Tage, nach dem das Thier inzwischen keine Nahrung erhalten, wurde aufgefangen:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Grn.</td>
<td>Grm.</td>
<td></td>
</tr>
<tr>
<td>I. Vor der Fütterung : 7h 39'—8h 13'</td>
<td>1,2207</td>
<td>0,035</td>
</tr>
<tr>
<td>II. Ummittelbar nach Fleischfütterung . . . 1) 8h 13'—34'</td>
<td>2,3883</td>
<td>0,148</td>
</tr>
<tr>
<td>III. 2) 8h 35'—41'</td>
<td>3,0861</td>
<td>0,5134</td>
</tr>
</tbody>
</table>

Hier wird also durch die Speiseaufnahme die Absonderungsgeschwindigkeit des Wassers schnell in sehr beträchtlichem Masse gesteigert, und damit sinkt der Procentgehalt schnell auf eine geringe Grösse.

Wem derartige Erfahrungen allein vorliegen, wird sich naturgemäss der Ansicht zuneigen, dass bei der Verstärkung der Absonderung auf reflektorischem Wege Nichts stattfinde, als eine Beschleunigung der Wassergabe, dass der Vorgang der Absonderung, soweit er vom Nerveneinflusse abhängt, nur in Herbeiführung der Flüssigkeitstranssudation bestehe. Bei langsamer Secretion beladet sich die Flüssigkeit reichlich, bei minder langsamer spärlich mit dem in den Drüszenzellen vorräthigen, lösungsfähigen Absonderungsmaterial, — damit scheint sich Alles zu erklären. Aber wenn auch diese Auffassung für die obigen Beobachtungen ausreicht, — für andre ist sie nicht zulänglich. So z. B. nicht für die Erfahrung, dass eine normale, zymogenreiche Drüse im Hungerzustande meist, wenn auch nicht ausnahmslos, langsam ein dünnes Secret bereitet. Wenn hier trotz der längeren Berührung der Flüssigkeit mit den Drüszenzellen doch nur spärliche Lösung fester Stoffe stattfunde, so müssen gewisse Bedingungen für diese Lösung fehlen, die zu andern Zeiten vorhanden sind.

Ebenso wenig reimt sich mit jener Auffassung die Beobachtung, dass unter gewissen Verhältnissen trotz steigender Secretionsgeschwindigkeit der Procentgehalt nicht sinkt, sondern ebenfalls steigt. Schon Bernstein hat aus zahlreichen Beobachtungen Tabellen über den Zusammenhang zwischen Secretionsgeschwindigkeit und Procentgehalt zusammengestellt, in denen oft genug nicht schnellere Secretion und geringerer Gehalt zusammenfallen. Aber die Zahlenreihen, welche nach steigender Secretionsgeschwindigkeit geordnet sind, entsprechen, so weit ich sehe, nicht unmittelbar auf einander folgenden Beobachtungen. Liegen die Secretionszeiten der einzelnen Beobachtungen weit aus einander, so kann man nicht
R. Heidenhain:

eines gleichen Zustandes der Drüse für die Einzelbestimmungen sicher sein. Ich selbst besitze eine Reihe hierher gehöriger Versuche, in denen bei Fistelhunden unmittelbar vor und nach der Fütterung die Absonderungsgeschwindigkeit und der Procentgehalt bestimmt wurden. Unter gewissen Bedingungen steigen beide gleichzeitig. Die hauptsächlichste dieser Bedingungen liegt darin, dass die Drüse sich nicht in dem Zustande spontaner oder durch die Fütterung hervorgerufener Hypersecretion befinden darf. Wenn die Secretionsgeschwindigkeit des Wassers über gewisse Grenzen geht, welche, soweit ich nach dem vorliegenden Material urteilen kann, zwischen 0,1 und 0,2 Grm. pro Minute liegen, — Werthe, die bei normalen Drüsen nicht vorkommen, — bleibt die Absonderungsgeschwindigkeit der festen Bestandtheile immer so sehr hinter der des Wassers zurück, dass der Procentgehalt sinkt. Erfolgt dagegen nach der Fütterung nur eine mässige Steigerung des Wasserstromes, so geht der Procentgehalt herauf, wie folgende Beispiele lehren.

Am 30. November ergaben sich, nachdem die Secretion in Gang gekommen, trotzdem das Thier bisher Nichts gefressen hatte, folgende Zahlen:

<table>
<thead>
<tr>
<th>Dauer des Auffangens</th>
<th>Secret pr. Min.</th>
<th>Procentgehalt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grm.</td>
<td>Grm.</td>
</tr>
<tr>
<td>I. Vor der Fütterung</td>
<td>41‘</td>
<td>1,076</td>
</tr>
<tr>
<td>II. Unmittelbar nach Milchfütterung</td>
<td>26‘</td>
<td>2,0522</td>
</tr>
<tr>
<td>III. Gleich darauf</td>
<td>30‘</td>
<td>4,5308</td>
</tr>
<tr>
<td>IV. 2 St. 25 Min. später</td>
<td>60‘</td>
<td>1,9843</td>
</tr>
</tbody>
</table>

Am 1. December.

I. Vor der Fütterung	25‘	2,5804	0,095	1,99
II. Unmittelbar nach dem Genuss von Wurst	30‘	3,7834	0,124	2,83
III.	15‘	5,2879	0,348	1,44

Am ersten Tage stieg also bei mässiger Beschleunigung der Procentgehalt stark, am zweiten Tage ebenfalls, so lange die Beschleunigung gering blieb; als sie aber bedeutender wurde (Port. III), ging der Gehalt schnell herab. Am zweiten December war schon die spontane Secretion sehr lebhaft, die Beschleunigung durch die
Beiträge zur Kenntniss des Pancreas.

Nahrungsaufnahme aber gering, die Einwirkung auf den Procentgehalt deshalb sehr merklich, wie folgende Zahlen zeigen:

<table>
<thead>
<tr>
<th>Dauer des Auffangens</th>
<th>Secret</th>
<th>pr. Min.</th>
<th>Procentgehalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Vor der Fütterung</td>
<td>15'</td>
<td>4,6623</td>
<td>0,3108</td>
</tr>
<tr>
<td>II. Unmittelbar nach derselben</td>
<td>15'</td>
<td>5,0852</td>
<td>0,8863</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dauer des Auffangens</th>
<th>Secret</th>
<th>pr. Min.</th>
<th>Procentgehalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Vor der Fütterung</td>
<td>50'</td>
<td>0,4780</td>
<td>0,0095</td>
</tr>
<tr>
<td>II. Nach derselben</td>
<td>37'</td>
<td>1,1466</td>
<td>0,0809</td>
</tr>
</tbody>
</table>

Die Zahlen sind hier evident. Am nächsten Tage reagirte die Drüse auf Fütterung mit sehr erheblicher Secretionsbeschleunigung, was, wie immer, ein Sinken des Procentgehaltes zur Folge hatte.

Diese Beispiele zeigen, dass wenn die Pancreassecretion durch Speiseaufnahme in den Magen angeregt wird, mehr geschieht, als eine blosse Einwirkung auf die Wasserabsonderung. Es muss ohne Zweifel auch die Absonderung der festen Bestandtheile beschleunigt werden, denn sonst müsste mit steigender Secretionsgeschwindigkeit der Procentgehalt jedesmal sinken. Die Vervielfältigung derartiger Beobachtungen hat darin ihre grosse Schwierigkeit, dass nach Anlegung permanenter Fisteln die Drüse sehr bald in einen veränderten Zustand übergeht, der sich zunächst in übergrosse Wassersecretion nach Speisenaufnahme, bei weiterer Entwicklung desselben in spontaner reichlicher Secretion äussert. Unter solchen Umständen beschleunigt sich dann nach der Fütterung die Wasserabsonderung in viel stärkerem Masse als die der festen Bestandtheile, was natürlich zu einem Sinken des Procentgehaltes führen muss. Es bedarf also

der Auswahl besonders günstig verlaufener Fisteloperationen mit
annähernd normalen Drüsen, wenn man eines Erfolges, wie ihn die
obigen Beispiele zeigen, sicher sein will.

Wenn nun aber reflectorische Einwirkung auf die Absonderung
der festen Bestandtheile möglich ist, so setzt das natürlich voraus,
dass jene Ausscheidung unter dem Einflusse des Nervensystems steht.

Etwas Analoges habe ich in einer früheren Arbeit (Studien
des Breslauer physiologischen Institutes Heft IV) für die Unter-
kieferdrüse nachgewiesen. Ich habe dort gezeigt, dass schwache
Reizung der Chorda langsames Absondernung eines mucinarmen, stärkere
Reizung schnelle Absonderung eines mucinreichen Speichels im
Gefolge hat, und daraus geschlossen, dass die Wassersecretion und
die Schleimabsonderung in der gld. submaxilaris unabhängig von
einander von dem Nervensysteme aus beherrscht werden können.

Dass den dort näher beleuchteten Verhältnissen ähnliche für
das Pancreas gelten müssen, machen schon Beobachtungen, wie die
oben mitgetheilt, in hohem Grade wahrscheinlich, noch mehr die
folgenden, weil sie in directerer Weise den Einfluss des Nerven-
systems auf die Absonderung der festen Bestandtheile in der Drüse
nachweisen.

Ich habe nämlich zu wiederholten Malen bei den an dem ver-
längerten Marke angestellten Reizversuchen den Procentgehalt des
vor der Reizung und des während derselben gebildeten Secretes be-
stimmt; er steigt durch die Reizung während gleichzeitiger Beschleu-
nigung der Absonderungsgeschwindigkeit. Behufs der Reizung wur-
den, wie oben bereits bemerkt, die Thiere stets curarisirt. Das zum
Vergleiche mit dem Reizungssecret heranzuziehende Absonderungs-
product darf erst nach der Curarisirung gesammelt werden, weil
wenigstens bei meinen Versuchen in Folge der Narcose die Abson-
derungsgeschwindigkeit stets herabging, was ja für sich schon eine
Steigerung des Procentgehaltes erklären würde. Es wurde also
zunächst einige Zeit nach Einleitung der Curara-Narcose Secret
aufgefangen, dann der Reizversuch angestellt und die während
deszelnben in der graduirten Röhre und dem Gummschlauche auf-
gesammelte Flüssigkeit zur zweiten Bestimmung benutzt. Diese
Flüssigkeit ist ein Gemisch des während der einzelnen Rei-
zungen und des während der Reizpausen gebildeten Secretes.
Die einzelne Reizung liefert nicht genug Material zur quantitativen
Bestimmung. Der Procentgehalt des reinen Reizungssecretes würde
noch höher ausfallen, als der jenes Gemenges. — Ich kann nun folgende Ziffern derartiger Beobachtungen vorlegen.

<table>
<thead>
<tr>
<th>Versuch</th>
<th>Secret vor der Reizung</th>
<th>Während derselben</th>
</tr>
</thead>
<tbody>
<tr>
<td>VII</td>
<td>2,46 %<sup>1)</sup></td>
<td>6,01 %</td>
</tr>
<tr>
<td>VIII</td>
<td>4,15</td>
<td>3,81</td>
</tr>
<tr>
<td>IX</td>
<td>2,39 <sup>3)</sup></td>
<td>4,81</td>
</tr>
<tr>
<td>XI</td>
<td>1,69 u. 2,13 %<sup>3)</sup></td>
<td>3,34</td>
</tr>
<tr>
<td>XIII<sup>4</sup></td>
<td>3,71 %</td>
<td>4,68</td>
</tr>
</tbody>
</table>

Die Versuche VII, IX, XI und XIII zeigen, dass bei Reizung des verlängerten Markes trotz der Secretionsbeschleunigung der Gehalt an festen Stoffen steigt; die Absonderungsgeschwindigkeit der letzteren muss also in höherem Masse zugenommen haben, als die des Wassers. In Vers. VIII sinkt der Procentgehalt um eine geringe Grösse. Wenn man aber die hier ausserordentlich grosse Steigerung der Secretionsgeschwindigkeit (s. das Protocoll) in Betracht zieht, wird es wohl unwahrscheinlich, dass auch hier die Reizung nicht bloss den Wasserstrom, sondern auch die Ausscheidung der festen Bestandtheile erheblich gesteigert habe, denn sonst müsste der Procentgehalt sehr viel mehr gesunken sein.

Wir kommen also zu dem Schlusse, dass die Secretionsnerven der Bauchspeicheldrüse bei Einleitung der Secretion nicht bloss auf die Wassertranssudation wirken, sondern auch auf den Übergang der festen Bestandtheile in das Secret einen directen Einfluss haben, der nur so gedacht werden kann, dass sie die chemischen Umsetzungen in den secretorischen Zellen beherrschen.

§. 11. Der Gehalt des Secretes an freiem Pancreatin.

Unsre Kenntniss dieser intracellulären Umsetzungen ist noch eine ausserst dürftige. Nach den Erfahrungen, welche wir mit Hilfe des Mikroskopes gesammelt haben, darf man von einer eingängigen physiologisch-chemischen Untersuchung der Drüse ohne Zweifel wich-

1) Vor der Curarisierung war der Gehalt 2,17 %.

2) Vor der Curarisierung waren in 23 Min. 2 Com. aufgefangen (0,09 pr. Min.) mit 2,82 %; nach der Curarisierung in 17 Min. 1 Com. (0,059 p. M.) mit 2,39 %. Der Procentgehalt und die Secretionsgeschwindigkeit sind also beide in Folge der Curarisierung gefunden.

3) Die erste Ziffer vor dem Einlegen der Nadeln in das verlängerte Mark, die zweite nachher.

4) Dieser Versuch ist oben nicht angeführt.
tige Aufschlüsse erwarten, wenn sie sich auf das Organ in seinen verschiedenen Thätigkeit-Phasen erstreckt. Für jetzt müssen An- deutungen genügen, mehr dazu geeignet, der künftigen Untersuchung Winke zu geben, als schon jetzt genügende Aufklärung zu ver- schaffen.

Um zu einer bestimmten Entscheidung zu gelangen, legte ich bei einem seit 18 Stunden nüchternen Hunde eine Fistel an und fing, als nach 4 Stunden die Absonderung eines vollständig gerin- baren Secretes begann, 1 Ccm. desselben direct in 5 Ccm. concen- trierten Glycerins auf. 1 Ccm. dieser Glycerinlösung des Saftes wurde mit 5 Ccm. Wasser und 4 Ccm. einer dreiprocentigen Lösung von kohlensaurem Natron verdünnt. Dieses Gemisch musste unwirksam
sein, wenn der frische Saft nur Zymogen enthielt, denn sowohl das\nconzentrierte Glycerin, als die 1,2procentige Sodalösung verhindern\ndie Abspaltung des Pancreatin aus seinem Mutterkörper. Die Flüs-
sigkeit erwies sich aber in hohem Grade wirksam: sie löste reich-
lliche Faserstoffflocken in 1½ Stunden auf, obwohl sie nur 2 %\nreinem pancreatischem Saft enthielt.

Wenn somit auch ein hoher Gehalt des Pancreassecretes an\nfreiem Pancreatin ausser Zweifel stand, so blieb noch die zweite\nFrage unerledigt, ob nicht neben demselben noch merkliche Mengen\nvon Zymogen vorhanden seien. Zur Beantwortung wurde ein Ver-
such in folgender Weise eingerichtet.

Von einem Fischhunde, der am Tage nach der Operation ein vollständig\ngerinnbares Secret lieferte, wurde 1 Ccm. desselben wiederum in 5 Cm. Glycerin,\nein 2. Ccm. in 5 Cm. destillirten Wassers aufgefangen. Um der gleichen Zusam-
mensetzung beider Saftportionen sicher zu sein, geschah das Sammeln des Secretes\nso dass abwechselnd ein Tropfen in das Glycerin, der andrene das Wasser fiel,\nbis beiderseits genau 1 Ccm. zu der in graduirten Cylindern enthaltenen\nVerdünnungsflüssigkeit gemischt war. Die zweite (Wasser-) Probe wurde\ndann in der Wärme digerirt. Enthielt der Saft wesentliche Mengen von\nZymogen, so musste die Wasserportion durch die Digestion an Wirksamkeit\nder Glycerinportion überlegen werden, weil das Zymogen in wässriger Lösung\nallmählich Pancreatin bildet. Der Erfolg liess keinen Zweifel. Mit den be-
den digerirten Flüssigkeiten wurden folgende Prüfungsmischungen bereitet:

I. 1 Ccm. der Glycerinlösung des Secretes, 4 Ccm. Sodalösung von 3 %,\n 5 Ccm. Wasser.

II. 1 Ccm. der Wasserlösung des Secretes mit denselben Zusatzflüssig-
 keiten.

III. 1 Ccm. der Glycerinlösung, 9 Ccm. Wasser.

IV. 1 Ccm. der Wasserlösung, 9 Ccm. Wasser.

Sämtliche Gläschen wurden, mit gleichen Faserstoffflocken versehen,\num 10 Uhr 15 Minuten in das Wasserbad gestellt.

10 Uhr 30 Min.: I. hat bereits (nach 20 Min.) seinen Faserstoff vollständig\ngelöst, in II. ist der Beginn der Lösung fraglich, in III. und IV.\nsicher noch nicht eingetreten.

11 Uhr 50 Min.: III. hat viel gelöst, II. und IV. fraglich.

11 Uhr 15 Min.: III. bis auf einen kleinen Rest fertig; II. hat die Lösung\nbegonnen, IV. noch immer fraglich.

11 Uhr 30 Min.: III. vollständig fertig, II. weit vorgeschritten, IV. Beginn\nder Lösung.

1 Uhr: II. fertig, IV. noch Reste.

Nach diesem Versuche kann es nicht fraglich sein, dass das\nSecret nur freies Ferment enthält. Denn die Anwesenheit von Zy-
mogen in irgend erheblicher Menge hätte sich durch Zunahme der Wirksamkeit der wässrigen Lösung in Folge der Digestion verrathen müssen, während im Gegenteil die Wirksamkeit sehr erheblich sank, wie das bei längerer Digestion wässriger Fermentlösungen immer der Fall ist. Wir können also mit Sicherheit annehmen, dass das normale Secret fertiges Pancreatin, und zwar in sehr grosser Menge, enthält, dagegen keine merklichen Quantitäten von Zymogen 1).

Wenn nun aber das normale Secret so überaus fermentreich, die lebende Secretionszelle fermentfrei ist 1), so wird der Schluss nothwendig, dass die Abspaltung des Pancreatin aus dem Zymogen erst in dem Augenblicke der Secretion geschieht, der Art, dass jede kleine Fermentmenge, welche frei geworden ist, sofort in das Secret übergeht. Die secernirte Flüssigkeit ist aber nicht im Stande, durch ihre Einwirkung auf das Zymogen jene Spaltung herbeizuführen, denn sie ist ja immer reich an kohlensaurem Natron, und wir haben oben gesehen, dass Soda-Lösungen die Bildung des Pancreatin aus Zymogen in hohem Masse erschweren. Man darf sich also den Secretionsvorgang sicher nicht so vorstellen, dass bei demselben eine an kohlensaurem Natron reiche Flüssigkeit als Vehikel aus dem Blute in die Drüsenräume herübergeschafft wird, um aus den Zellen daselbst präformirtes Ferment einfach auszulösen oder dasselbst befindliches Zymogen zu spalten. Es müssen vielmehr im Innern der Zellen noch andere Bedingungen in Wirksamkeit treten, welche jene Abspaltung herbeizuführen im Stande sind, um dem freigewordenen Zymogen den Uebergang in die secernirte Flüssigkeit zu ermöglichen. Dass aber jene in den Zellen thätigen Factoren unter unmittelbarem Einflusse des Nervensystems stehen, dürfte nach den Ergebnissen des vorigen Paragraphen kaum bezweifelt werden.

Welcher Art jene durch die Nervenwirkung in den Zellen ausgelösten Prozesse seien, darüber ist zur Zeit eine begründete Ansicht nicht aufzustellen. Wenn ich aber in Betracht ziehe, dass die spontane postmortale Fermentbildung in der Drüse Hand in Hand geht mit Säurebildung — denn die nach 24stündigem Liegen fermentreich gewordene Drüse röthet stets Lakmus-Papier —, dass Lieberkühn bei seinen Versuchen mit Alizarin-Natrium die Zellen

des lebenden Pancreas sauer gefunden zu haben angiebt 1), dass künstlicher Säurezusatz zu der zerriebenen Drüse das Ferment in kürzester Zeit frei macht, so scheint mir in diesen Erwägungen ein Anknüpfungspunkt für die künftige Forschung gegeben. Wie der gereizte motorische Nerv in dem Muskel Säurebildung veranlasst, so dürfte vielleicht der secretorische Nerv in der Pancreaszelle Säure entwickeln, diese das Zymogen abspalten und darauf durch das Alkali der die Zelle umspülenden secernirten Flüssigkeit gebunden werden.

§. 12. Schlussbemerkungen.

Ist es gestattet, am Ende eines langen Weges einen Rückschritt auf die durchmessene Strecke zu werfen und das Ziel, zu welchem derselbe geführt hat, ins Auge zu fassen, so fällt diese Musterung für mich nur zum kleinen Theile befriedigend aus. Ohne Zweifel sind ja die physiologischen Vorgänge in der Bauchspeicheldrüse durch die neuen Erfahrungen, welche sich im Laufe der Untersuchung ergeben haben, einem dereinstigen Verständnisse näher gerückt worden; aber die erworbenen Kenntnisse weisen noch zahlreiche Lücken auf.

Es ist gelungen, die absondernde Zelle in den verschiedenen Zuständen, welche sie während ihrer Thätigkeit durchläuft, zu verfolgen und die Bedeutung ihrer beiden, mikroskopisch als wesentlich verschieden erkennbaren Theile, zu ermitteln. Vielleicht an keinem andern Secretionsorgane hat sich bisher mit gleicher Schärfe nachweisen lassen, dass bestimmte Theile der Zelle als Material für die Bildung des Secretes verbraucht werden, während andere zur Regeneration des Verbrauchten dienen. Aber schon dieser Theil der Untersuchung lässt manche Punkte unerörtert, deren Kenntniss wünschenswerth ist. Denn wir haben zwar die körnige Innenzone der Zelle in Beziehung setzen können zu der Zymogenbildung in dem Absonderungsorgane, aber es fehlt noch jede Beziehung zu der Bildung der beiden andern Drüsenfermente, welche in dieser Arbeit keine Berücksichtigung gefunden 2).

2) Ich weiss in dieser Beziehung bis jetzt nur so viel, dass das pancreatinfreie Glycerinextract der frischen Drüse stets diastatisches Ferment enthält.

Wenn es sodann möglich gewesen ist, den Beweis dafür zu führen, dass mit reichlicher Absonderung der Drüse ihr Zymogenvorrath sinkt, um sich während der Ruhe des Organes wieder zu regenerieren, welcher Regenerationsprozess in einer Drüse mit permanenter Fistel, sobald die Secretion continuirlich geworden, nicht mehr in genügendem Masse eintritt, so fehlte doch eine zureichende Erklärung für die von den obigen sehr verschiedenen Angaben früherer Forscher; bei der ungemeinen Verwicklung der chemischen Prozesse, welche in der mit warmem Wasser infundirten Drüsen substanz vor sich gehen, musste es bei einigen allgemeinen Hindeutungen sein Bewenden haben.

Es wurde ferner gezeigt, dass von dem verlängerten Marke aus die Wasserabsonderung der Drüse sich beeinflussen lasse. Wir sind aber im Unklaren geblieben sowohl über die Nervenbahnen, vermöge deren jene Einwirkung sich vollzieht, als über die Trieb kräfte, welche das Wasser in die Drüsenräume überführen. In letzterer Beziehung wird zunächst der Blutdruck und der Secretionsdruck zu bestimmen sein, unter welchem die Absonderung geschieht.

Schliesslich wurde im höchsten Grade wahrscheinlich gemacht, dass die Ausscheidung der festen Bestandtheile der Drüsenzelle und die des Wassers nicht Hand in Hand gehen, sondern jede für sich unter directem Nerveneinflusse steht, und dass die Bildung des Pancreatins mit complicirten Umsetzungen in der absondernden Zelle verbunden ist, bei welchen die Entwicklung freier Säure eine Rolle spielt. Dieser hypothetische Theil der Untersuchung stellt die meisten noch zu entziffernden Probleme, deren Inangriffnahme und Lösung erfolgen muss, bevor an ein wirkliches Verständniss des Absonderungsvorganges zu denken ist.

Angesichts so vieler Lücken der vorliegenden Arbeit, welche
mir während der Abfassung derselben in peinlicher Weise entgegen traten, lag die Frage nahe, ob es überhaupt schon an der Zeit sei, die bisherigen Resultate zu veröffentlichen.

Den Ausschlag für mich gab schliesslich die Erwägung, dass einerseits von dem gewonnenen Boden aus sich eine Reihe von Fragen bezüglich der Physiologie des Pancreas schärfer formulieren lässt, als es bei dem bisherigen Standpunkte unserer Kenntniss möglicher war, andererseits die Hoffnung, durch meine Erfahrungen einige Punkte, welche den Absonderungsvorgang betreffen, ausser Zweifel gestellt zu haben. Dahin gehört erstens die Thatsache, dass die Drüsenzelle hier, wie ich es schon für andere Orte nachgewiesen, nicht bloess die Rolle eines indifferenten passiven Filters spielt, sondern durch greifbare morphologische und chemische Vorgänge sich an der Bildung des Secretes betheiligt, und zweitens die Entschei- dung der seit lange ventilirten Frage, welche Beschaffenheit das normale pancreatiche Secret besitze. Denn wenn kein Zweifel darüber bleibt, dass eine permanente Fistel, je länger sie besteht, desto mehr die histologische Structur der Secretionzelle verändert, dann wird man den einer so alterirten Drüse continuirlich entströmenden Saft nicht mehr als normales Absonderungsproduct gelten lassen können.

Erklärung der Abbildungen auf Tafel V.

Die Figur 1—4 veranke ich der Freundlichkeit des Herrn Dr. Lav- dovsky aus Petersburg, welcher dieselben mittelst eines Hartnack'schen Zeichnen-Prismas bei 570-facher Vergrösserung nach meinen Präparaten auf das Sorgfältigste aufnahm.

Fig. I. Pancreas eines hungernden Hundes. Alcohol-Erhärtung, Carminfärbung.

Fig. II. Pancreas eines Hundes aus der ersten Verdauungsperiode.

Fig. III. Desgleichen aus der zweiten Verdauungsperiode.

Fig. IV. Desgleichen von einem Hunde, der nach Anlegung einer permanenten Fistel mehrere Tage continuirlich socernirt hat.

Fig. V. Isolirte Zellen des Pancreas nach Maceration in chromsaurem Amoniak. Vgl. den Text.
Über das Fieber der Kaltblütler.

Von

Dr. O. Lassar.

Können Kaltblütler fiebern, indem sie in Folge fervescirender Einflüsse Aenderungen ihrer Eigentemperatur erleiden? A priori lässt sich diese Frage nicht beantworten. Es ist ebenso gut möglich, dass die Poikilothermen eine Beschleunigung ihres trägen Stoffwechsels, eine Verminderung ihrer reichlichen Wärmeabgabe haben, wie es von vornherein wahrscheinlich aussehen mag, dass die Schnelligkeit des Ausgleichs keine Steigerung der Eigenwärme zu Stande kommen lässt. Es ist nicht ohne Experimentaluntersuchung zu entscheiden, ob die Wärmeabgabe gesteigert wird oder sich gleich bleibt nach der Einwirkung fiebererregender Momente. Senator's eingehende Forschungen ergeben den Schluss, dass ‚bis jetzt
nach allen vorliegenden Thatsachen im Fieber keine Uebereinstimmung zwischen Wärmeausgabel und Stoffwechsel nachweisbar ist. Um so weniger lässt sich aus den bekannten Thatsachen ein Schluss auf das Fieber bei Kaltblütern folgern.

Die Frage selbst findet sich in der Literatur, meines Wissens, nur zweimal berührt. Einmal wirft ManasseIn dieselbe gelegentlich seiner Arbeit über die Blutkörperchen bei verschiedenen Einflüssen auf, ohne sie indess zu beantworten. Dann behandelt Hätter das Fieber der Frösche eingehend in seinem Lehrbuch der allgemeinen Chirurgie, begnügt sich aber mit einer a prioristischen Beantwortung. Er nimmt, ohne allerdings experimentelle Gründe anzuführen, an, dass Frösche keine Temperaturerhöhung haben können. Aus seinen weiteren Auseinandersetzungen geht hervor, dass er das Fieber nicht an eine Wärmesteigerung gebunden erachtet.

Frösche erleiden keine Erhöhung ihrer Eigentemperatur, aber auch keine Vermehrung ihrer Wärmeabgabe.

Die Untersuchung fand statt in einem nach Norden gelegenen ungeheizten Zimmer, welches an gleichfalls ungeheizte Räumlichkeiten stiess, und in dem sich wenn nicht ein jährer Witterungswechsel eintrat, die Temperatur innerhalb 24 Stunden kaum änderte. Das Zimmer wurde sonst nicht benutzt und nur zum Zweck der Versuchsanordnungen betreten.

Zunächst stellte ich auf einem in der Mitte des Zimmers befindlichen Tisch sechs gleich grosse Präparatengläser mit eingeschliffenem Deckel nebeneinander auf, von denen das erste, dritte und fünfte mit 600 Gramm Brunnenwasser bis zu etwa 2 Drittel gefüllt war, während die drei andern darzwischen stehenden je 800 Gr. Wasser und ca. 800 Gr. gesunde Frösche enthielten. Nach 12 längstens 48 Stunden hatte sich die Temperatur, welche zu Beginn des Versuches in allen Gläsern dieselbe war, in den Frosebehältern constant um \(\frac{1}{15} \) bis \(\frac{1}{20} \) C. gehoben. Es war also anzunehmen, dass die normalen Frösche eine nachweisbare Menge Wärme producirten. Die Messungen wurden mit dünnen, äusserst empfindlichen Normalthermometern aus dem physicalischen Cabinet angestellt, welche Herr Professor Rieke die Güte hatte, mir zur Benutzung zu überlassen. In dem Augenblick, wo der Deckel des Behälters geöffnet wurde, ward eine durchbohrte Glasplatte über diesen geschoben, das Thermometer durch die Öffnung ein-
Ueber das Fieber der Kaltblätter. 635

geführt und die Temperatur an drei verschiedenen Punkten genommen, um
etwaige lokale Differenzen zu controliren. Die Ableseung geschah mittels
einer Loupe, welche bequem die Unterscheidung von $\frac{1}{60}$ Gradn gestattete.

Nachdem mir zwolf derartige Versuche ein übereinstimmendes
Resultat geliefert hatten, injizierte ich einer Reihe von Fröschen
pyrogene Substanzen in die subcutanen Lymphsäcke, faulendes Blut,
Harn, Eiweisslösungen, Muskelfusum. Nachdem sich die erste
Aufregung der Thiere nach diesem Eingriff gelegt, werden dieselben
bald matt, ihre Reflexerregbarkeit herabgesetzt, die Bewegungs-
fähigkeit erlahmt (während die electriche Erregbarkeit der Nerven-
ämme nicht alterirt zu werden scheint). Traurig, mit halbausege-
streckten Extremitäten hält sich der Frosch gegen seine sonstige
Gewohnheit in mehr liegender Position. Die Cornea verliert ihren
hellen, munteren Glanz, die Nickhäute fallen schlaff herab, Respi-
rations und Herzthätigkeit werden unregelmässig. Je nach der
Menge der eingeführten Flüssigkeit und ihrer Qualität richtet sich
der weitere Verlauf. Fauliges Eiweiss wirkt weniger schädlich als
zersetzter Harn, der auch das Blut an Malignität übertrift. Bac-
terienflüssigkeiten wirken intensiver als Schimmelpilze. Kräftige
Thiere aber ertragen bis zu zwei Pravaz'schen Spritzen putriden
Blutes und sind dann noch im Stande, sich in täglich erneuertem
Wasser im Verlauf von etwa einer Woche zu erholen. Andere
gehen rascher zu Grunde und bieten stets denselben anatomischen
Befund, wie solche, welche auf der Höhe der Krankheit getödtet
werden. Ein starker Hydrops spannt die sonst so schlaffe Haut.
An der Injectionsstelle zeugen Schwellung und Vascularisation von
einer intensiven Entzündung. Das Herz ist blutreich, schlaff dilatirt,
die Lungen schmutzig braunroth, die Leber schwarz und geschwelt.
Die sonst hellrothe und fast kugelrunde Milz ist in einem Durch-
messer vergrössert und dunkel kirschroth.

Es wurden nun derartig erkrankte Frösche unter dieselben
Verhältnisse wie die gesunden gebracht. Die Gläser befanden sich
in folgender Anordnung:

<table>
<thead>
<tr>
<th>No. 1</th>
<th>No. 2</th>
<th>No. 3</th>
<th>No. 4</th>
<th>No. 5</th>
<th>No. 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>600 Gr.</td>
<td>300 Gr.</td>
<td>300 Gr.</td>
<td>600 Gr.</td>
<td>800 Gr.</td>
<td>800 Gr.</td>
</tr>
<tr>
<td>300 Gr. ges.</td>
<td>300 Gr.</td>
<td>800 Gr.</td>
<td>800 Gr.</td>
<td>300 Gr.</td>
<td>kranke Drösche.</td>
</tr>
<tr>
<td>Frösche.</td>
<td>kranke Wasser.</td>
<td>kranke Wasser.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Wiederum zeigten die froschhaltenden Gläser eine Temperatur-
erhöhung von $\frac{1}{10}$ bis $\frac{8}{100}$ °C. gegenüber den lediglich mit Wasser gefüllten. Ein Unterschied zwischen gesunden und kranken Fröschen war aber nicht nachweisbar.

Nachdem sich aus diesen einfachen und primitiven Versuchen keine vermehrte Wärmeabgabe fiebernder Frösche ergeben hatte, wurde die directe Messung der Eigenwärme vorgenommen. Bekanntlich richtet sich die Eigenwärme der Poikilothermen nur bis zu einer gewissen Grenze nach ihrer Umgebung. Der Frosch in einer Zimmerwärme von 17° C. ist allerdings um 12° höher temperirt als ein anderer, welches sich in einem Medium von + 5° C. befindet. Beide aber sind, wenn auch nur um ein geringes, so doch stets mindestens um den Bruchtheil eines Grades wärmer, als die Umgebung, wenn die Temperatur der letzteren sich nicht jenen Extremen nähert, welche die Wärme- resp. Kältestarre des Kaltblüters bedingen. Zum vorliegenden Zweck wurde die Eigenwärme des Frosches gemessen durch Einführung eines sehr dünnen Thermometers in den Magen, während das Thier mit zwei eisernen Zangen an den Füssen passlich so fixirt war, dass ihm durch Leitung keine Wärme zuströmen konnte. Auch hier dasselbe Resultat. Mochten die Frösche mit faulenden Flüssigkeiten oder Entzündungsreizen behandelt sein, niemals war eine erkennbare Temperaturerhöhung eingetreten. Und die nachweisbaren Differenzen sind bereits sehr geringe. Damit ein Frosch von beispielsweise 20 Grm. aus sich heraus um $\frac{1}{5}$ °C. wärmer werde, müsste er zehn kleine Wärme-Einheiten plus dem Wärmequantum produciren, welches er durch Abgabe verliert. Es hat also der fiebrernde Frosch, wenn seine Wärmeverluste nicht gestiegen sind, keinesfalls auch nur eine halbe Calorie mehr erzeugt, als der
Ueber das Fieber der Kaltblätter.

H. Pfäger, Archiv f. Physiologie. Bd. X.
O. Lassar: Über das Fieber der Kaltblütler.

I. 495 Gramm intakter Frosche wurden 10 Uhr 25 Morgens in die Calorimeter gesetzt. Die Temperatur betrug im Wasser des Gasometers 7,4° C. Während des sechsständigen Versuches sank die Zimmertemperatur langsam um einen Grad, die des Gasometerwassers zu fest einen halben. Das Calorimeterwasser aber erhob sich um 0,8° zu einer Wärme von 7,7° C. Bringt man nun die Erwärmung und Abkühlung des Apparats gar nicht in Rechnung, so ist doch von dem Inneren des Calorimeters aus eine Wärmemenge von mindestens 5/100° C. produziert. Dies entspricht (0,8° × 215 Cal.) 64,5 Cal. oder 0,025 (1/40) Calorie per Gramm und Stunde.

II. Fiebernde Frosche. 411 Gramm.

Beginn des Versuchs 11 Uhr. 15 Min.	Zimmertemperatur	5,5°	
Schluss	11	15	5°
5	15	5°	
5	15	5°	
11	15	5°	
5	15	5°	

Wärmabgabe = 58,7 Cal. oder 0,022 Cal. p. Gramm und Stunde.

Frosche fiebern also ohne Temperaturerhöhung des eigenen Körpers oder ihrer Umgebung.

Vielleicht ist durch diese Thatsache den Theorien eine neue Stütze gegeben, welche in der verminderten Wärmabgabe ein wesentliches Causalmoment der febrilen Temperatursteigerung sehen. Finden wir bei Thieren, denen die kunstreiche Regulationsmaschinerie der Homiothermen fehlt, im Fieber weder erhöhte Wärmabgabe, noch gesteigerte Eigentemperatur, so scheint der Schluss nicht unberechtigt, dass der wärmesteigernde Einfluss seinen Hauptangriffspunkt gerade in dem Apparat besitzt, welcher bei der einen Thierart kunstreich ausgebildet ist, bei der andern fast gänzlich mangelt.
Bemerkung zur Fortpflanzungsgeschwindigkeit der Erregung im Muskel.

Von

L. Hermann.

Wie ganz unberechtigt dieser Schluss ist, wird jedem einleuchten, schon daraus weil mit derselben Logik jemand schliessen könnte: H.

1) Dass ich die Inscriptio tendinea, wenn übersehen, als eine sehr wesentliche Fehlerquelle mit Recht bezeichne, wird auch Aebby zugeben. Dass ich der Meinung war, Aebby habe dieselbe übersehen, wird Jeder begeißlich finden, da dieselbe in Aebby's 76 Seiten langer Abhandlung mit keinem Worte erwähnt wird, obgleich diese Erwähnung doch wahrlich wichtig erscheinen musste, da sie ferner in dem Schema des Gracilis Fig. 8 nicht angedeutet ist und endlich in den Figuren 1, 5 etc., wo man den Muskel im Apparat ausgezogen sieht, nichts andeutet, dass auf die Inscriptio Bedacht genommen ist.
wirft Bernstein die Benutzung eines Muskels mit Inscriptio vor; H. findet eine langsamere Fortleitung als dieser; also behauptet H., dass die Inscriptio die Leitung beschleunigt. In der That ist in meiner Arbeit mit keiner Sylbe auch nur angedeutet, dass ich die Inscription als Ursache der zu kleinen Zahlen Aeby's ansehe; das legt Aeby ganz willkürlich hinein. Ich habe mich überhaupt über den Grund, warum Aeby's Zahlen kleiner sind als meine, gar nicht ausgesprochen, ja sogar ausdrücklich urgirt (S. 50), dass ich streng genommen etwas anderes messe als Aeby. Wenn Aeby aus meiner Arbeit meine Ansicht über den Grund der Divergenz herauslesen wollte, die eben gar nicht darin steht, so konnte er von jenen Fehlerquellen (die ich wohlgeräkert nicht als Erklärung der früheren Resultate, sondern als Grund zu einer neuen Untersuchung angeführt habe) die zweite, die Mängel der graphischen Methode, oder die S. 55 hervorgehobene schnelle Veränderlichkeit der Geschwindigkeit und den dadurch bedingten Einfluss der Präparationsdauer etc. herausgreifen.

Aber nicht bloss unberechtigt ist der Schluss Aeby's, sondern er war bei einiger Aufmerksamkeit geradezu unmöglich gemacht durch die Anmerkung 2, Seite 54 meiner Arbeit, wo ich ausdrücklich angebe, dass ich mich durch besondere Versuche überzeugt habe, dass nie eine Zuckung die Inscriptio überschreitet, und wo ich ferner sogar grade die zu hohen Werte Bernstein's verwendungsweise aus der übersehenen Inscriptio herleite und diese Vermuthung begründe. Von Unklarheit oder Zweideutigkeit, womit Aeby sich rechtfertigen könnte, kann ich in meiner Arbeit nicht das Mindeste entdecken.

Ich muss also Aeby jeden Schatten einer Berechtigung absprechen, mir jene »Behauptung«, und wäre es auch nur als Andeutung oder Meinung, unterzuschieben. Sie wäre auch so ganz absurd, dass ich wenigstens mich schwer entschließen hätte, sie einem Fachgenossen ohne die zwingendsten Gründe zuzuschreiben. — Ich musste diese Bemerkungen zur Abwehr machen, erkläre aber, dass ich mich auf eine etwaige Fortsetzung der Discussion in einer so klaren Sache meinerseits nicht einlassen werde.
Nachtrag zu meinem Aufsatz:

Über die physiologische Verbrennung in den lebendigen Organismen.

Von

E. Pflüger.

Nach meiner Theorie der Lebensprozesse entsteht die Kohlen säure fortwährend im Innern sehr großer Moleküle und versetzt
durch die im Entstehungsmomente erfolgende Explosion alle Atome
des zugehörigen Moleküls in mächtige Vibrationen. Mit andern
Worten heisst dies: das aus nicht gasförmiger Materie plötzlich ent-
stehende gasförmige Kohlensäuremolekül hat im Entstehungsmoment
eine höhere Temperatur, die es seiner nächsten Umgebung mittheilt.
Um zu beurtheilen, wie gross die Wirkung einer solchen Kohlen-
säureexplosion angeschlagen werden könne, erinnern wir uns, dass
die lebendige Kraft der Atome des Moleküls der Temperatur pro-
portional ist. Setzt man, um einen Anhalt zu haben, für einen
Augenblick voraus, dass die ganze Verbrennungswärme des Kohlen-
stoffes in dem neugebildeten Kohlensäuremolekül anfänglich für einen
Moment concentrirt sich befindet, so müsste seine Temperatur annähernd
10000° C.

sein. Die Verbrennungswärme des Kohlenstoffes ist zu 8000 Wärme-
einheiten und die specifische Wärme der Kohlensäure zu 0,2 an-
gesetzt.

Angesichts dieser riesigen Temperatur ist nun aber hervorzu-
heben, dass sicher unter allen Umständen schon während der Bil-
dung der Kohlensäure Wärme durch Strahlung verloren geht.

Ebenso ist klar, dass bereits während der Bildung der Kohlen-
säure Kraft (und zwar z. B. chemische Spannkraft) in mechanische
Arbeit (Hebung von Lasten) verwandelt werden kann, womit ich
z. B. die Muskelcontraction erkläre. (Siehe dieses Archiv X, p. 329
und 344.)

In anderen Fällen können noch während des Bildungsacts der
Kohlensäure z. B. beim Beginn ihrer Expansion Bestandtheile von

1) Siehe dies Archiv Bd. 10 p. 251.
Molekülen (z. B. in den Drüsen) abgesprengt werden. Da hierbei eine starke Cohäsion überwunden wird, muss eine der geleisteten Arbeit entsprechende Wärme verschwinden.

Es ist für die durch die Oxydation erzeugte Temperatur des Augenblicks natürlich ferner nicht einerlei, ob die Kohlensäure aus $C+O+O$ oder aus $CO+O$ entsteht. Aber doch hat eine Kohlenoxydflamme noch immer die enorme Temperatur von 3042° C.

Aus diesen und analogen Betrachtungen ergibt sich also mit Gewissheit, dass wir allerdings keine Berechtigung besitzen, das Vorkommen so hoher Temperaturen in der lebendigen Materie als sicher anzunehmen.

Wenn aber Physiologen und Chemiker von jeher sich darüber gewundert haben, dass im lebendigen Körper bei niederer Temperatur Oxydationsprozesse vorkommen, die, ausserhalb des Körpers im Allgemeinen nur bei hohen Temperaturen möglich sind, dann müssen wir jetzt sagen, dass die Voraussetzung einer niederen Temperatur, auf welche sich jenes Erstaunen stützte, von sehr zweifelhafter Sicherheit ist. Man hat nicht bedacht, dass die sogenannte niedere Körpertemperatur nur ein arithmetisches Mittel ist, welches unendlich viele höchst verschiedene Temperaturen unendlich vieler verschiedener Punkte eines Organes umfasst.

Die Explosion, oder die höhere Temperatur der an der Explosion beteiligten Atome hat aber noch aus dem Grund eine so grosse Bedeutung für das Leben, weil die Sprengpatrone in dem lebendigen Molekül selbst sich entlädt. Mit anderen Worten: die höheren Temperaturen, die im Organismus auftreten können, müssen der Ortheiligkeit halber, wo sie entstehen, gerade auf die lebendigen, d. h. beim Lebensprozess unmittelbar beteiligten Moleküle zunächst und vorzugsweise einwirken. Es ist vielleicht nicht überflüssig daran zu erinnern, dass nach meiner Theorie die lebendige Materie ein unendlich feines in Wasser aufgehangenes Fadennetz bildet, das also wegen seiner Feinheit und der ungeheuren Oberfläche sowie wegen der niederer Temperatur und der grossen Menge des Wassers sich unter den denkbar günstigsten Bedingungen zur Abkühlung befindet.

Was die Explosion unter günstigsten Verhältnissen in maximo annähernd zu leisten vermag, dafür bürgt die oben angegebene hohe Temperatur von 10000°.
Ueber die physiologische Verbrennung in den lebendigen Organismen. 643

Wie ich schon früher hervorhob, beschränke ich die Assimilation durchaus nicht nothwendig bloss auf die Bresche, weil die starke intramoleculare Bewegung alle Atome dem Status nascens nähert, wenn dies auch nur periodisch der Fall ist.

So ist mechanisch erklärt, wie die Assimilation geschieht und wie, auf Kosten der Wärme, das Gefüge des assimilierten Eiweissmoleküles gelockert worden ist.

Wenn die Atome eines chemischen Moleküles in heftige Schwingungen (durch Erhitzen, das gar nicht immer bis zu sehr hohen Temperaturen zu gehen braucht), versetzt werden, so wissen wir, dass Sauerstoff- und Wasserstoffatome dann gern sich als Wasser zusammenfinden, um auszutreten. Da nun aus Amiden durch Wasserverlust Cyanide entstehen, so kann man wegen der starken intramolekularen Bewegung der lebendigen Materie die Entstehung des Cyans im lebendigen Eiweiss wohl verstehen.

Da nun bekanntlich die nähere Beziehung, in welche der Kohlenstoff zum Stickstoff im Cyan tritt, unter verschiedenen Verhältnissen ungemein leicht wieder aufgehoben wird, indem z. B. der Kohlenstoff lieber mit Sauerstoff, der Stickstoff lieber mit Wasser-
stoff sich verbindet, so reicht es für meine Erklärung aus, die leichte Zersetzbarkeit des Cyans als chemische Thatsache vorzustellen. Ohne dass ich hierbei dem Cyan eine besondere, hypothetische Eigen-
thümlichkeit, wie starke intramolekulare Bewegung der ponderablen Atome zuschreibe, welche Annahme ich in meiner früheren Abhand-

So ist abgeleitet auf Grund der mechanischen Wärmetheorie die Verwandlung von Nahrungseiweiss in die andere Modification, welche ich lebendiges Eiweiss genannt habe.

So lange die Explosionen Breschen reissen, existiren Atome in statu nascenti; so lange findet Assimilation von Sauerstoff und nährenden Moleculen statt; so lange erzittert die lebendige Materie, und produziert Wärme. Sobald aber die lebendigen Moleküle ihren intramolekularen kohlensäurebildenden Sauerstoff verbraucht haben, hören die Explosionen auf, also auch die Entstehung freier Affini-
tätionen, also auch die Assimilationen. Das heisst mit andern Worten: das lebendige Molecul wird kalt, ruhig und indifferent, d. h. es stirbt. Nochmals werfe ich mir deshalb die Frage auf, die noch nicht gelöst ist: Kann die Wiedergeburt eines durch Sauerstoffentziehung »scheintodten« Organes erreicht werden, dessen letzter Rest an intramolecularem kohlensäurebildenden Sauerstoff absolut verbraucht ist? Ist also zur Wiedergeburt immer nothwendig, dass, wenigstens hier und da, im lebenden Molecularmetz noch ein einziges Fünkchen glimmt oder doch eine noch auslös bare Patrone vor-
rätig geblieben?

Man versteht vielleicht auf diesem Weg, dass ein erstickter Mensch, obwohl sein Herz noch schlägt, durch beliebig lang fortge-
setztes Lufteinblasen aus demselben Grund nicht wieder lebendig gemacht werden kann, aus dem kein noch so starker Luftstrom ein erloschenes Kohlenfeuer wieder entzündet.

Ich mache noch darauf aufmerksam, wie meine Hypothese die

Continuität des Lebens erklärt.

Es versteht sich von selbst, dass für die Oxydation des Wasser-
stoFFs theilweise analoge Betrachtungen wie für die des Kohlenstoffs angestellt werden können. Aber es ist ja nur circa 1/4—1/6 (Mittel) des eingehöreteten Sauerstoffes, der dem Wasserstoffe zu Gute kommt.
Handbuch
der
physiologisch- und pathologisch-
chemischen Analyse
für Aerzte und Studierende
yder Prof. Dr. W. Hoppe-Seyler.
Vierte Auflage. 1875. gr. 8. Mit 15 Holzschn. 12 M.

Im unserem Verlag ist eben erschienen:

Kurzes Lehrbuch
der
Anorganischen Chemie
wesentlich für
Studirende auf Universitäten und polytechnischen
Lehranstalten sowie auch zum Selbstunterricht.
der
Von
Professor Dr. V. v. Richter:
Mit 62 Holzschnitten und 1 Spectraltafel.
Preis 7 Mark.

Vorliegendes Lehrbuch kommt einem lebhaft empfundenen
Bedürfniss entgegen. Es ist ein Lehrbuch im wahren Sinne des
Wortes und gibt dem Anfänger ein auf streng wissenschaftlicher
Grundlage beruhendes klares und deutliches Bild der neueren Che-
mie. Es kann Allen bestens empfohlen werden, welche das Be-
dürfniss fühlen, die Resultate und philosophischen Grundlagen der
jetzigen Chemie kennen zu lernen. Seine wissenschaftliche Ten-
denz kennzeichnet sich durch die Widmung, welche der Begründer

Die Verlagsbuchhandlung
MAX COHEN & SOHN (Fr. Cohen) Bonn.
Verlag von F. C. W. Vogel in Leipzig.

Soeben erschienen:

Jahresberichte
über die Fortschritte der
Anatomie und Physiologie.

In Verbindung mit
Prof. Braune, Leipzig. Prof. Flemming, Prag. Prof. Hermann, Zürich. Dr.
Hertwig, Jena. Prof. His, Leipzig. Prof. Hoyer, Warschau. Dr. Kronecker,
Leipzig. Dr. Küster, Leipzig. Prof. Nawrocki, Warschau. Prof. Nitsche, Leipzig,
Prof. Panum, Kopenhagen. Dr. Retzius, Stockholm,
herausgegeben von
Dr. Fr. Hofmann, und Dr. G. Schwalbe,
Prof. in Leipzig. Prof. in Jena.

Zweiter Band:
Literatur 1873.

= 11 Mark =

Der dritte Band (Literatur 1874) erscheint im Juli d. Jahres.

Verlag von F. C. W. Vogel in Leipzig.

Soeben erschien:

Die
Transfusion des Blutes.

Versuch einer physiologischen Begründung nach eigenen Experimental-Untersuchungen. Mit Berücksichtigung der Geschichte, der Indicationen, der operativen Technik und der Statistik

von
Dr. Leonard Landols,
Professor in Greifswald.

Mit Holzschnitten und 4 Tafeln.

= 10 Mark =

In Carl Winter's Universitätsbuchhandlung in Heidelberg ist soeben erschienen:

Mit 856 Holzschnitten. Lex. 8°. brosch. 12 M.

= Der zweite Theil (Schluss des Werks) soll im Laufe des Jahres erscheinen. =