

Technical Manual UY THE ANTIVIRUS@

iDEN Multi-Communication Device
J2ME™ Developer Guide
2005

Version 1.98

iDEN J2ME™ Developer’s Guide

2
 © 2005 Motorola, Inc.

iDEN J2ME™ Developer’s Guide

3
 © 2005 Motorola, Inc.

Table of Contents

TABLE OF CONTENTS ..3
1 INTRODUCTION ..12

1.1 PURPOSE ..12
1.2 AUDIENCE..12
1.3 DISCLAIMER ..12
1.4 REFERENCES ..13
1.5 REVISION HISTORY..13
1.6 ABBREVIATIONS AND ACRONYMS ...14
1.7 ICON GUIDE ...16
1.8 DOCUMENT OVERVIEW..18

2 J2ME™ INTRODUCTION...19
2.1 OVERVIEW..19
2.2 THE JAVA 2 PLATFORM, MICRO EDITION (J2ME™)...19
2.2.1 THE MOTOROLA J2ME™ PLATFORM..20
2.2.2 RESOURCES AND APIS AVAILABLE ...20
2.2.3 PLATFORM SPECIFIC FEATURES...20
2.3 APPLICATION MANAGEMENT ...23
2.3.1 MIDLET LIFECYCLE ..23
2.3.2 MIDLET SUITE INSTALLATION ..23
2.3.3 MIDLET SUITE DE-INSTALLATION ..24
2.3.4 MIDLET SUITE UPDATING...24
2.3.5 STARTING, PAUSING, AND EXITING ...24
2.3.6 JAVA SYSTEM ...28
2.3.7 JAVA FROM MAIN MENU ..28
2.3.8 PERSONALIZING THE NATIVE UI...29
2.3.9 LOW MEMORY INDICATION ..29
2.3.10 THE MINIJIT ...30

3 DEVELOPING AND PACKAGING J2ME™ APPLICATIONS..32
3.1 OVERVIEW..32
3.2 DEVELOPING FOR J2ME™ ...32
3.2.1 DEVELOPING – TOOLS AND EMULATION ENVIRONMENTS ..32
3.2.2 PACKAGING – PUTTING THE PIECES TOGETHER..33
3.2.3 DESKTOP TO DEVICE...35
3.2.4 DEBUGGING – TERMINAL INTERFACE ...36
3.2.5 BEYOND STANDARDS ...40
3.2.6 RESOURCEBUNDLE ...42
3.2.6.7 CODE EXAMPLES ...47
3.2.7 LICENSEINFO API...55
3.3 MIDLET SUITE AND MIDLET ICON SUPPORT...61

iDEN J2ME™ Developer’s Guide

4
 © 2005 Motorola, Inc.

3.3.1 TIPS ..63
3.4 CLDC 1.1 ..64
3.4.1 OVERVIEW..64

4 MULTIMEDIA AND GRAPHICS ...65
4.1 OVERVIEW...65
4.2 MIDP 2.0 LCDUI..66
4.2.1 OVERVIEW..66
4.2.2 COMMANDS ..66
4.2.3 CANVAS..67
4.2.4 LIST ..68
4.2.5 FORMS ..68
4.2.6 ITEM COMMANDS ...69
4.2.7 TEXTBOX/TEXTFIELD ..69
4.3 EXTERNAL DISPLAY ..72
4.3.1 OVERVIEW..72
4.3.2 CLASS DESCRIPTION ...72
4.3.3 METHOD DESCRIPTIONS ...73
4.3.4 CODE EXAMPLES ..75
4.3.5 TIPS /..76
4.4 KEYCODE REMAPPING ...77
4.5 LOOK AND FEEL (LNF) ..80
4.5.1 OVERVIEW..80
4.5.2 CLASS DESCRIPTION ...81
4.5.3 CODE EXAMPLES ..81
4.6 SMART TEXT ENTRY..86
4.6.1 OVERVIEW..86
4.6.2 T9 FEATURES..86
4.6.3 THE T9 UI...87
4.6.4 CHANGING T9 ENTRY MODE ..87
4.6.5 INFLUENCING T9...88
4.6.6 T9 ENGINE LIFECYCLE..88
4.7 LIGHTWEIGHT WINDOW TOOLKIT (LWT) ...89
4.7.1 OVERVIEW..89
4.7.2 EXAMPLE: HELLO LWT WORLD...89
4.7.3 CLASS HIERARCHY AND OVERVIEW ...90
4.7.4 COMPONENTSCREEN...91
4.7.5 COMPONENT ...91
4.7.6 COMPONENTLISTENER..91
4.7.7 INTERACTABLECOMPONENT...91
4.7.8 THE COMPONENTSCREEN CLASS ..92
4.7.9 THE COMPONENT CLASS...97
4.7.10 COMPONENT VISIBILITY, STATE & FOCUS..113
4.7.11 THE COMPONENTLISTENER INTERFACE..114
4.7.12 THE INTERACTABLECOMPONENT CLASS ..114
4.7.13 THE BUTTON CLASS ...116
4.7.14 THE IMAGELABEL CLASS ...118
4.7.15 CHECKBOXES..121
4.7.16 THE TEXTCOMPONENT CLASS ..122
4.7.17 THE TEXTFIELD CLASS...124
4.7.18 THE TEXTAREA CLASS ...124
4.7.19 THE SLIDER CLASS ...124

iDEN J2ME™ Developer’s Guide

5
 © 2005 Motorola, Inc.

4.8 GRAPHICS ACCELERATION ...126
4.8.1 OVERVIEW..126
4.8.2 IDEN-GRAPHICS-ACCELERATION: ON | OFF | AUTO...126
4.8.3 HOW IT WORKS ...127
4.9 MICRO3D API ...139
4.9.1 OVERVIEW..139
4.9.2 THE MICRO3D PACKAGE..140
4.9.3 WORKING WITH GRAPHICS AND ANIMATION..141
4.9.4 CREATING A FIGURE ...142
4.9.5 LOADING AND USING TEXTURES ..144
4.9.6 WORKING WITH VECTOR3D ...147
4.9.7 CREATING PRIMITIVES..149
4.9.8 LOADING AND USING ACTION TABLES ...155
4.9.9 SETTING THE SCENE: LIGHT..158
4.9.10 USING AFFINE TRANSFORMATIONS ..159
4.9.11 SETTING THE SCENE: LAYOUT3D ...162
4.9.12 AUTOMATIC VIEW TRANSFORMATION..164
4.9.13 MANUAL VIEW TRANSFORMATION...166
4.9.14 RENDERING...169
4.9.15 UTILITY ..173
4.9.16 MEMORY ..173
4.9.17 TIPS /..174
4.9.18 CAVEATS ..174
4.9.19 COMPILING & TESTING MICRO3D MIDLETS ..174
4.10 MOBILE 3D GRAPHICS API..175
4.10.1 IMMEDIATE MODE AND RETAINED MODE RENDERING ...175
4.10.2 STEPS FOR CREATING A 3D APPLICATION USING THE MOBILE 3D GRAPHICS API......................................176
4.10.3 CODE EXAMPLES ..176
4.10.4 THE CLASSIFICATION IN JSR 184..185
4.10.5 TIPS /..187
4.11 MULTIMEDIA ...188
4.11.1 OVERVIEW ..188
4.11.2 CLASS DESCRIPTION ...191
4.11.3 METHOD DESCRIPTIONS ...192
4.11.4 VIDEO PLAYBACK...199
4.11.5 TIPS AND CODE EXAMPLES / ..202
4.11.6 COMPILING & TESTING MMA MIDLETS ..204
4.11.7 TIPS /..204
4.12 REAL-TIME PROTOCOL ...206
4.12.1 OVERVIEW..206
4.12.2 CLASS DESCRIPTION...206

4.12.2.1 Class RTPManager..208
4.12.2.2 Class UnsupportedFormatException...212
4.12.2.3 Class RTPContentDescriptor...213
4.12.2.4 Class SessionAddress...213
4.12.2.5 Interface ReceiveStream ..214
4.12.2.6 Interface ReceiveStreamListener ...214
4.12.2.7 Interface RTPStream..214
4.12.2.8 Interface SendStream...214
4.12.2.9 Interface SendStreamListener..215
4.12.2.10 Class InvalidSessionAddressException..215
4.12.2.11 Class SessionManagerException ...215

iDEN J2ME™ Developer’s Guide

6
 © 2005 Motorola, Inc.

4.12.2.12 Class RTPEvent ...216
4.12.2.13 Class ReceiveStreamEvent...216
4.12.2.14 Class NewReceiveStreamEvent extends ReceiveStreamEvent ...217
4.12.2.15 Class SendStreamEvent ...217
4.12.2.16 Class NewSendStreamEvent extends SendStreamEvent ..217
4.12.2.17 Class StreamClosedEvent extends SendStreamEvent ..218

4.12.3 CODE EXAMPLE..218
4.12.4 Q & A...230
4.13 DISTRIBUTED SPEECH RECOGNITION..233
4.13.1 OVERVIEW..233
4.13.2 CLASS DESCRIPTION...233
4.13.2.1 CLASS DSRDATASOURCE..234
4.13.2.2 INTERFACE DSRLISTENER..238
4.13.3 CODE EXAMPLE..238
4.13.4 USING DSR WITH RTP ..247
4.14 LIGHTING ...249
4.14.1 OVERVIEW..249
4.14.2 CLASS DESCRIPTION...249
4.14.3 METHOD DESCRIPTION...249
4.14.4 TIPS / ...251
4.15 VIBRATOR API ...252
4.15.1 OVERVIEW..252
4.15.2 CLASS DESCRIPTION...252
4.15.3 METHOD DESCRIPTIONS ...252
4.15.4 CODE EXAMPLES..253
4.15.5 TIP / ...254
4.15.6 EMULATOR STUB CLASSES...254
4.16 JAVA IMAGE UTILITY LIBRARY ..255
4.16.1 OVERVIEW..255
4.16.2 CLASS DESCRIPTION...255
4.16.3 METHOD DESCRIPTION...256
4.16.4 CODE EXAMPLE..260

5 TELEPHONY ...269
5.1 OVERVIEW...269
5.2 INTERCONNECT/PHONE CALL INITIATION API...269
5.2.1 OVERVIEW..269
5.2.2 CLASS DESCRIPTION ...269
5.2.3 METHOD DESCRIPTION ...270
5.2.4 CODE EXAMPLES ..272
5.2.5 COMPILING & TESTING INTERCONNECT CAPABLE MIDLETS..272
5.3 CALL RECEIVING API ..273
5.3.1 OVERVIEW..273
5.3.2 CLASS DESCRIPTIONS ...273
5.3.3 METHOD DESCRIPTIONS ...274
5.3.3 CODE EXAMPLES ..281
5.3.4 TIPS /..289
5.3.5 COMPILING & TESTING CALL RECEIVING MIDLETS...289
5.4 RECENTCALLS API..291
5.4.1 OVERVIEW..291
5.4.2 CLASS DESCRIPTIONS ...291
5.4.3 METHOD DESCRIPTIONS ...291

iDEN J2ME™ Developer’s Guide

7
 © 2005 Motorola, Inc.

5.4.4 CODE EXAMPLES ..296
5.5 PHONEBOOK..300
5.5.1 OVERVIEW..300
5.5.2 CLASS DESCRIPTIONS ...300
5.5.3 CLASS METHODS ..300
5.5.4 CODE EXAMPLES ..307
5.5.5 COMPILING & TESTING PHONEBOOK MIDLETS ...311
5.6 JAVA PIM PACKAGE..312
5.6.1 OVERVIEW..312
5.6.2 PACKAGE DESCRIPTION ..313
5.6.3 CODE EXAMPLES ..320

6 FILE SYSTEM AND STORAGE ...324
6.1 OVERVIEW...324
6.2 MIDP 2.0 RECORD MANAGEMENT SYSTEM (RMS)...324
6.2.1 OVERVIEW..324
6.2.2 CLASS DESCRIPTION ...324
6.2.3 CODE EXAMPLES ..325
6.2.4 TIPS /..325
6.2.5 CAVEATS ..326
6.2.6 COMPILING AND TESTING RMS MIDLETS..326
6.3 MIDP 2.0 FILE I/O AND SECURE FILE I/O..327
6.3.1 OVERVIEW..327
6.3.2 CLASS DESCRIPTION ...327
6.3.3 METHOD DESCRIPTION ...327
6.3.4 CODE EXAMPLES ..329
6.3.5 TIPS /..338
6.3.6 CAVEATS ..338
6.3.7 COMPILING AND TESTING FILE/SECURE FILE MIDLETS ...339
6.4 FILECONNECTION ..340
6.4.1 OVERVIEW..340
6.4.2 PACKAGE JAVAX.MICROEDITION.IO.FILE...340
6.5 JAVA ZIP ...358
6.5.1 OVERVIEW..358
6.5.2 CLASS DESCRIPTION ...358
6.5.3 METHOD DESCRIPTIONS ...358
6.5.4 CODE EXAMPLE ..358

7 NETWORKING AND SECURITY ..360
7.1 OVERVIEW...360
7.2 J2ME™ NETWORKING ..360
7.2.1 OVERVIEW..360
7.2.2 TIMEOUTS...361
7.2.3 PROTOCOLS ..361

7.2.3.1 HTTP ..361
7.2.3.2 HTTPS ..362
7.2.3.3 TCP Sockets ..362
7.2.3.4 SSL Secure Sockets ...363
7.2.3.5 Server Sockets...363
7.2.3.6 UDP Sockets ...363
7.2.3.7 Serial Port Access...364
7.2.3.8 RFCOMM, L2CAP, and OBEX ..366

iDEN J2ME™ Developer’s Guide

8
 © 2005 Motorola, Inc.

7.2.4 IMPLEMENTATION NOTES I...366
7.2.5 TIPS /..366
7.3 WIRELESS MESSAGING ..367
7.3.1 OVERVIEW..367
7.3.2 METHOD DESCRIPTIONS ...367
7.3.3 CAVEAT FOR WMA OVER SMS..369
7.4 WMA OVER MMS ...370
7.4.1 PACKAGE DESCRIPTION ..370
7.4.2 PACKAGE TREE ...370

7.4.2.1 Class Hierarchy ..370
7.4.2.2 Interface Hierarchy...371
7.4.2.3 javax.microedition.io.Connector...371
7.4.2.4 javax.wireless.messaging.TextMessage...372
7.4.2.5 javax.wireless.messaging. MessageConnection..373
7.4.2.6 javax.wireless.messaging.MessagePart ..373
7.4.2.7 javax.wireless.messaging.MultipartMessage..375

7.4.3 CODE EXAMPLES ..376
7.5 MIPD 2.0 PUSH REGISTRY...382
7.5.1 OVERVIEW..382
7.5.2 NETWORK LAUNCH...382
7.5.3 TIME-BASED LAUNCH ...382
7.5.4 CLASS DESCRIPTION ...382
7.5.5 METHOD DESCRIPTION ...383
7.5.6 TIPS /..383
7.6 MIDP 2.0 SECURITY API...384
7.6.1 OVERVIEW..384
7.6.2 CLASS DESCRIPTIONS ...384
7.6.3 METHOD DESCRIPTIONS ...385
7.6.4 CODE EXAMPLES ..385
7.6.5 TIPS /..387
7.7 CRYPTOGRAPHY APIS ...388
7.7.1 OVERVIEW..388
7.7.2 CLASS DESCRIPTIONS ...388

7.7.2.1 MessageDigest Description ..388
7.7.2.2 Cipher Description ...389
7.7.2.3 Signature Description ...389
7.7.2.4 KeyAgreement Description ...389

7.7.3 METHOD DESCRIPTIONS ...390
7.7.4 EXAMPLE CODE ..394
7.7.5 TIPS /..399
7.7.6 COMPILING & TESTING CRYPTOGRAPHY ENHANCED MIDLETS ..399
7.8 JAXP...400
7.8.1 OVERVIEW..400
7.8.2 PACKAGE JAVAX.XML.PARSERS ..400
7.8.3 PACKAGE ORG.XML.SAX ...401
7.8.4 PACKAGE ORG.XML.SAX.HELPERS ..401
7.8.5 PACKAGE TREE...402

7.8.5.1 Class Hierarchy ..402
7.8.5.2 Interface Hierarchy...402
7.8.5.3 Class javax.xml.parsers.SAXParser ...402
7.8.5.4 Class javax.xml.parsers.SAXParserFactory...403

7.8.6 CODE EXAMPLES ..404

iDEN J2ME™ Developer’s Guide

9
 © 2005 Motorola, Inc.

7.8.7 COMPILING & TESTING JAXP MIDLETS...409
7.9 JAX-RPC...410
7.9.1 OVERVIEW..410
7.9.2 PACKAGE JAVAX.MICROEDITION.XML.RPC ...410
7.9.3 PACKAGE JAVAX.XML.NAMESPACE ..410
7.9.4 PACKAGE JAVAX.XML.RPC ...411
7.9.5 PACKAGE JAVA.RMI..411
7.9.6 CLASS AND INTERFACE HEIRARCHY...412
7.9.7 DEVELOPMENT PROCEDURE ...413
7.9.8 BACKGROUND KNOWLEDGE...413
7.9.9 DEVELOPMENT STEPS...415
7.9.10 SAMPLE APPLICATION ..415
7.10 JAVATM APIS FOR BLUETOOTHTM WIRELESS TECHNOLOGY AND OBJECT PUSH PROTOCOL.......................425
7.10.1 OVERVIEW..425
7.10.2 DEVICE AND SERVICE DISCOVERY ...425
7.10.2.1 PACKAGE DESCRIPTION ..425
7.10.2.2 PLATFORM SPECIFIC LIMITATIONS ..426
7.10.3 SERVICE REGISTRATION ...426
7.10.3.1 PACKAGE DESCRIPTION ..427
7.10.3.2 PLATFORM SPECIFIC LIMITATIONS ..427
7.10.3.3 SAMPLE CODE ...427
7.10.4 GENERIC ACCESS PROFILE ...431
7.10.4.1 PACKAGE DESCRIPTION ..431
7.10.4.2 PLATFORM SPECIFIC LIMITATIONS ..431
7.10.4.3 SAMPLE CODE ...431
7.10.5 SERIAL PORT PROFILE ..433
7.10.5.1 PACKAGE DESCRIPTION ..433
7.10.5.2 USING JAVAX.MICROEDITION.IO.CONNECTOR FOR RFCOMM..433
7.10.5.3 SAMPLE CODE ...434
7.10.6 LOGICAL LINK CONTROL AND ADAPTATION PROTOCOL (L2CAP) ..441
7.10.6.1 PACKAGE DESCRIPTION ..441
7.10.6.2 USING JAVAX.MICROEDITION.IO.CONNECTOR FOR L2CAP ...441
7.10.6.3 PLATFORM SPECIFIC LIMITATIONS ..441
7.10.7 OBJECT EXCHANGE PROTOCOL ..442
7.10.7.1 PACKAGE DESCRIPTION ..442
7.10.7.2 USING JAVAX.MICROEDITION.IO.CONNECTOR FOR OBEX ..443
7.10.7.2.1 OBEX OVER RFCOMM ...443
7.10.7.2.2 OBEX OVER TCP/IP ..444
7.10.7.3 CREATING AN OBEX CLIENT..444
7.10.7.4 CREATING AN OBEX SERVER ..445
7.10.7.5 PLATFORM SPECIFIC LIMITATIONS ..446
7.10.8 OBJECT PUSH PROTOCOL..446
7.10.8.1 PACKAGE DESCRIPTION ..446
7.10.8.1.1 CLASS OPPCLIENT ..447
7.10.8.1.2 CLASS OPPCLIENTREQUESTHANDLER...448
7.10.8.1.3 CLASS OPPSERVER ..452
7.10.8.1.4 CLASS OPPSERVERREQUESTHANDLER...455
7.10.8.1.5 CLASS OPPOBJECT ..456
7.10.8.2 SAMPLE CODE ...456

8 HANDSET FEATURES...471
8.1 OVERVIEW...471

iDEN J2ME™ Developer’s Guide

10
 © 2005 Motorola, Inc.

8.2 MIDP 2.0 PLATFORM REQUEST ...471
8.2.1 OVERVIEW..471
8.2.2 CLASS DESCRIPTION ...471

8.2.2.1 Method Description ..472
8.2.3 CODE EXAMPLES ..472
8.2.4 TIPS /..473
8.3 DATEBOOK..474
8.3.1 OVERVIEW..474
8.3.2 CLASS DESCRIPTIONS ...474
8.3.3 METHOD DESCRIPTIONS ...475

8.3.3.1 UDM Method..475
8.3.3.2 DateBookEvent Methods...475
8.3.3.3 DateBookRepeatEvent Methods..477
8.3.3.4 DateBook Methods..479

8.3.4 CODE EXAMPLES ..481
8.3.5 COMPILING & TESTING DATEBOOK MIDLETS ..484
8.4 STATUS MANAGER ..485
8.4.1 OVERVIEW..485
8.4.2 CLASS DESCRIPTION ...485
8.4.3 METHOD DESCRIPTIONS ...485
8.5 LOCATION API...487
8.5.1 OVERVIEW..487
8.5.2 CLASS DESCRIPTION ...488
8.5.3 METHOD DESCRIPTIONS ...489
8.5.4 CODE EXAMPLES ..492
8.5.5 TIPS /..496
8.6 JAVAX LOCATION PACKAGE ..499
8.6.1 OVERVIEW..499
8.6.2 PACKAGE DESCRIPTION ..499
8.6.3 JAVAX.MICROEDITION.LOCATION.LOCATION..501
8.6.4 JAVAX.MICROEDITION.LOCATION.LOCATIONPROVIDER ...502
8.6.5 JAVAX.MICROEDITION.LOCATION.ORIENTATION ..504
8.6.6 CODE EXAMPLES ..505
8.6.7 COMPARING WITH OEM AGPS API ...514
8.7 CUSTOMER CARE API..517
8.7.1 OVERVIEW..517
8.7.2 CLASS DESCRIPTION ...517
8.7.3 METHOD DESCRIPTIONS ...517
8.7.4 CODE EXAMPLES ..520
8.7.5 COMPILING & TESTING CUSTOMER CARE MIDLETS ..522

APPENDIX A: SPECIFICATION SHEETS ..523
IDEN MULTI-COMMUNICATION DEVICE SPECIFICATIONS ...523

APPENDIX B: JAVA APIS..525
FEATURE MATRIX FOR IDEN MULTI-COMMUNICATION DEVICES ...525

APPENDIX C: KEY MAPS FOR THE IDEN MULTI-COMMUNICATION DEVICES..............................528
OVERVIEW ...528
I730 / I710 MULTI-COMMUNICATION DEVICE ..529
I830 / I830E MULTI-COMMUNICATION DEVICE...531
I285 MULTI-COMMUNICATION DEVICE...533

iDEN J2ME™ Developer’s Guide

11
 © 2005 Motorola, Inc.

I325 MULTI-COMMUNICATION DEVICE...534
I860 MULTI-COMMUNICATION DEVICE...535
I265 MULTI-COMMUNICATION DEVICE...538
I605 MULTI-COMMUNICATION DEVICE...538

iDEN J2ME™ Developer’s Guide

12
 © 2005 Motorola, Inc.

1
Introduction

1.1 Purpose
This guide describes the procedures used to develop a J2ME™ compliant application for iDEN
Multi-Communication Devices. Also included is information on developing and packaging
applications for installation as well as a step-by-step procedure for setting up a debug
environment. Detailed information on the Java 2 Micro Edition environment is not provided.

1.2 Audience
This document is intended for application developers involved with the development of J2ME
applications for iDEN Multi-Communication Devices using iDEN APIs.

1.3 Disclaimer
Motorola reserves the right to make changes without notice to any products or services described
herein. “Typical” parameters, which may be provided in Motorola Data sheets and/or
specifications can and do vary in different applications and actual performance may vary.
Customer’s technical experts will validate all “Typicals” for each customer application.

Motorola makes no warranty with regard to the products or services contained herein. Implied
warranties, including without limitation, the implied warranties of merchantability and fitness for a
particular purpose, are given only if specifically required by applicable law. Otherwise, they are
specifically excluded.

No warranty is made as to coverage, availability, or grade of service provided by the products or
services, whether through a service provider or otherwise.

No warranty is made that the software will meet your requirements or will work in combination with
any hardware or applications software products provided by third parties, that the operation of the
software products will be uninterrupted or error free, or that all defects in the software products will
be corrected.

In no event shall Motorola be liable, whether in contract or tort (including negligence), for any
damages resulting form use of a product or service described herein, or for any indirect, incidental,

iDEN J2ME™ Developer’s Guide

13
 © 2005 Motorola, Inc.

special or consequential damages of any kind, or loss of revenue or profits, loss of business, loss
of information or data, or other financial loss arising out of or in connection with the ability or
inability to use the Products, to the full extent these damages may be disclaimed by law.

Some states and other jurisdictions do not allow the exclusion or limitation of incidental or
consequential damages, or limitation on the length of an implied warranty, so the above limitations
or exclusions may not apply to you.

This warranty gives you specific legal rights, and you may also have other rights, which vary from
jurisdiction to jurisdiction.

Motorola products or services are not designed, intended, or authorized for use as components in
systems intended for surgical implant into the body, or other applications intended to support or
sustain life, or for any other application in which the failure of the Motorola product or service could
create a situation where personal injury or death may occur.

Should the buyer purchase or use Motorola products or services for any such unintended or
unauthorized application, buyer shall release, indemnify and hold Motorola and its officers,
employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages,
and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized use, even if such claim
alleges that Motorola was negligent regarding the designing or manufacture of the product or
service.

1.4 References
Reference Link

Motorola, Inc.
IDEN Subscriber Group
Phone: 1-800-453-0920

https://commerce.motorola.com/idenonline/ideveloper/index.cfm

CLDC 1.1 Library http://jcp.org/aboutJava/communityprocess/final/jsr139/index.html.

Sun™ J2ME™ http://java.sun.com/j2me/

1.5 Revision History
Version Date Reason

1.7 08/23/04 Updated to include the i860.

1.85 10/09/04 Updated to include the i830e.

1.93 2/23/2005 Updated to include the i605.

1.98 3/22/2005 Updated to include the i275 and i355.

iDEN J2ME™ Developer’s Guide

14
 © 2005 Motorola, Inc.

1.6 Abbreviations and Acronyms
Acronym Description

AGPS Assisted Global Positioning System
AMS Application Management Software
API Application Programming Interface
CLDC Connected Limited Device Configuration
CSD Customer Specific Data
CSTN Color Super Twisted Nematic LCD
DB Database
DRM Data Resource Manager
DSR Distributed Speech Recognition
DTMF Dual Tone Multi-Frequency
FPS Frames Per Second
GCF Generic Connection Framework
GOEP General Object Exchange Profile
GPS Global Positioning System
GSM Global System for Mobile Communications
IANA Internet Assigned Numbers Authority
iDEN Integrated Digital Enhanced Networks
IMEI International Mobile Equipment Identity
JAXP Java API for XML Processing
JAX-RPC Java API for XML-based Remote Procedure Call
JSR Java Specification Report
L2CAP Logical Link Control and Adaptation Protocol
LWT Lightweight Windowing Toolkit
MIDP Mobile Information Device Profile
MMA Mobile Media API
MMS Multimedia Messaging Service
NMEA National Marine Electronics Association
OBEX Object Exchange
PIM Personal Information Management
PKI Public Key Infrastructure
RFCOMM Radio Frequency Communications Protocol
RMS Record Management System
RS-232 Recommended Standard 232
RTP Real-time Transport Protocol
SAX Simple API for XML Parser
SDDB Service Discovery Database
SDG Selective Dynamic Group
SDGC Selective Dynamic Group Call
SDP Service Discovery Protocol
SIG Special Interest Group
SOAP Simple Object Access Protcol
SPI Service Provider Interface

iDEN J2ME™ Developer’s Guide

15
 © 2005 Motorola, Inc.

Acronym Description
SPP Serial Port Profile
SSL Secure Socket Layer
UDM User Data Manager
UFMI Universal Fleet Member Identifier
WMA Wireless Messaging API
WSDL Web Services Description Language
XML Extensible Markup Language

iDEN J2ME™ Developer’s Guide

16
 © 2005 Motorola, Inc.

1.7 Icon Guide
Icon Description

Presence of this icon indicates that the information presented applies to
the i730 and i710 Multi-Communication Devices. When this icon is

present the information also applies to updated i730 handsets.

Presence of this icon indicates that the information presented applies to
certain i730 Multi-Communication Devices with later software updates

enabling new functionality. These handsets contain all of the
functionality of older i730 handsets as well. To determine if an i730

handset has the later software see the Java System section.

Presence of this icon indicates that the information presented applies to
the i830 and i830e Multi-Communication Devices. When the icon is

accompanied by “i830e only” the information does not apply to standard
i830 handsets.

Presence of this icon indicates that the information presented applies to
the i860 Multi-Communication Device.

Presence of this icon indicates that the information presented applies to
the i285 Multi-Communication Device.

Presence of this icon indicates that the information presented applies to
the i325 Multi-Communication Device.

iDEN J2ME™ Developer’s Guide

17
 © 2005 Motorola, Inc.

Presence of this icon indicates that the information presented applies to
the i265 and i275 Multi-Communication Devices. When the icon is
accompanied by “i275 only” the information does not apply to i265

handsets.

Presence of this icon indicates that the information presented applies to
the i605 Multi-Communication Device.

Presence of this icon indicates that the information presented applies to
the i355 Multi-Communication Device.

iDEN J2ME™ Developer’s Guide

18
 © 2005 Motorola, Inc.

1.8 Document Overview
This developer’s guide is organized into the following chapters and appendices:

Chapter 1 – Introduction: this chapter has general information about this document, including
purpose, scope, references, and definitions.

Chapter 2 – J2ME Introduction: this chapter describes the J2ME™ platform and the available
resources on the iDEN Multi-Communication Device.

Chapter 3 – Developing and Packaging J2ME™ Applications: this chapter describes the
processes for developing applications and creating an emulation environment for J2ME™
applications.

Chapter 4 – Multimedia and Graphics: this chapter describes the features of the iDEN Multi-
Communication Device as pertains to multimedia and graphics.

Chapter 5 – Telephony: this chapter describes the features of the iDEN Multi-Communication
Device as pertains to telephony.

Chapter 6 – File System and Storage : this chapter describes the features of the iDEN Multi-
Communication Device as pertains to file system and storage.

Chapter 7 – Networking and Security: this chapter describes the features of the iDEN Multi-
Communication Device as pertains to networking and security.

Chapter 8 – Handset Features: this chapter describes the features of the iDEN Multi-
Communication Device as pertains to handset features.

Appendix A: Specification Sheets

Appendix B: Java APIs

Appendix C: Key Maps for the iDEN Multi-Communication Devices

iDEN J2ME™ Developer’s Guide

19
 © 2005 Motorola, Inc.

2
J2ME™ Introduction

2.1 Overview
Most iDEN handsets include the Java™ 2 Platform, Micro Edition (or J2ME™) platform. The
J2ME™ platform enables developers to easily create a variety of Java applications ranging from
business applications to games. Prior to its inclusion, services or applications residing on small
consumer devices like cell phones could not be upgraded or added to without significant effort. By
implementing the J2ME™ platform on iDEN handsets service providers, as well as customers, can
easily add and remove applications allowing for quick and easy personalization of each device.
This chapter of the guide presents a quick overview of the J2ME™ environment and the tools that
can be used to develop applications for the iDEN handsets.

2.2 The Java 2 Platform, Micro Edition (J2ME™)
The J2ME™ platform is a very small application environment. It is a framework for the deployment
and use of Java technology in small devices (such as cell phones and pagers) and includes a set
of APIs and a virtual machine that is designed in a modular fashion allowing for scalability among
a wide range of devices.

The J2ME™ architecture contains three layers consisting of the Java Virtual Machine, a
Configuration Layer, and a Profile Layer. The Virtual Machine (VM) supports the Configuration
Layer by providing an interface to the host operating system. Above the VM is the Configuration
Layer, which can be thought of as the lowest common denominator of the Java Platform available
across devices of the same “horizontal market.” Built upon this Configuration Layer is the Profile
Layer, typically encompassing the presentation layer of the Java Platform.

iDEN J2ME™ Developer’s Guide

20
 © 2005 Motorola, Inc.

Mobile Information Device

Native System Software

CLDC

MIDP OEM
Classes

MIDP-Compliant
Apps

OEM
Apps

Native
Apps

Mobile Information Device

Native System Software

CLDC

MIDP OEM
Classes

MIDP-Compliant
Apps

OEM
Apps

Native
Apps

Figure 2.1

The Configuration Layer used in the iDEN handsets is either the Connected Limited Device
Configuration 1.1 (CLDC 1.1) or Connected Limited Device Configuration 1.0 (CLDC 1.0),
depending on the phone model. The Profile Layer used is the Mobile Information Device Profile
2.0 (MIDP 2.0). Together, the CLDC and MIDP provide common APIs for I/O, simple math
functionality, UI, and more.

For more information on J2ME™, see the Sun™ J2ME™ documentation (http://java.sun.com/j2me/).

2.2.1 The Motorola J2ME™ Platform
Functionality not covered by the CLDC and MIDP APIs is left for individual OEMs to implement
and support. By adding to the standard APIs, manufacturers can allow developers to access and
take advantage of the unique functionality of their handsets.

The iDEN Multi-Communication Device contain OEM APIs for extended functionality ranging from
enhanced UI to advanced data security. While the iDEN Multi-Communication Device can run any
application written in standard MIDP, it can also run applications that take advantage of the unique
functionality provided by these APIs. These OEM APIs are described in this guide.

2.2.2 Resources and APIs Available
MIDP 2.0 will provide support to myriad functional areas on the iDEN Multi-Communication
Device: For more information on these resources and Java APIs, see Appendix A:
Specification Sheets

 on page 523 and Appendix B:
Java APIs

 on page 525.

2.2.3 Platform Specific Features
2.2.3.1 Concurrency

iDEN’s J2ME™ platform supports the concurrent execution of up to three MIDlets at a time. The
three MIDlets must be from different MIDlet Suites. You can't concurrently execute two MIDlets
from the same MIDlet Suite.

Only one of the MIDlets can be in the foreground at once, leaving the other two suspended in the
background. As with other iDEN products, the MIDlets in the background can still execute while

iDEN J2ME™ Developer’s Guide

21
 © 2005 Motorola, Inc.

they're suspended. Since resources are limited it is recommended that MIDlets be written in such
a way that they release any resources such as files, large temporary heap storage, and threads.

A single instance of the VM is used to run all three MIDlets. This means that all of the MIDlets'
threads are scheduled together in a round robin fashion, but the time slices vary. The threads
belonging to the foreground (active) MIDlet have the largest time slices. The threads belonging to
the background (suspended) MIDlets have smaller time slices. The thread's actual time slice is
calculated based on this foreground/background designation as well as the thread's priority. A
MIDlet can set that thread priority by using the Thread.setPriority() method as described in the
CLDC specification. This allows the MIDlet to customize the performance of its own threads with
respect to the other threads with the same foreground/background designation, basically meaning
that no threads in a background MIDlet can be a higher priority than the threads in the foreground
MIDlet.

All three MIDlets also operate out of the same heap. This raises the possibility of an out of memory
exception because there are other applications whose memory usage is not known. The best way
to safeguard against this is for application developers to minimize the amount of heap they
consume while their MIDlet is in the background. Another way to avoid an out-of-memory problem
is to catch the OutOfMemoryException while creating large resource objects. This prevents
unexpected behaviors from the MIDlet.

Although MIDlets can run concurrently, they still don't have an awareness of each other. The
purpose of the concurrency feature is not cooperation amongst MIDlets. The purpose is to allow
the user to run multiple MIDlets, such as a game in the foreground and an instant messenger
application in the background.

2.2.3.2 Multiple Key Presses
iDEN handsets support the ability to have multiple key presses passed to a Java application. This
allows for applications to receive notification of another key being pressed while one key is still
being pressed. Due to hardware limitations, only 2 keys presses can be guaranteed at any given
time, while many key combinations of more keys can be pressed at the same time.

Multiple key press support works as follows:

• When a key is pressed, the application’s keyPressed() method is called.

• After 650ms, the application’s keyRepeated() method is called every 250 ms.

• When a second key is pressed, it stops the first key from repeating. The second key will
generate another call to the application’s keyPressed() method.

• After 650ms, the application’s keyRepeated() method is called every 250 ms with the
second key’s key code.

• When either of the keys are released, the application’s keyReleased() method is called
with the key code of the key that was released.

• If two keys are currently pressed and if the key that is released is the repeating key, no
more calls to the application’s keyRepeated() method occur until another key is pressed.

iDEN J2ME™ Developer’s Guide

22
 © 2005 Motorola, Inc.

Figure 2.2 Key press timeline

2.2.3.3 Timezone and Daylight Savings Support

Local time zone and daylight savings time support has been
enhanced on certain handsets. These handsets provide the
locally determined time zone as the default time zone, as well as
daylight savings information through the CLDC Time Zone class.
For instance, if it is 5:00PM locally, and the local time zone is
GMT-05:00, then System.currentTimeMillis() returns 10:00PM
(9:00PM if daylight savings is in effect).

On handsets without enhanced locale support, the default time
zone is always GMT, and System.currentTimeMillis() returns
local time interpreted as GMT. For instance, if it is 5:00PM
locally, then System.currentTimeMillis() returns the millisecond
value of 5:00PM GMT without accounting for daylight savings.

Key 1 is
pressed

Key 1 Starts
repeating

Key 2 is
pressed.

Key 1 stops
repeating

Key 2 is
Released.

Key 2 stops
repeating

Key 2 starts
repeating

Key 3 is
pressed

Key 3 starts
repeating

Key 1 is

released

iDEN J2ME™ Developer’s Guide

23
 © 2005 Motorola, Inc.

2.3 Application Management
2.3.1 MIDlet Lifecycle

A MIDlet’s lifecycle begins once its MIDlet suite is downloaded to the device. From that point, the
Application Management Software (AMS) manages the MIDlet suite and its MIDlets. The user’s
primary user interface for the AMS is the Java Apps feature built into the device’s firmware.

From the Java Apps feature, the user can see each
MIDlet suite on the device or access the Java System
menu item. If a MIDlet suite has only a single MIDlet,
then the MIDlet’s name is displayed in the Java Apps
menu for that MIDlet suite. Otherwise the MIDlet suite
name is displayed. Then when that MIDlet suite is
highlighted, the user can open the MIDlet suite and
view the MIDlets in that MIDlet suite.

Figure 2.3 The Java Apps Menu

From the Java Apps menu, the user can highlight a
MIDlet suite and bring up the About dialog for that
MIDlet suite. The About dialog contains:

• MIDlet Suite Name

• MIDlet Suite Vendor

• MIDlet Suite Version

• JAR Size (not installed only)

• The number of MIDlets in the MIDlet Suite

• MIDP and CLDC version requirements (not
installed only)

• Flash usage, Program and Data Space (installed
only)

Figure 2.4 About Properties
for a MIDlet

2.3.2 MIDlet Suite Installation
From the Java Apps menu, the user can install MIDlet suites. A MIDlet suite must be installed
before any of its MIDlets can be executed. Installation involves extracting the classes from the JAR
file and creating an image that will be placed into Program Space. The resources are then
extracted from the JAR file and placed into Data Space. The JAR file is then removed from the
device, thus freeing up some Data Space where it was originally downloaded.

About

Vendor:

Name:

Motorola, Inc.
NEXT DONE

Download Apps

Java Apps

Blackjack
Snake

Java System
EXIT SELECT

Download Apps

iDEN J2ME™ Developer’s Guide

24
 © 2005 Motorola, Inc.

The space savings from removing the JAR file is one advantage of Installation. However, perhaps
an even greater advantage is that class loading is not done during run time. This means that a
MIDlet won’t experience slow-down when a new class is accessed. Furthermore, the MIDlet won’t
have to share the heap with classes have been class-loaded from the JAR file.

2.3.3 MIDlet Suite De-installation
An installed MIDlet can be removed from the device only by de-installing it from the Java Apps
menu. De-installing a MIDlet suite removes the installed image from Program Space. The
resources are then removed from Data Space along with the JAD file.

2.3.4 MIDlet Suite Updating
When a MIDlet suite is de-installed, all of its resources are removed including any resources that
were created by the MIDlets in the suite, such as RMS databases. If a user gets a new version of
a MIDlet suite, the user can simply download that new version to the device that has the older
version. Once that new version is downloaded, the user has the option to update the MIDlet suite.
This de-installs the old version and immediately installs the new MIDlet suite. The only difference
is that the device asks the user whether resources such as RMS databases should be preserved
while de-installing the old version. This prompt occurs only if such resources exist.

Such a scheme places the burden of compatibility on the developer. A newer version of the MIDlet
suite should know how to use, upgrade, or remove the date in the RMS databases that the older
versions created. This idea of forward compatibility should also extend to backward compatibility,
because the device allows a user to replace a version of a MIDlet suite with an older version of
that MIDlet suite.

2.3.5 Starting, Pausing, and Exiting
2.3.5.1 AMS Control of MIDlet State Transitions

A MIDlet has three different states: destroyed, active, and
paused. A MIDlet’s natural state is destroyed. The AMS
typically controls the transition through these states. When a
user decides to launch a MIDlet, the device puts up a screen
indicating that the MIDlet is transitioning through these states.
The AMS controls the MIDlets through those states by calling
the MIDlet’s methods, startApp(), pauseApp(), and
destroyApp().

Figure 2.5 MIDlet Starting Screen

First, the constructor of the MIDlet’s class that extends MIDlet is invoked. Then its startApp()
method is called to indicate that it’s being started. The MIDlet has focus when its startApp()
method finishes execution. If a MIDlet takes too long initializing state variables and preparing to be
run in its constructor or startApp() methods, it may appear to be stalled to users.

Starting…
Snake

EXIT

iDEN J2ME™ Developer’s Guide

25
 © 2005 Motorola, Inc.

Figure 2.6 MIDlet State Transitions

State Transition Methods

Method Caller Purpose

Constructor AMS Initializes the MIDlet – should return quickly

startApp() AMS 1. The startApp() method is called to start the
application either from a newly constructed state or
from a paused state.

2. If the startApp() is called from a paused state,
the MIDlet should not re-initialize the instance
variables (unless that’s the desired behavior).

3. The startApp() method may be called multiple
times during the lifespan of the MIDlet.

4. The MIDlet may set the current display to its own
Displayable from the startApp() method, but is
shown only after the startApp() returns.

5. When exiting a suspended application, the KVM first
calls startApp() followed by a call to
destroyApp().

Starting
Application Constructor

startApp()

Running
Application

Paused
Application

Exit
Application

pauseApp()

destroyApp()

notifyDestroyed()

iDEN J2ME™ Developer’s Guide

26
 © 2005 Motorola, Inc.

Method Caller Purpose

pauseApp() AMS,
MIDlet

1. The pauseApp() method is called from either AMS
or from within the MIDlet.

2. The pauseApp() should pause active threads, and
prepare for startApp() to be called.

3. If the application is to be resumed with a screen
other than the present, then the Displayable should
be set current in the pauseApp().

destroyApp() AMS The destroyApp() method is called from AMS and signals
the MIDlet to clean up any resources and prepare for
termination. For example, open RMS records should be
closed, threads should be stopped, and any other
housekeeping chores should be performed.

The MIDlet should not call destroyApp().

notifyDestroyed() MIDlet The notifyDestroyed() method is called by the MIDlet
to exit and terminate itself.

All housekeeping such as stopping active threads and
closing RMS records should be performed before calling
notifyDestroyed().

notifyDestroyed() notifies AMS to terminate the calling
MIDlet.

Focus is an important concept. On a device without a windowing system, only one application can have
focus at a time. When an application has focus, it receives keypad input, and has access to the display,
speakers, LED lights, vibrator, and so on. MIDlets share focus with the system user interface. That user
interface is a higher priority than the MIDlet, so the MIDlet will immediately lose focus when the system
needs to handle a phone call or some other interrupt.

Processing Space

Device Foreground Device Background

Generic MIDP Multiple MIDlets running in the
active state.

Multiple MIDlets running in the
active state.

Multiple MIDlets running
limitedly in the paused state.

Multiple MIDlets in the
destroyed state.

iDEN MIDP Implementation Up to one MIDlet running in
the active state.

Multiple MIDlets running in the
paused state.

Multiple MIDlets in the
destroyed state.

iDEN J2ME™ Developer’s Guide

27
 © 2005 Motorola, Inc.

Generic MIDP vs. iDEN Devices
On iDEN devices, the concept of focus correlates directly with the MIDlet state. For example, when
a MIDlet loses focus because of a phone call, the MIDlet is immediately suspended. Conversely to
the example of starting the MIDlet, the MIDlet loses focus immediately, then its pauseApp()
method is called. Standard MIDP allows multiple MIDlets, where a MIDlet can be active in the
foreground or active in the background. However, on the iDEN phones, an active MIDlet implies
foreground and a paused MIDlet implies background.

The paused state is not clearly defined by MIDP. The only requirement placed on the device
manufacturer is that a paused MIDlet must be able to respond to network events and timer events.
On iDEN devices, the paused state simply implies that the MIDlet is in the background as
mentioned above, but it doesn’t force any of the threads to stop execution. Essentially, a paused
MIDlet is a MIDlet without focus and whose pauseApp() method has been called. It’s up to the
developer to control their threads, such as making them sleep for longer periods, completely
pausing game threads, or terminating threads that can be restarted when the MIDlet is made
active again.

Similarly to the example of losing focus immediately before
the pauseApp() method is called, a MIDlet’s focus is also
immediately lost immediately before its destroyApp()
method is called. It’s interesting to note how an iDEN
device manages the transition to the destroyed state. The
user’s opportunity to exit a MIDlet using the AMS, is from
the MIDlet’s Suspended screen. Typically a MIDlet is
suspended, then the user exits it. Even though it appears
the MIDlet is going immediately from the paused state to
the destroyed state, it actually transitions through the active
state first, but it never gains focus during that transition.

Figure 2.8 MIDlet Suspended Screen

2.3.5.2 MIDlet Control of MIDlet State Transitions
A MIDlet has a lot of flexibility to control its own state. A MIDlet can call its own startApp(),
pauseApp(), and destroyApp() methods. However those are the methods that the AMS uses
to indicate a state transition to the MIDlet, so this won’t actually cause the state transition. The
MIDlet can simply call those methods if it wishes to perform the work that it would typically do
during that state transition.

There is another set of methods that the MIDlet can use to cause the actual state transitions. They
are resumeRequest(), notifyPaused(), and notifyDestroyed(). Since the system user
interface has priority, a MIDlet cannot force itself into the active state, but it can request that it be
resumed with resumeRequest(). If the system is not busy, then it will automatically grant the
request. However if the device isn’t in the idle screen, then it displays an alert dialog to ask
whether the user would like to resume the MIDlet. If the user denies the request, the MIDlet is not
notified. If the user grants the request, the MIDlet’s startApp() method is called, and it gains
focus when that method finishes.

The MIDlet does have more control when it decides that it wants to be paused or destroyed. It
would perform the necessary work by calling its own pauseApp() or destroyApp() method,
then it notifies the AMS of its intentions by calling notifyPaused() and notifyDestroyed()
appropriately. Once notified, the AMS changes the MIDlet’s state and revokes focus.

Suspended
 Snake

EXIT RESUME

iDEN J2ME™ Developer’s Guide

28
 © 2005 Motorola, Inc.

2.3.6 Java System
Besides managing MIDlet suites from the Java Menu, you can also perform system maintenance.
The Java System feature gives statistics about the system such as:

 • CLDC Version

 • MIDP Version

• WMA Version

• MMAPI Version

 • Data Space Free

 • Program Space Free

 • Total Heap Space

Besides getting statistics, you can reset the Java System or format the Java System. Resetting the
Java System simply re-initializes the components of each MIDlet suite as if the device was just
powered up. Formatting the Java System actually removes every MIDlet suite by completely
formatting the components of each MIDlet suite. These features can be accessed by pressing the
Menu key while highlighting Java System then selecting “Delete All”.

Note that “Delete All” was formerly labeled
“Format System”.

Some i730 handsets have software updates.
These handsets feature CLDC 1.1. To determine
if your i730 has been updated check the reported
CLDC version in Java System.

2.3.7 Java From Main Menu
Previously the Java Apps menu was the only interface into the Java functionality of an iDEN
device. However, the main menu has been enhanced to allow the user to add links to MIDlets or
entire MIDlet suites to the main menu. When a MIDlet is added to the main menu, the name of the
individual MIDlet is used for the main menu text. When a MIDlet suite has multiple MIDlets, the

iDEN J2ME™ Developer’s Guide

29
 © 2005 Motorola, Inc.

MIDlet suite itself can be added and the main menu text will be the MIDlet suite name. When a
MIDlet suite is selected from main menu, the device opens that MIDlet suite and displays the
MIDlets as if it were opened from the Java Apps menu.

2.3.8 Personalizing the Native UI
In addition to adding MIDlets and MIDlet suites to the main menu, MIDlets and MIDlet suites can
be accessed via the following user interfaces:

The first three items are additional places where the user can press a key or key sequence to
launch the MIDlet or MIDlet suite. The Power Up App feature allows you to launch a MIDlet suite
when the phone powers up. The user can also specify a MIDlet to be launched when a Datebook
event occurs.

These various features are options for the user, but as a developer you may want to encourage
users to set your MIDlet up with one of these features. However, from your MIDlet you can specify
a MIDlet to be added to a datebook event through the Datebook API (see “8.3 DateBook” on page
474).

2.3.9 Low Memory Indication

A low memory warning notice will be displayed to the
user when the Virtual Machine is running very low on
memory. Two thresholds have been defined. The first
one is referred to as Low Memory Threshold Value,
which is the smaller value of 64kb and the value of 10%
of the Java Heap Size. The second is referred to as
Extremely Low Memory Threshold, and is the smaller
value of 16k bytes and the value of 2.5% of the Java
Heap Size.

 A Java Memory Low notice will be displayed when the available free Java memory is less than or
equal to the Low Memory Threshold Value, but greater than the Extremely Low Memory Threshold
Value. Any value between these two limits are said to be within the Java Low Memory boundary.

• Home Screen Soft keys

• Shortcuts

• Power Up App

• Datebook Events

• Home Screen Five-Way Navigation Keys

iDEN J2ME™ Developer’s Guide

30
 © 2005 Motorola, Inc.

A Java Memory Extremely Low notice will be displayed to the user when the available free
memory is less than or equal to the Extremely Low Memory Threshold Value. This feature is
intended to inform the user that the current Java system is experiencing a low memory situation
and that java applications that are currently running might potentially be adversely affected.

2.3.9.1 Notes I
Each notice will only be displayed once per Java VM lifecycle. Even during this lifecycle, the Java
system might hit into the Low Memory or Extremely Low Memory scenario multiple times. (The
start of a Java VM lifecycle is when the user starts the first MIDlet, and it ends when the last
MIDlet exits.)

If a MIDlet attempts to allocate a block of memory that cannot be obtained even after garbage
collection and compaction of the Java heap, then one of these two notices will be shown
depending on how much heap is remaining.

2.3.10 The miniJIT
The miniJIT is iDEN's Just In Time (JIT) compiler technology that optimizes computation intensive
code within a MIDlet suite. The miniJIT works by identifying code that can be optimized and
compiling the Java byte codes to native code because native code executes faster. During the
compilation, the miniJIT can also eliminate some validity checks required in the Java interpreter.
Finally, the miniJIT can accelerate method calls, one of the most common constructs in any Java
application, using a technique called the fast method call.

• The miniJIT is made of two separate components:

• The ahead of time code analyzer

• The optimized Java to native compiler

The ahead of time code analyzer identifies the performance crucial code in a MIDlet suite during
the installation of the MIDlet suite. The optimized compiler compiles the code that the code
analyzer identifies as performance crucial into native code. During the installation of the MIDlet
suite, the compiler also searches for methods that can use the miniJIT’s fast method call
capabilities and modifies the code appropriately to use this capability.

Unlike most JIT compilers, the miniJIT compiles code only at install time. Most JIT compilers
compile the code when the application is running. The miniJIT does not do so because it runs on a
deeply embedded device. By compiling ahead of time, the miniJIT also eliminates the
unpredictability of the dynamic behavior of most JIT compilers.

As with most optimization technologies, there are specific trade-offs in using the miniJIT. The
miniJIT increases the size of the installed MIDlet suite by approximately 20% on device since it
compiles the compact Java byte codes to native code. Using the miniJIT also increases install time
of the MIDlet suite since the code analyzer and compiler execute during this time.

While the miniJIT does optimize computationally intensive tasks, many common capabilities are
already optimized for the iDEN platform and therefore the miniJIT provides little or no additional
benefit. These capabilities include:

• Graphics (LCDUI)

• Image Processing

• RMS

iDEN J2ME™ Developer’s Guide

31
 © 2005 Motorola, Inc.

2.3.10.1 Using the miniJIT

On these handsets the miniJIT does not compile
code during installation by default. The following
must be added to the JAD file of the MIDlet suite to
use the miniJIT:

iDEN-MIDlet-miniJIT: on

Other handsets use the miniJIT by default.

 The iDEN-MIDlet-miniJIT attribute is checked during the installation of a MIDlet suite to
determine if the miniJIT should be used. If the value is set to “on”, the miniJIT is used to
compile the MIDlet suite code. If the attribute is absent or set to “off”, the miniJIT is not
used.

2.3.10.2 Tips /
 The miniJIT optimizes only the code within the MIDlet suite.

 The miniJIT excels at optimizing loops and computation intensive code.

 The miniJIT can use the fast method call if the method that is being called meets the
following conditions:

o The method must be performance crucial.

o The method is not abstract or synchronized.

o The method does not have any exception handlers.

o The method must be static or have no overriding methods.

o The method must not allocate any memory from the Java heap.

o All the methods that this method calls must also meet all the criteria listed here.

 The miniJIT will not improve the performance of LCDUI code, loading of Images, and RMS
code. It may improve the performance of the supporting code within the MIDlet suite.

 In order to use the miniJIT, the MIDlet suite must be installed.

 As with all optimization techniques, only on-device testing lets a developer predict the
changes to the user experience the optimization may have.

iDEN J2ME™ Developer’s Guide

32
 © 2005 Motorola, Inc.

3
Developing and Packaging J2ME™

Applications

3.1 Overview
The iDEN Multi-Communication Device includes the J2ME™ platform. This chapter of the guide
presents a comprehensive guide on developing and packaging J2ME™ applications for the iDEN
Multi-Communication Device.

3.2 Developing for J2ME™
3.2.1 Developing – Tools and Emulation Environments

In order to develop applications for a J2ME™ enabled device, a developer needs some
specialized tools to improve development time and prepare the application for distribution. There
are several tools available in the space, so this overview is included to help enable developers to
make an informed decision on these tools.

3.2.1.1 Features to Look For
Numerous tools for developing J2ME™ applications are readily and freely available on the market.
Some of their features include:

• Class libraries. J2ME™ tools include class files for the standard CLDC/MIDP
specifications and may also contain class files needed to compile device specific code.

One of the main characteristics of the MIDP standards is the lack of device specific
functionality. As a solution, many MIDP device manufacturers have implemented Licensee
Open Classes that provide the features requested by developers. In order to take
advantage of these APIs, choose an SDK that natively supports them or one that can be
upgraded to support them.

• API documentation. In addition to providing the class files, most SDKs include reference
documentation for the supported APIs. These documents, typically found in either a HTML

iDEN J2ME™ Developer’s Guide

33
 © 2005 Motorola, Inc.

or PDF format, cover the standard CLDC/MIDP specifications as well as the device
specific APIs.

• Emulation environment. Although not an absolute necessity if the device is available, most
toolkits provide this functionality for multiple devices. The main benefits of an emulation
environment are the reduction in development time as well as the ability to develop for
devices not yet on the market. The extent to which the toolkits emulate the device can
vary greatly.

If most of the development is going to take place on the device, then this may not be a big
consideration, but if access to the target device is limited or unavailable, accurate
emulation is a must. Look for accuracy in the font representation, display dimensions, and
pixel aspect ratio, as many wireless devices do not have square pixels.

Along the same lines as accurate look and feel, the tool should also provide accurate
performance emulation. A comprehensive tool should provide individual adjustments for
performance aspects such as network throughput, network latency, persistent file system
access time, and graphics performance. Ideally, these attributes should not only match the
target device, but also have the ability to be manually adjusted.

• Application packaging utility. Most SDKs automatically package the application for
deployment onto the target device. Although many tools include this feature, flexibility
varies widely. Look for a tool that generates both the manifest and JAD files with the
required tags as well as custom tags. The packaging steps required to deploy an
application are described in a later section.

3.2.2 Packaging – Putting the Pieces Together
Once an application has been tested on an emulator and is ready for testing on the actual device,
the next step is to package the application and associated components into a JAD/JAR file pair.
The files contain both the MIDlet’s executable byte code along with the required resources.
Although this process is automatically performed by most SDKs and IDEs supporting J2ME™, the
steps are explained and outlined here.

3.2.2.1 Compiling .java Files to .class Files
Compiling a J2ME™ application is no different the any other J2SE™/J2EE™ application. By
adding the CLDC/MIDP files (whether functional or stubbed out) to the classpath, any standard
Java compiler that is JDK1.2 compliant or greater is sufficient to produce .class files suitable for
the preverification step.

3.2.2.2 Preverifying .class Files
Class files destined for the KVM must undergo a modified verification step before deployment to
the actual device. In the standard JVM found in J2SE™, the class verifier is responsible for
rejecting invalid classes, classes that are not compatible, and classes that have been modified
manually. Since this verification step is processor and time intensive, it is not ideal to perform
verification on the device. In order to preserve the low-level security model offered by the standard
JVM, the bulk of the verification step is performed on a desktop/workstation before loading the
class files onto the device. This step is known as preverification.

During the preverification step, the class file is analyzed and a stack map is appended to the front
of the file. Although this may increase the class file size by approximately 5%, it is necessary to
ensure the class file is still valid when it reaches the target device. The standard J2SE™ class
verifier ignores these attributes, so they are still valid J2SE™ classes.

iDEN J2ME™ Developer’s Guide

34
 © 2005 Motorola, Inc.

3.2.2.3 Creating a Manifest File with J2ME™ Specific Attributes
In addition to the class files, a manifest file for a MIDlet needs to be created. Although most
J2ME™ tools will auto generate the manifest file, it can also be created manually using a plain text
editor. The following is a sample manifest file for a HelloWorld MIDlet:

MIDlet-Name: HelloWorld
MIDlet-Version: 1.0.0
MIDlet-Vendor: Motorola, Inc.
MIDlet-1: HelloWorld, , com.motorola.midlets.helloworld.HelloWorld
MicroEdition-Profile: MIDP-2.0
MicroEdition-Configuration: CLDC-1.0

The device’s AMS uses the manifest file to determine the number of MIDlets present within the
suite as well as the entry point to each MIDlet. Additionally, the manifest files may contain optional
tags that are accessible by the MIDlets within the MIDlet suite. For more information, refer to the
MIDP 2.0 specifications.

Keep in mind these notes when creating a manifest file:

• The following attributes are mandatory and must be duplicated in both the JAR file
manifest and the JAD file. If the attributes are not identical, the application will not install.

MIDlet-Name
MIDlet-Version
MIDlet-Vendor

• The manifest contains MIDlet-<n> arbitrary attributes each describing a MIDlet in an
application suite.

• The MIDlet-1 attribute contains three comma-separated fields: the application name, the
application icon, and the application class file (entry point). The name is displayed in the
AMS user interface to represent the nth application. To take advantage of MIDlet icon
support, please refer to section 3.3. The application class file is the class extending the
javax.microedition.midlet.MIDlet class for the nth MIDlet in the suite.

• The manifest file is case sensitive.

• The manifest must be saved in a file called MANIFEST.MF (case sensitive) within the
meta-inf directory.

3.2.2.4 JARing .class Files and Other Resources
Once the application is ready to be packaged for the device, its class files and associated
resources must be bundled in a Java Archive (JAR) file. The JAR file format enables a developer
to bundle multiple class files and auxiliary resources into a single compressed file format. The JAR
file format provides the following benefits to the developer and end-user:

• Portability. The file format is platform independent.

• Package Sealing. All classes in a package must be found in the same JAR file.

• Compression. Files in the JAR may be compressed, reducing the amount of storage
space required. Additionally, the download time of an application or application suite is
reduced.

iDEN J2ME™ Developer’s Guide

35
 © 2005 Motorola, Inc.

3.2.2.5 Creating the JAD File
Although the Java Application Descriptor (also known as an Application Descriptor File) is optional
in the MIDP 1.0 specification, J2ME™ applications targeted for Motorola iDEN devices must
include a JAD/JAR pair. The following is a sample JAD file for a simple HelloWorld application.

MIDlet-Name: HelloWorld
MIDlet-Version: 1.0.0
MIDlet-Vendor: Motorola, Inc.
MIDlet-Jar-URL: http://www.motorola.com
MIDlet-Jar-Size: 1939
MIDlet-Description: A sample HelloWorld application.

The JAD file may be created with any text editor and saved with the same file name prefix as the
JAR file. The mandatory MIDlet-Name, MIDlet-Version, MIDlet-Vendor must be
duplicated from the JAR file manifest. JAR files containing manifests that do not match the JAD file
will not be installed.

Keep these notes in mind when creating the JAD file:

• The file names of the JAD and JAR are required to be identical except for the file
extension. For example the JAR file for the HelloWorld.jad must be named
HelloWorld.jar.

• The JAD file is case sensitive. All required attributes in the JAD file must start with
“MIDlet-“ followed by the attribute name.

• The total file length is limited to 16 characters, including the .jad and .jar extensions.
For example, HelloWorld.jad occupies 14 characters.

• The MIDlet-Jar-Size must contain the accurate size of the associated JAR file. The
number is in bytes.

• It’s also important to note that these fields must have associated values with them.
Example: “MIDlet-Name: “ is not valid but “MIDlet-Name: Snake" is valid.

For more information regarding the JAD file, please refer to the MIDP 1.0 specification.

3.2.3 Desktop to Device
Now that the application is packaged, it is ready to be loaded on to the device. Applications are
categorized into two distinct categories: networked and walled garden. Applications that fall into
the networked category use services such as packet data (examples include HTTP, sockets, UDP,
etc) to retrieve information from a remote server. Typical examples of this include applications like
web browsers that use packet data services to retrieve content from remote web servers located
on the open Internet. Walled garden applications, on the other hand, are stand-alone applications
that do not make use of packet data services. These applications contain all the necessary data
locally. Typical applications in this category include games, conversion utilities, etc.

Motorola distributes two Java Application Loading tools: JAL Lite and WebJAL. Walled Garden
applications can be loaded with either WebJAL or JAL Lite. Networked applications, on the other
hand, can only be loaded via the WebJAL utility. Both tools are available at www.idendev.com.

iDEN J2ME™ Developer’s Guide

36
 © 2005 Motorola, Inc.

3.2.4 Debugging – Terminal Interface
As with most application development lifecycles, 10 percent of the time is spent doing the first 90
percent and 90 percent of the time is spent doing the last 10 percent. Since debugging the
application is inevitable, setting up a debug environment on the phone is quite desirable.

3.2.4.1 HyperTerminal
The tool typically used to debug on the device is HyperTerminal, found at http://www.hilgraeve.com.
HyperTerminal is also included with Windows NT and is accessible under the accessories menu.
The HyperTerminal acts as a terminal for J2ME™ applications residing on the device. For
example, in the standard Java 2 Platform, if a

 System.out.println("Something")

is issued, the output is displayed in the terminal from which the Java application was launched.
The same reasoning applies to applications residing on the device. The following instructions
describe the necessary steps required to setup HyperTerminal for an iDEN MIDP device. Note – a
data cable is also required for debugging.

1. Start the HyperTerminal applications by selecting Start -> Accessories -> HyperTerminal -
> HyperTerminal from the “Start” menu.

2. From within the HyperTerminal application, select the File -> New Connection menu item
from the drop down menus located at the top of the application.

3. Choose a name as well as an icon for the new connection, something like “iDEN”, and
click on the “Ok” button.

Figure 3.1 Creating a New HyperTerminal Connection

iDEN J2ME™ Developer’s Guide

37
 © 2005 Motorola, Inc.

4. Select the Communication port the data cable is connected to, typically COM1 or COM2.
Click OK. A properties dialog box appears.

Figure 3.2 Setting The Connection Communication Port

5. Configure the bits per second to coincide with the Baud Rate set on the iDEN phone. Set
the Data bits to 8, Parity to None, Stop bits to 1, and Flow control to Hardware.

Figure 3.3 Setting The Communication Port Properties

iDEN J2ME™ Developer’s Guide

38
 © 2005 Motorola, Inc.

6. Once all the parameters have been set, save the profile. To save the profile, select

File->Save. The profile is saved as the connection name plus an .ht extension. For the
example, the profile is saved as emulator.ht.

The profile can be launched from the Start->Accessories>HyperTerminal->iDEN menu choice.

3.2.4.2 Java Debug
To turn on Java debug, the following AT commands must to be issued to the phone via the
HyperTerminal in one of two ways:

3.2.4.2.1 Keyboard Input
From the keyboard, type the following AT command to turn on Java debug.

AT+WS46=252;+WS45=0;+IAPPL=2;D

The previous command turns on the Java debug statements for the current HyperTerminal
session.

3.2.4.2.2 Text File Transfer
The previous AT command listed above can also be saved in a text file and transferred to
the device via the HyperTerminal. To transfer the text file, select the Transfer->Send Text
File menu command or press <alt> + t.

3.2.4.2.3 Notes I:
Java debug is turned on only for a particular HyperTerminal session. If the data cable is
disconnected or ‘Disconnect’ button on the HyperTerminal is pressed, the previous
sequence must be repeated to re-enable Java debug.

 Debug information may not appear on the HyperTerminal if extra control characters are
buffered. Type “AT” in the HyperTerminal to check the connection status. If an “OK” is
returned then the connection does not contain buffered characters. To turn the echo on,
type “ATE1”.

 Ensure the data communication rate for the phone coincides with the bits per second on
the HyperTerminal. If the data rates are different, debug messages will not appear

iDEN J2ME™ Developer’s Guide

39
 © 2005 Motorola, Inc.

3.2.4.3 Method Tracing
Once Java Debug is turned on, method tracing can be turned on. To see the menu of commands
available, type <m> on the keyboard. The following is a sample of navigating through this menu.

At
OK
AT+WS46=252;+WS45=0;+IAPPL=2;D
OK
m
 M - Menu
 TM [On/Off] - Trace Methods
 TMM [On/Off] - Trace Motorola Methods
 TMJ [On/Off] - Trace J2ME™ Methods

>tm on
Method Tracing On
>tmm on
Motorola Method Tracing On
>tmj on
JAVAX Method Tracing On
>

Motorola method tracing tracks any methods within Motorola extensions to the base classes.
J2ME™ method tracing will track all method calls within the standard J2ME™ methods.

3.2.4.4 Debug Statements
Debugging J2ME™ applications is very similar to debugging typical Java 2 Platform applications.
The most common method of debugging applications is to place System.out.println()
statements in strategic locations. A simple way to create a debug and production version of the
application at compile time is to encapsulate the System.out.println() statements in
if…then clauses, with the if conditional checking a static Boolean variable. See the following
code example:

class TestClass{

 private static final boolean debug = true;

 public static void main(String args[]){
 if(TestClass.debug){
 System.out.println("Debug turned on");
 }
 }
}

By changing the debug flag at compile time, debug statements can be easily turned on and off. For
more information on debugging J2ME™ Java applications, see

http//developer.java.sun.com/developer/onlineTraining/Programming/JDCBook/collect.html.

iDEN J2ME™ Developer’s Guide

40
 © 2005 Motorola, Inc.

3.2.5 Beyond Standards
In addition to supporting the MIDP 2.0 specification, the iDEN Java platform contains extensions in
the JAD file that reflect the increased capabilities of the device. These new extensions were
created to support features such as Internationalization (I18n). Although these specifications are
beyond the standard MIDP 2.0, their existence is necessary to provide features requested by both
the international and domestic development community. The following sections detail the specifics
of each extensions as well as format and syntax.

3.2.5.1 Making it Global – Internationalization (I18n)
This phone is an I18n-ized J2ME™ platform, enabling developers to provide and display different
languages. Since the MIDP 2.0 specification does not address the issue of multi-language support
for MIDlet attributes, iDEN specific attribute tags were created to provide developers with this
functionality. Prior to the I18n-ized J2ME™ platform, developers could only display MIDlet suite,
vendor, and friendly MIDlet names in one language, and only in basic and extended ASCII
characters.

Since, the MIDlet suite, vendor, and friendly names can be in different languages, the ADF file
must support multi-language friendly format such as Unicode. The UTF-8 format is used to support
multiple languages. Using this I18n-ized J2ME™, you can present English, Spanish, French,
Portuguese, and Korean text for your MIDlet attributes. Please note that the domestic phone will
only support English, French, Portuguese, and Spanish.

For more information on UTF-8 format, visit: www.unicode.org.

The following are additional MIDlet attributes in the I18n-ized J2ME™:

I18n MIDlet Attributes For iDEN Handsets

Attribute Name Attribute Description

iDEN-MIDlet-Name-xx The name of the MIDlet suite that identifies the MIDlets to the user
in xx language.

iDEN-Vendor-xx The organization that provides the MIDlet suite in xx language.

iDEN-MIDlet-xx-<n> The name, icon and class of the nth MIDlet in the JAR file separated
by a comma in xx language.

xx represents the language code. For example, en for English, es for Spanish, pt for Portuguese,
and fr for French

iDEN J2ME™ Developer’s Guide

41
 © 2005 Motorola, Inc.

The following ADF for I18n-ized MIDlet contains following attributes:

MIDlet-Name: Snake
MIDlet-Vendor: Motorola
MIDlet-Version: 1.0.0
MIDlet-Jar-URL: Snake.jar
MIDlet-Jar-Size: 5000
MIDlet-1: Snake, , com.motorola.snake.Snake

iDEN-MIDlet-Name-ko: 스네이크

iDEN-MIDlet-Vendor-ko: 모토로라

iDEN-MIDlet-ko-1: 스네이크, , com.motorola.snake.Snake

iDEN-MIDlet-Name-es: Serpiente
iDEN-MIDlet-Vendor-es: Motorola
iDEN-MIDlet-es-1: Serpiente, , com.motorola.snake.Snake

Gray – MIDP Specification
Green – iDEN Korean Extensions
Yellow – iDEN Spanish Extensions

The format of the JAD file is a sequence of lines consisting of an attribute name followed by a
colon, the value of the attribute, and a carriage return. The attributes iDEN-MIDlet-Name-ko, iDEN-
MIDlet-Vendor-ko, and iDEN-MIDlet-ko-1 display the MIDlet suite, vendor, and friendly names in
Korean accordingly. Language specific suite name, vendor name, and MIDlet name tags will be
used when the phone’s language setting matches specified language attributes in the JAD file. If
special language attributes are not specified in the JAD file, the phone will use the default English
MIDlet suite, vendor, and friendly names.

Manifest files remain in ASCII format and must follow the specifications in MIDP 2.0.

iDEN J2ME™ Developer’s Guide

42
 © 2005 Motorola, Inc.

3.2.6 ResourceBundle
3.2.6.1 Overview

This API is only available on

these handsets.

Resource Bundle acts as a transparent interpretation mechanism
between MIDlets and data resources. MIDlets are unaware of how the
data resources are managed. MIDlets can access their data resources
according to a particular locale using the APIs provided by Resource
Bundle. The Resource Bundle API has no knowledge of the content of the
data resources. The Resource Bundle API simply transfers stored data
resources to MIDlets, which have the exclusive responsibility of reading,
processing and utilizing data resources.

3.2.6.2 Package com.motorola.iden.resourcebundle
The API for ResourceBundle is located in package
com.motorola.iden.resourcebundle.

Class Summary

Locale A Locale object represents a specific geographical, political,
or cultural region.

ResourceBundle ResourceBundle contains locale-specific string resources for
MIDlets.

ListResourceBundle
ListResourceBundle is an abstract subclass of
ResourceBundle that manages resources for a locale in a
convenient and easy means to use list.

PropertyResourceBundle
PropertyResourceBundle is a concrete subclass of
ResourceBundle that manages resources for a locale using a
set of static strings from a property file.

SystemResourceBundle SystemResourceBundle contains locale-specific system
string resources for applications.

Exception Summary
MissingResourceException Signals that a resource is missing.

iDEN J2ME™ Developer’s Guide

43
 © 2005 Motorola, Inc.

3.2.6.3 Package Tree
The following is the Class Hierarchy for the Resource Bundle API.

o java.lang.Object

• com.motorola.iden.resourcebundle.Locale

• com.motorola.iden.resourcebundle.ResourceBundle

 com.motorola.iden.resourcebundle.PropertyResourceBundle

 com.motorola.iden.resourcebundle.ListResourceBundle

• com.motorola.iden.resourcebundle.SystemResourceBundle

• java.lang.Throwable

 java.lang.Exception

 java.lang.RuntimeException

 com.motorola.iden.resourcebundle.MissingResourceException

3.2.6.4 CLASS Locale

3.2.6.4.1 getDefault()
Gets the current value of the default locale.

 public static Locale getDefault()

3.2.6.4.2 Locale(String language)
Constructs a locale from a language code.

 public Locale(String language)

The language code should not be null, otherwise a NullPointerException will be thrown.

Tip: The language code should be lowercase two-letter ISO-639 code.

iDEN J2ME™ Developer’s Guide

44
 © 2005 Motorola, Inc.

3.2.6.4.3 Locale(String language, String country)
Constructs a locale from a language code, and a country code.

 public Locale(String language, String country)

The language code and the country code should not be null, otherwise a
NullPointerException will be thrown.

Tips:

• The language code should be lowercase two-letter ISO-639 code.

• The country code should be uppercase two-letter ISO-3166 code.

• The language code can be retrieved by the method getLanguage.

• The country code can be retrieved by the method getCountry.

• The method toString will output the language code combined with the country
code separated by “_”.

3.2.6.5 CLASS ResourceBundle

3.2.6.5.1 getBundle(String baseName)
Gets a bundle using the specified base name and the default locale.

 public static final ResourceBundle getBundle(String baseName)

3.2.6.5.2 getBundle(String baseName, Locale locale)
Gets a bundle using the specified base name and locale.

 public static final ResourceBundle getBundle(String baseName,
Locale locale)

Tips:

• The baseName should be the base name of the bundle, and it should be a qualified class
name.

• The locale is for the bundle that is desired. If the locale is not provided, the method
getBundle will use the default locale instead.

• You should confirm that the resources are available before getBundle is called.
Otherwise, a MissingResourceException will be thrown.

• After calling getBundle, you can use the method getLocale to test which bundle is loaded.

• The class ResourceBundle is abstract, so you must extend it and implement the two
abstract methods handleGetObject and getKeys. We have implemented one subclass for
you, which is PropertyResourceBundle. You only need to provide the resources in a
property-format text file with its name following the bundle naming convention. You can
also extend the subclass ListResourceBundle by implementing the abstract method
getContents. The resource contents for ListResourceBundle should be in a two-
dimension object array.

iDEN J2ME™ Developer’s Guide

45
 © 2005 Motorola, Inc.

3.2.6.5.3 getString(String key)
Gets a string for the given key from this bundle or one of its parents.

 public final String getString(String key)

Tip: After getting the bundle, getString can be called to get the specific resource
corresponding to the particular key. Alternatively, getObject could be called to get the same
resource.

iDEN J2ME™ Developer’s Guide

46
 © 2005 Motorola, Inc.

3.2.6.6 CLASS SystemResourceBundle
3.2.6.6.1 getAvailableLocales ()
Returns the set of Locales for which the system supports.

 public static Locale[] getAvailableLocales ()

Tips:

• This method can retrieve the supported locales of the handset. After getting the locales
we can construct an instance of SystemResourceBundle using one of these locales. If you
use a locale beyond these locales, the constructor will automatically use “en_US” as default.

• After creating the instance, the method getString can be called to get a specific resource
from the handset. The resource ID should be one of the following:
SystemResourceBundle.STRING_SKEY_OK,
SystemResourceBundle.STRING_SKEY_BACK,
SystemResourceBundle.STRING_SKEY_NEXT,
SystemResourceBundle.STRING_SKEY_EXIT,
SystemResourceBundle.STRING_SKEY_RETRY,
SystemResourceBundle.STRING_SKEY_SAVE,
SystemResourceBundle.STRING_SKEY_ON,
SystemResourceBundle.STRING_SKEY_OFF,
SystemResourceBundle.STRING_SKEY_PLAY,
SystemResourceBundle.STRING_SKEY_PAUSE,
SystemResourceBundle.STRING_SKEY_START,
SystemResourceBundle.STRING_SKEY_STOP,
SystemResourceBundle.STRING_SKEY_SELECT,
SystemResourceBundle.STRING_SKEY_DONE,
SystemResourceBundle.STRING_COMM_YES,
SystemResourceBundle.STRING_COMM_NO,
SystemResourceBundle.STRING_COMM_ENTRY_METHOD,
SystemResourceBundle.STRING_COMM_LANGUAGES,
SystemResourceBundle.STRING_COMM_NUMERIC,
SystemResourceBundle.STRING_COMM_IGNORE,
SystemResourceBundle.STRING_COMM_CANCEL,
SystemResourceBundle.STRING_COMM_LEFT,
SystemResourceBundle.STRING_COMM_CENTER,
SystemResourceBundle.STRING_COMM_RIGHT,
SystemResourceBundle.STRING_COMM_DATE,
SystemResourceBundle.STRING_PREDICTIVE,
SystemResourceBundle.STRING_MULTI_TAP,
SystemResourceBundle.STRING_SYMBOLS,
SystemResourceBundle.STRING_KOREAN_SYL,
SystemResourceBundle.STRING_HELP,
SystemResourceBundle.STRING_MENU_TITLE_MENU,
SystemResourceBundle.STRING_JUSTIFICATION.

• You can also use the method getLocale to obtain the current locale setting of the
instance of SystemResourceBundle, and use setLocale to modify the locale setting.

iDEN J2ME™ Developer’s Guide

47
 © 2005 Motorola, Inc.

3.2.6.7 Code Examples
The following is the code example of ResourceBundle. The code example is divided into five
parts: example for Locale, example for ResourceBundle, example for
PropertyResourceBundle, example for ListResourceBundle, and example for
SystemResourceBundle.

3.2.6.7.1 Code Examples for Locale
import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

import com.motorola.iden.resourcebundle.Locale;

public class DemoLocale extends MIDlet

 implements CommandListener{

 private Locale locale1;

 private Command getLanguageCommand, getCountryCommand,
toStringCommand, getDefaultCommand, backCommand, exitCommand;

 private Display display;

 private List mainList, dispList;

 public DemoLocale(){

 getLanguageCommand = new Command("getLanguage",
Command.SCREEN,1);

 getCountryCommand = new Command("getCountry",
Command.SCREEN,1);

 toStringCommand = new Command("toString",
Command.SCREEN,1);

 getDefaultCommand = new Command("getDefault",
Command.SCREEN,1);

 backCommand = new Command("Back", Command.BACK,1);

 exitCommand = new Command("Exit", Command.EXIT, 1);

 display = Display.getDisplay(this);

 mainList = new List("Locales", List.IMPLICIT);

 mainList.addCommand(getLanguageCommand);

 mainList.addCommand(getCountryCommand);

 mainList.addCommand(toStringCommand);

 mainList.addCommand(getDefaultCommand);

iDEN J2ME™ Developer’s Guide

48
 © 2005 Motorola, Inc.

 mainList.addCommand(exitCommand);

 mainList.setCommandListener(this);

 dispList = new List("Results", List.IMPLICIT);

 dispList.addCommand(backCommand);

 dispList.setCommandListener(this);

 display.setCurrent(dispList);

 }

 public void startApp(){

 mainList.append("\"zh_CN\"",null);

 locale1 = new Locale("zh","CN");

 dispList.append("Constructing(\"zh\",\"CN\"):
successful",null);

 }

 public void pauseApp(){

 }

 public void destroyApp(Boolean unconditional){

 }

 public void commandAction(Command c, Displayable s){

 if (c == getLanguageCommand){

 display.setCurrent(dispList);

 dispList.append("(\"zh\",\"CN\")'s language code is: "
+ "\"" + locale1.getLanguage()+ "\"",null);

 } else if (c == getCountryCommand){

 display.setCurrent(dispList);

 dispList.append("(\"zh\",\"CN\")'s country code is: " +
"\"" + locale1.getCountry()+ "\"",null);

 } else if (c == toStringCommand){

 display.setCurrent(dispList);

iDEN J2ME™ Developer’s Guide

49
 © 2005 Motorola, Inc.

 dispList.append("(\"zh\",\"CN\")'s toString is: " +
"\"" + locale1.toString()+ "\"",null);

 } else if (c == getDefaultCommand){

 display.setCurrent(dispList);

 dispList.append("getDefault's language code is: " + "\"" +
Locale.getDefault().getLanguage()+ "\"",null);

 dispList.append("getDefault's country code is: " + "\"" +
Locale.getDefault().getCountry()+ "\"",null);

 dispList.append("getDefault's toString is: " + "\"" +
Locale.getDefault().toString()+ "\"",null);

 } else if (c == backCommand){

 dispList.deleteAll();

 display.setCurrent(mainList);

 } else if (c == exitCommand){

 destroyApp(false);

 notifyDestroyed();

 }

 }

}

3.2.6.7.2 Code Examples for ResourceBundle
import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

import java.util.Enumeration;

import com.motorola.iden.resourcebundle.ResourceBundle;

import com.motorola.iden.resourcebundle.Locale;

import com.motorola.iden.resourcebundle.MissingResourceException;

public class DemoRB extends MIDlet

 implements CommandListener{

 private Locale myLocale1 = new Locale("zh","CN");

 private String resBaseName1;

 private ResourceBundle myBundle1_1;

iDEN J2ME™ Developer’s Guide

50
 © 2005 Motorola, Inc.

 private Enumeration myEnum1_1;

 private Command getStringCommand, getKeysCommand, exitCommand,
backCommand;

 private Display display;

 private List mainList,dispList;

 public DemoRB(){

 getStringCommand = new Command("getString",
Command.SCREEN,1);

 getKeysCommand = new Command("getKeys", Command.SCREEN,1);

 exitCommand = new Command("Exit", Command.EXIT, 1);

 backCommand = new Command("Back", Command.BACK, 1);

 display = Display.getDisplay(this);

 mainList = new List("Resource Bundle Demo", List.IMPLICIT);

 dispList = new List("Results", List.IMPLICIT);

 mainList.addCommand(getStringCommand);

 mainList.addCommand(getKeysCommand);

 mainList.addCommand(exitCommand);

 dispList.addCommand(backCommand);

 mainList.setCommandListener(this);

 dispList.setCommandListener(this);

 display.setCurrent(dispList);

 }

 public void startApp(){

 dispList.append("Constructing bundles for \"res1\"",null);

 resBaseName1 = "res1";

 try {

 myBundle1_1 = ResourceBundle.getBundle(resBaseName1,
new Locale(""));

 dispList.append("bundles for \"res1\"_\""+""+"\": " +
myBundle1_1.getLocale().toString(),null);

 } catch(MissingResourceException e){

 dispList.append("bundles for \"res1\"_\""+""+"\":
MissingResourceException",null);

 }

iDEN J2ME™ Developer’s Guide

51
 © 2005 Motorola, Inc.

 }

 public void pauseApp(){

 }

 public void destroyApp(Boolean unconditional){

 }

 public void commandAction(Command c, Displayable s){

 if (c == getStringCommand){

 String temp;

 dispList.append(myBundle1_1.toString(),null);

 myEnum1_1 = myBundle1_1.getKeys();

 while (myEnum1_1.hasMoreElements()){

 temp = (String)myEnum1_1.nextElement();

 dispList.append("key: "+ temp +", res:
"+myBundle1_1.getString(temp),null);

 }

 dispList.append("------------",null);

 display.setCurrent(dispList);

 } else if (c == getKeysCommand){

 dispList.append(myBundle1_1.toString()+"' keys",null);

 myEnum1_1 = myBundle1_1.getKeys();

 while (myEnum1_1.hasMoreElements()){

 dispList.append(": "+
myEnum1_1.nextElement(),null);

 }

 display.setCurrent(dispList);

 }else if (c == exitCommand){

 destroyApp(false);

 notifyDestroyed();

 } else if (c == backCommand){

 dispList.deleteAll();

 display.setCurrent(mainList);

 }

 }

}

iDEN J2ME™ Developer’s Guide

52
 © 2005 Motorola, Inc.

3.2.6.7.3 Code Examples for PropertyResourceBundle
property1 = you are choosing property key 1

property2 = you are choosing property key 2

property3 = you are choosing property key 3

property4 = you are choosing property key 4

property5 = you are choosing property key 5

3.2.6.7.4 Code Examples for ListResourceBundle
import com.motorola.iden.resourcebundle.ListResourceBundle;

import com.motorola.iden.resourcebundle.ResourceBundle;

public class DemoListRB extends ListResourceBundle{

 protected Object[][] getContents() {

 Object [][] objects = {

 {"Listkey 1","you are choosing list key 1"},

 {"Listkey 2","you are choosing list key 2"},

 {"Listkey 3","you are choosing list key 3"},

 {"Listkey 4","you are choosing list key 4"},

 {"Listkey 5","you are choosing list key 5"}

 };

 return objects;

 }

}

iDEN J2ME™ Developer’s Guide

53
 © 2005 Motorola, Inc.

3.2.6.7.5 Code Examples for SystemResourceBundle
import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

import com.motorola.iden.resourcebundle.Locale;

import com.motorola.iden.resourcebundle.SystemResourceBundle;

import com.motorola.iden.resourcebundle.MissingResourceException;

public class DemoSysRB extends MIDlet

 implements CommandListener{

 private SystemResourceBundle srb;

 private Locale locales [];

 private Command dispCommand, exitCommand, backCommand,
setLocaleCommand;

 private Display display;

 private List mainList,dispList;

 public DemoSysRB(){

 dispCommand = new Command("getString", Command.SCREEN,1);

 exitCommand = new Command("Exit", Command.EXIT, 1);

 backCommand = new Command("Back", Command.BACK, 1);

 setLocaleCommand = new Command("setLocale", Command.SCREEN,
1);

 display = Display.getDisplay(this);

 mainList = new List("Sys Res Bndl", List.IMPLICIT);

 dispList = new List("Result", List.IMPLICIT);

 mainList.addCommand(dispCommand);

 mainList.addCommand(exitCommand);

 dispList.addCommand(backCommand);

 dispList.addCommand(setLocaleCommand);

 mainList.setCommandListener(this);

 dispList.setCommandListener(this);

 display.setCurrent(dispList);

 }

iDEN J2ME™ Developer’s Guide

54
 © 2005 Motorola, Inc.

 public void startApp(){

 srb = new SystemResourceBundle();

 }

 public void pauseApp(){

 }

 public void destroyApp(Boolean unconditional){

 }

 public void commandAction(Command c, Displayable s){

 if (c == dispCommand){

 srb.setLocale(locales[mainList.getSelectedIndex()]);

 dispList.append("Current locale is: " +
srb.getLocale().toString(),null);

 dispList.append("--------------",null);

 dispList.append("resID: STRING_COMM_YES” + "
resContent: "
+srb.getString(SystemResourceBundle.STRING_COMM_YES),null);

 display.setCurrent(dispList);

 } else if (c == exitCommand){

 destroyApp(false);

 notifyDestroyed();

 } else if (c == backCommand){

 dispList.deleteAll();

 display.setCurrent(mainList);

 } else if (c == setLocaleCommand){

 dispList.deleteAll();

 srb.setLocale(new Locale("fr"));

 dispList.append("The locale of setLocale \"fr\" is: "+
srb.getLocale().toString(),null);

 }

 }

}

iDEN J2ME™ Developer’s Guide

55
 © 2005 Motorola, Inc.

3.2.7 LicenseInfo API
3.2.7.1 Overview

This API is only available on

this handset.

The LicenseInfo API lets J2ME™ MIDlets access license file information.
This data may be used to track when the license file is going to cause the
MIDlet to expire and hence gives MIDlets the flexibility to pop up any UI
specific information. Other data that can be retrieved are type of license,
license file version information, license file issuer information, license file
target IMEI information, license file issue information, license file name
information, license file vendor information, license file version
information, license file upgrade TEXT information, license file upgrade
URL information, license file upgrade parameter information, license file
status information, license file metric information, license file gifting URL
information, and license file tell-a-friend URL information.

3.2.7.2 Class Description
The LicenseInfo API is located in package com.motorola.iden.licenseinfo

java.lang.Object
 |
 + -- com.motorola.iden.licenseinfo.LicenseInfo

3.2.7.3 Method Descriptions
3.2.7.3.1 LicenseInfo Methods

3.2.7.3.1.1 getLicenseType
public final static int getLicenseType()

Returns an integer that corresponds to the type of the license file.

Returned integer value is one of the values in the following table:

Returned Int value Corresponding License Type
0 TYPE_DEMO
1 TYPE_PREPAID
2 TYPE_LIMITED
3 TYPE_UNLIMITED
4 TYPE_DURATION
5 TYPE_METERED

If there is no license file associated with the MIDlet suite, then the return value will be
TYPE_UNLIMITED

iDEN J2ME™ Developer’s Guide

56
 © 2005 Motorola, Inc.

3.2.7.3.1.2 getLicenseMetric
public final static long getLicenseMetric()

Returns a long. The interpretation of this value depends on the license type which
can be determined using getLicenseType() API mentioned above. If the license
type is demo (value of 0) it returns the total continuous execution time remaining for
that particular MIDlet to expire. If the license type is prepaid (value of 1) it returns the
total number of executions remaining. If the license type is limited (value of 2) it
returns a date and time remaining. It returns a metric value in long that could be
interpreted as date and time remaining for that particular MIDlet to expire. If the
license type is unlimited (value of 3) it returns a zero. If the license type is duration
(value of 4) it returns duration of time remaining for that particular MIDlet to expire. If
the license type is metered (value of 5) it returns the total amount of time remaining
for the app to expire. It is important to note that for types metered and demo time will
be decreasing while the MIDlet is running, and for types duration, limited, time will be
decreasing upon the installation of the MIDlet. If the type is prepaid the counter be
reduced by one every time the MIDlet is exited.

3.2.7.3.1.3 getField
public final static String getField(int field)

throws IllegalArgumentException

Returns license file information such as the version number of the MIDlet, issuer
name, target IMEI, information of time when the license was issued, name of the
MIDlet, name of the vendor, MIDlet version number, upgrade text, upgrade URL,
upgrade parameter, status text, license metric body of the app., gifting URL, and tell-
a-friend URL.

iDEN J2ME™ Developer’s Guide

57
 © 2005 Motorola, Inc.

field must be one of the values in this table:

fieldID Example of Data
INFO_VERSION "01.00.00"
INFO_ISSUER "Motorola, Inc."
INFO_TARGETIMEI "010101010101010"
INFO_ISSUED "2001-12-17T09:30:47-05:00"
J2ME_NAME "LicenseMIDlet"
J2ME_VENDOR "John Smith"
J2ME_VERSION "01.00.00"
J2ME_UPGRADE_TEXT "Would you like to upgrade license for LicenseMIDlet?"
J2ME_UPGRADE_URL "licenseupgradeurl.jsp"
J2ME_UPGRADE_PARAME
TER

"promocode=2dfer23fsef"

J2ME_STATUS_TEXT "LicenseMIDlet is currently enabled."
J2ME_METRIC "<credits></credits>

 <continuousexecutiontime>
 P0Y0M0DT00H10M
 </continuousexecutiontime>
 <expiration></expiration>

<durationperiod>P0Y0M0DT00H2M</durationperiod>

<meteredexecutiontime></meteredexecutiontime>
 <status>enabled</status>
 <statustext>
 LicenseMIDlet is currently
 enabled.
 </statustext>"

J2ME_GIFTING_URL "licensegiftingurl.jsp"
J2ME_TELLAFRIEND_URL "licensetellafriendurl.jsp"

If the field value is out of the provided range of field values then an
IllegalArgumentException will be thrown.

iDEN J2ME™ Developer’s Guide

58
 © 2005 Motorola, Inc.

3.2.7.4 Code Examples
public void test(){

 // Get the license type method
 // 1) license type

 if(LicenseInfo.getLicenseType() ==
 LicenseInfo.TYPE_DEMO)
 screen.append("TYPE_DEMO->"+ LicenseInfo.TYPE_DEMO);

 if(LicenseInfo.getLicenseType() ==
 LicenseInfo.TYPE_PREPAID)
 screen.append("TYPE_PREPAID->"+
LicenseInfo.TYPE_PREPAID);

 if(LicenseInfo.getLicenseType() ==
 LicenseInfo.TYPE_LIMITED)
 screen.append("TYPE_LIMITED->"+
 LicenseInfo.TYPE_LIMITED);

 if(LicenseInfo.getLicenseType() ==
 LicenseInfo.TYPE_UNLIMITED)
 screen.append("TYPE_UNLIMITED->"+
 LicenseInfo.TYPE_UNLIMITED);

 if(LicenseInfo.getLicenseType() ==
 LicenseInfo.TYPE_DURATION)
 screen.append("TYPE_DURATION->"+
 LicenseInfo.TYPE_DURATION);

 if(LicenseInfo.getLicenseType() ==
 LicenseInfo.TYPE_METERED)
 screen.append("TYPE_METERED->"+
 LicenseInfo.TYPE_METERED);

 // Get the metric value of the license type
 // 2) get license metric

 screen.append("METRIC_VALUE->"+
 LicenseInfo.getLicenseMetric());

 // Get different fields from license file
 // 3) version info.
 // 4) issuer info.
 // 5) targer imei info.
 // 6) issued info.
 // 7) j2me name info.
 // 8) j2me vendor info.

iDEN J2ME™ Developer’s Guide

59
 © 2005 Motorola, Inc.

 // 9) j2me version info.
 //10) j2me upgrade text info.
 //11) j2me upgrage url info.
 //12) j2me upgrade parameter
 //12) j2me status text info.
 //13) j2me metric info.
 //14) j2me gifting url info.
 //15) j2me tellafriend url info.

 try
 {
 screen.append("INFO_VERSION->"+
 LicenseInfo.getField(LicenseInfo.INFO_VERSION));

 screen.append("INFO_ISSUER->"+
 LicenseInfo.getField(LicenseInfo.INFO_ISSUER));

 screen.append("INFO_TARGETIMEI->"+
 LicenseInfo.getField(LicenseInfo.INFO_TARGETIMEI));

 screen.append("INFO_ISSUED->"+
 LicenseInfo.getField(LicenseInfo.INFO_ISSUED));

 screen.append("J2ME_NAME->"+
 LicenseInfo.getField(LicenseInfo.J2ME_NAME));

 screen.append("J2ME_VENDOR->"+
 LicenseInfo.getField(LicenseInfo.J2ME_VENDOR));

 screen.append("J2ME_VERSION->"+
 LicenseInfo.getField(LicenseInfo.J2ME_VERSION));

 screen.append("J2ME_UPGRADE_TEXT->"+
 LicenseInfo.getField(LicenseInfo.J2ME_UPGRADE_TEXT));

 screen.append("J@ME_UPGRADE_URL->"+
 LicenseInfo.getField(LicenseInfo.J2ME_UPGRADE_URL));

 screen.append("J2ME_UPGRADE_PARAMETER->"+
 LicenseInfo.getField(LicenseInfo.J2ME_UPGRADE_PARAMETER));

 screen.append("J2ME_STATUS_TEXT->"+
 LicenseInfo.getField(LicenseInfo.J2ME_STATUS_TEXT));

 screen.append("J2ME_METRIC->"+
 LicenseInfo.getField(LicenseInfo.J2ME_METRIC));

 screen.append("J2ME_GIFTING_URL->"+
 LicenseInfo.getField(LicenseInfo.J2ME_GIFTING_URL));

 screen.append("J2ME_TELLAFRIEND_URL->"+
 LicenseInfo.getField(LicenseInfo.J2ME_TELLAFRIEND_URL));

iDEN J2ME™ Developer’s Guide

60
 © 2005 Motorola, Inc.

 }catch(IllegalArgumentException e)
 {

 System.out.println("Something went wrong!
 "+ e.toString());

 }
 }

iDEN J2ME™ Developer’s Guide

61
 © 2005 Motorola, Inc.

3.3 MIDlet Suite and MIDlet Icon Support
iDEN handsets support MIDlet icons at the suite and individual MIDlet level. Icons are specified by
MIDlets through the standard MIDP JAD tags of MIDlet-Icon and the icon field of the tag MIDlet-n
will be displayed. Because different handsets vary in screen size and available display mode
resolutions iDEN handsets allow developers to specify multiple versions of their icons.

To ensure that a MIDlet’s icons are always displayed regardless of display mode resolution, four
derivations of the same graphic must be available in varying sizes, all in PNG format. The specific
icon displayed to the end-user corresponds to the display mode resolution of the handset. Users
can set the display mode via the handset’s settings.

On some handsets strict restrictions are placed on
the icon dimensions. If the width and height of a
specified icon deviate from the requirements for a
particular display mode it will not be rendered.

Other handsets are able to dynamically resize the
specified icons to fit the current display mode.
However, the icon may not appear as intended after it
has been resized. These handsets still allow
developers to specify icons tailor made to a specific
resolution.

The following tables summarize the resolutions and the corresponding usage scenario:

Handsets Display Mode Icon Resolution Notes
Compressed 11x11 List mode with compressed font

Standard 13x13 List mode with standard font

Zoom 15x15 List mode with zoom font

Iconic 18x18 Iconic menu mode

iDEN J2ME™ Developer’s Guide

62
 © 2005 Motorola, Inc.

Handsets Display Mode Icon Resolution Notes

Compressed 13x13 List mode with compressed font

Standard 15x15 List mode with standard font

Zoom 17x17 List mode with zoom font
Iconic 32x32 Iconic menu mode

Since the JAD tags specified by MIDP do not include a provision for icons of varying resolutions,
an iDEN specific schema was created. The iDEN specific schema is designed to work in
conjunction with the standards based approach while providing enough flexibility and simplicity for
multi-resolution support. This schema is file name based requiring developers to simply prepend a
size specific string to the beginning of the icon’s file name. The default display mode is iconic.
The icon specified by the MIDlet-Icon JAD tag or the icon field of the MIDlet-n JAD tag is used
when the display mode is set to iconic. Icons for the other display modes can be provided using
files with the same base name prepended by an additional 2 character specifier. The following
table lists the display modes and their corresponding icon file name specifier strings.

Icon Mode Naming Convention
Iconic [name of icon].png
Compressed c-[name of icon].png
Standard s-[name of icon].png
Zoom z-[name of icon].png
Notes – Total file name length is 32 ASCII characters, including the pre- and post-fix. The
prefix is case sensitive.

The following example demonstrates the proper formatting of the image names under both MIDlet
suite and MIDlet use cases.

Icon Mode Example 1 Example 2
Iconic Games.png Bounce.png
Compressed c-Games.png c-Bounce.png
Standard s-Games.png s-Bounce.png
Zoom z-Games.png z-Bounce.png

iDEN J2ME™ Developer’s Guide

63
 © 2005 Motorola, Inc.

The placement of the various icons must be in the root directory of the JAR file. If any of the icons
are missing or misplaced within the JAR, a default system icon will be utilized as a placeholder.
Additional restrictions on the type of PNG file supported should be followed. The table below
summarizes PNG support for MIDlet icons.

Handsets 4-bit
PNG

8-bit PNG
Without
Transparency

8-bit PNG With
Transparency

24-bit PNG
Without
Transparency

24-bit PNG
Without
Transparency

Yes White pixels
become
transparent.

Not supported.
The default
MIDlet icon
provided by the
handset will be
rendered.

Not supported.
The default
MIDlet icon
provided by the
handset will be
rendered.

Not
supported.
The default
MIDlet icon
provided by
the handset
will be
rendered.

Yes White pixels
become
transparent.

Transparency
is not honored.
The
transparent
color will be
rendered as
black. Other
icon corruption
may occur.

White pixels
become
transparent

Transparent
color is
honored.

3.3.1 Tips
• When using white pixels for transparency, those pixels should be fully white (i.e.

0xFFFFFF).

• In the Java apps screen, the icon specified by the tag MIDlet-Icon and the name specified
by MIDlet-name are displayed when there is only one MIDlet in the suite.

• Iconic display mode is not used when MIDlets in a MIDlet suite are being listed.

iDEN J2ME™ Developer’s Guide

64
 © 2005 Motorola, Inc.

3.4 CLDC 1.1
3.4.1 Overview

CLDC 1.1 is only available on these

handsets.

CLDC 1.1 is a revised version of the CLDC 1.0 specification
including enhancements to existing features and new
features such as floating point and weak reference support.
CLDC Specification version 1.1 is an incremental release that
is backwards compatible with CLDC Specification version 1.0.

The list below summarizes the main differences between CLDC Specification versions 1.1 (JSR
139) and 1.0 (JSR 30):

o Floating point support, including all J2SE floating point byte codes.

o Float and Double classes have been added.

o Various methods have been added to the other library classes to handle floating point values.

o Weak reference support (small subset of the J2SE weak reference classes).

o Classes Calendar, Date and TimeZone have been redesigned to be closer to J2SE.

o Error handling requirements have been clarified, as well as the addition of the
NoClassDefFoundError class.

o Thread objects now have names similar to those in J2SE. The method Thread.getName()
has been introduced, and the Thread class has a few new inherited constructors from J2SE.

o Clearer and detailed verifier specification.

o Various bug fixes and minor library changes, such as the addition of the following fields and
methods:

o Boolean.TRUE and Boolean.FALSE

o Date.toString()

o Random.nextInt(int n)

o String.intern()

o String.equalsIgnoreCase()

o Thread.interrupt()

For detailed API information about the CLDC1.1 library, refer to
http://www.jcp.org/aboutJava/communityprocess/final/jsr139/index.html.

iDEN J2ME™ Developer’s Guide

65
 © 2005 Motorola, Inc.

4
Multimedia and Graphics

4.1 Overview
This section will cover the following multimedia and graphics topics:

o MIDP 2.0 LCDUI

o External Display

o Keycode Remapping

o Look and Feel (LnF)

o Smart Text

o Lightweight Windows Toolkit (LWT)

o Graphics Acceleration

o Micro3D

o Mobile 3D Graphics

o Multimedia

o Video Playback

o Lighting

o Vibrator

o Java Image Utility

iDEN J2ME™ Developer’s Guide

66
 © 2005 Motorola, Inc.

4.2 MIDP 2.0 LCDUI
4.2.1 Overview

With the changes in the keypad layout and the new MIDP 2.0 UI specification, developers must
consider a few implementation specifics that may affect the look and feel of the applications.
Although every effort has been made to support the backward compatibility of the applications, the
numerous hardware and software specification required some changes in convention from
previous handsets. The next few sections outline the implementation specifics that affect
application layout and usability.

4.2.2 Commands
4.2.2.1 Softkey Layout Priorities

In the LCDUI specification, applications that contain multiple soft keys have the option of
specifying priority in layout. Soft key priority is as follows: left soft key, right soft key, and
submenu. With only two dedicated keys, additional soft keys are added to a submenu, but are
now accessed with the Menu key. If multiple commands contain the same priority level, the
keys are assigned to the dedicated soft keys in the order they are added in left soft key, right
soft key, sub-menu order.

4.2.2.2 Empty String Labels
When commands have non-empty strings an outline of the soft key area is rendered along
with the text. This places hard boundaries to the areas rendered by the platform. If a
command is created with an empty string (“”), the command is not rendered but still occupies
the soft key location. Additionally, if the soft key is activated by the user, the
commandAction() method is still called. This is useful for placing commands in explicit
locations. If a command is created with a short string (“ “), it will be rendered on the display
with no visible font.

4.2.2.3 Short and Long Label Usage
A major shortcoming of MIDP 1.0 was that it prevented commands from specifying varying
lengths of the labels. This resulted in command text being truncated depending on where it
was rendered, i.e. the soft key area or the command menu area. The MIDP 2.0 specification
allows a command to have different length labels which alleviates this issue while remaining
hardware independent and backwards-compatible.

The short strings are used if the command is placed on a dedicated soft key. In the command
menu, long strings are rendered if they have been specified. If no long string is specified, the
short string is used instead.

Note – Even with the new short/long string feature, instances where truncation is necessary
will arise. The handset will only display full characters (the trailing characters are truncated)
with labels justified according to the language.

iDEN J2ME™ Developer’s Guide

67
 © 2005 Motorola, Inc.

4.2.3 Canvas
4.2.3.1 Size Changes

A major shortcoming of the MIDP 1.0 Canvas specification was the inconsistency in which
command/canvas interactions were treated. Most implementations either reserved space for
the commands or gave the applications full screen access. This inconsistency resulted in
commands overwriting application screen real estate. With MIDP 2.0, Canvas-based
applications are now able to accommodate for screen size changes, regardless of the
implementation.

Any platform components that occupy real estate and are added to the canvas results in a call
to the sizeChanged() method, followed by a paint. Beyond adding and removing
commands, addition or removal of tickers or titles invokes a call to sizeChanged(). Within
the sizeChanged() callback, applications should query the new canvas size and adjust
rendering accordingly. The following table summarized the conditions that trigger the callback:

Conditions Notes
Adding/Removing Commands to Canvas Only first command added triggers

sizeChanged().
Only last command removed triggers
sizeChanged().

Adding/Removing Ticker to Canvas
Adding/Removing Title to Canvas
Call to setFullScreenMode()
Change in font size* Changes in ergo settings menu applies if

com.motorola.iden.lnf package is utilized to
getDefaultFont().

iDEN J2ME™ Developer’s Guide

68
 © 2005 Motorola, Inc.

4.2.4 List
4.2.4.1 OK Key

The physical OK key is mapped to the default SELECT_COMMAND in
javax.microedition.lcdui.List. Applications utilizing List should listen
for the command in commandAction(). For
javax.microedition.lcdui.ChoiceGroup, the physical OK key
operates as the select key for EXCLUSIVE, MULTIPLE, and POPUP
types.

On some handsets, there is no physical OK key. On these handsets
the SEND key is mapped to the default SELECT_COMMAND in
javax.microedition.lcdui.List. For
javax.microedition.lcdui.ChoiceGroup, the Send key operates as
the select key for EXCLUSIVE, MULTIPLE, and POPUP types.

4.2.4.2 Fit Policy
In MIDP 2.0, the application is given an option to specify Choice fit policy within a List. The
functionality is optional per spec and is present only to provide hints to the platform as to the
desired layout. The application cannot rely on the availability of the fit policy. iDEN handsets
do not support this functionality, but the API does exist for compatibility’s sake.

Note – The default fit policy is wrapping.

4.2.5 Forms
4.2.5.1 Item Layout

Considerable layout directives changes for Items have been incorporated in MIDP 2.0. In
MIDP 1.0, layout directives applied strictly to ImageItems within Forms. Examples of such
directives include LAYOUT_NEWLINE_BEFORE, LAYOUT_CENTER, and LAYOUT_DEFAULT.
These directives provide layout hints to the platform as to how ImageItems are arranged within
a Form. For MIDP 2.0, the scope of layout directives has been broadened to incorporate
StringItem, CustomItem, and Spacer as well as ImageItem. In addition to expanding the reach
of this functionality, additional layout directives have been added to increase the flexibility and
usefulness.

To this end, layout directives have been moved from ImageItem, up to the superclass Item.
Any subclass of Item is now capable of storing its own layout directive. In addition to
broadening the reach, additional directives such as LAYOUT_LEFT, LAYOUT_RIGHT, and
LAYOUT_TOP are included. By default, if no directive is specified, new Items added to the
Form inherit the layout directives of the previous Item. By default, if Items do not specify a
layout directive, they are added row by row, from left to right.

iDEN J2ME™ Developer’s Guide

69
 © 2005 Motorola, Inc.

Note - StringItems are also appended in this same manner, differing from MIDP 1.0. For more
information regarding layout changes, please refer to JSR-118. The following table outlines
the behavior of Items that do not follow the standard layout directives:

Item Default Behavior
Gauge Center Justified.
ChoiceGroup Language Dependent – default left justified.
DateField Language Dependent – default left justified.
TextField Screen width – default caret position is language dependent.

4.2.6 Item Commands
Utilizing a platform that resides on devices with very limited input and output mechanisms poses
many challenges for application developers. In providing a myriad of options to the user,
applications must present the user with a simple UI structure while still providing all the
functionalities advanced users require. With the previous implementation of LCDUI, commands
are constrained to Forms exclusively. That is, commands can only be added to Forms. While this
is sufficient for simple applications, the sophistication and complexity of today’s applications are
quickly outgrowing this model. For MIDP 2.0, commands reside not only in Forms, but may also be
added to individual Items.

Commands may be added to individual Items instead of exclusively to the Displayable. The
availability of these commands is conveyed to the user when the Item is highlighted. If a command
is available to a highlighted item, the Menu icon is displayed. Pressing the Menu key brings the
command submenu to the foreground. If no commands are available to a highlighted item, the
Menu icon may not be shown (see following table). If, however, the Form contains more than 2
commands, the Menu icon will always be highlighted. The following table summarizes the
characteristics:

Condition Menu Icon Soft keys
0 Displayable Commands
1 Item Commands

Yes None

2 Displayable Commands
0 Item Commands

No Displayable Commands

2 Displayable Commands
1 Item Command

Yes Displayable Commands

Note – If the Displayable contains more then 2 commands, the MENU icon will always
be displayed. There is no means for the end-user to determine if Items have commands.
Avoid adding more then 2 commands to the Displayable.

4.2.7 TextBox/TextField
4.2.7.1 Constraints and Initial Input Modes

Text entry using the standard ITU keypad is not only cumbersome, but error prone. To
alleviate this, many manufacturers have incorporated predictive text entry of one kind or
another to ease the burden. The group for JSR 118 has taken this into consideration and
incorporated multiple input modes within the high-level LCDUI components. First and
foremost, the value constraints from MIDP 1.0 remain, including ANY, PHONENUMBER, and
URL. In addition, new modifier flag constraints have been added to let the developer control
the smart text engine. iDEN handsets honor all of the required and optional modifier flag

iDEN J2ME™ Developer’s Guide

70
 © 2005 Motorola, Inc.

constraints: PASSWORD, UNEDITABLE, SENSITIVE, NON_PREDICTIVE,
INITIAL_CAPS_WORD, and INITIAL_CAPS_SENTENCE.

MIDP 2.0 also introduces the concept of input modes for even finer control of text
components. The input mode is simply a request for a specific set of characters to be entered
more conveniently. Since not all devices and platforms will support all modes, no specific input
modes are required by the MIDP 2.0 specification. iDEN handsets support several of the
suggested input modes as well as some platform specific additions. The following table lists
the supported input modes:

Constraint Description
MIDP_UPPERCASE_LATIN Defined by MIDP, this input mode turns on caps lock and

switches the text component to English if the text
component is currently in a non-Latin language.

MIDP_LOWERCASE_LATIN Defined by MIDP, this input mode turns off caps lock or
character shifting and switches the text component to
English if the text component is currently in a non-Latin
language.

IS_LATIN_DIGITS Defined by J2SE™, this input mode switches the text
component to NUMERIC mode if necessary.

UCB_BASIC_LATIN Defined by J2SE™, this Unicode character block subset
input mode switches the text component to English if the
text component is currently in a non-Latin language. This
input mode is equivalent to UCB_LATIN-
1_SUPPLEMENT.

UCB_LATIN-1_SUPPLEMENT Defined by J2SE™, this Unicode character block subset
input mode switches the text component to English if the
text component is currently in a non-Latin language. This
input mode is equivalent to UCB_BASIC_LATIN.

UCB_HEBREW Defined by J2SE™, this Unicode character block subset
input mode switches the text component to Hebrew
language mode if necessary and if the phone is configured
for Hebrew support.

UCB_HANGUL_SYLLABLES Defined by J2SE™, this Unicode character block subset
input mode switches the text component to Korean
language mode if necessary and if the phone is configured
for Korean support.

X_MOTOROLA_IDEN_ENGLISH Defined specifically for iDEN handsets, this input mode
ensures that the text component is in English language
mode.

X_MOTOROLA_IDEN_SPANISH Defined specifically for iDEN handsets, this input mode
ensures that the text component is in Spanish language
mode.

X_MOTOROLA_IDEN_FRENCH Defined specifically for iDEN handsets, this input mode
ensures that the text component is in French language
mode.

X_MOTOROLA_IDEN_PORTUGUESE Defined specifically for iDEN handsets, this input mode
ensures that the text component is in Portuguese language
mode.

While the Motorola-defined input modes do allow developers to change the language setting
for a particular text component, it is important to note that text component language is

iDEN J2ME™ Developer’s Guide

71
 © 2005 Motorola, Inc.

automatically selected depending on the phone’s language setting. Manually forcing a specific
language should be used with caution as it can create a bad user experience. In addition, well-
written applications should store and reset user specified input modes and constraints
between sessions.

The Command changes listed above, along with the native UI have also changed the way text
entry notification is displayed for MIDlets. When a MIDlet’s screen is focused on a TextField or
a TextBox, the current entry mode (Alpha, Word, or Numeric) is displayed in the bottom middle
of the screen (between the Command labels, if present). This icon not only indicates entry
mode but shift state. However, if the screen has more than two Commands associated with it,
or if the TextField has an ItemCommand, the entry mode icon will be replaced by the Menu
icon. In this case a user will not be able to easily tell what editing mode or shift state they are
in and will be required to cycle through Command menus before being able to change the
entry mode. If possible, developers are encouraged to avoid using ItemCommand with
TextField and to keep TextFields on screens with two or less Commands.

iDEN J2ME™ Developer’s Guide

72
 © 2005 Motorola, Inc.

4.3 External Display
4.3.1 Overview

 i730 only

The ExternalDisplay API lets a MIDlet render to the external
display of a handset with a flip. The API allows for free-formed
rendering using a subclass of Canvas. There are 3 ways an
application can gain focus to the external display.

Firstly, the application can explicitly make a request for the external display with
ExternalDisplay.requestDisplay(). This request is granted if the flip is closed and the
phone is at default ready screen (idle mode). If these conditions are true, the Application
Management System (AMS) calls the MIDlet’s showNotify() method. Otherwise, the AMS does
nothing.

Secondly, the application can generate an alert to display on the external display by calling
ExternalDisplay.setCurrent() with an Alert and the Displayable to show if the user
chooses to view the content. The user can agree to see the content by pressing the Hi-Low Audio
key or ignore it by pressing the Smart key. If the user agrees, the AMS calls the MIDlet’s
showNotify() method. Otherwise, the AMS does nothing.

Thirdly, the user can explicitly bring an application that supports the external display support onto
the external display by scanning through a list of currently running applications. To do this, the
user repeatedly presses the Smart key. The most recent call is displayed followed the name of the
first application that supports the external display. If the user hits the Hi-Low Audio key then the
application’s showNotify() method is called and it can begin rendering to the Display. If the
user hits the Smart key again, then the next application that supports the external display is
shown. After the user reaches the end of the list, an idle screen is displayed.

When an application can display on the external display, its showNotify() method is called.
When an application can no longer display on the external display, its hideNotify() method is
called. An application displaying on the external display can receive key presses from the following
keys: Volume Up, Volume Down, PTT and the Speaker key. If the user presses the smart key
while an application is on the external display, the application can no longer display there and its
hideNotify() method is called.

When an application is rendering to the External Display, opening the flip will cause the application
to Auto Resume onto the Internal Display.

4.3.2 Class Description
4.3.2.1 ExternalDisplay Description

The API for the ExternalDisplay is located in package com.motorola.iden.lcdui

java.lang.Object
 |
 + - com.motorola.iden.lcdui.ExternalDisplay

iDEN J2ME™ Developer’s Guide

73
 © 2005 Motorola, Inc.

4.3.2.2 ExternalDisplayCanvas Description
The API for the ExternalDisplayCanvas is located in package com.motorola.iden.lcdui

java.lang.Object
 |
 +--Canvas
 |
 + - com.motorola.iden.lcdui.ExternalDisplayCanvas

The ExternalDisplayCanvas represents a Canvas that can be rendered onto the External Display.
The ExternalDisplayCanvas is identical to a normal LCDUI Canvas with a few exceptions:

o ExternalDisplayCanvas does not support adding commands to the Canvas.

o When the Canvas is first created, its width and height are the same as any other Canvas on
the phone. The height and width are changed to the sizes for the external display when its
sizeChanged() method is called, which occurs before the canvas is rendered onto the
external display.

4.3.3 Method Descriptions
4.3.3.1 ExternalDisplay Methods

4.3.3.1.1 getCurrent
Returns the Displayable from this MIDlet that will be rendered on the external display the
next time this MIDlet is allowed to render on that display.

public Displayable getCurrent()

4.3.3.1.2 getDisplay
Returns an ExternalDisplay object for this MIDlet.

public static ExternalDisplay getDisplay(MIDlet m)

Successive calls to this method return the same ExternalDisplay object. An
IllegalStateException shall be thrown if a request to getDisplay is made during the
execution of the MIDlet class’s constructor.

4.3.3.1.3 getFlipState
Returns true if the phone’s flip is closed; returns false otherwise.

public Boolean getFlipState()

4.3.3.1.4 getHeight
Returns the height of the ExternalDisplay in pixels.

public int getHeight()

iDEN J2ME™ Developer’s Guide

74
 © 2005 Motorola, Inc.

4.3.3.1.5 getWidth
Returns the width of the ExternalDisplay in pixels.

public int getWidth()

4.3.3.1.6 isColor
Returns true if the ExternalDisplay supports color; returns false otherwise.

public Boolean isColor()

4.3.3.1.7 numColors
Returns the total number of colors supported by the ExternalDisplay.

public int numColors()

4.3.3.1.8 releaseDisplay
Tells the AMS that this MIDlet no longer wishes to render anything on the ExternalDisplay.

public void releaseDisplay()

4.3.3.1.9 requestDisplay
Tells the AMS that the MIDlet wants to render on the ExternalDisplay.

public void requestDisplay()

The AMS lets the MIDlet render on the display if the phone’s flip cover is closed and the
MIDlet is in the paused state. A MIDlet knows it can render on the external display when
ExternalDisplayCanvas.showNotify() is called.

4.3.3.1.10 setCurrent
Sets the Displayable that will be rendered on the ExternalDisplay the next time this MIDlet
is allowed to render on that display.

public void setCurrent(Alert alert, Displayable nextDisplayable)

This method generates an Alert to notify the user and sets nextDisplayable to be the
Displayable that is rendered on the ExternalDisplay the next time this MIDlet is allowed to
render on that display.

public void setCurrent(Displayable nextDisplayable)

This method sets nextDisplayable to be the Displayable that’s rendered on the
ExternalDisplay the next time this MIDlet is allowed to render on that display.

4.3.3.1.11 callSerially
Synchronizes an action with other event calls.

public void callSerially(Runnable r)

Causes the Runnable object r to have its run() method called later, serialized
with the event stream, soon after completion of the repaint cycle. The call to

r.run() will be serialized along with the event calls into the application. The run()
method will be called exactly once for each call to callSerially(). Calls to run() will
occur in the order in which they were requested by calls to callSerially().

iDEN J2ME™ Developer’s Guide

75
 © 2005 Motorola, Inc.

4.3.4 Code Examples
public class ExtDispTest extends javax.microedition.midlet.MIDlet {
 ExternalDisplay ed;
 Display d;

 myCanvas dispCanvas;
 myCanvas extDispCanvas;
 String str1 = "String 1";
 String str2 = "String 1";
 boolean firstTime = true;

 public void startApp() {

 try {
 if(firstTime)
 {
 d = Display.getDisplay(this);
 ed = ExternalDisplay.getDisplay(this);
 dispCanvas = new myCanvas();
 d.setCurrent(dispCanvas);
 extDispCanvas = dispCanvas;
 ed.setCurrent(extDispCanvas);
 firstTime = false;
 }
 }
 catch(Throwable e)
 {

 }
 }

 public void pauseApp() {
 if(ed.getFlipState())
 {
 ed.requestDisplay();
 System.out.println("The Flip is closed!");
 }
 else
 {
 (new Thread(extDispCanvas)).start();
 System.out.println("The Flip is open!");
 }
 }

 public void destroyApp(boolean unconditional) {
 }
}

class myCanvas extends ExternalDisplayCanvas

iDEN J2ME™ Developer’s Guide

76
 © 2005 Motorola, Inc.

{

 public myCanvas()
 {
 }
 protected void paint(Graphics g) {
 g.setColor(0xffffff);
 g.fillRect(0,0,getWidth(),getHeight());
 g.setColor(0x000000);
 g.drawString("Hello World",0,0,g.TOP|g.LEFT);
 }
}

4.3.5 Tips /
o If you wish to have a text ticker on the external display then simply add a ticker onto the

ExternalDisplayCanvas.

o Even though the Java application has entered the paused state while it is rendering to the
external display, the application can play media items like MIDIs and WAVs.

iDEN J2ME™ Developer’s Guide

77
 © 2005 Motorola, Inc.

4.4 Keycode Remapping

This feature is only available

on these handsets.

MIDlets that need to use low-level key codes may not run on all handsets
due to differing keycode values. Keycode remapping allows a MIDlet to
specify what keycode values are desired for the actual keys on the
handset as well as customization of game actions.

The 0 through 9 keys and the pound and star keys cannot be remapped since they have logical
ASCII value mappings which are portable across most handsets. The end and power keys cannot
be remapped as they send no key events to MIDlets.

All remapping is done through JAD tags unique to iDEN handsets. The following JAD tags allow
key code values to be specified for the corresponding keys:

iDEN-MIDP-KEY-SELECT
iDEN-MIDP-KEY-SOFT-LEFT
iDEN-MIDP-KEY-MENU
iDEN-MIDP-KEY-SOFT-RIGHT

iDEN-MIDP-KEY-LEFT
iDEN-MIDP-KEY-RIGHT
iDEN-MIDP-KEY-UP
iDEN-MIDP-KEY-DOWN
iDEN-MIDP-KEY-AUDIO
iDEN-MIDP-KEY-VOL-DOWN
iDEN-MIDP-KEY-VOL-UP
iDEN-MIDP-KEY-OK

iDEN-MIDP-KEY-SMART
iDEN-MIDP-KEY-PTT

Additionally, developers can customize which keys correspond to the MIDP defined game actions.
The following JAD tags allow game actions to be remapped:

iDEN-MIDP-KEY-GAME-A
iDEN-MIDP-KEY-GAME-B
iDEN-MIDP-KEY-GAME-C
iDEN-MIDP-KEY-GAME-D
iDEN-MIDP-KEY-GAME-UP
iDEN-MIDP-KEY-GAME-DOWN
iDEN-MIDP-KEY-GAME-LEFT
iDEN-MIDP-KEY-GAME-RIGHT
iDEN-MIDP-KEY-GAME-FIRE

Using the first set of JAD tags, any numeric value can be assigned to any one of the keys listed.
In other words, the key code returned to the MIDlet for the key specified in the JAD file tag will the
one specified by the developer. For example if a MIDlet’s JAD file has the line below:

iDEN J2ME™ Developer’s Guide

78
 © 2005 Motorola, Inc.

iDEN-MIDP-KEY-PTT: 12

Then calls to the keyPressed, keyReleased and KeyRepeated methods would be made with 12
passed as the keycode parameter value instead of the default of -50.

Furthermore, if a key has its keycode remapped it will still retain its game action, if any. For
example, if the up arrow’s keycode is reassigned to 2 a call to getGameAction(2) would still return
the game action Canvas.UP.

Using the second set of JAD tags, any numeric value can be associated with any of the game
actions listed. In other words, the value associated with a game action will cause calls to
Canvas.getGameAction(int keycode) to return the associated game action when the specified
value is passed as a parameter. For example if a MIDlet’s JAD file has the line below:

iDEN-MIDP-KEY-GAME-A: -50

Then calls to Canvas.getGameAction(-50) will return Canvas.UP instead of 0 by default.

Note that it is possible to make game actions unreturnable by associating them with keycodes that
will never be returned.

The following JAD snippet contains mappings to non-iDEN Motorola handsets:

iDEN-MIDP-KEY-SELECT: -10

iDEN-MIDP-KEY-SOFT-LEFT: 21

iDEN-MIDP-KEY-MENU: 23

iDEN-MIDP-KEY-SOFT-RIGHT: 22

iDEN-MIDP-KEY-LEFT: 2

iDEN-MIDP-KEY-RIGHT: 5

iDEN-MIDP-KEY-UP: 1

iDEN-MIDP-KEY-DOWN: 6

iDEN-MIDP-KEY-AUDIO: -53

iDEN-MIDP-KEY-VOL-DOWN: 302276412

iDEN-MIDP-KEY-VOL-UP: 302276412

iDEN-MIDP-KEY-OK: 20

iDEN-MIDP-KEY-SMART: -54

iDEN-MIDP-KEY-GAME-FIRE: 20

The following snippet contains mappings to some non-Motorola handsets:

iDEN-MIDP-KEY-SELECT: -10

iDEN-MIDP-KEY-SOFT-LEFT: -6

iDEN-MIDP-KEY-MENU: 23

iDEN-MIDP-KEY-SOFT-RIGHT: -7

iDEN-MIDP-KEY-LEFT: -3

iDEN-MIDP-KEY-RIGHT: -4

iDEN-MIDP-KEY-UP: -1

iDEN J2ME™ Developer’s Guide

79
 © 2005 Motorola, Inc.

iDEN-MIDP-KEY-DOWN: -2

iDEN-MIDP-KEY-OK: -10

iDEN-MIDP-KEY-GAME-FIRE: -10

iDEN J2ME™ Developer’s Guide

80
 © 2005 Motorola, Inc.

4.5 Look and Feel (LnF)
4.5.1 Overview

The main purpose of the LnF API is to provide facilities to modify the graphical user interface and
interface related behavior of J2ME™ components without breaking backward compatibility and
without modifying the standardized J2ME™ APIs. The LnF allows developers to modify how the
standard user interface (UI) components available in J2ME™ (javax.microedition.lcdui and
com.motorola.lwt) look and respond to certain user interactions without modifying the base code of
every component. The LnF also provides an API to allow developers to plug in different LnFs
(styles) without compromising the standardized API provided by MIDP 1.0+ and LWT 1.0+. The
LnF allows developers to modify font settings, color settings, border settings, and icon sets of UI
components.

The LnF API allows specifying the style used by a particular family of UI components. Style refers
to the border that surrounds the component, the color scheme and the font settings used by the
component; in other words, the look-and-feel. A family of UI components refers to all components
of the same Java class, including any that may have been instantiated already.

In addition to styles, LnF 2.0 provides a much more flexible and richer functionality. It allows
developers to modify the geometry of the UI components by allowing them to overwrite the paint
functionality used by the UI components. That means that the developer is now capable of
implementing the low-level graphics code (refer to MIDP Canvas and Graphics) that will be
invoked by the component when it requires the rendering of its contents. In order to achieve this
capability, the developer must comply fully with the framework. That means that the developer
must correctly overwrite all methods required by the LnF framework.

The main two functionalities that a developer must overwrite are the following: the low-level paint
functionality and the preferred dimension request functionality. The LCDUI/LnF framework will first
query the overwritten version of the LnF what the preferred dimensions of a particular component
will be. Every UI component should have the appropriate rectangular space to render fully its own
contents. In order for developers to calculate these preferred dimensions accurately, the
framework passes references to a component’s content. Once the preferred dimensions are
obtained, the framework will proceed with the layout calculation. The layout calculation (refer to
MIDP 2.0 Form/Item section and iDEN MIDP 2.0 layout section) will use the preferred dimensions
to allocate the correct space for every UI component and determine its location within the screen
space. Once the calculation is completed, the paint cycle of the Screen will invoke the overwritten
paint method of every component while passing all the applicable information regarding the state
and contents of the component in turn.

The LCDUI/LnF framework is a composition of UI components and their corresponding LnF
classes. The UI component classes (i.e. any Item subclass such as ImageItem, Gauge, etc.)
communicate through a defined API with their corresponding LnF class. The API uses 2 basic
parameters: an array of Objects (Object[]) to pass in the contents of the Item (i.e. the Image
and label of an ImageItem) and a single integer to specify the mode. The mode is just an
arrangement of bits, which specify the state of the component such as highlighted (focused), and
its mode (radio-button, checkbox, etc.).

Depending on the nature of the Item, the array of Objects will contain different Objects. The
implementations of LnF classes must typecast every Object within the array to its appropriate

iDEN J2ME™ Developer’s Guide

81
 © 2005 Motorola, Inc.

class in order to use it. Also, depending on the nature of the Item, the mode will have to be
“decoded” using the appropriate masks to determine the state: highlighted, selected, etc.

4.5.2 Class Description
The API for the LnF is located in package com.motorola.iden.lnf.

com.motorola.iden.lnf.LookAndFeel
|
+- com.motorola.iden.lnf.DisplayableLookAndFeel
| |
| +- com.motorola.iden.lnf.SystemLookAndFeel
|
+- com.motorola.iden.lnf.WidgetLookAndFeel
 |
 +- com.motorola.iden.lnf.ItemLookAndFeel
 | |
 | +- com.motorola.iden.lnf.CheckboxItemLookAndFeel
 | +- com.motorola.iden.lnf.ChoiceGroupItemLookAndFeel
 | +- com.motorola.iden.lnf.DateFieldItemLookAndFeel
 | +- com.motorola.iden.lnf.GaugeItemLookAndFeel
 | +- com.motorola.iden.lnf.ImageItemLookAndFeel
 | +- com.motorola.iden.lnf.StringItemLookAndFeel
 | +- com.motorola.iden.lnf.TextFieldItemLookAndFeel
 |
 +- com.motorola.iden.lnf.CommandAreaLookAndFeel
 +- com.motorola.iden.lnf.ScrollbarLookAndFeel
 +- com.motorola.iden.lnf.TickerLookAndFeel
 +- com.motorola.iden.lnf.TitleLookAndFeel

com.motorola.iden.lnf.LookAndFeelEngine

The most important class is the LookAndFeelEngine. The LookAndFeelEngine allows developers
to control the LnF by allowing developers to replace existing LookAndFeel implementations for
customized ones. The LookAndFeelEngine also provides an API to get references to the existent
LnF classes so its inner attributes such as Border, Font, ColorPalette, and JustificationStyle can
be modified as well.

4.5.3 Code Examples
The following is a set of examples to modify the LnF. These examples are organized as follows:

Replacing an existing LookAndFeel with a different customized version.

Creating a new CheckboxItemLookAndFeel.

1. Example 1 describes how to replace an existing LookAndFeel with a different one.
Developers must create a valid LnF class that extends the original one used by the
framework and overwrite the methods according to his/her needs.

2. Example 2 illustrates the creation of a new LookAndFeel that inherits the functionality of
the original one used by the LnF framework.

iDEN J2ME™ Developer’s Guide

82
 © 2005 Motorola, Inc.

4.5.3.1 Example 1.
try
{
 // instantiate the new LookAndFeel to be used by all
 // List and ChoiceGroup options
 MyCheckboxLnF cbLnF = new MyCheckboxLnF();

 // replace the existing LnF with the new one
 LookAndFeelEngine.set(LookAndFeelEngine.LNF_ID_LCDUI_CHECKBOXITEM,
 cbLnF);

 // since we just modified the LnF used by *ALL* Lists and
 // ChoiceGroups, we must make all the Screens of these types
 // invalid so layout calculation happens and the new LnF gets used
 LookAndFeelEngine.markAsValid(myList, false);
 LookAndFeelEngine.markAsValid(myForm, false);
}
catch (LookAndFeelException lnfe)
{
 // a problem was encountered
}

4.5.3.2 Example 2.
The following example modifies the geometry of the options of a ChoiceGroup or List. The
standard implementation produces the following radio-buttons:

This example will produce the following radio-buttons:

Figure 4.1

Image 1

Image 2 This is the highlighted text

This is the text

Image 1

Image 2

This is the text

This is the highlighted text

iDEN J2ME™ Developer’s Guide

83
 © 2005 Motorola, Inc.

public class MyCheckboxLnF extends CheckboxItemLookAndFeel
{

 // the default constructor
 public MyCheckboxLnF() throws LookAndFeelException
 {
 }

 // returns the width occupied by the image and
 // the radio-button. The width of the TextView
 // will be set by the framework once this method
 // returns
 public int getPreferredWidth(Object[] params,
 int mode)
 {
 int w = 0;

 // retrieve the parameters
 TextView tv = (TextView)params[0];
 Image img = (Image)params[1];
 Font font = (Font)params[2];

 // let’s use the font height as the dimension of the radio-button
 w += font.getHeight();

 // consider the width of the image
 w += img.getWidth();

 return w;
 }

 // returns the height
 public int getPreferredHeight(Object[] params,
 int mode)
 {
 int h;

 // retrieve the parameters
 TextView tv = (TextView)params[0];
 Image img = (Image)params[1];
 Font font = (Font)params[2];

 // the TextView should have been reformatted by the framework
 // already, so its height is accurate
 int tvh = tv.getHeight();

 // let’s use the font height as the dimension of the radio-button
 int fh = font.getHeight();

 // consider which is higher: radio-button icon or text
 if (fh > tvh)
 {
 h = fh;
 }

iDEN J2ME™ Developer’s Guide

84
 © 2005 Motorola, Inc.

 else
 {
 h = tvh;
 }

 // consider the height of the image
 int ih = img.getHeight();
 if (ih > h)
 {
 h = ih;
 }

 return h;
 }

 // paint the radio-button/checkbox, etc.
 public void paint(Graphics g, Object[] params,
 int width, int height, int mode)
 {
 // don’t need to clear the background, it was cleared by
 // the Displayable that contains this ChoiceGroup option

 // determine if the item is selected
 boolean selected = (mode & ITEM_LNF_STATE_SELECTED != 0);

 // determine if the item is highlighted (has focus)
 boolean focused = (mode & ITEM_LNF_STATE_HIGHLIGHTED != 0);

 // render the focused rectangle/highlighting
 if (focused)
 {
 // use the highlighting color
 g.setColor(getColor(ColorPalette.HIGHLIGHTED_FILL_COLOR));
 g.fillRect(0, 0, width, height);
 }

 // set the default foreground color
 g.setColor(getColor(ColorPalette.FOREGROUND_COLOR));

 // render the radio-button or checkbox (if applicable)
 int size = font.getHeight();
 switch (mode & ITEM_LNF_ASPECT_MASK)
 {
 case ITEM_LNF_ASPECT_RADIOBUTTON:
 // outer rectangle
 g.drawRect(0, 0, size-1, size-1);

 // inner rectangle, if selected
 g.drawRect(1, 1, size-3, size-3);
 if (selected)
 {
 g.fillRect(1, 1, size-2, size-2);

iDEN J2ME™ Developer’s Guide

85
 © 2005 Motorola, Inc.

 }
 // move the origin of coords so the image
 // or TextView is next to this icon
 g.translate(size, 0);
 break;

 case ITEM_LNF_ASPECT_CHECKBOX:
 // outer rectangle
 g.drawRect(0, 0, size-1, size-1);

 // Inner mark, if selected
 // (the inner mark is an x)
 g.drawRect(1, 1, size-3, size-3);
 if (selected)
 {
 g.drawLine(0, 0, size-2, size-2);
 g.drawLine(0, size-2, size-2, 0);
 }
 // move the origin of coords so the image
 // or TextView is next to this icon
 g.translate(size, 0);
 break;
 }

 // render the image (if any)
 if (img != null)
 {
 g.drawImage(0, 0, img, 0);

 // move the origin of coords so the TextView
 // is next to this image
 g.translate(img.getWidth(), 0);
 }

 // render the TextView
 tv.paint(g);
 }
}

iDEN J2ME™ Developer’s Guide

86
 © 2005 Motorola, Inc.

4.6 Smart Text Entry
4.6.1 Overview

Text components on iDEN handsets are enabled with T9 smart text entry capability. Smart text
entry allows users to enter text faster by removing the need for multiple key presses in order to
input certain letters or symbols. The T9 engine recognizes given key sequences and matches
them with the words contained in its database. Because multiple words may be entered with a
single key sequence, users can access other matches in the word database, or explicitly enter any
word character by character.

LCDUI based MIDlets that conform to the MIDP specification and use TextField or TextBox objects
and LWT based MIDlets that use TextField or TextArea objects automatically benefit without any
additional coding effort.

The rest of this section explains various T9 features and how users interact with T9 in a MIDlet.

4.6.2 T9 Features
The T9 engine allows users to enter text in one of four different ways: Word entry mode, Alpha
entry mode, Numeric entry mode, and Symbol entry mode. Additionally, the T9 engine supports
multiple languages, which can be combined with Word entry mode to enter text in English,
Spanish, French, Portuguese, Hebrew, or Korean.

Without some form of smart text entry a handset must rely on multi-tap text entry in text
components. With multi-tap entry, a user is required to press a key multiple times to access one of
the multiple alphabetic characters mapped to that key. For example, to enter the character ‘c’, the
‘2’ key must be pressed 3 times.

Text components can still use this method of entry, which is also called Alpha mode. While Alpha
mode is not the most efficient way to enter characters on the phone, it is sometimes necessary in
order to enter words that are not in the T9 word database.

For words that are in the database, T9’s Word mode is much more efficient. With Word mode,
users are not required to explicitly enter each character for a word. For example, without Word
mode the word “back” requires 8 key presses to enter- double the amount of letters. With Word
mode, a user needs to press only 4 keys. The T9 engine recognizes the key sequence as the word
“back” since that is the only possible match for the sequence. In cases where there is more than
one match, the user can press the “0” key, also labeled “next”, to match to the next word. If a
desired word is not in T9’s word database, users can switch to Alpha mode and enter the word
explicitly.

In cases where only numeric characters need to be entered, T9’s “Numeric” mode is used. This
mode simply maps the keys pressed to their labeled numeric value.

While users can access symbols like punctuation through Alpha and Word modes, T9 also has a
“Symbol” mode. The Symbol mode operates slightly differently than the other modes because
symbol entry is done on a separate screen. When the user is done choosing all the symbols
needed, those symbols are inserted into the text component at the current cursor position.

iDEN J2ME™ Developer’s Guide

87
 © 2005 Motorola, Inc.

4.6.3 The T9 UI
A MIDlet’s UI is automatically integrated with the T9 UI when a text component is present and has
focus. While entering text into a text component, the T9 UI consists only of the icon representing
the current entry mode, and any capitalization taking place and word highlighting.

In order to maximize the amount of screen space on the device, the space for the entry mode icon
is now shared with the menu icon. If the MIDlet has more than two Screen Commands or if the
TextField has an Item Command, the menu icon is displayed in place of the entry mode icon.

Figure 4.2 A T9-
Enhanced MIDlet

The screenshot on the left displays a typical email MIDlet. The
focused text component is the Message box.

The text within the Message box is being edited in Word mode,
indicated by the icon at the bottom center of the screen and the
word “application” is the returned word based on the key sequence
entered. The user has pressed the ‘#’ key enabling character shift,
indicated by the up arrow in the icon. The next character entered by
the user will be returned as a capital letter.

4.6.4 Changing T9 Entry Mode
Smart text entry in a MIDlet is nearly seamless, giving the MIDlet more functionality without
complicating it. However, users can interact in a more direct manner with the T9 engine to switch
entry modes and change language. Although a user’s interaction with the T9 engine is completely
transparent to the MIDlet, users are required to go through a MIDlet’s UI in order to access the T9
UI.

In both LWT and LCDUI based MIDlets the T9 entry mode screen is
accessed by pressing the Menu key. If a MIDlet has more than two
Screen Commands or the TextField has an Item Command, the first
Menu key press accesses the Command menu screen per the MIDP
specification. If the MIDlet was previously focused on a TextField, the
second Menu key press accesses the T9 “Entry Method” menu. For
MIDlets with two or fewer Screen Commands and no Item Command to
access, the Menu key automatically accesses the Entry Method menu
when focused on a TextField.

The image to the right shows how the Entry Method menu appears in an
LCDUI-based MIDlet. This menu allows the user to select the desired
mode of text entry. Selecting the Alpha, Word, or Numeric modes returns
the user to the last MIDlet screen and changes the entry mode of the
focused text component. Selecting Language or Symbol brings the user
to a different screen where they can select the desired language or
symbols.

Figure 4.3 The
Entry Methods

iDEN J2ME™ Developer’s Guide

88
 © 2005 Motorola, Inc.

4.6.5 Influencing T9
Although there is no code change required to take advantage of T9 in an LCDUI or LWT based
MIDlet, there are ways to influence T9 behavior.

The MIDP 2.0 specification has been updated to include APIs that allow developers to directly
control the smart text engine for a TextField. These APIs are capable of controlling entry mode,
capitalization, and language among other features. Refer to the MIDP 2.0 specification for more
information on those APIs.

In addition to receiving direction with the MIDP 2.0 APIs, the smart text engine is affected by
implicit settings on the phone. Just as a MIDlet can take advantage of the internationalization
features of the phone by displaying the MIDlet name in different languages, the T9 engine detects
the default language of the user and starts itself in the appropriate language setting.

The initial entry mode of the T9 engine can also be affected by the constraints of the text
component that it services. For example, a TextField created with the TextField.PHONENUMBER
constraint will create a TextField with a T9 engine set initially to Numeric entry mode (with some
modifications that allow users to enter special dialing characters). In addition, the user will not be
able to access the Entry Method menu to change the input mode. Similarly, a TextField created
with the TextField.NUMERIC constraint will initially be set to Numeric entry mode, but will also
allow for negative numbers. Text components whose constraints are set to NUMERIC or
PHONENUMBER after instantiation will change their entry mode accordingly, but relaxing constraints
will not change the entry mode of a text component.

4.6.6 T9 Engine Lifecycle
Text components each have their own instance of the T9 engine, allowing MIDlets to contain
multiple text components at once, each performing different smart text functions and using
different entry modes.

MIDlets that reuse text components on different screens typically clear out any old text before
redisplaying that component to a user. While the MIDP API provides for such functionality, it does
not provide for any functionality to reset the T9 engine of a text component. MIDlets that reuse text
components will also carry the old T9 state of that text component when it is redisplayed. For
example, if a user last left a TextField in Alpha entry mode and that TextField was removed from
one Screen object and added to another, it will look as if it was initialized in Alpha mode in the new
Screen. To avoid this behavior, text components should not be recycled.

iDEN J2ME™ Developer’s Guide

89
 © 2005 Motorola, Inc.

4.7 Lightweight Window Toolkit (LWT)
4.7.1 Overview

The Lightweight Window Toolkit is an OEM extension that was designed to address the limitations
of LCDUI imposed by the MIDP 1.0 specification. Since the release of MIDP 2.0, most of these
limitations have been addressed. For example, LCDUI now provides developers with control over
screen layouts and custom components.

While LWT was a key enabler for the development of full-featured applications on legacy devices,
its functionality is superceded on MIDP 2.0 compatible devices. It is included on some handsets
for backwards compatibility with pre-existing applications. The LWT package has not been
updated to take advantage of new MIDP 2.0 capabilities. As such, features like TextField’s ability
to specify enhanced text entry modes are not available through LWT. In addition, some backwards
compatibility issues with the MIDP 2.0 specification can cause undesirable behavior in LWT.

Developers are strongly encouraged to use standard MIDP 2.0 LCDUI classes for UI development
in order to ensure compatibility across most devices; however we have provided legacy
documentation on the LWT package for your reference.

4.7.2 Example: Hello LWT World
The following example illustrates the creation of the classical “Hello World” program using the LWT
package.

import javax.microedition.lcdui.*;
import javax.microedition.midlet.*;
import com.motorola.lwt.*;
import java.io.IOException;

public class HelloLWTWorld extends MIDlet {

Display display;
 ComponentScreen scr;
 ImageLabel label;

 public HelloLWTWorld() {
 // get display
 display = Display.getDisplay(this);

 // create the ComponentScreen
 scr = new ComponentScreen();

 // create ImageLabel
 label = new ImageLabel(null, null, "Hello LWT World!");

 // place the ImageLabel in the center of the screen
 label.setLeftEdge(Component.SCREEN_HCENTER,
 -label.getPreferredWidth()/2);
 label.setTopEdge(Component.SCREEN_TOP,
 (scr.getHeight()-label.getPreferredHeight())/2);

iDEN J2ME™ Developer’s Guide

90
 © 2005 Motorola, Inc.

 // add ImageLabel to the ComponentScreen
 scr.add(label);

 }

 public void startApp() {
 display.setCurrent(scr);
 }

 public void pauseApp() {
 }

 public void destroyApp(boolean b) {
 }
}

The main concept illustrated in the example is the creation of a container, the ComponentScreen,
and the addition of a Component, the ImageLabel. This example will be revisited later to cover the
details regarding the location and dimension of the Component.

4.7.3 Class Hierarchy and Overview
The following diagram shows the class hierarchy of LWT.

Figure 4.4 LWT Class Hierarchy

Canvas

ComponentScreen
 TextComponent

Component

TextField

TextArea

Slider

Button ImageLabel

InteractableComponent

Checkbox CheckboxGroup

ComponentListener

iDEN J2ME™ Developer’s Guide

91
 © 2005 Motorola, Inc.

4.7.4 ComponentScreen
The ComponentScreen class provides the basic functionality to create application screens to
interact with the user. It is the top-level container in an LWT user interface. ComponentScreen
provides a variety of means to manage Components, layout, focus traversing, and scrolling.

4.7.5 Component
Component is the abstract base class of all LWT user interface entities that can be added to a
ComponentScreen. It provides core functionality to allow rendering, layout management, input
event handling and more.

4.7.6 ComponentListener
ComponentListener is an interface that can be implemented by any class that wishes to receive
events from a Component. The events vary depending on the object that originates the event, but
can include events such as button actuation, checkbox selection, etc..

4.7.7 InteractableComponent
The InteractableComponent is a subclass class of
Component that can be actuated by the user; that is, it can
be visually 'pressed' and 'released' by the user. The
following are examples of InteractableComponents:

o Button

o Checkbox

o ImageLabel – A Component that can display an
image and/or a text label.

Figure 4.5 LWT Sample Screen

iDEN J2ME™ Developer’s Guide

92
 © 2005 Motorola, Inc.

4.7.8 The ComponentScreen Class
This section describes the fundamental behaviors exhibited by ComponentScreen. The
ComponentScreen class provides the basic functionality to create application screens to interact
with the user. It is the top-level container in an LWT user interface. As a subclass of LCDUI’s
Canvas, it can be interchanged with other LCDUI screens such as Canvas, Form, and Alert.

ComponentScreen inherits several methods from Canvas that provide the mechanisms for
handling input events and repainting; thus, the interface to LCDUI is accomplished using the
published APIs, and LWT can be integrated with any MIDP-compliant implementation.

This class provides a variety of means to manage Components, layout, focus traversing, and
scrolling. There are several compelling reasons for describing these behaviors and their
mechanisms in detail. First, it allows a developer to fully exploit the APIs and minimize redundant
code. Second, it ensures that clean-room implementations of LWT are fully compatible and
behave consistently. Finally, it enables developers to customize behavior without the risk of side
effects.

4.7.8.1 Component Management
The basic operation that can be performed on a ComponentScreen is to populate it with
Components.

Components can be added and removed from a
ComponentScreen. A ComponentScreen cannot be
added to another ComponentScreen, and
Components cannot be added to another
Component.

A Component can have only one parent
ComponentScreen at a time, and it can be added to a
given ComponentScreen only once. Whenever a
Component is added to a ComponentScreen, it is first
removed from the current parent if one exists, thereby
ensuring that these two rules are enforced.

A ComponentScreen maintains an ordered list of its
child Components and assigns each one a unique
index. The index of a Component indicates its
position in the list where 0 is the first Component, and
the highest index is the last Component. Indices are
always consecutive, so the index for a given
Component may change if other Components are
added or removed from the same ComponentScreen.
For example, if a Component is added in the middle
of the list, the indices of the subsequent Components
will be incremented to account for the inserted
Component.

Figure 4.6 LWT Component Z-Ordering
A Component may be inserted at a specific valid index, or it may be simply appended at the end of
the list and automatically assigned the next index. A Component’s index is significant since it
implies Z-order and dictates the order in which layout and focus traversal are performed.

The Component with the highest index is considered to be closest to the user, as shown.

iDEN J2ME™ Developer’s Guide

93
 © 2005 Motorola, Inc.

4.7.8.2 Component Management Methods
add(Component w)

Appends the specified Component to the screen. If the Component is currently added to a
screen (including this one), it is automatically removed first.

insert(Component w, int index)

Inserts a Component to the screen at the specified index. If the Component is currently added
to a screen (including this one), it is automatically removed first. If the index is equal or greater
than the number of Components in the screen, the Component will be appended at the end. If
the index is less than or equal to 0, the Component will be inserted at the start. Otherwise, the
Component is inserted such that its index is equal to the one specified; the indices of
subsequent Components in the screen will be incremented to account for the inserted
Component.

getComponent(int index)

Gets the Component at the specified index.

getComponentCount()

Gets the number of Components currently added to this screen.

remove(Component w)

Removes the specified Component from the screen. This method does nothing if the specified
Component has not been added to this screen.

remove(int index)

Removes the Component at the specified index from the screen.

removeAll()

Removes all Components from this screen.

4.7.8.3 Rendering
The ComponentScreen is rendered by a call to its paint() method. By default, this method
first clears the background (i.e., fills it with white pixels) and then renders its Components.

A ComponentScreen subclass may override the default paint method to implement special
backgrounds or to render other artifacts on the screen.

The paintComponents() method renders the Components in ascending index order. If the
Components overlap, the Component with the highest index is rendered last and appears to
be closest to the user, thereby implementing the correct Z-order. Invisible Components are not
rendered.

4.7.8.4 Rendering Methods
paint(Graphics g)

Renders the screen. The repaint region is first cleared (i.e. filled with the appropriate
background color), then the Components are rendered by calling paintComponents().
Subclasses may override this method to provide special backgrounds, game graphics, etc.

paintComponents(Graphics g)

iDEN J2ME™ Developer’s Guide

94
 © 2005 Motorola, Inc.

Renders the Components. This method is normally called by the paint() method to render
the Components on top of the background. The Components are rendered in ascending index
order to provide the correct z-order.

4.7.8.5 Layout Management and Validation Cycle
The Layout management refers to the ability of a ComponentScreen to determine the location
of every Component regarding the layout directives provided by every Component (see
“ComponentScreen class” on page 91). It also takes into consideration the dimensions of
every Component present in the ComponentScreen.

To minimize redundant layout computations, the ComponentScreen tracks the state of its
layout and computes its layout only when necessary. This mechanism effectively consolidates
requests for layout computation and defers the layout process until updated Component
bounds are actually needed.

For some Components, the preferred size is dependent on Component-specific attributes such
as label width, image size, font, etc.. In such cases, a change to one of these attributes may
result in a change to the preferred width or height. When such a change occurs, the
Component must call preferredWidthChanged() or preferredHeightChanged(),
respectively. These methods invalidate the parent if the preferred dimension is currently being
used for the Component’s layout; otherwise the change is irrelevant and invalidation is not
required.

The doLayout() method computes the location of left, right, top, and bottom edges for each
Component based on their schemes and accompanying values. The Components are
processed in ascending index order. The layout process ignores invisible Components; their
edges are not computed and they never become the previous Component.

A ComponentScreen becomes invalid when a change is made that could potentially alter the
layout of its Components. Such changes include adding or removing Components and
changing the edge specifications or visibility of a child Component. When such a change is
made, the affected ComponentScreen automatically becomes invalid. A ComponentScreen
can be programmatically made invalid by calling invalidate().

An invalid ComponentScreen becomes valid by ensuring that the layout of its children is up to
date. The process of validation involves checking whether or not the ComponentScreen is
invalid; if so, the doLayout() method is called and the ComponentScreen then becomes
valid.

Validation automatically occurs prior to any operation that relies on accurate Component
layout information, specifically rendering and pointer event dispatching. A developer can
programmatically force validation to occur by calling validate().

iDEN J2ME™ Developer’s Guide

95
 © 2005 Motorola, Inc.

4.7.8.6 Layout Management Methods
invalidate()

Invalidates this ComponentScreen, indicating that its Components need to be laid out. The
screen is automatically invalidated when a change is made to its Components that may
require layout to be performed again. These changes include adding or removing
Components, changing the layout edge specification of a Component, or changing the
dimensions or visibility of a Component.

validate()

Validates this ComponentScreen. Calling this method will lay out the Components if the
screen is invalid, otherwise it does nothing.

doLayout()

Recomputes the layout of the Components according to edge specifications for each
Component. Subclasses may override this method to implement special layout algorithms if
desired.

4.7.8.7 Focus Management
Focus management refers to the ability of a ComponentScreen to redirect the input events it
receives to one of its Components capable of handling input events. In general, none or only
one Component can have focus at a given time.

Each ComponentScreen instance keeps track of its current focus owner. The focus owner is
the Component within the ComponentScreen that receives key events. By default, the focus
owner is null, indicating that no Component is currently receiving key events; in this case, the
ComponentScreen continues to receive key events but does not dispatch them to a
Component. The focus owner may also become null if the current focus owner is removed or it
is no longer eligible to maintain focus.

Generally, ComponentScreen is responsible for switching the currently focused Component. It
allows the currently focused Component to handle the input events first. If the input event is
not consumed by the Component, it then attempts to determine if the input event should be
translated into a focus change.

The user may traverse focus by the appropriate keys on the device. Focus traversal occurs in
Component index order and skips any Components that are not eligible to receive focus.
Focus traversal wraps from the last Component to the first Component and vice versa.

4.7.8.8 Focus Management Methods
setFocusNext()

Moves key event focus to the next Component that accepts focus. The first Component
receives focus if no Component currently has focus.

setFocusPrevious()

Moves key event focus to the previous Component that accepts focus. The first Component
receives focus if no Component currently has focus.

getFocusOwner()

Returns the Component that currently has key event focus. To assign focus to a specific
Component, call requestFocus() on the desired Component.

iDEN J2ME™ Developer’s Guide

96
 © 2005 Motorola, Inc.

4.7.8.9 Scrolling
Scrolling is the capability of ComponentScreen to move its view port up or down to guarantee
that a particular portion of the ComponentScreen will be within the visible area. The following
figure depicts the concept of scrolling. The view port is typically the size of the device screen
excluding the command area if commands are present.

Figure 4.7 LWT Scrolling

There are two basic ways of manipulating the scrolling of a ComponentScreen: scrolling based
on a Component, or absolute scrolling.

• Scrolling based on a Component is moving the view port so a given Component
becomes visible.

• Absolute scrolling is moving the view port an absolute distance measured in pixels.

ComponentScreen supports vertical scrolling, but does not support horizontal scrolling.

Scrolling is automatically enabled by the native user interface if the bottom edge of the last
Component extends past the bottom of the screen. In other words, scrolling support is
provided when it is needed, and may be removed when it is not needed.

Whenever a Component receives key event focus, the screen is automatically scrolled when
necessary to ensure that the Component is visible to the user.

It is the responsibility of the implementation and native user interface to provide the user with
the ability to control the scroll position.

A MIDlet can query and set the scroll position programmatically; however, a MIDlet is not
permitted to explicitly enable or disable scrolling since the device implicitly provides this
functionality.

iDEN J2ME™ Developer’s Guide

97
 © 2005 Motorola, Inc.

4.7.8.10 Scrolling APIs Descriptions
scrollTo(Component c)

Scrolls to the specified Component. This method ensures that the screen's scroll position is
adjusted to show as much of the specified Component as possible.

setScrollOffset(int offset)

Sets the vertical scroll offset. The scroll offset is automatically constrained such that the
screen cannot be scrolled past the top of the screen or the bottom of the last Component.
Scrolling is automatically provided by the platform. A scrollbar (or other similar mechanism) is
provided by the native UI as needed so that the user can adjust the scroll offset.

getScrollOffset()

Gets the current vertical scroll offset. The offset indicates the offset into screen that
corresponds to the top edge of the visible portion.

4.7.9 The Component Class
Component is the abstract base class of all LWT user interface entities that can be added to a
ComponentScreen. The Component class collects core functionality required to create user
interface Components capable of interacting with the user.

A Component must be capable of rendering itself as well as capable of responding to input events.
A few other basic capabilities provided by the Component class are: location and dimension
management, visibility, enabling, and focus.

4.7.9.1 Rendering
Rendering is one of the primary responsibilities of a Component. A Component must render
itself when its paint() method is called. Under normal circumstances, ComponentScreen
calls the paint() method of a Component. It is then the responsibility of the Component to
render the rectangular area confined by the Component boundaries.

Since the ComponentScreen is responsible for rendering the background, Component does
not need to clear the background prior to rendering. Rendering of the background by
Component is redundant and reduces user interface performance.

A Component must render itself in a manner that conveys its current state to the user. All
Components must render themselves to reflect the following mutually exclusive states:

• Normal: Normal appearance of a Component without focus

• Disabled: Should be grayed out or drawn with dotted lines instead of solid lines

• Focus Owner: Normal appearance with a thick border (a Component needs to support this
state only if it accepts key focus)

Component subclasses may include additional states or attributes that affect their appearance.
These should also be accounted for by the rendering code.

4.7.9.2 Rendering Methods
paint(Graphics g)

Renders the Component.

repaint()

iDEN J2ME™ Developer’s Guide

98
 © 2005 Motorola, Inc.

Requests a repaint for the entire Component. This method in turn requests a repaint for the
corresponding region of the parent screen.

repaint(int x, int y, int width, int height)

Requests a repaint for the specified portion of this Component. This method in turn requests a
repaint for the corresponding region of the parent screen. The specified region is clipped so
that it does not extend beyond the bounds of this Component.

4.7.9.3 Events Handling
There are two types of input events: key events and pointer events. Key events are those
generated by the user when he/she actuates a key. Pointer events are those generated by the
user when he or she actuates a pointing device on a particular location. Currently, no iDEN
handsets include support for pointing devices, although pointer event handling methods are
accessible in the LWT package.

Key events are dispatched to the current ComponentScreen through the three methods
defined in LCDUI’s Canvas. The default implementations of these methods in
ComponentScreen check if there is a current focus owner and dispatch the event to that
Component, if any. Subclasses may override these methods to implement custom key event
handling.

Key events are dispatched to the Component through these three methods: keyPressed(),
keyRepeated(), and keyReleased(). These methods return a Boolean to indicate if the
Component consumed the key event, thereby allowing ComponentScreen subclasses to
implement default behaviors for unconsumed key events.

4.7.9.4 Event Handling Methods
keyPressed(int keyCode)

Called when a key is pressed. The Component must have key input focus in order to receive
key events.

keyReleased(int keyCode)

Called when a key is released. The Component must have key input focus in order to receive
key events.

keyRepeated(int keyCode)

Called when a key is repeated (held down). The Component must have key input focus in
order to receive key events.

4.7.9.5 Location, Dimension and Layout
The location of a Component refers to its absolute (x, y) location within the boundaries of the
ComponentScreen in which it is contained.

The dimension of a Component refers to the width and height of the rectangular area that
occupies within the ComponentScreen that contains it.

Each Component occupies a rectangular region of its parent ComponentScreen; this is called
the Component region. A Component receives pointer events that occur within its rectangular
region, and is responsible for rendering the pixels within its region. A Component may render
itself as an ellipse, a triangle, a cloud, etc., but its bounding region is always rectangular.

iDEN J2ME™ Developer’s Guide

99
 © 2005 Motorola, Inc.

4.7.9.6 Region Parameters
The region is fully described by the location of the upper-left
corner of the Component and by the Component’s width
and height. The location of the upper-left corner is relative
to the ComponentScreen’s origin and is based on the MIDP
coordinate system. Width and height are expressed in
terms of pixels.

A developer can query the bounds of a Component by
calling getX(), getY (), getWidth(), and
getHeight() on the Component.

Tip: The values returned by these calls are not guaranteed
to be correct if the ComponentScreen has not been
validated (see “4.7.8.5 Layout Management and Validation
Cycle” on page 94).

Figure 4.8 Region Parameters

4.7.9.7 Preferred Size
Each Component subclass must implement the methods getPreferredWidth() and
getPreferredHeight().

Together, these two methods specify the ideal dimensions of a given Component instance.
Even for the same class, different instances may specify different preferred sizes to reflect the
length of a text label, size of an image, etc..

The preferredWidthChanged() method must be called whenever the preferred width of
the Component changes. Similarly, the preferredHeightChanged() method must be
called whenever the preferred height of the Component changes. For standard LWT
Components, these methods are automatically called when a relevant parameter is changed;
for custom Components, it is a developer’s responsibility to call these methods whenever a
change is made that impacts the preferred width or height of the Component.

4.7.9.8 Layout
LWT’s layout model has been designed to provide a developer with complete control over
Component placement and size. Although this approach provides the greatest flexibility, it can
result in fairly large applications, especially if the application must automatically adjust its
layout to account for different display and Component sizes. Therefore, the LWT layout model
also incorporates several features that enable the creation of adaptable complex layouts with
very little code; furthermore, the execution of these layouts is inherently efficient.

A Component’s region is specified in terms of its left, right, top, and bottom edges.

iDEN J2ME™ Developer’s Guide

100
 © 2005 Motorola, Inc.

A developer can independently specify the location of each edge using one of several
schemes. An accompanying value controls the location of the edge according to the scheme
selected.

For all schemes that use an offset, the offset values
extend down and to the right. That is, a horizontal offset
extends to the right for positive values and to the left for
negative values. Similarly, a vertical offset extends
down for positive values and up for negative values.

The following schemes may be used for specifying the
location of a Component’s left edge:

SCREEN_LEFT (default) The accompanying value
describes the edge’s offset from the left edge of the
screen.

Component Position Specified With SCREEN_LEFT

SCREEN_HCENTER The accompanying value describes
the edge’s offset from the center of the screen.

Component Position Specified With SCREEN_HCENTER

value

value

iDEN J2ME™ Developer’s Guide

101
 © 2005 Motorola, Inc.

SCREEN_RIGHT The accompanying value
describes the edge’s offset from the right edge of
the screen.

Component Position Specified With SCREEN_RIGHT

PREVIOUS_COMPONENT_LEFT The accompanying value
describes the edge’s offset from the left edge of the
previous Component. Interpreted as SCREEN_LEFT if
there is no previous Component.

Component Position Specified With PREVIOUS_COMPONENT_LEFT

value

value

iDEN J2ME™ Developer’s Guide

102
 © 2005 Motorola, Inc.

PREVIOUS_COMPONENT_HCENTER The accompanying
value describes the edge’s offset from the center of the
previous Component. Interpreted as SCREEN_LEFT if
there is no previous Component.

Component Position Specified With PREVIOUS_COMPONENT_HCENTER

PREVIOUS_COMPONENT_RIGHT The accompanying
value describes the edge’s offset from the right edge of the
previous Component. Interpreted as SCREEN_LEFT if
there is no previous Component.

Component Position Specified With PREVIOUS_COMPONENT_RIGHT

value

value

iDEN J2ME™ Developer’s Guide

103
 © 2005 Motorola, Inc.

The following schemes may be used for specifying the
location of a Component’s right edge. Developers are
encouraged to use PREFERRED_WIDTH wherever feasible
to maximize application portability across different devices.

SCREEN_LEFT The accompanying value describes the
edge’s offset from the left edge of the screen.

Component Position Specified With SCREEN_LEFT

SCREEN_HCENTER The accompanying value describes the
edge’s offset from the center of the screen.

Component Position Specified With SCREEN_HCENTER

value

value

iDEN J2ME™ Developer’s Guide

104
 © 2005 Motorola, Inc.

SCREEN_RIGHT The accompanying value
describes the edge’s offset from the right edge of the
screen.

Component Position Specified With SCREEN_RIGHT

PREVIOUS_COMPONENT_LEFT The accompanying value
describes the edge’s offset from the left edge of the previous
Component. The Component is set to its preferred width if
there is no previous Component.

Component Position Specified With PREVIOUS_COMPONENT_LEFT

value

value

iDEN J2ME™ Developer’s Guide

105
 © 2005 Motorola, Inc.

PREVIOUS_COMPONENT_HCENTER The accompanying
value describes the edge’s offset from the center of the
previous Component. The Component is set to its
preferred width if there is no previous Component.

Component Position Specified With PREVIOUS_COMPONENT_HCENTER

PREVIOUS_COMPONENT_RIGHT The accompanying value
describes the edge’s offset from the right edge of the
previous Component. The Component is set to its preferred
width if there is no previous Component.

Component Position Specified With PREVIOUS_COMPONENT_RIGHT

value

value

iDEN J2ME™ Developer’s Guide

106
 © 2005 Motorola, Inc.

WIDTH The right edge is located such that the
Component’s width is equal the accompanying value.

Component Position Specified With WIDTH

PREFERRED_WIDTH (default) The right edge is located
such that the Component’s width is equal to its preferred
width plus the accompanying value.

Component Position Specified With PREFERRED_WIDTH

value + preferred width

value

iDEN J2ME™ Developer’s Guide

107
 © 2005 Motorola, Inc.

The following schemes may be used for specifying the
location of a Component’s top edge:

SCREEN_TOP The accompanying value describes the
edge’s offset from the top edge of the screen.

Component Position Specified With SCREEN_TOP

PREVIOUS_COMPONENT_TOP The accompanying value
describes the edge’s offset from the top edge of the
previous Component. Interpreted as SCREEN_TOP if there
is no previous Component.

Component Position Specified With PREVIOUS_COMPONENT_TOP

value

value

iDEN J2ME™ Developer’s Guide

108
 © 2005 Motorola, Inc.

PREVIOUS_COMPONENT_VCENTER The accompanying
value describes the edge’s offset from the center of the
previous Component. Interpreted as SCREEN_TOP if there is
no previous Component.

Component Position Specified With PREVIOUS_COMPONENT_VCENTER

PREVIOUS_COMPONENT_BOTTOM (default) The
accompanying value describes the edge’s offset from the
bottom edge of the previous Component. Interpreted as
SCREEN_TOP if there is no previous Component.

Component Position Specified With PREVIOUS_COMPONENT_BOTTOM

value

value

iDEN J2ME™ Developer’s Guide

109
 © 2005 Motorola, Inc.

The following schemes may be used for specifying the
location of a Component’s bottom edge. Developers are
encouraged to use PREFERRED_HEIGHT wherever feasible
to maximize application portability across different devices.

SCREEN_TOP The accompanying value describes the
edge’s offset from the top edge of the screen.

Component Position Specified With SCREEN_TOP

PREVIOUS_COMPONENT_TOP The accompanying value
describes the edge’s offset from the top edge of the previous
Component. The Component is set to its preferred height if
there is no previous Component.

Component Position Specified With PREVIOUS_COMPONENT_TOP

value

value

iDEN J2ME™ Developer’s Guide

110
 © 2005 Motorola, Inc.

PREVIOUS_COMPONENT_VCENTER The accompanying
value describes the edge’s offset from the center of the
previous Component. The Component is set to its preferred
height if there is no previous Component.

Component Position Specified With PREVIOUS_COMPONENT_VCENTER

PREVIOUS_COMPONENT_BOTTOM The accompanying value
describes the edge’s offset from the bottom edge of the
previous Component. The Component is set to its preferred
height if there is no previous Component.

Component Position Specified With PREVIOUS_COMPONENT_BOTTOM

value

value

iDEN J2ME™ Developer’s Guide

111
 © 2005 Motorola, Inc.

HEIGHT The bottom edge is located such that the
Component’s height is equal the accompanying value.

Component Position Specified With HEIGHT

PREFERRED_HEIGHT (default) The bottom edge is
located such that the Component’s height is equal to its
preferred height plus the accompanying value.

Component Position Specified With PREFERRED_HEIGHT

value

preferred
height +
value

iDEN J2ME™ Developer’s Guide

112
 © 2005 Motorola, Inc.

4.7.9.9 Layout Methods
getX()

Gets the x coordinate of the Component's left edge within the parent.

getY()

Gets the y coordinate of the Component's top edge within the parent.

getWidth()

Gets the width of the Component, in pixels.

getHeight()

Gets the height of the Component, in pixels.

getPreferredWidth()

Gets the preferred width of this Component. Subclasses must implement this method and
return the preferred width for this Component. This method may be called quite frequently so it
must execute quickly and without creating garbage. The preferred width of a Component may
depend on a number of factors including Component attributes, the device's font sizes, and
the device's native look and feel. The preferred size of a Component is the minimum size that
enables the Component to render itself fully without being clipped.

getPreferredHeight()

Gets the preferred height of this Component. Subclasses must implement this method and
return the preferred height for this Component. This method may be called quite frequently so
it must execute quickly and without creating garbage. The preferred height of a Component
may depend on a number of factors including Component attributes, the device's font sizes,
and the device's native look and feel. The preferred size of a Component is the minimum size
that enables the Component to render itself fully without being clipped.

preferredWidthChanged()

Notifies the system that the preferred width of this Component has changed. This method
checks if this Component is currently using preferred width for its layout; if so, it invalidates the
parent screen so that the layout is recomputed using the new preferred width. If the preferred
width is not being used for the Component's layout, the change will have no effect on layout
and invalidation does not need to occur.

preferredHeightChanged()

Notifies the system that the preferred height of this Component has changed. This method
checks if this Component is currently using preferred height for its layout; if so, it invalidates
the parent screen so that the layout is recomputed using the new preferred height. If the
preferred height is not used for the Component's layout, the change will have no effect on
layout and invalidation does not need to occur.

setLeftEdge(int schema, int value)

Specifies the location of the Component's left edge.

setRightEdge(int schema, int value)

Specifies the location of the Component's right edge.

setTopEdge(int schema, int value)

iDEN J2ME™ Developer’s Guide

113
 © 2005 Motorola, Inc.

Specifies the location of the Component's top edge.

setBottomEdge(int schema, int value)

Specifies the location of the Component's bottom edge.

4.7.10 Component Visibility, State & Focus
4.7.10.1 Visible & Invisible

A visible Component is shown to a user, whereas an invisible Component is not. Components
may be hidden to conceal portions of the user interface that are not relevant, thereby
simplifying the user interface. By default, all Components are initially visible.

4.7.10.2 Enabled & Disabled
Enabling indicates whether or not a Component is currently available to a user. Enabling and
disabling is useful for conveying the availability of certain features that may be temporarily
unavailable based on the current context. For example, a View button should be disabled if the
corresponding list contains no items. By default, all Components are initially enabled.

4.7.10.3 Focused & Unfocused
The concept of focus in a Component refers to the capabilities of the Component to handle
input events. ComponentScreen relies on every Component to determine if such Component
is a focus candidate. ComponentScreen queries every Component when focus traversing is
taking place.

A Component must implement certain API if it wants the ComponentScreen to manage the
focus correctly.

A Component may indicate whether or not it is interested in ever becoming the focus owner by
setting the Boolean field acceptsKeyFocus to the appropriate value. If this field is set to true,
the Component may gain focus; if false, the Component will never gain focus.

In order to be eligible to gain focus, the Component must be visible, enabled, and have its
acceptsKeyFocus field set to true.

A Component may programmatically request focus by calling requestFocus().

Whenever a Component gains key focus, its gainedFocus() method is called. Similarly, its
lostFocus() method is called whenever it loses focus. A Component can query whether or
not it has focus by calling hasFocus().

4.7.10.4 Component Visibility, State & Focus Methods
isVisible()

Checks if this Component is visible (can be seen by the user). Note that a Component is still
considered to be visible even if it is scrolled off the screen or if the screen is not currently
shown. Components are visible by default.

setVisible(boolean visible)

Shows or hides the Component. A Component is visible by default. This method automatically
repaints the Component when its visibility changes.

isEnabled()

iDEN J2ME™ Developer’s Guide

114
 © 2005 Motorola, Inc.

Checks if this Component is currently enabled (can be interacted with by the user).

setEnabled(boolean enable)

Enables or disables this Component. An enabled Component receives input events that it
should receive; a disabled Component does not receive any input events. This method
automatically repaints the Component when its enabled state changes. A Component is
enabled by default.

acceptsFocus()

Checks if this Component currently accepts key focus. When the user traverses the screen,
only those Components that accept focus will receive it; other Components will be skipped. In
order for this method to return true, the acceptsKeyFocus field must be set to true (set to
false by default), the Component must be visible, and the Component must be enabled.

hasFocus()

Checks if this Component currently has key focus (that is, it is receiving key events). For a
given screen, no more than one Component can have key focus.

requestFocus()

Requests key focus for this Component. For a Component to receive focus, it must be added
to a ComponentScreen, and acceptsFocus() must return true.

gainedFocus()

Called when this Component gains key focus. For a Component that accepts key focus, this
method is called when it gains focus; it may use this method to change its appearance, etc. By
default, this method requests a repaint.

lostFocus()

Called when this Component loses key focus. For a Component that accepts key focus, this
method is called when it loses focus; it may use this method to change its appearance, etc. By
default, this method requests a repaint.

4.7.11 The ComponentListener Interface
The ComponentListener interface is implemented by any class that receives events from a
Component. The ComponentListener is notified of an event by calling its
processComponentEvent() method with the source Component reference and an integer
identifying the event type.

Every Component that wishes to notify a ComponentListener is responsible for defining the events
that can generate, typically as static fields. The Component is also responsible to call the method
processComponentEvent() on the ComponentListener, if there is one available, when any of
the defined events take place.

The two parameters passed when the processComponentEvent() method is called are the
following: (1) an Object reference to the source of the event (typically the Component itself), and
(2) the event defined as an integer value (typically a static value defined by the subclass of
Component). Refer to the example in the “4.7.13 The Button Class” section on page 116.

4.7.12 The InteractableComponent Class
InteractableComponent is the abstract base class of the Components that a user can ‘press’ and
‘release’. Such Components include buttons, checkboxes, and icons. This class serves to reduce

iDEN J2ME™ Developer’s Guide

115
 © 2005 Motorola, Inc.

code size and complexity of its subclasses by providing the basic interaction functionality. An
InteractableComponent is typically actuated by tapping and releasing within its bounds, or by
pressing and releasing the Send key when the Component has focus.

The InteractableComponent class provides some useful services to enhance the usability of the
Component with little or no code at all. These services can be grouped in three main categories:
aspect, low-level event handling, and high-level event handling.

4.7.12.1. Aspect
Aspect refers to how the Component is rendered to convey its meaning and functionality.

InteractableComponent has a String that is rendered to depict the meaning of the Component,
its label. The location where the label is rendered regarding the boundaries of the Component
depends on the implementation provided by subclasses.

InteractableComponent has a reference to a Font object that is used to render the label.

InteractableComponent also has a Boolean state that represents if the Component is ‘pressed’
or ‘unpressed’. This concept can also be used to convey the logical state of the Component.

4.7.12.2 Aspect Methods
getLabel()

Gets the label for this Component.

setLabel(String l)

Sets the label for this InteractableComponent.

getFont()

Gets the Font associated with this Label.

setFont(Font f)

Sets the Font object for rendering the label, if any.

isPressed()

Checks if this InteractableComponent is currently pressed.

setPressed(boolean b)

Sets the pressed/unpressed state of this Component.

4.7.12.3 Event Handling
The low level event handling functionality basically overloads the input event handling API
specified by Component.

InteractableComponent adds the appropriate logic to alter the ‘pressed’ state depending on
the user input event handling. For instance, an InteractableComponent appears to remain
pressed while the key that actuates the Component is being held.

iDEN J2ME™ Developer’s Guide

116
 © 2005 Motorola, Inc.

4.7.12.4 Event Handling
Besides the low level event handling API, InteractableComponent provides a high level event
handling which follows the listener paradigm commonly used in Java.

The listener paradigm allows any entity to be notified when the InteractableComponent has
been actuated (‘pressed’ and ‘released’).

InteractableComponent is responsible for notifying its ComponentListener with the appropriate
information when is actuated. The information provided to the ComponentListener is the
InteractableComponent that was actuated and the event.

4.7.12.5 Event Handling Methods
componentActuated()

Called when the Component is actuated (tapped and released).

dispatchComponentEvent(int event)

Dispatches the specified event to this InteractableComponent's listener, if any.

setComponentListener(ComponentListener l)

Sets this InteractableComponent's listener.

4.7.13 The Button Class
As a subclass of InteractableComponent, the Button class mainly relies on the functionality
implemented by InteractableComponent.

A Button is a basic button that a user can actuate. A button can display text to convey its meaning.
The text font is the only customizable attribute of the Button class.

Button provides full advantage of the three basic services described in the InteractableComponent
Class with minimal effort. The developer is also given flexibility to implement Button methods in
different ways to achieve other results.

There are two different constructors to create a Button: a constructor with no arguments and a
constructor with a String argument.

4.7.13.1 Example: Button
The following example creates two Buttons that can be actuated when added to a
ComponentScreen. The first Button is clickable and changes the text of the second button
when actuated. The second Button can be pressed but has no effect.

 import javax.microedition.lcdui.*;
 import javax.microedition.midlet.*;
 import com.motorola.lwt.*;
 import java.io.IOException;

 public class HelloLWTWorld extends MIDlet implements ComponentListener
 {
 Display display;
 ComponentScreen scr;
 String[] toggleStr = {
 "off",
 "on"

iDEN J2ME™ Developer’s Guide

117
 © 2005 Motorola, Inc.

 };
 Button bClick;
 Button bToggle;
 static final int TOGGLE_BUTTON_WIDTH = 40;

 public HelloLWTWorld() {
 // get display
 display = Display.getDisplay(this);

 // create the ComponentScreen
 scr = new ComponentScreen();

 // create 2 buttons
 bClick = new Button("click");
 bToggle = new Button(toggleStr[0]);

 // make the toggling button 40 pixels wide
 bToggle.setRightEdge(Component.WIDTH, TOGGLE_BUTTON_WIDTH);

 // place the Buttons in the center of the screen
 bClick.setLeftEdge(Component.SCREEN_HCENTER,
 -bClick.getPreferredWidth()/2);
 bClick.setTopEdge(Component.SCREEN_TOP,
 bClick.getPreferredHeight()/2);
 bToggle.setLeftEdge(Component.SCREEN_HCENTER,
 -TOGGLE_BUTTON_WIDTH/2);
 bToggle.setTopEdge(Component.PREVIOUS_COMPONENT_BOTTOM,
 bToggle.getPreferredHeight()/2);

 // set the ComponentListener which will control the toggle
 // capability of the toggling Button when the
 // clicking button is actuated
 bClick.setComponentListener(this);

 // add both Buttons to the ComponentScreen
 scr.add(bClick);
 scr.add(bToggle);
 }

 public void processComponentEvent(Object source, int event) {
 if (source == bClick) {
 // toggle the current mode
 bToggle.setPressed(!bToggle.isPressed());

 // determine the mode
 int mode = bToggle.isPressed()? 1 : 0;

 // change the label according to the mode
 bToggle.setLabel(toggleStr[mode]);
 }
 }

 public void startApp() {

iDEN J2ME™ Developer’s Guide

118
 © 2005 Motorola, Inc.

 display.setCurrent(scr);
 }

 public void pauseApp() {
 }

 public void destroyApp(boolean b) {
 }
}

4.7.14 The ImageLabel Class
The ImageLabel class heavily relies on the functionality implemented by InteractableComponent.

ImageLabel allows to take full advantage of the three basic services described in “4.7.12 The
InteractableComponent Class” section on page 114 with almost no effort. However, a developer is
allowed to uniquely implement any of the methods provided by ImageLabel to achieve different
results.

An ImageLabel is a general-purpose Component that can display an image and/or a text label; it
can be an interactive or a read-only Component.

4.7.14.1 Image Manipulation
If an image is displayed, a developer can use either a single image or multiple images to
reflect a Component’s different states (such as pressed, disabled, etc.).

The ‘normal’ image is used when the ImageLabel is rendered in its normal state ‘unpressed’.

The ‘disabled’ image is used when the ImageLabel is rendered in its disabled state. An
ImageLabel is its disabled state when its method isEnabled() returns false.

The ‘pressed’ image is used when the ImageLabel is rendered in its pressed state. An
ImageLabel is pressed when its isPressed() method returns true.

4.7.14.2 Image Manipulation Methods
setNormalImage(Image n)

Sets the image for the normal state.

setDisabledImage(Image d)

Sets the image for the disabled state.

setPressedImage(Image p)

Sets the image for the pressed state.

4.7.14.3 Text Manipulation
If text is displayed, a developer can specify the text and its font. See the “4.7.12.1. Aspect”
section on page 115 for the corresponding API. Also, there is a mechanism to provide the
color scheme used by the ImageLabel. The two colors that can be manipulated are the
background color and the foreground color.

The following figure shows how these two colors are used.

iDEN J2ME™ Developer’s Guide

119
 © 2005 Motorola, Inc.

Figure 4.9 ImageLabel With Text
The color scheme also provides a useful transparent color that can be used to render portions
of the ImageLabel as transparent.

4.7.14.4 Text Manipulation Methods
getBackgroundColor()

Gets the background color of the text.

getForegroundColor()

Gets the foreground color of the text.

setBackgroundColor(int bgc)

Sets the foreground color of the text.

setForegroundColor(int bgc)

Sets the background color of the text.

4.7.14.5 Label Location
If both text and an image are displayed, the location of the text relative to the image can be
specified as above, below, to the left, to the right, and centered.

iDEN J2ME™ Developer’s Guide

120
 © 2005 Motorola, Inc.

Figure 4-10 ImageLabel Text Positions

4.7.14.6 Label Location Methods
setLabelLocation(int location)

Sets the location of the label, if any, relative to the ImageLabel's image.

4.7.14.7 Alignment
Regardless of what is displayed (text, image, or both), the collective alignment of the image
and/or text within the bounds of the ImageLabel may be specified as: North, South, East,
West, and Centered.

4.7.14.8 Alignment Methods
setAlignment(int alignment)

Sets the desired alignment for this ImageLabel.

iDEN J2ME™ Developer’s Guide

121
 © 2005 Motorola, Inc.

4.7.15 Checkboxes
4.7.15.1 The Checkbox Class

As a subclass of InteractableComponent, the Checkbox class heavily relies on the
functionality implemented by InteractableComponent.

Used as is, Checkbox provides a single, independent Boolean choice. A Checkbox displays
text to convey its meaning through its label.

Checkbox takes full advantage of the three basic services described in “4.7.12 The
InteractableComponent Class” section on page 114 with almost no effort.

4.7.15.2 The CheckboxGroup Class
A CheckboxGroup is a non-UI object that manages one or more Checkboxes. It can be
configured to enforce multiple selection or exclusive selection rules, and can be used to query
the current values of the checkboxes.

When used in conjunction with a CheckboxGroup, Checkboxes can provide a list of exclusive
choices in the form of radio buttons or a list.

The following figure shows the three different styles allowed in a CheckboxGroup. The type
must be specified when the constructor is called.

Figure 4-12 Checkbox Examples
Checkboxes must still be added to the ComponentScreen; adding them to the
CheckboxGroup only impacts their behavior.

CheckboxGroup provides a complete set of operations to manipulate Checkboxes.
Checkboxes can be added to or removed from a CheckboxGroup as needed. Also, it provides
mechanisms to query and modify the Boolean state of every Checkbox.

iDEN J2ME™ Developer’s Guide

122
 © 2005 Motorola, Inc.

4.7.15.3 CheckboxGroup Management Methods
add(Checkbox cb)

Adds a checkbox to this group and returns the index assigned to it.

insert(Checkbox cb, int index)

Inserts a checkbox into this group at the specified index.

remove(Checkbox cb)

Removes the specified checkbox from this group.

remove(int index)

Removes the checkbox with the specified index from this group.

getCheckboxCount()

Gets the Checkbox with the specified index.

getCheckbox(int index)

Gets the Checkbox with the specified index.

getSelectedIndex()

Gets the index of the selected element.

isSelected(int index)

Gets the value of the Checkbox with the specified index.

setSelectedFlags(boolean[] selectedArray)

Sets the values of the group's Checkboxes to the values of the provided array.

setSelectedIndex(int index, boolean value)

Sets the selection for this CheckboxGroup.

4.7.16 The TextComponent Class
TextComponent is the abstract base class for Components that can display and edit text. It
provides common functionality such as text manipulation, constraints, and input event handling.

4.7.16.1 Aspect & Render
The aspect of a TextComponent can be controlled by the mechanisms provided by
Component.

Also, TextComponent provides three mechanisms to change the way that the text is rendered:
(1) a method to change the Font used to render the text, (2) an echo character to be used
when the real characters are not meant to be displayed (for example in a password field), and
(3) justification.

TextComponent has the capability to render the text justified in three different ways: left, right,
and centered.

iDEN J2ME™ Developer’s Guide

123
 © 2005 Motorola, Inc.

4.7.16.2 Aspect & Render Methods
getFont()

Gets the font currently used by this text Component.

setFont(Font f)

Sets the current font of the text control.

getEchoChar()

Obtains the echo character used by this text Component.

setEchoChar(char c)

Sets the echo character to be displayed by this text Component.

setJustification(int justification)

Sets the justification of this text Component.

4.7.16.3 Text Manipulation
TextComponent provides a variety of mechanism to manipulate the contained text. Operations
such as append, insert, set, and retrieve are available at the character level as well as at the
String level.

4.7.16.4 Text Manipulation APIs Descriptions
getText()

Obtains the text contained in this text Component.

appendText(String t)

Appends the specified text at the end of the current text.

insertText(String t, int index)

Inserts the specified text at the specified index in the current text.

setText(String t)

Sets the contents of the text control to the specified String.

appendChar(char c)

Appends the specified character at the end of the current text.

insertChar(char c, int index)

Inserts the specified character at the specified index in the current text.

4.7.16.5 Input Constraints
Different constraints allow the application to request that the user's input be restricted in a
variety of ways. For example, if the application requests the NUMERIC constraint,
TextComponent will only allow numeric characters to be entered.

Another way of restricting the input is setting the maximum number of characters that can be
entered.

TextComponent provides almost all of the input constraints available in MIDP 2.0 TextField:
NUMERIC, ANY, URL, EMAILADDR, and PHONENUMBER. The PASSWORD constraint is available

iDEN J2ME™ Developer’s Guide

124
 © 2005 Motorola, Inc.

in MIDP 2.0, but it is not supported. If password functionality is desired, the echo char
mechanism must be used instead.

4.7.16.6 Input Constraints Methods
getConstraints()

Gets the text entry constraint for this TextComponent.

setConstraints(int constraints)

Sets the text entry constraint for the contents of this TextComponent.

getLengthLimit()

Gets the length limit.

setLengthLimit(int maxChars)

Sets the length limit.

4.7.16.7 High Level Input Event Handling
TextComponent exposes the standard low level input event handling mechanisms provided in
Component (see “4.7.9.3 Events Handling” on page 98) but it also provides a higher-level
input event handling.

The high level input event handling mechanism provided by TextComponent notifies a
subclass of TextComponent that a range of characters has been altered. Typically, this
notification takes place when characters in the text are changed, inserted or added. Also, the
mechanism notifies if the change was originated by the user of it was generated
programmatically.

4.7.17 The TextField Class
TextField is a single-line TextComponent designed to display and edit text. TextField supports
horizontal scrolling only.

When a TextField is created, two parameters can be provided: the initial text and the number of
columns.

4.7.18 The TextArea Class
TextArea is a multi-line TextComponent designed for displaying and editing text. TextArea
supports vertical scrolling only.

When a TextArea is created, three parameters can be provided: the initial text, the number of
rows, and the number of columns.

4.7.19 The Slider Class
The Slider is a gauge-type Component that provides a graphical representation of a numeric
value. A Slider can be read-only or adjustable.

A read-only Slider might be used to indicate memory usage or battery level; an adjustable Slider
might be used to adjust a volume level.

iDEN J2ME™ Developer’s Guide

125
 © 2005 Motorola, Inc.

The current value of a Slider represents the current setting or level of the Slider, which can be
between 0 and the maximum value, inclusive. The maximum value of a Slider may be set
programmatically to any non-negative integer value.

A Slider does not include a label; a developer can add labels and icons to the ComponentScreen
to indicate meanings, endpoint values, etc.

When a Slider is created, three parameters must be specified: (1) a Boolean value to specify
whether the slider can be operated by the user, (2) the maximum value of the slider, and (3) the
initial value.

The Slider class provides mechanisms to set and retrieve the current value and the maximum
allowed value.

4.7.19.1 Slider Methods
Slider(boolean interactive, int maxValue, int value)

Creates a new Slider of the desired type with the specified maximum and initial values.

iDEN J2ME™ Developer’s Guide

126
 © 2005 Motorola, Inc.

4.8 Graphics Acceleration
4.8.1 Overview

This feature is only available

on these handsets.

Some handsets support graphics acceleration in hardware. Graphics
acceleration allows an application to perform graphics routines faster
because these routines are executed in parallel by a specialized
processor: the hardware graphics accelerator. This relinquishes the
main processor to execute other operations while the graphics
accelerator takes care of the graphics operations.

Graphics acceleration is a feature that cannot be controlled programmatically. In other words there
is no API to interact with the hardware graphics accelerator directly. However, by knowing the
rules that the hardware accelerator uses to speed rendering, an application developer can take
advantage of acceleration. All graphics routines are accelerated. In certain cases, the acceleration
of a particular routine may cause the degradation of a subsequent routine due to physical
limitations in the hardware. That is why it is very important that the developer knows the rules that
are applied.

4.8.2 iDEN-Graphics-Acceleration: on | off | auto
The only explicit control available allows developers to turn on or off graphics acceleration. When
on is selected, all graphics routines are executed by the specialized hardware. When off is
selected, all graphics routines are executed by the main processor. There is a third mode available
to control the hardware acceleration: auto. The auto mode directs the platform to measure
performance, in frame rate, of the two modes of operation: on and off. The mode which gives the
highest frame rate will be set as the mode of operation. Auto mode is not recommended as the
default mode because the frame rate calculation does not know what screen is being rendered.
For instance, in an application with introduction screens, the frame rate of such introduction
screens will be taken into consideration and compared with a more graphics intensive screen;
thus, leading to the incorrect determination of the mode. When the JAD tag is set to auto, the
handset determines which mode is better each time the application is resumed. The frame rate of
each mode will be measured and the mode with the highest frame rate will be set each time the
application is resumed.

By default, hardware acceleration is off. This means that no application, by
default, attempts to release the main processor from executing graphics
routines and assigning the execution of such routines to the specialized
hardware.

By default, hardware acceleration is on.

iDEN J2ME™ Developer’s Guide

127
 © 2005 Motorola, Inc.

4.8.3 How it works
The graphics accelerator uses a specialized Video Random Access Memory (VRAM). Operations
carried out by the graphics accelerator in VRAM can be done faster than the same operations
carried out by the main processor in regular RAM.

When a Java application executes, all objects associated with that Java application live in the Java
heap, which is system memory. A Graphics object (javax.microedition.lcdui.Graphics) as well as
an Image object (javax.microedition.lcdui.Image) has control over system memory space that
contains all its pixels; this is called the raster (see figure below). Rasters are also in system
memory.

 Figure 4.13

There are two kinds of rasters: mutable and immutable. A mutable raster typically can be used as
the destination of a graphical operation. An immutable raster is typically derived from a decoded
image and cannot be used as the destination of a graphical operation. Generally, an immutable
raster is used as the source (see example).

Image img = Image.createImage(100, 100); // blank image => mutable
raster

// the g_raster Graphics g = img.getGraphics();
// g_raster g.drawLine(0, 0, 100, 100);
// g_raster used as a destination

Image pic = Image.createImage(“pic.png”);

Graphics

Image

width

width

height

height

Raster

Raster

iDEN J2ME™ Developer’s Guide

128
 © 2005 Motorola, Inc.

// immutable img => immutable raster

// the pic_raster g.drawLine(0, 0, 100, 100);
// pic_raster used as source and
// g_raster is used as destination

The graphics accelerator outperforms the main processor when the destination raster and source
raster when applicable are in VRAM. For graphics acceleration to take place, rasters must be
copied from system memory to VRAM. If a raster is mutable and it is used as the destination of a
graphical operation, it is copied from system memory to VRAM; this is called caching. Similarly, an
immutable raster is cached when it is used as the source of a graphical operation (i.e.
drawImage) and the destination raster has already been cached.

Graphics acceleration does not necessarily improve the very first render. In fact, the very first
render would be slower because it has the overhead of caching the destination raster (and source
raster when applicable). The benefit is seen in subsequent render operations because the
destination raster has been already cached. Let’s analyze the following code snippet:

g.setColor(0xffffff); // set color to white

g.fillRect(0,0,100,100); // (1)

g.drawLine(0,0,100,0); // (2)

g.drawLine(0,1,100,1); // (3)

When there is no hardware acceleration, the main processor must fill the rectangular area (0,0)
through (100,100) in white and then render 2 lines of 100 pixels each. At a glance, that is
executing the overhead code for filling a rectangle and writing 10000 pixels (100x100). Then, the
overhead of drawing a line and writing 100 pixels; this has to be done twice, one for each line. The
overhead to fill a rectangle or draw a line is fairly constant; it does not depend on the size and
position of the rectangle or the position, length or slope of the line. The time consumed to draw a
single pixel is constant so the total elapsed time grows depending on the number of pixels to write.

When there is hardware acceleration, the main processor must interact with the hardware
accelerator via commands. But before that, the main processor determines if the destination raster
has to be cached or if it has been cached before. If the raster has not yet been cached, then it
caches it. Then, by issuing the appropriate commands to the hardware accelerator, the graphics
accelerator writes the pixels. Thus, caching the destination raster and issuing the commands is
considered overhead. And, because the hardware accelerator is the one writing the pixels in
parallel from the main processor, the drawing time is considered constant and relatively small
compared to the no hardware acceleration case. In other words, the elapsed time to render the
pixels does not depend on the number of pixels; it is constant from the main processor point of
view. However, the overhead time changes depending on the raster management and VRAM
management the main processor has to do before issuing the commands to the hardware
accelerator. In other words, the overhead varies depending on whether the rasters are or are not
in VRAM.

Now, returning to the code snippet, the overhead of (1) will be the highest because the destination
raster associated with Graphics object g (g_raster) has not been cached. The main processor
must copy the contents of the destination raster to VRAM and issue the fill rectangle command.
However, when operation (2) is executed, the overhead is smaller because the destination raster
is already cached. So, the only overhead applicable is the one for issuing the draw line commands
to the hardware accelerator. The same occurs with operation (3).

As you can see, as long as the destination raster stays cached, the overall elapsed time to
complete the drawing operations will be smaller than the elapsed time of the no hardware
acceleration case. This is because it does not grow based on the number of pixels being rendered.

iDEN J2ME™ Developer’s Guide

129
 © 2005 Motorola, Inc.

However, there are physical limitations that the developer must be aware of. The hardware
accelerator has a limited amount of VRAM. If a destination raster has not been cached, the
platform will attempt to cache it. Caching of a raster only occurs when the raster is involved in the
drawing operation: either as destination or as source. When there is not enough VRAM available
to cache the raster, the least recently used rasters are demoted (decached). The contents of these
rasters may be copied from VRAM into system memory to keep their integrity according to Java
specifications. For instance, when an immutable raster is demoted, its contents are not copied to
system memory. When a mutable raster is demoted, its contents must be copied to system
memory. Remember that a mutable raster is maintained by the application and its contents are
persistent.

Let’s consider the following code snippet:

g.fillRect(0,0,100,100); // (1)

g.drawImage(img50x50,25,25,0); // (2) render the 50x50 image

 // at position (25,25).

g.drawImage(img20x20,60,60,0); // (3) render the 20x20 image

 // at position (60,60).

When hardware acceleration is active, the main processor will cache the destination raster and
then it will issue the fill rectangle command in order to complete operation (1). Then, the main
processor will determine if the raster associated with img50x50 has been cached. If it has not been
cached, it will cache it. Then, it will issue the draw image command to the hardware accelerator to
complete operation (2). Thereafter, the main processor will determine if the raster associated with
img20x20 has been cached. It will be cached because it has not been cached before. At this point,
depending on the VRAM available, the demotion of the raster associated with img50x50 may be
triggered because there is not enough VRAM to accommodate all three rasters at the same time.
Since the main processor knows that destination rasters are not to be demoted to cache source
rasters, it will not demote the destination raster. Though, it will demote the least recently used
raster; in this case, the one associated with img50x50. Then, it will cache the raster of img20x20
and command the graphics accelerator to draw the source raster on top of the destination raster to
complete operation (3). In the ideal case of unlimited VRAM, all rasters will be cached at all time
so no demotion is needed. In reality, the limited amount of VRAM may cause excessive caching
and demotion which cancels out the effect of the acceleration. Remember that acceleration is
effective when source and destination are both in VRAM and the overhead is minimal. In other
words, when source and destination are both cached and any subsequent render operation does
not pay the overhead of caching.

Let’s consider a more typical case, the following two game scenes. For simplification purposes,
each raster is represented at the pixel level. That means that each square represents a pixel. The
vertical and horizontal lines are used as guidelines to ease the visualization of each frame and tile.

iDEN J2ME™ Developer’s Guide

130
 © 2005 Motorola, Inc.

Each scene is composed by sprites. Typically, a single sprite is in fact a subsection (a frame) of a
large image containing all frames. Please refer to JSR-118 for a more comprehensive explanation
of Sprites, Tiles, and related concepts.

A developer has multiple means to manage the sprites. One possible way is to create a single
image that contains all frames of all sprites or tiles (1). Another way is to create multiple images
that contain all frames of a single sprite (2). There are many possible combinations. As a
developer you will have to pick the one that works best for you. It all depends on the complexity of
the scene and how the VRAM is used.

The next figures illustrate the 2 options we just described. Figure 4.15(a) contains all tiles of both
scenes.

 Figure 4.15(a) tiles.png

Figure 4.14

iDEN J2ME™ Developer’s Guide

131
 © 2005 Motorola, Inc.

Figure 4.15(b) contains all tiles used in scene 1.

Figure 4.15(b) tiles0.png

 Figure 4.15(c) contains the tiles used in scene 2.

Figure 4.15(c) tiles1.png

Figure 4.15(d) contains the frames to create the sprite.

Figure 4.15(d) turtle.png

The following code snippet shows how to create the necessary sprites and layers to compose the
scenes.

// create the sprite

Sprite turtle = new Sprite(“/turtle.png”, 11, 4); // the turtle is 11x4
pixels

// matrices to compose both scenes backgrounds

static int[][][] scenes =

{

 { /* the mountains */

 { 1, 1, 4, 4, 4, 4, 4, 4 },

 { 4, 2, 3, 4, 1, 4, 4, 4 },

iDEN J2ME™ Developer’s Guide

132
 © 2005 Motorola, Inc.

 { 4, 1, 4, 4, 4, 2, 2, 3 },

 { 4, 4, 2, 3, 4, 4, 4, 4 },

 { 4, 4, 4, 4, 1, 2, 3, 4 },

 { 4, 4, 5, 6, 4, 4, 4, 5 },

 { 4, 9, 11, 11, 10, 4, 9, 11 },

 { 9, 11, 11, 11, 11, 11, 11, 11 },

 {12, 12, 12, 12, 12, 12, 12, 12 }

 },

 { /* the beach */

 { 4, 4, 4, 4, 4, 4, 4, 4 },

 { 1, 2, 1, 4, 2, 3, 4, 4 },

 { 4, 4, 2, 1, 4, 2, 2, 3 },

 { 4, 4, 2, 3, 4, 4, 4, 4 },

 { 4, 4, 4, 4, 1, 2, 3, 4 },

 { 4, 4, 4, 4, 4, 4, 4, 4 },

 { 4, 4, 4, 4, 4, 4, 4, 4 },

 { 7, 8, 7, 15, 16, 13, 14, 13 },

 { 7, 8, 7, 16, 13, 14, 13, 16 }

 },

};

// create the tiles used for the scenes. Each tile is 3x3 pixels

Image tiles = Image.createImage(“/tiles.png”);

// create scene (both scenes are same size so we can use same
TiledManager)

TiledManager scene = new TitledManager(8, 9, tiles, 3, 3);

…

// create scenes

void buildScene(int gamescene)

{

for (int row=0; row<9; row++)

{

iDEN J2ME™ Developer’s Guide

133
 © 2005 Motorola, Inc.

 for (int col=0; col<8; col++)

{

 scene.setCell(col, row, scene[gamescene][row][col]);

}

}

}

// the paint method of the GameCanvas

void paint(Graphics g)

{

 scene.paint(g);

 turtle.paint(g);

}

Let us discuss how the VRAM is used when the sprites are used. The sequence of figures below
shows how the VRAM gets populated. See Figure 4.16.

 // paint 1 paint 2

 // time -|----|----|----/\/----|----|----|--->

scene.paint(g); // (1), (2), (4), (5),

turtle.paint(g); // (3), (6)

The numbers between parentheses correlate with the state of the VRAM at every point in time.
Each one represents a snapshot of the VRAM as if that VRAM were visible on the screen as a full
frame.

iDEN J2ME™ Developer’s Guide

134
 © 2005 Motorola, Inc.

Figure 4.16

Frame (1), (2) and (3) correspond to the first paint (first iteration) while frames (4), (5), (6)
correspond to the second time paint is called (second iteration).

(a)

(b)

Available

Destination raster

Tiles

Sprite raster

Tiles1 raster

Tiles0 raster

(1)

(a)

(b)
(2)

(a)

(b)
(3)

(a)

(b)
(4)

(a)

(b)
(5)

(a)

(b)
(6)

Demotion

Caching

Rendering

iDEN J2ME™ Developer’s Guide

135
 © 2005 Motorola, Inc.

In frame (1a), the platform caches the destination raster. In frame (2a), the platform caches the
raster that contains all tiles to construct the background and renders it. In frame (3a), the platform
attempts to cache the raster that contains the character sprite and since there is not enough
VRAM available, the raster with the background tiles gets demoted and the sprite raster gets
cached. After the demotion and caching, the character is rendered.

During the second iteration of the paint method, the behavior is slightly different. In frame (4a), the
destination raster won’t be cached since it was cached during the first paint. Then, in frame (5a),
the caching of the raster with the background tiles will force the demotion of the sprite with the
character before the background is rendered. Finally, in frame (6a), the raster with the background
tiles will be demoted to open space for the character sprite to be cached and rendered.

As you can observe, the platform did not take advantage of acceleration since each render
required a cache operation. Acceleration is only efficient for drawing images when destination and
source rasters have both already been cached into VRAM as a result of a previous render
operation. If a source raster is cached and immediately demoted, the acceleration capability is
defeated. In fact, performance may actually degrade in this situation.

The following code example demonstrates subtle changes to the source code that could allow
efficient graphics acceleration based on the assumption that VRAM is used more efficiently. The
changes are in bold letters. Frame sequence with lower case letter (b) demonstrates how the
VRAM is being used.

// create the sprite

Sprite turtle = new Sprite(“/turtle.png”, 11, 4); // the turtle is 11x4
pixels

// matrices to compose both scenes backgrounds

static int[][][] scenes =

{

 { /* the mountains */

 { 1, 1, 4, 4, 4, 4, 4, 4 },

 { 4, 2, 3, 4, 1, 4, 4, 4 },

 { 4, 1, 4, 4, 4, 2, 2, 3 },

 { 4, 4, 2, 3, 4, 4, 4, 4 },

 { 4, 4, 4, 4, 1, 2, 3, 4 },

 { 4, 4, 5, 10, 4, 4, 4, 5 },

 { 4, 6, 8, 8, 7, 4, 6, 8 },

 { 6, 8, 8, 8, 8, 8, 8, 8 },

 { 9, 9, 9, 9, 9, 9, 9, 9 }

 },

 { /* the beach */

 { 4, 4, 4, 4, 4, 4, 4, 4 },

 { 1, 2, 1, 4, 2, 3, 4, 4 },

iDEN J2ME™ Developer’s Guide

136
 © 2005 Motorola, Inc.

 { 4, 4, 2, 1, 4, 2, 2, 3 },

 { 4, 4, 2, 3, 4, 4, 4, 4 },

 { 4, 4, 4, 4, 1, 2, 3, 4 },

 { 4, 4, 4, 4, 4, 4, 4, 4 },

 { 4, 4, 4, 4, 4, 4, 4, 4 },

 { 5, 6, 5, 9, 10, 7, 8, 7 },

 { 5, 6, 5, 10, 7, 8, 7, 10 }

 },

};

…

// create scenes

void buildScene(int gamescene)

{

// create the tiles used for the scenes. Each tile is 3x3 pixels

// there are 2 imgs: tiles0.png and tiles1.png. The first, tiles0.png

// contains the tiles of scene 1 while tiles1.png contains the tiles

// of scene 2

Image tiles = Image.createImage(“/tiles” + gamescene + “.png”);

// create scene (both scenes are same size so we

// can use same TiledManager)

TiledManager scene = new TitledManager(8, 9, tiles, 3, 3);

for (int row=0; row<9; row++)

{

 for (int col=0; col<8; col++)

{

 scene.setCell(col, row, scene[gamescene][row][col]);

}

}

}

// the paint method of the GameCanvas

iDEN J2ME™ Developer’s Guide

137
 © 2005 Motorola, Inc.

void paint(Graphics g)

{

 scene.paint(g);

 turtle.paint(g);

}

Even a better and more elegant change would be to use two TiledManagers: one for the sky tiles
and another for the ground tiles. By doing this, tiles.png would be divided into three different .png
files: skytiles.png, beachtiles.png and mountaintiles.png. But, we will leave that as an exercise for
the reader. Let us now discuss the second scenario.

From figure 4.16, frame (1b), the platform caches the destination raster. In frame (2b), the platform
caches and renders the background tiles. In frame (3b), the platform caches and renders the
character sprite. During the second iteration of the paint method, the behavior is different. In frame
(4b), the destination raster is not cached since it was cached during the first paint. Then, in frame
(5b), the raster with the background tiles experiences full acceleration because it is cached
already. Finally, in frame (6b), the character sprite experiences full acceleration also because
there is no caching or demotion overhead. You can observe that the platform did take advantage
of caching since it was always able to render from VRAM to VRAM any of the source rasters
without repeatedly paying the cost of caching.

How much memory is there for caching? The following table shows how much VRAM is available
per product. All numbers are approximate and in pixels. The backbuffer is assumed to be of the
screen size and it supposed to be cached in VRAM during the first render operation that assigns it
as the destination raster.

*The height is 14 pixels smaller than the screen because of the status bar that indicates the signal
strength and battery.

How much memory does a raster use? To calculate the amount of VRAM a raster takes simply
multiply the width in pixels by the height in pixels. The available memory can be determined by
subtracting the size of a raster from the total space. Finally, the last thing the developer must be
aware of is that the platform has no way to coalesce empty VRAM blocks. In other words, the
platform has no mechanism to avoid VRAM fragmentation.

Unfortunately, there is no way to monitor when a raster gets cached or demoted at run time. There
is no way to know how much memory is available for caching and there is no way to

Product Total VRAM
available for rasters

Backbuffer (width x height
= size). Does not include
status bar.

Available VRAM for
caching rasters (after
caching backbuffer)

51000 176 x 206* = 36256 14744

673848 176 x 206* = 36256 637,592

iDEN J2ME™ Developer’s Guide

138
 © 2005 Motorola, Inc.

programmatically control the caching or demotion of a raster. In other words, there is no way
prevent a raster from being cached or demoted. The only way available to evaluate the results of
the graphics acceleration is to run the application in auto mode. Developers can observe the
performance after pausing and resuming the application when the graphics accelerator is
rendering the most intensive graphics screens.

iDEN J2ME™ Developer’s Guide

139
 © 2005 Motorola, Inc.

4.9 Micro3D API
4.9.1 Overview

This API is only available on

these handsets.

The Micro3D API allows developers to render 3D graphics. Content
developers can use standard, commercial tools to create 3D content
then convert that content to the Micro3D format. The Micro3D API
supports Micro3D version 3.0, which provides the following
capabilities:

o Translation, scaling, and rotation manipulation of 3D models

o Bone animation

o Rendering of primitives (triangles, quadrangles, lines, and points)

o Point sprite rendering

o White ambient lighting

o White, one-directional lighting

o Flat, Gouraud, and toon shading

o Environment mapping with textures

o Semi-transparency effects

o Parallel and perspective projection

o Drawing of multiple figures with Z-sorting

o Multiple textures

Developers should already have knowledge about basic 3D principles (transformations,
viewpoints, textures, etc.) as this guide does not give detailed explanations of these concepts. This
document also does not provide details about the creation of 3D model, texture, or action data. For
more information on content creation consult the Micro3D Tool Manual.

iDEN J2ME™ Developer’s Guide

140
 © 2005 Motorola, Inc.

4.9.2 The Micro3D Package
The Micro3D API is located in package com.motorola.iden.micro3d.

Below is the class hierarchy for the Micro3D package:

java.lang.Object
 |
 + - com.motorola.iden.micro3d.ActionTable
 |
 + - com.motorola.iden.micro3d.AffineTransform
 |
 + - com.motorola.iden.micro3d.Layout3D
 |
 + - com.motorola.iden.micro3d.Light
 |
 + - com.motorola.iden.micro3d.Object3D
 | |
 | + - com.motorola.iden.micro3d.Figure
 | |
 | + - com.motorola.iden.micro3d.Primitive
 | |
 | + - com.motorola.iden.micro3d.Line
 | |
 | + - com.motorola.iden.micro3d.Point
 | |
 | + - com.motorola.iden.micro3d.PointSprite
 | |
 | + - com.motorola.iden.micro3d.Quadrangle
 | |
 | + - com.motorola.iden.micro3d.Triangle
 |
 + - com.motorola.iden.micro3d.Renderer
 |
 + - com.motorola.iden.micro3d.Texture
 | |
 | + - com.motorola.iden.micro3d.MultiTexture
 |
 + - com.motorola.iden.micro3d.Utility
 |
 + - com.motorola.iden.micro3d.Vector3D

The following sections describe the classes in the Micro3D API and outline how a simple 3D
MIDlet could be created. Also included are instructions on using the Micro3D API with other
J2ME™ classes to optimize rendering and enable animation.

iDEN J2ME™ Developer’s Guide

141
 © 2005 Motorola, Inc.

4.9.3 Working with Graphics and Animation
Before we start using the Micro3D classes we’ll need to be able to paint to a Graphics object and
launch a Thread that will handle animating our 3D frames. We’ll design our MIDlet with this in mind
and create a class that will serve as a framework in which to place the rest of our 3D handling
logic.

Getting 3D graphics displayed on the screen is very similar to drawing lines, rectangles, and
Images in that you need a Graphics object to serve as the drawing target. While any mutable
Graphics object will do, we’ll use the GameCanvas to derive a Graphics instance. Since 3D
rendering is processor intensive, the GameCanvas paradigm will help us run as efficiently as
possible because we won’t need to rely on repaint requests to get the Graphics object flushed to
the screen.

We also want to be able to animate our 3D model. To this end, we’ll need to be able to run an
animation thread. Again, this approach is no different than how we might handle 2D animation.

Since GameCanvas is an abstract class we’ll create a new class that extends it and implements
Runnable so we can handle rendering, flushing, and animation all in one class. The following code
snippet does just that:

public class GameCanvas3D extends GameCanvas implements Runnable {
 private Graphics myGraphics;

 private boolean paused;

 public GameCanvas3D() {
 super(true);
 paused = false;

 myGraphics = getGraphics();
 }

 public void paint(Graphics g) {
 g.setColor(0xFFFFFF);
 g.fillRect(0, 0, getWidth(), getHeight());
 }

 public void run() {
 while (!paused) {
 paint(myGraphics);
 flushGraphics();
 }
 }

 public synchronized void startAnimation() {
 paused = false;
 Thread t = new Thread(this);
 t.start();
 }

 public synchronized void stopAnimation() {
 paused = true;

iDEN J2ME™ Developer’s Guide

142
 © 2005 Motorola, Inc.

 }
}

We have kept things relatively simple so far. A few additions have been made that are worth
noting, however. As previously mentioned, we need a Graphics object to draw to. We’re using a
GameCanvas so we can get the Graphics object from it. The myGraphics object holds the
Graphics instance belonging to the instance of GameCanvas3D. Also added was the paused
Boolean, which helps us start and stop the running animation thread; all we have to do is call
startAnimation() when we want to begin our animation and stopAnimation() when we
want to end it. Even at this early stage we have a class that is able to launch an animation thread
that will paint and flush frames to the screen. Right now nothing useful is rendered but after we
add a few simple 3D calls we’ll have 3D graphics on the screen.

4.9.4 Creating a Figure
The Micro3D engine is capable of rendering Figure data and certain primitives. The Java Micro3D
API has combined these concepts into an object-oriented structure allowing developers to use
common methods for setting up figures and primitives and rendering them.

In order to provide this object-oriented structure the Object3D class was created as the parent
class of all objects that can be rendered by the engine. This abstract class contains a set of
methods common to most of its subclasses. Methods available with the Object3D class are shown
in the following table:

 Layout3D getLayout()
Returns the Layout3D used for rendering this Object3D, or null if no Layout3D has been
associated with this Object3D.

 Texture getSphereTexture()
Returns the Texture used for environmental texture mapping with this Object3D or null if no
sphere texture has been associated with this Object3D.

 Texture getTexture()
Returns the Texture used for rendering this Object3D, or null if no Texture has been set
associated with this Object3D.

 void setLayout(Layout3D layout)
Specifies a Layout3D to be used when rendering this Object3D.

 void setSphereTexture(Texture sphereTexture)
Sets the specified parameter as a sphere texture for this Object3D.

 void setTexture(Texture texture)
Associates a Texture with this Object3D.

However, some Object3D subclasses cannot support all of these methods, and although the
methods may be callable, they will have no effect. For example, the setTexture() and
setSphereTexture() methods are supported by the Figure subclass. Some subclasses of the
Object3D subclass, Primitive, such as Point and Line, also inherit these methods but do not
support them. Setting a texture or sphere texture to either will have no effect on their rendering.
Always consult the Javadocs for method information specific to the Object3D subclasses. We’ll go
over primitives in more detail in a later section. For our example we want to use a model that was
created on the PC. The model was previously converted into an mbac file that we’ll package in our
MIDlet’s JAR file. 3D models are represented in the Micro3D API by the Figure class. There are
two methods for creating Figure objects:

iDEN J2ME™ Developer’s Guide

143
 © 2005 Motorola, Inc.

static Figure createFigure(byte[] data, int offset, int length)
Creates a Figure which is decoded from the data stored in the specified byte array at the
specified offset and length.

static Figure createFigure(String name)
Creates a Figure from the data obtained from the named resource.

Both methods will return a Figure that can be rendered on-screen. In most cases, the
createFigure(String) method is easiest to use, but downloaded Figure data can be loaded
with createFigure(byte[], int, int).

At this point we can add just a few lines of code to bring the Figure into our application. Code
previously introduced is printed in regular face, new code is in bold face.

public class GameCanvas3D extends GameCanvas implements Runnable {
 private Graphics myGraphics;
 private Figure myFigure;

 private boolean paused;

 public GameCanvas3D() {
 super(true);
 paused = false;

 myGraphics = getGraphics();

 //Now we set up the actors in our 3d scene
 try {
 myFigure = Figure.createFigure("/figure_data.mbac");
 }
 catch (Exception e) {
 System.err.println("Error loading resources: " + e);
 }
 }

 ...

The createFigure(String) method only declares IOException and NullPointerException as
thrown but it’s possible that we could encounter other exceptions while loading the data. Since 3D
data can be memory intensive, we want to be especially mindful of a possible
OutOfMemoryException and be able to handle that.

The Figure class also contains methods that allow developers to animate the model. Those
methods are shown in the following table:

 int getActionIndex()
Returns the index of the action this Figure is using for animation.

 ActionTable getActionTable()
Returns the ActionTable this Figure is using or null if no ActionTable has been set
associated with this Figure.

 int getFrameIndex()
Returns the frame index value this Figure is using for animation.

iDEN J2ME™ Developer’s Guide

144
 © 2005 Motorola, Inc.

 int getNumberOfPatterns()
Returns the number of external appearance states for a Figure.

 int getPattern()
Returns the pattern index to which this Figure is set.

 void setActionTable(ActionTable actionTable)
Sets the ActionTable for this Figure to use.

 void setPattern(int pattern)
Modifies the appearance of the figure by setting the pattern used during rendering.

 void setPosture(int actionIndex, int frameIndex)
Sets the posture for the Figure.

All of these methods change how the figure looks when rendered. The getPattern() and
setPattern(int) methods allow you to switch between model patterns (vertex positions)
defined within the figure’s data. It’s important to note that the value passed to setPattern(int)
is a 32-bit integer mask, so it’s possible to have multiple patterns rendered at once. The remaining
methods work with action tables, which we’ll cover in more detail later.

There’s still more work to do with the Figure; right now it’s just loaded but not being rendered. To
get to that point requires that we use other classes in the Micro3D API.

4.9.5 Loading and Using Textures
Textures are BMP files the 3D engine uses when rendering and give 3D models their “skin”. They
can also be applied to certain primitives. Some textures can also be used to apply environment
mapping to objects in your 3D scene, like a glossy surface for a car. The Micro3D engine also
supports multiple textures for 3D models and even allows you to render your 3D scene to a
texture. These “target textures” can then be applied to other objects in a 3D scene, for example, a
mirror.

All of these different kinds of textures are supported by two classes: Texture, and its subclass,
MultiTexture. The Texture class can represent regular textures and sphere textures. Its methods
are shown in the following table:

static Texture createTexture(byte[] data, int offset, int length,

boolean sphereTexture)
Creates a Texture which is decoded from the data stored in the specified byte array at the
specified offset and length.

static Texture createTexture(String name, boolean sphereTexture)
Creates a Texture from the data obtained from the named resource.

 boolean isSphereTexture()
Returns a Boolean indicating if the texture data is to be used for environment mapping.

Texture objects are created by the two static methods, createTexture(byte[], int, int,
boolean) and createTexture(String, boolean). The first method can load texture data
already contained in a byte array, while the second can load data from the resource named by the
string provided. The sphereTexture Boolean notifies the Micro3D engine whether the texture is a
sphere texture. The engine does treat regular textures differently than sphere textures so methods

iDEN J2ME™ Developer’s Guide

145
 © 2005 Motorola, Inc.

that call for regular textures will not take Texture objects whose isSphereTexture() method returns
true and vice versa.

As mentioned, textures are BMP files. The files must be uncompressed with 8-bit, indexed color.
Regular textures can be up to 256x256 pixels while sphere textures can be up to 64x64 pixels.
Attempting to load textures that exceed the expected dimensions will cause the create methods to
throw an IllegalArgumentException. It’s important to note that all instances of Texture (except the
subclass MultiTexture) take up around 82 KB of memory, regardless of actual size of the texture.

Target textures are also regular textures. The Micro3D engine can render a scene to any instance
of Texture, except the defined subclass, MultiTexture. Once a scene has been rendered to an
instance of Texture, its isSphereTexture() method will return false. Target textures are always
256x256 pixels in size.

The only defined subclass of Texture is MultiTexture. Some 3D models are created such that
multiple textures are required to fully render them. The MultiTexture class is a subclass of Texture,
but acts more like a wrapper for the java.lang.util class Vector, specifically holding only Texture
objects. The following field value defines the maximum amount of textures that can be held,
currently equal to 16:

static int MAX_TEXTURES
Defines the maximum amount of textures a MultiTexture can hold.

The MultiTexture class does not allocate memory for the texture – it only contains references to
Texture objects - so MultiTexture objects are as lightweight as most other objects. Unlike Texture,
MultiTexture has two constructors:

MultiTexture()
Constructs an empty MultiTexture.
MultiTexture(int capacity)
Constructs a MultiTexture capable of holding the specified amount of Texture objects.

Developers can use the default constructor, which automatically sets a capacity equal to
MAX_TEXTURES or can specify the capacity with the other constructor.

A 3D model set to use a MultiTexture will use only as many of the textures being held in the
MultiTexture as it needs, up to the current amount of textures contained. For example, if a
MultiTexture is holding 16 textures, and a 3D model using that MultiTexture only needs two
textures then only the Texture objects at position 0 and 1 in the MultiTexture will be used. If the
MultiTexture only had one texture, then only that Texture at position 0 would be used causing the
model to render incorrectly. MultiTexture cannot hold sphere textures.

Since MultiTexture is based on Vector, the methods should be familiar to most Java developers.
The table below lists the methods in MultiTexture:

 boolean addTexture(Texture texture)
Adds the specified Texture to the end of the list.

 int capacity()
Returns the current capacity of this MultiTexture.

 boolean contains(Texture texture)
Tests if the specified Texture is contained in this MultiTexture.

iDEN J2ME™ Developer’s Guide

146
 © 2005 Motorola, Inc.

 int getCurrentIndex()
Returns the current index for this MultiTexture.

 Texture getCurrentTexture()
Returns the Texture reference by the current index.

 int indexOf(Texture texture)
Searches for the first occurrence of the given Texture, testing for equality using the equals
method.

 int indexOf(Texture texture, int index)
Searches for the first occurrence of the given Texture, beginning the search at index, and
testing for equality using the equals() method.

 boolean insertTextureAt(Texture texture, int index)
Inserts the specified texture as a component in this MultiTexture at the specified index.

 boolean isEmpty()
Tests if this MultiTexture has no textures.

 int lastIndexOf(Texture texture)
Returns the index of the last occurrence of the specified texture in this MultiTexture.

 int lastIndexOf(Texture texture, int index)
Searches backwards for the specified texture, starting from the specified index, and returns
an index to it.

 void removeAllTextures()
Removes all components from this MultiTexture and sets its size to zero.

 boolean removeTexture(Texture texture)
Removes the first occurrence of the specified texture from this MultiTexture.

 void removeTextureAt(int index)
Deletes the MultiTexture at the specified index.

 void setCurrentIndex(int index)
Sets the Texture at the index specified as the current Texture for this MultiTexture.

 void setTextureAt(Texture texture, int index)
Sets the texture at the specified index of this MultiTexture to be the specified Texture.

 int size()
Returns the number of textures in this MultiTexture.

 Texture textureAt(int index)
Returns the Texture at the specified index.

 Enumeration textures()
Returns an enumeration of the textures of this MultiTexture.

This document does not go into detail about all of the methods since most of them are explained
by the Vector class and by the Javadocs for the Micro3D API. Note that the word “element” in the
Vector methods is replaced by the word “texture” for MultiTexture methods, so the method
elements() in Vector is called textures() here, but performs the same functionality.

The additional methods here are the setCurrentIndex(int), getCurrentIndex(), and
getCurrentTexture() methods. MultiTexture designates one of the textures it is holding as the
current texture. The current texture is -1 by default. If the MultiTexture has no Texture objects the
current texture is null while the current texture index remains at -1. The current texture index is
validated as the amount of texture objects in the MultiTexture decreases. This means that if the

iDEN J2ME™ Developer’s Guide

147
 © 2005 Motorola, Inc.

current texture index is 5 and the amount of textures in the MultiTexture changes from 10 to 4,
then the current texture index is set to -1.

The current texture index is used for 3D objects that don’t need multiple textures. Since a
MultiTexture is a Texture, they can be used wherever a regular texture is called for. The Texture at
the current index will be used in these cases. If the current index is -1 then the 3D object using the
MultiTexture will essentially have no Texture associated with it.

Our example will use more than one texture, but for now we can just declare and load the regular
texture that we’ll use for the Figure we introduced in the previous section:

public class GameCanvas3D extends GameCanvas implements Runnable {
 private Graphics myGraphics;
 private Figure myFigure;
 private Texture myTexture;

 private boolean paused;

 public GameCanvas3D() {
 super(true);
 paused = false;

 myGraphics = getGraphics();

 //Now we set up the actors in our 3d scene
 try {
 myFigure = Figure.createFigure("/figure_data.mbac");
 myTexture =
 Texture.createTexture("/texture_data.bmp", false);
 }
 catch (IOException e) {
 System.err.println("Error loading resources: " + e);
 }
 myFigure.setTexture(myTexture);
 }
 ...

Since we now have the Texture loaded, we’re able to revisit the figure and assign it the newly
loaded Texture. In later sections we’ll get into target textures and regular textures that support
transparency. First, we’ll cover the other 3D objects that we’ll apply these effects to by examining
the primitive support offered by the Micro3D engine.

4.9.6 Working with Vector3D
Before we get into the Primitives that we’ll add to the scene, we need to go over the Vector3D
class. The Vector3D class is a simple class, representing a point in 3D space. Among other things,
Vector3Ds are used for specifying positions and dimensions of Primitives and setting up
viewpoints for a scene.

A Vector3D contains three integers; an X, Y, and a Z value. Remember that the Micro3D engine
uses no floating-point math. To simulate greater precision the X, Y, and Z values range from -
32,678 to 32,767. A value of 4,096 is considered to be equivalent to a 1.0.

This class contains methods that allow you to manipulate a Vector3D by computing the inner and
outer products and normalizing the vector, and also provides simple set and get methods for
specifying and retrieving the X, Y, and Z component values. We won’t need to use those in our

iDEN J2ME™ Developer’s Guide

148
 © 2005 Motorola, Inc.

demo, but more interactive applications may need to perform additional vector calculations. Here
they are for reference:

For our purposes we’ll just create our Vector3D instances with the numbers we want to use for our
primitives. The Vector3D constructor can take no arguments, giving a <0, 0, 0> vector or can take the
X, Y, and Z values as arguments as follows:

Vector3D()
Creates a Vector3D object with x, y, and z values set to 0.
Vector3D(int x, int y, int z)
Creates a Vector3D object with the specified x, y, and z values.

In the next section we’ll be using the Vector3D constructors to set up our primitives, and later to
work with layouts and viewpoints.

 int getX()
Returns the x value of this Vector3D object.

 int getY()
Returns the y value of this Vector3D object.

 int getZ()
Returns the z value of this Vector3D object.

 int innerProduct(Vector3D multiplier)
Returns the inner, or dot, product of this Vector3D with the specified Vector3D.

 void normalize()
Normalizes this Vector3D object.

static Vector3D normalize(Vector3D vector)
Normalizes the specified Vector3D object.

 void outerProduct(Vector3D multiplier)
Calculates the outer, or cross, product of this Vector3D with the specified Vector3D.

static Vector3D outerProduct(Vector3D multiplicand, Vector3D multiplier)
Calculates the outer, or cross, product of the specified Vector3D objects.

 void set(int x, int y, int z)
Sets the x, y, and z values of this Vector3D object.

 void setX(int x)
Sets the x value of this Vector3D object.

 void setY(int y)
Sets the y value of this Vector3D object.

 void setZ(int z)
Sets the z value of this Vector3D object.

iDEN J2ME™ Developer’s Guide

149
 © 2005 Motorola, Inc.

4.9.7 Creating Primitives
Now that we know how to use the Vector3D class, we can set up our primitives. The Primitive class
extends the abstract Object3D class, and is also abstract. The primitives supported by the Micro3D
engine are point (class Point), line (class Line), triangular polygon (class Triangle), quadrilateral
polygon (class Quadrangle), and point sprite (class PointSprite).

The Primitive class supplies its subclasses with methods to set up the Primitive in 3D space and
control its appearance.

Since the different Primitive types have differing amounts of vertices and normals, a generic method
for setting these vectors is provided in the Primitive class. Specific vertices and normals are specified
with constants defined in the Primitive class. The following constants are defined for this purpose:

static int FACE_NORMAL
Identifier for a vector that is serving as a face normal.

static int NORMAL
Identifier for a vector that is serving as a vertex normal.

static int VERTEX_A
Identifier for vertex A.

static int VERTEX_B
Identifier for vertex B.

static int VERTEX_C
Identifier for vertex C.

static int VERTEX_D
Identifier for vertex D.

These constants are used in defining the vector ID value passed to the Primitive methods below:

abstract Vector3D getVector(int vectorID)
Returns the Vector3D for the specified vector.

abstract void setVector(int vectorID, Vector3D vector)
Sets the specified vector to the Vector3D provided.

When setting a vertex’s Vector3D for a Primitive, one of the VERTEX_A, VERTEX_B, VERTEX_C, or
VERTEX_D constants needs to be used as the vectorID value. If the Primitive being defined is one
of the Triangle or Quadrangle subclasses then normal vectors can also be defined. The Micro3D
engine allows normals to be defined per vertex or for the face of the Primitive. When specifying
normals per vertex, the vertex type constants must be combined with the constant NORMAL. If a face
normal is being specified then only the FACE_NORMAL constant is needed as the vectorID value.

Primitives can also be colored as desired. Colors are specified by the familiar Graphics convention,
0xRRGGBB. The Primitive class provides a method for setting and getting a primitive’s color:

 int getColor()
Returns the color that is used for rendering this Primitive.

 void setColor(int color)
Sets the color that should be used when rendering a Primitive.

iDEN J2ME™ Developer’s Guide

150
 © 2005 Motorola, Inc.

Primitives can also show color blending effects. Color blending takes effect when the Primitive is
semi-transparent and allows the color of the Primitive to be combined with the background. Colors
can be blended in different ways. The Primitive class defines constants that are used to define what
kind of blending should take place:

static int BLENDING_ADD
Blending type - additive blending (dest 100%+src 100%).

static int BLENDING_HALF
Blending type - 50%.

static int BLENDING_NONE
Blending type - none.

static int BLENDING_SUB
Blending type - subtractive blending (dest 100%-src 100%).

There are also two simple methods for setting and getting the effect type:

 int getBlendingType()
Returns the blending type.

 void setBlendingType(int blendingType)
Sets the blending type.

Let’s go ahead and create two simple primitives: Point and Line. These Primitives have no surface
area in 3D space and therefore only support the Primitive methods we’ve covered so far. We can set
all the values necessary for each Object in the constructor so we’ll only need to add a few extra lines
of code to our example:

public class GameCanvas3D extends GameCanvas implements Runnable {
 private Graphics myGraphics;
 private Point myPoint;
 private Line myLine;
 private Figure myFigure;
 private Texture myTexture;

 private boolean paused;

 public GameCanvas3D() {
 super(true);
 paused = false;

 myGraphics = getGraphics();

 //Now we set up the actors in our 3d scene
 try {
 myFigure = Figure.createFigure("/figure_data.mbac");
 myTexture =
 Texture.createTexture("/texture_data.bmp", false);
 }
 catch (IOException e) {
 System.err.println("Error loading resources: " + e);

iDEN J2ME™ Developer’s Guide

151
 © 2005 Motorola, Inc.

 }
 myPoint = new Point(new Vector3D(-10, 10, 0),
 null, 0xFF0000);
 myLine = new Line(new Vector3D(-10, 10, 0),
 new Vector3D(50, 0, 0),
 null, 0x00FF00);
 myFigure.setTexture(myTexture);
 }

 ...
}

Since we haven’t learned about scene layouts yet we can just pass in null for the Layout3D required
for the constructors. We’ll come back and revisit that in a later section.

The Primitive class also has a few more methods supported by other subclasses to enable color key
transparency effects for textured polygons:

 void enableColorKeyTransparency(boolean enable)
Enables/disables color key transparency.

 boolean hasColorKeyTransparency()
Determines whether the primitive has color key transparency enabled.

Color key transparency uses the texture’s color lookup table (CLUT) to determine which pixels of the
texture will be rendered. When the color key transparency is enabled, the CLUT0 color in the polygon
texture will be transparent. All other colors within the polygon texture will not be transparent. The
CLUT0 color is the first entry in the color lookup table. It can be any color, but it is recommended that
it is specified to be black (RGB 0x000000). The following pictures show a checkerboard texture that
has CLUT0 set to black. The image on the left shows how the texture will be rendered when the color
key transparency is disabled. The image on the right shows how the same texture will be rendered
when the color key transparency is enabled.

Figure 4.9 Color Key Transparency

Since color key transparency is only applicable to textures, only the Triangle, Quadrangle, and
PointSprite classes can support it. We’ll add one of each of those classes to our example. The
Triangle will have color blending, the Quadrangle will have a texture with color key transparency
enabled, and the PointSprite will have two normal textures that we’ll use for animation. Going back to
our example we add the lines to create the last of the Primitives and the textures they will use:

public class GameCanvas3D extends GameCanvas implements Runnable {
 private Graphics myGraphics;

iDEN J2ME™ Developer’s Guide

152
 © 2005 Motorola, Inc.

 private Point myPoint;
 private Line myLine;
 private Triangle myTriangle;
 private Quadrangle myQuadrangle;
 private PointSprite myPointSprite;
 private Figure myFigure;
 private Texture myTexture;
 private Texture myTransparentTexture;
 private Texture mySpriteTexture;

 private boolean paused;

 public GameCanvas3D() {
 super(true);
 paused = false;

 myGraphics = getGraphics();

 //Now we set up the actors in our 3d scene
 try {
 myFigure = Figure.createFigure("/figure_data.mbac");
 myTexture = Texture.createTexture(
 "/texture_data.bmp", false);
 myTransparentTexture =
 Texture.createTexture("/trans_texture_data.bmp",
 false);
 mySpriteTexture =
 Texture.createTexture("/sprite_texture_data.bmp",
 false);
 } catch (IOException e) {
 System.err.println("Error loading resources: " + e);
 }
 myPoint = new Point(new Vector3D(-10, 10, 0),
 null, 0xFF0000);
 myLine = new Line(new Vector3D(-10, 10, 0),
 new Vector3D(50, 0, 0),
 null, 0x00FF00);
 myTriangle = new Triangle(new Vector3D(0, 0, 0),
 new Vector3D(0, 35, 0),
 new Vector3D(35, 0, 0), null,
 0x0000FF);
 myQuadrangle = new Quadrangle(new Vector3D(0, 0, 0),
 new Vector3D(10, 35, 0),
 new Vector3D(45, 35, 0),
 new Vector3D(35, 0, 0),
 0, 0, 20, 0, 20, 20, 0, 20,
 null, myTransparentTexture);
 myQuadrangle.enableColorKeyTransparency(true);
 myPointSprite = new PointSprite(new Vector3D(0, 0, 0),
 30, 30, 0, 0, 0, 30, 30,
 PointSprite.PIXEL_SIZE |
 PointSprite.PARALLEL_PROJECTION,
 null, mySpriteTexture);

iDEN J2ME™ Developer’s Guide

153
 © 2005 Motorola, Inc.

 myFigure.setTexture(myTexture);
}

We went ahead and enabled color key transparency for the quadrangle so we’ll see some
transparency when we render the scene.

Since the Triangle, Quadrangle, and PointSprite classes are the only Primitive subclasses that
support textures, they have a few extra methods for dealing with them:

 int getTextureCoordinateX(int vertexID)
Returns the X component of the texture coordinate for the specified vertex.

 int getTextureCoordinateY(int vertexID)
Returns the Y component of the texture coordinate for the specified vertex.

 void setTextureCoordinates(int vertexID, int x, int y)
Sets the texture coordinates for the specified vertex.

These methods let you get and set portions of the texture that you want to use when rendering a
primitive. Specifying a vertexID value is done just as it is done for the setVector(int,
Vector3D) method mentioned earlier. Valid IDs are VERTEX_A, VERTEX_B, VERTEX_C, or
VERTEX_D. Consult the Javadocs for each Primitive subclass to see which ID values are valid for that
particular class. In addition to those methods, PointSprite defines a few more for setting its height,
width, rotation, and display type:

PointSprite’s width and height are set explicitly instead of using multiple vertex values as with other
primitives. The getHeight(), setHeight(int), getWidth(), and setWidth(int) methods
provide height and width support. A PointSprite can also be arbitrarily rotated with the
setRotation(int) method. The angle value ranges from 0 to 4,096, where 4,096 is equivalent to
360 degrees.

 int getDisplayType()
Returns the display directive value for this PointSprite.

 int getHeight()
Returns the height of the PointSprite.

 int getRotation()
Returns the rotation of the PointSprite.

 int getWidth()
Returns the width of the PointSprite.

 void setDisplayType(int displayType)
Specifies whether the PointSprite's size is relative to the screen or model coordinate system and
enables perspective projection on the PointSprite.

 void setHeight(int height)
Sets the height of the PointSprite.

 void setRotation(int rotation)
Sets the rotation angle of the PointSprite.

 void setWidth(int width)
Sets the width of the PointSprite.

iDEN J2ME™ Developer’s Guide

154
 © 2005 Motorola, Inc.

The display type defines how the PointSprite should be rendered. The following constants should be
used when specifying a display type value with setDisplayType(int):

static int LOCAL_SIZE
Specifies that a sprite's dimensions are in terms of the model coordinate system.

static int PARALLEL_PROJECTION
Disables perspective projection when rendering a sprite.

static int PERSPECTIVE_PROJECTION
Enables perspective projection when rendering a sprite.

static int PIXEL_SIZE
Specifies that a sprite's dimensions are in terms of the screen coordinate system.

A PointSprite’s size can be relative to the screen’s coordinate system, or the model’s coordinate
system. In addition to the PointSprite’s size relation, parallel or perspective projections can be applied
to the PointSprite. The PARALLEL_PROJECTION and PERSPECTIVE_PROJECTION constants define
both projection types. When passing a value to setDisplayType(int), a projection type must be
combined with one of the size constants. In our example we created the PointSprite with a display
type of PIXEL_SIZE | PARALLEL_PROJECTION. Refer to the PointSprite Javadocs for descriptions
of the possible combinations.

At this point we can take care of the point sprite’s animation by adding some code to the run()
method we created earlier. We’ll move the texture coordinates around a bit and spin the PointSprite
around:

public void run() {
 while (!paused) {
 if (myPointSprite.getTextureCoordinateY(Primitive.VERTEX_A) == 0)
 myPointSprite.setTextureCoordinates(Primitive.VERTEX_A,
 0, 30);
 else
 myPointSprite.setTextureCoordinates(Primitive.VERTEX_A,
 0, 0);
 myPointSprite.setRotation((myPointSprite.getRotation()+1024) %

 4096);
 paint(myGraphics);
 flushGraphics();
 }
}

The setTextureCoordinates(int, int, int) calls will cycle the PointSprite through the two
animation frames contained in its one texture. The setRotation(int) call will make the
PointSprite look like it is spinning.

iDEN J2ME™ Developer’s Guide

155
 © 2005 Motorola, Inc.

4.9.8 Loading and Using Action Tables
The ActionTable class represents 3D action tables, which define how a figure can be animated. The
data stored in an action table represents key-based animation. These actions can define how a
person walks, a car door opens, etc.

An ActionTable can hold multiple actions and each action can have multiple frames. An instance of
ActionTable has at least 1 action. Frames for each action are numbered in increments of 65,536. So
the 0th frame’s index is 0 and the next frame’s index is 65,536. The following methods are defined in
ActionTable:

static ActionTable createActionTable(byte[] data, int offset, int length)
Creates an ActionTable which is decoded from the data stored in the specified byte
array at the specified offset and length.

static ActionTable createActionTable(String name)
Creates an ActionTable from the data obtained from the named resource.

 int getNumberOfActions()
Obtains the number of actions found in the ActionTable.

 int getNumberOfFrames(int actionIndex)
Obtains the number of frames for the specified action found in the ActionTable.

Like Figure and Texture, there is no constructor in the ActionTable class. ActionTable instances are
similarly created via the static createActionTable(byte[], int, int) and
createActionTable(String) methods. The getNumberOfActions() method returns the total
number of actions for this ActionTable while getNumberOfFrames(int) returns the number of
frames for a given action index in 65,536 increments.

To animate our Figure we’ll need to associate an ActionTable with it and continuously update the
action frame it is using. We want the animation to look smooth so we’ll tie in our frame switching with
values we read off of the system clock. Going back to our example we can load the ActionTable and
modify the run() and startAnimation() methods:

public class GameCanvas3D extends GameCanvas implements Runnable {
 private Graphics myGraphics;
 private Point myPoint;
 private Line myLine;
 private Triangle myTriangle;
 private Quadrangle myQuadrangle;
 private PointSprite myPointSprite;
 private Figure myFigure;
 private Texture myTexture;
 private Texture myTransparentTexture;
 private Texture mySpriteTexture;
 private ActionTable myActionTable;

 private boolean paused;
 private int frame;
 private int frameTime;
 private long oldTime;
 private int maxFrames;

iDEN J2ME™ Developer’s Guide

156
 © 2005 Motorola, Inc.

 public GameCanvas3D() {
 super(true);
 paused = false;
 frame = 0;
 frameTime = 0;

 myGraphics = getGraphics();

 //Now we set up the actors in our 3d scene
 try {
 myFigure = Figure.createFigure("/figure_data.mbac");
 myTexture =
 Texture.createTexture("/texture_data.bmp", false);
 myTransparentTexture =
 Texture.createTexture("/trans_texture_data.bmp",
 false);
 mySpriteTexture =
 Texture.createTexture("/sprite_texture_data.bmp",
 false);
 myActionTable =
 ActionTable.createActionTable("/action_data.mtra");
 } catch (IOException e) {
 System.err.println("Error loading resources: " + e);
 }
 maxFrames = myActionTable.getNumberOfFrames(0);
 myPoint = new Point(new Vector3D(-10, 10, 0),
 null, 0xFF0000);
 myLine = new Line(new Vector3D(-10, 10, 0),
 new Vector3D(50, 0, 0),
 null, 0x00FF00);
 myTriangle = new Triangle(new Vector3D(0, 0, 0),
 new Vector3D(0, 35, 0),
 new Vector3D(35, 0, 0), null,
 0x0000FF);
 myQuadrangle = new Quadrangle(new Vector3D(0, 0, 0),
 new Vector3D(10, 35, 0),
 new Vector3D(45, 35, 0),
 new Vector3D(35, 0, 0),
 0, 0, 20, 0, 20, 20, 0, 20,
 null, myTransparentTexture);
 myQuadrangle.enableColorKeyTransparency(true);
 myPointSprite = new PointSprite(new Vector3D(0, 0, 0),
 30, 30, 0, 0, 0, 30, 30,
 PointSprite.PIXEL_SIZE |
 PointSprite.PARALLEL_PROJECTION,
 null, mySpriteTexture);
 myFigure.setTexture(myTexture);
 myFigure.setActionTable(myActionTable);
 myFigure.setPosture(0, frame);
 }

 ...

iDEN J2ME™ Developer’s Guide

157
 © 2005 Motorola, Inc.

 public void run() {
 while (!paused) {
 if (myPointSprite.getTextureCoordinateY(Primitive.VERTEX_A)
 == 0)
 myPointSprite.setTextureCoordinates(
 Primitive.VERTEX_A, 0, 30);
 else
 myPointSprite.setTextureCoordinates(
 Primitive.VERTEX_A, 0, 0);
 myPointSprite.setRotation(
 (myPointSprite.getRotation()+1024) % 4096);
 myFigure.setPosture(0, frame);
 paint(myGraphics);
 flushGraphics();

 //Here we'll update the frame we want to draw.
 //Remember that ActionTable frames range from
 //0 to (max frames * 65536) so updating
 //the frame is not as simple as an increment.
 long time = System.currentTimeMillis();
 frameTime = (int)(time - oldTime);
 oldTime = time;

 //We'll do our frame changes every second
 //thus the divide by 1000
 //We multiply by 30 because we created the animation table
 //at a 30 fps rate, so for every second we want to make
 //sure we are at frame (65536*30*second).
 frame = frame + ((65536 * 30 * frameTime)/1000);
 frame = frame % maxFrames;
 }
 }

 public synchronized void startAnimation() {
 paused = false;
 Thread t = new Thread(this);

 //save the time here so we can compare when the thread starts
 oldTime = System.currentTimeMillis();
 t.start();
 }
 ...

Here we introduced a variable to track which frame we’re on (frame) and a variable that contains the
amount of time elapsed since we rendered our last frame (frameTime). We also need to track the
system time value for each frame we render (oldTime). System time is initially stored when our
startAnimation() method is entered and we start the animation thread. From then on we check
the elapsed time with every run() iteration and set the new frame as needed. Notice that we had to
add an extra multiplication by 30 when calculating the new frame value. This is because the action
table contains an animation based on a 30-frames-per-second rate. We get this number when we
create the animation table, not during run-time, so it’s important to have that number available when
creating your 3D application. Also notice that we saved the maximum amount of frames for action

iDEN J2ME™ Developer’s Guide

158
 © 2005 Motorola, Inc.

index 0 and used that stored value in our animation loop. This makes our code run faster since we
don’t need to query the engine for that value for every frame.

4.9.9 Setting the Scene: Light
The Light class is a container for the values that specify what kind of lighting a scene should have.
The Micro3D engine supports both ambient and single, directional white lighting. Values for light
intensity range from 0 to 4,096, with 4,096 being equivalent to a factor of 1.0. One instance of Light
can be used to specify both directional and ambient lighting. The Light constructor allows developers
to set any combination of lighting parameters they choose:

Light(int ambientIntensity, Vector3D direction, int directionalIntensity)
Creates a Light object with the specified parameters.

While ambient and directional lighting can be combined, it is possible to drown out directional light
effects when full ambient lighting is present. Therefore, effective use of directional lighting requires
careful use of ambient lighting. If directional lighting is not desired the direction vector can be set to
null or the directional intensity can be set to 0. The former choice is more efficient since the engine
can skip the calculations needed to resolve the effect of the light’s directional vector with surfaces in
the scene.

A Light instance’s parameters can also be changed later or retrieved through the get and set methods
provided in the Light class:

 int getAmbientIntensity()
Returns the ambient light intensity for this Light object.

 int getDirectionalIntensity()
Returns the directional light intensity for this Light object.

 Vector3D getDirectionVector()
Returns the Vector3D representing the direction of light for this Light object.

 void setAmbientIntensity(int intensity)
Sets the ambient light intensity for this Light object.

 void setDirectionalIntensity(int intensity)
Sets the directional light intensity for this Light object.

 void setDirectionVector(Vector3D direction)
Sets and enables or disables directional lighting for this Light object.

To specify the light’s direction we’ll need to add a new Vector3D. Vectors used for describing a light
direction cannot be 0 vectors (<0, 0, 0>). Knowing that, we can go ahead and create the lighting that
our scene will use in our example:

public class GameCanvas3D extends GameCanvas implements Runnable {
 private Graphics myGraphics;
 private Light myLight;
 private Point myPoint;
 private Line myLine;
 private Triangle myTriangle;
 private Quadrangle myQuadrangle;
 private PointSprite myPointSprite;

iDEN J2ME™ Developer’s Guide

159
 © 2005 Motorola, Inc.

 private Figure myFigure;
 private Texture myTexture;
 private Texture myTransparentTexture;
 private Texture mySpriteTexture;
 private ActionTable myActionTable;

 private boolean paused;
 private int frame;
 private int frameTime;
 private long oldTime;
 private int maxFrames;

 public GameCanvas3D() {
 super(true);
 paused = false;
 frame = 0;
 frameTime = 0;

 myGraphics = getGraphics();

 //Here we initialize the Layout3D, the lighting,
 //and the viewpoint for our scene
 Vector3D lightDirection = new Vector3D(-4096, 0, 0);
 myLight = new Light(2048, lightDirection, 4096);

 //Now we set up the actors in our 3d scene
 try {
 myFigure = Figure.createFigure("/figure_data.mbac");

 ...

Later, we’ll associate the Light instance we created with an object that specifies how the scene
should be rendered.

4.9.10 Using Affine Transformations
Before we can set up our layout object we need to know how to work with affine transformations.
Affine transformations are represented in the Micro3D API by the AffineTransform class. This class
allows you to specify how 3D space should be interpreted with your local coordinate system.

The AffineTransform class serves mainly as a container to the set of 12 matrix values contained in an
affine transformation. As with other classes, the AffineTransform class uses a larger scale to
compensate for the lack of floating point math. Affine transformation values range from –32,768 to
32,767 with 4,096 representing a value of 1.0. AffineTransform defines constants for these maximum
and minimum values, as well as constants for directly accessing the individual matrix elements:

static int M00
Specifies matrix element at row 1, column 1.

static int M01
Specifies matrix element at row 1, column 2.

static int M02
Specifies matrix element at row 1, column 3.

iDEN J2ME™ Developer’s Guide

160
 © 2005 Motorola, Inc.

static int M03
Specifies matrix element at row 1, column 4.

static int M10
Specifies matrix element at row 2, column 1.

static int M11
Specifies matrix element at row 2, column 2.

static int M12
Specifies matrix element at row 2, column 3.

static int M13
Specifies matrix element at row 2, column 4.

static int M20
Specifies matrix element at row 3, column 1.

static int M21
Specifies matrix element at row 3, column 2.

static int M22
Specifies matrix element at row 3, column 3.

static int M23
Specifies matrix element at row 3, column 4.

static int MAX_VALUE
The maximum value that can be used by the AffineTransform.

static int MIN_VALUE
The minimum value that can be used by the AffineTransform.

An AffineTransform can be constructed with initial values set to 0 or with values specified in a two-
dimensional integer array, as shown in the following table:

AffineTransform()
Constructs an AffineTransform with all of its elements set to 0.

AffineTransform(int[][] elements)
Constructs an AffineTransform with its elements set to the values in the specified two-dimensional array.

The array passed into the second constructor must be an array whose outer length is three while the
lengths of the three arrays contained as elements are four.

The AffineTransform class has many convenience methods for matrix operations. The operations
include matrix multiplication, normalization, rotation, creation of an identity matrix, and point
translation:

 int get(int fieldID)
Gets the specified AffineTransform matrix element value.

static AffineTransform getViewPointTransform(Vector3D position,
Vector3D look, Vector3D up)
Calculates a viewpoint transformation matrix.

iDEN J2ME™ Developer’s Guide

161
 © 2005 Motorola, Inc.

 void multiply(AffineTransform multiplier)
Multiplies this AffineTransform object against another.

static AffineTransform multiply(AffineTransform multiplicand,
AffineTransform multiplier)
Multiplies two AffineTransform objects against another.

static void multiply(AffineTransform destination,
AffineTransform multiplicand,
AffineTransform multiplier)
Multiplies two AffineTransform objects and stores the result of the operation
in the specified destination.

 void normalize()
Normalizes this AffineTransform.

 void rotateV(Vector3D axis, int angle)
Rotates this transform about an arbitrary unit vector.

 void rotateX(int angle)
Rotates this transform about the x-axis.

 void rotateY(int angle)
Rotates this transform about the y-axis.

 void rotateZ(int angle)
Rotates this transform about the z-axis.

 void set(int[][] elements)
Sets the AffineTransform matrix elements with the integers in the specified
two-dimensional array.

 void set(int fieldID, int value)
Sets the specified AffineTransform matrix element with the specified value.

 void setIdentity()
Converts this AffineTransform to an identity matrix.

 Vector3D

transformPoint(Vector3D source)
Returns a Vector3D transformed from a given point in this AffineTransform.

Note that matrix multiplication is offered in three methods. Each method provides a different
mechanism for delivering the resultant AffineTransform. The transform can be stored in the
multiplicand, in a given destination AffineTransform, or returned as a new AffineTransform instance. If
matrix multiplication is to be done repeatedly, for example in an animation thread, it is recommended
that developers avoid the static multiplication method to avoid heap fragmentation.

When setting up a 3D scene, a viewpoint transformation matrix is required. A viewpoint
transformation can be created automatically by using the getViewPointTransform(Vector3D,
Vector3D, Vector3D) method. This method takes the position, look, and up directional vectors to
derive an equivalent viewpoint transformation matrix.

In the next section we’ll learn how the Layout3D class uses the viewpoint transformation matrix.

iDEN J2ME™ Developer’s Guide

162
 © 2005 Motorola, Inc.

4.9.11 Setting the Scene: Layout3D
In the previous sections we covered loading your 3D content data and preparing it for display. One of
the final steps is to provide a description for how the scene should be rendered. The Layout3D class
is provided for that reason.

The Layout3D class sets the stage of a 3D scene. With the Layout3D class developers can specify
lighting, shading, projection style, and camera placement. Complex scenes can be developed by
using multiple instances of Layout3D with several figures and primitives and combining them at
render time. Of all the classes covered so far, Layout3D has the most impact on how a figure or
primitive is rendered.

For example, consider a scene that calls for two orbs to be placed side by side with one lit by a
directional light source and one dimmed and receiving little or no light. Although we have two orbs
that have different appearances, we only need to create one Figure instance that represents the orb.
The rest of the scene direction can be handled by the creation of two Layout3D instances and a Light
instance. To set up our well lit orb we can associate one Figure with the Layout3D containing a
powerful, ambient light then make another call to draw with the same Figure, but this time associated
with the Layout3D that has no light, or a very dimmed directional light.

Since figures and textures consume the most memory, limiting the amount we need to instantiate
allows us to create more complex scenes with less demand on memory.

Creating a Layout3D is done by invoking the default constructor:

Layout3D()
Creates a Layout3D for use with rendering Figure and Primitive objects.

The constructor sets up the Layout3D with most options disabled: there is no lighting, no semi-
transparent effects, no shading, and no perspective projection. As we’ll see, the Layout3D is capable
of producing more interesting scenes by turning on these effects.

4.9.11.1 Lighting, Shading, and Transparency
We’ve already added Light to our example. Now we can create a Layout3D and associate that
Light instance with it. When light is added to a scene it is possible to enable shading effects.
The Micro3D engine supports Gouraud and cell, or toon, shading as long as the figure or
primitive itself were created to support lighting. When no Light object is available the engine
defaults to flat shading which means that every pixel in the figure or primitive is rendered at full
intensity (100%). The table below describes the methods available for setting lighting and
shading:

 Light getLight()
Returns the Light used with this Layout3D.

 int getToonHighColor()
Returns the high color value used for toon shading.

 int getToonLowColor()
Returns the low color value used for toon shading.

 int getToonThreshold()
Returns the threshold value used for toon shading.

iDEN J2ME™ Developer’s Guide

163
 © 2005 Motorola, Inc.

 boolean isSemiTransparent()
Checks whether or not semi-transparent rendering is enabled for this Layout3D.

 boolean isToonShaded()
Checks whether toon shading is enabled for this Layout3D.

 void setLight(Light light)
Sets a Light to be used for this Layout3D.

 void setProjection(int type, int[] parameters)
Sets the projection used by this Layout3D.

 void setSemiTransparent(boolean transparent)
Enables or disables semi-transparency for this Layout3D.

 void setToonShading(boolean toon)
Enables or disables toon shading for this Layout3D.

 void setToonShading(int threshold, int highColor, int lowColor)
Sets the toon shading parameters to the specified values and enables toon shading.

The Light instance we created previously can now be set to a Layout3D with
setLight(Light). Once a Layout3D has a Light instance, Gouraud shading is enabled.
The engine can also do cell shading by enabling it and providing threshold and high and low
color values. Shaded colors are compared to the threshold colors and blended with the high
color value or low color value depending on whether the threshold was exceeded or not.

Semi-transparency is not dependent on the availability of a Light instance in the Layout3D.
However, figures and primitives associated to a Layout3D with semi-transparency enabled
must themselves support semi-transparency. For figures this should be done at content
creation time. We previously covered semi-transparency for primitives.

4.9.11.2 Setting the Projection Type
The Micro3D engine provides both parallel and perspective projection. One common method
is provided for setting up the projection type desired and several constants are defined that
describe how projection type is being specified:

static int PARALLEL_SCALE
Identifier for parallel projection specified by setting the scale of the view-to-screen
transformation.

static int PARALLEL_WIDTH
Identifier for parallel projection specified by setting the projection plane's width.

static int PARALLEL_WIDTH_HEIGHT
Identifier for parallel projection specified by setting the projection plane's width and
height.

static int PERSPECTIVE_FOV

Identifier for perspective projection specified by field of view parameters.

iDEN J2ME™ Developer’s Guide

164
 © 2005 Motorola, Inc.

static int PERSPECTIVE_WIDTH
Identifier for perspective projection specified by the width of the near clipping plane's
projection plane.

static int PERSPECTIVE_WIDTH_HEIGHT
Identifier for perspective projection specified by width and height of the near clipping
plane's projection plane.

These constants are used in conjunction with the setProjection(int, int[]) method.
Layout3D projection methods are listed in the table below:

 int[] getProjectionParameters()
Returns a copy of the projection parameters set for this Layout3D.

 int getProjectionType()
Returns the projection type set for this Layout3D.

 void setProjection(int type, int[] parameters)
Sets the projection used by this Layout3D.

Three of the constants above define parallel projection and three define perspective
projection. Depending on how a developer wants to set up the projection style any of these
constants can be used. Each constant requires a specific number of projection parameters.
For example, PERSPECTIVE_SCALE requires only two integer arguments, one for the width
ratio of the screen transformation and one for the height ratio of the screen transformation.
Since the projection handles the 3D translation to the screen coordinate system, the
arguments required in the integer array relate to the width and height of the screen. By setting
the width and height parameters larger or smaller that the actual screen size, the figures and
primitives can be scaled to the desired size.

See the Layout3D Javadocs for complete descriptions of all of the projection constants. Also
see the Micro3D Tool Manual for description of parallel and perspective projections.

4.9.12 Automatic View Transformation
While the Layout3D class allows for elaborate scene direction, it is also the most common reason
for scenes that don’t render correctly. The model, view, and screen coordinates must be set up
correctly for any scene to render (model coordinates are contained in the model itself and scene
coordinates were covered above). If these values are not set appropriately the Micro3D engine
may not render anything at all when a scene is flushed. The Layout3D class contains methods
and mechanisms to simplify setting up the view coordinates by manipulating the view and
viewpoint transformations.

We covered the viewpoint transformation in the previous section. Now we will see how the
viewpoint transformation can be used to automatically set up a view transformation for us.

When a Layout3D instance contains an AffineTransform representing the viewpoint
transformation, it can implicitly generate a view transformation, applying rotations along the X, Y,
Z, or any arbitrary vectors. The following methods are provided for automatically generating a
view transform:

iDEN J2ME™ Developer’s Guide

165
 © 2005 Motorola, Inc.

 AffineTransform getViewPointTransform()
Returns the affine transform serving as the viewpoint transformation matrix for this
Layout3D.

 AffineTransform getViewTransform()
Returns the AffineTransform used as the view transformation for this Layout3D.

 void setViewPoint(Vector3D position, Vector3D look,
Vector3D up)
Creates an affine transform from the provided vectors that will serve as the
viewpoint transformation matrix used when determining the view transformation for
this Layout3D.

 void setViewPointTransform(AffineTransform viewPointTransform)
Sets the affine transform that will serve as the viewpoint transformation matrix used
when determining the view transformation for this Layout3D.

Although we previously covered creating a viewpoint transformation with the AffineTransform
class’s getViewPointTransform(Vector3D, Vector3D, Vector3D) method we now
have an alternative way to get the viewpoint transformation into our Layout3D. The
setViewPoint(Vector3D, Vector3D, Vector3D) method creates the viewpoint
AffineTransform and automatically associates it with the Layout3D. Once a viewpoint
transformation is associated, the Layout3D is able to create the view transformation it needs
when translating the figure’s points from model coordinate system into the view’s coordinate
system.

The Layout3D allows us to rotate the view transform to give objects in it the appearance of having
rotated. Four methods for setting rotation are provided:

 void rotateV(Vector3D axis, int angle)
Rotates the view transformation matrix about an arbitrary unit vector.

 void rotateX(int angle)
Rotates the view transformation matrix about the X axis.

 void rotateY(int angle)
Rotates the view transformation matrix about the Y axis.

 void rotateZ(int angle)
Rotates the view transformation matrix about the Z axis.

The angle values range from 0 to 4,096, with 4,096 being equivalent to 360 degrees. The rotation
is done either by specifying the rotation about the X, Y, and Z axis, or by specifying a rotation
about an arbitrary axis. These rotations are mutually exclusive, so once the X, Y, or Z angle is
specified, any existing rotation about the arbitrary axis is ignored. Similarly, once the rotation is
specified with rotateV(Vector3D, int) method, the existing X, Y, and Z angles are ignored.
The vector supplied to rotateV(Vector3D, int) must be a unit vector. The rotation methods
have a secondary function, as well: calling these methods reestablishes automatic handling of the
view transformation in the case that a Layout3D instance needs to be switched from manual view
transformation control to automatic. Note that the rotate methods simply set the rotation angle that
will be used when the scene is flushed. The methods are not cumulative and no view transform
calculations take place during these calls.

iDEN J2ME™ Developer’s Guide

166
 © 2005 Motorola, Inc.

4.9.13 Manual View Transformation
Layout3D also allows developers to create their own transforms to serve as the view
transformation. However, it is generally recommended to use automatic view transformation
handling for improved performance.

View transformations are typically created by setting up a series of affine transformations then
multiplying those transformations against a viewpoint transformation. The following code snippet
illustrates how an AffineTransform can be created and used as a view transform (this code will
not be used as part of our example):

 AffineTransform xtrans = new AffineTransform();
 AffineTransform ytrans = new AffineTransform();
 AffineTransform ztrans = new AffineTransform();
 AffineTransform transform = new AffineTransform();
 .
 .
 .
 xtrans.set(AffineTransform.M03, 0);
 xtrans.set(AffineTransform.M13, 0);
 xtrans.set(AffineTransform.M23, 0);
 ytrans.set(AffineTransform.M03, 0);
 ytrans.set(AffineTransform.M13, 0);
 ytrans.set(AffineTransform.M23, 0);
 ztrans.set(AffineTransform.M03, 0);
 ztrans.set(AffineTransform.M13, 0);
 ztrans.set(AffineTransform.M23, 0);

 xtrans.rotateX(xAngle);
 ytrans.rotateY(yAngle);
 ztrans.rotateZ(zAngle);

 transform = AffineTransform.multiply(viewpoint, xtrans);

 transform.multiply(ytrans);
 transform.multiply(ztrans);

 layout3d.setViewTransform(transform);

Once the AffineTransform is created it can be associated to the Layout3D or retrieved with the
following methods:

 AffineTransform getViewTransform()
Returns the AffineTransform used as the view transformation for this Layout3D.

 void setViewTransform(AffineTransform viewTransform)
Sets an AffineTransform to be used as the view transformation for this
Layout3D.

The getViewTransform() method will return the AffineTransform that was set via
setViewTransform(AffineTransform). If the Layout3D is in automatic view transform
control you cannot retrieve the automatically generated view transform via
getViewTransform() and the method will return null.

iDEN J2ME™ Developer’s Guide

167
 © 2005 Motorola, Inc.

Going back to our example we’ll want to create a Layout3D instance for all of the Object3D
objects we created previously. We then need to set the scene parameters for it and associate it
with the figure and primitives:

public class GameCanvas3D extends GameCanvas implements Runnable {
 private Graphics myGraphics;
 private Layout3D myLayout3D;
 private Light myLight;
 private Point myPoint;
 private Line myLine;
 private Triangle myTriangle;
 private Quadrangle myQuadrangle;
 private PointSprite myPointSprite;
 private Figure myFigure;
 private Texture myTexture;
 private Texture myTransparentTexture;
 private Texture mySpriteTexture;
 private ActionTable myActionTable;

 private boolean paused;
 private int frame;
 private int frameTime;
 private long oldTime;
 private int maxFrames;

 public GameCanvas3D() {
 super(true);
 paused = false;
 frame = 0;
 frameTime = 0;

 myGraphics = getGraphics();

 //Here we initialize the Layout3D, the lighting,
 //and the viewpoint for our scene
 myLayout3D = new Layout3D();
 Vector3D position = new Vector3D(0, 0, 400);
 Vector3D look = new Vector3D(0, 0, 400);
 Vector3D up = new Vector3D(0, 0, 400);
 myLayout3D.setViewPoint(position, look, up);
 myLayout3D.setProjection(Layout3D.PARALLEL_WIDTH_HEIGHT,
 new int[]{getWidth()*2,
 getHeight()*2});
 Vector3D lightDirection = new Vector3D(-4096, 0, 0);
 lightDirection.normalize();
 myLight = new Light(2048, lightDirection, 4096);
 myLayout3D.setLight(myLight);

 //Now we set up the actors in our 3d scene
 try {
 myFigure = Figure.createFigure("/figure_data.mbac");
 myTexture = Texture.createTexture(
 "/texture_data.bmp", false);
 myTransparentTexture =

iDEN J2ME™ Developer’s Guide

168
 © 2005 Motorola, Inc.

 Texture.createTexture("/trans_texture_data.bmp",
 false);
 mySpriteTexture =
 Texture.createTexture("/sprite_texture_data.bmp",
 false);
 myActionTable =
 ActionTable.createActionTable("/action_data.mtra");
 } catch (IOException e) {
 System.err.println("Error loading resources: "
 + e);
 }
 maxFrames = myActionTable.getNumberOfFrames(0);
 myPoint = new Point(new Vector3D(-10, 10, 0),
 myLayout3D, 0xFF0000);
 myLine = new Line(new Vector3D(-10, 10, 0),
 new Vector3D(50, 0, 0),
 myLayout3D, 0x00FF00);
 myTriangle = new Triangle(new Vector3D(0, 0, 0),
 new Vector3D(0, 35, 0),
 new Vector3D(35, 0, 0),
 myLayout3D,
 0x0000FF);
 myQuadrangle = new Quadrangle(new Vector3D(0, 0, 0),
 new Vector3D(10, 35, 0),
 new Vector3D(45, 35, 0),
 new Vector3D(35, 0, 0),
 0, 0, 20, 0, 20, 20, 0, 20,
 myLayout3D,
 myTransparentTexture);
 myQuadrangle.enableColorKeyTransparency(true);
 myPointSprite = new PointSprite(new Vector3D(0, 0, 0),
 30, 30, 0, 0, 0, 30, 30,
 PointSprite.PIXEL_SIZE |
 PointSprite.PARALLEL_PROJECTION,
 myLayout3D, mySpriteTexture);
 myFigure.setLayout(myLayout3D);
 myFigure.setTexture(myTexture);
 myFigure.setActionTable(myActionTable);
 myFigure.setPosture(0, frame);
 }

By going back and revisiting the primitive constructors we’ve made them ready for rendering.
Likewise, the figure is now associated with the Layout3D we just created. You may notice that we
set up our projection using the PARALLEL_WIDTH_HEIGHT parameter. We then used the width
and height returned by the GameCanvas instance and multiplied them by two. The width and
height that are reported for projection allow you to scale the objects to a desired size.

iDEN J2ME™ Developer’s Guide

169
 © 2005 Motorola, Inc.

4.9.14 Rendering
With the rest of the pieces of our 3D application in place we can finally move onto rendering our
scene to the screen. The Micro3D API provides the Renderer class as a utility and container class for
preparing the 3D scene to be written to a Graphics buffer and flushed onto the screen.

Before a scene can be rendered an instance of Renderer must be created. Renderer uses the default
constructor as follows:

Renderer()
Creates a new Renderer.

The Renderer class has one method to register an Object3D instance to be drawn by the Micro3D
engine. Developers can also specify where that object should be rendered on the buffer when the
Renderer paint(Graphics) or paint(Texture) method is called. The following table lists the
draw and paint methods for Renderer:

 void
draw(Object3D object3d, int x, int y)
Registers an Object3D to be drawn by this Renderer the next time paint() method is called.

 void
paint(javax.microedition.lcdui.Graphics g)
Paints the primitives and figures registered with this Renderer to the specified Graphics object.

 Texture
paint(Texture texture, int color)
Paints the primitives and figures registered with this Renderer to the specified Texture object.

Note that upon returning from a call to draw, no rendering or setup is actually performed. The
draw(Object3D, int, int) method simply stores a reference to the Object3D that was specified
and copies the coordinates specified. The Renderer also stores a separate reference to the Layout3D
and Texture objects in use by the Object3D when draw(Object3D, int, int) was called. This
allows developers to keep a small amount of Object3D instances that can take on different
appearances by matching them up with different Texture and Layout3D instances. However, keep in
mind that any changes made to the Object3D (excluding its layout and textures), Layout3D, and
Texture objects it referred to before paint() is called will take effect at render time.

Rendering is actually performed when a call to paint(Graphics) or paint(Texture) is made.
The Micro3D engine can render to a Java Graphics object or a Texture. When rendering to a
previously loaded texture or sphere texture all previous surface data will be lost. The API does not
allow rendering to a MultiTexture. When rendering to a Graphics object the Micro3D engine will honor
the clip and translation coordinates. The current color for the Graphics object has no effect on the
Micro3D engine.

At this point we can make the final changes to our example. We’ll create a new PointSprite and target
texture and add our paint and draw calls:

iDEN J2ME™ Developer’s Guide

170
 © 2005 Motorola, Inc.

public class GameCanvas3D extends GameCanvas implements Runnable {
private Graphics myGraphics;
private Renderer myRenderer;
private Layout3D myLayout3D;
private Light myLight;
private Point myPoint;
private Line myLine;
private Triangle myTriangle;
private Quadrangle myQuadrangle;
private PointSprite myPointSprite;
private PointSprite targetSprite;
private Figure myFigure;
private Texture myTexture;
private Texture myTargetTexture;
private Texture myTransparentTexture;
private Texture mySpriteTexture;
private ActionTable myActionTable;

private boolean paused;
private int frame;
private int frameTime;
private long oldTime;
private int maxFrames;

public GameCanvas3D() {

 super(true);
 paused = false;
 frame = 0;
 frameTime = 0;

 myGraphics = getGraphics();
 myRenderer = new Renderer();

 //Here we initialize the Layout3D, the lighting,
 //and the viewpoint for our scene
 myLayout3D = new Layout3D();
 Vector3D position = new Vector3D(0, 0, 400);
 Vector3D look = new Vector3D(0, 0, 400);
 Vector3D up = new Vector3D(0, 0, 400);
 myLayout3D.setViewPoint(position, look, up);
 myLayout3D.setProjection(Layout3D.PARALLEL_WIDTH_HEIGHT,
 new int[]{getWidth()*2,getHeight()*2});
 Vector3D lightDirection = new Vector3D(-4096, 0, 0);
 myLight = new Light(2048, lightDirection, 4096);
 myLayout3D.setLight(myLight);
 //Now we set up the actors in our 3d scene
 try {
 myFigure = Figure.createFigure("/figure_data.mbac");
 myTexture =
 Texture.createTexture("/texture_data.bmp", false);
 myTransparentTexture =
 Texture.createTexture("/trans_texture_data.bmp",
 false);

iDEN J2ME™ Developer’s Guide

171
 © 2005 Motorola, Inc.

 mySpriteTexture =
 Texture.createTexture("/sprite_texture_data.bmp",
 false);
 myActionTable =
 ActionTable.createActionTable("/action_data.mtra");
 } catch (IOException e) {
 System.err.println("Error loading resources: " + e);
 }
 maxFrames = myActionTable.getNumberOfFrames(0);
 myPoint = new Point(new Vector3D(-10, 10, 0),
 myLayout3D, 0xFF0000);
 myLine = new Line(new Vector3D(-10, 10, 0),
 new Vector3D(50, 0, 0),
 myLayout3D, 0x00FF00);
 myTriangle = new Triangle(new Vector3D(0, 0, 0),
 new Vector3D(0, 35, 0),
 new Vector3D(35, 0, 0), myLayout3D,
 0x0000FF);
 myQuadrangle = new Quadrangle(new Vector3D(0, 0, 0),
 new Vector3D(10, 35, 0),
 new Vector3D(45, 35, 0),
 new Vector3D(35, 0, 0),
 0, 0, 20, 0, 20, 20, 0, 20,
 myLayout3D, myTransparentTexture);
 myQuadrangle.enableColorKeyTransparency(true);
 myPointSprite = new PointSprite(new Vector3D(0, 0, 0),
 30, 30, 0, 0, 0, 30, 30,
 PointSprite.PIXEL_SIZE |
 PointSprite.PARALLEL_PROJECTION,
 myLayout3D, mySpriteTexture);
 targetSprite = new PointSprite(new Vector3D(10, 0, 0), 30, 30,
 0, 70, 10, 30, 30,
 PointSprite.PIXEL_SIZE |
 PointSprite.PARALLEL_PROJECTION,
 myLayout3D,
 myTargetTexture);
 myFigure.setLayout(myLayout3D);
 myFigure.setTexture(myTexture);
 myFigure.setActionTable(myActionTable);
 myFigure.setPosture(0, frame);
 }

 public void paint(Graphics g) {
 g.setColor(0xFFFFFF);
 g.fillRect(0, 0, getWidth(), getHeight());
 myRenderer.draw(myFigure, getWidth()/2,
 (getHeight()/2)+20);
 myRenderer.draw(myLine, (getWidth()/2)+35,
 (getHeight()/2)+20);
 myRenderer.draw(myPoint, (getWidth()/2)+55,
 (getHeight()/2)+40);
 myRenderer.draw(myTriangle, (getWidth()/2)+40,
 (getHeight()/2)+60);

iDEN J2ME™ Developer’s Guide

172
 © 2005 Motorola, Inc.

 myRenderer.draw(myQuadrangle, (getWidth()/2)-60,
 (getHeight()/2)+20);
 myRenderer.draw(myPointSprite, (getWidth()/2)-60,
 (getHeight()/2)+40);

 //For the first frame we'll render to the target texture
 //with a purple background
 if (myTargetTexture == null) {
 myTargetTexture = myRenderer.paint(null, 0xAA00FF);
 targetSprite.setTexture(myTargetTexture);
 }
 else {
 myRenderer.draw(targetSprite, (getWidth()/2)-60,
 (getHeight()/2)-30);
 myRenderer.paint(g);
 }
 }

 public void run() {
 while (!paused) {
 if (myPointSprite.getTextureCoordinateY(Primitive.VERTEX_A)
 == 0)
 myPointSprite.setTextureCoordinates(
 Primitive.VERTEX_A, 0, 30);
 else
 myPointSprite.setTextureCoordinates(
 Primitive.VERTEX_A, 0, 0);
 myPointSprite.setRotation(
 ((myPointSprite.getRotation()+1024) % 4096);
 myFigure.setPosture(0, frame);
 paint(myGraphics);
 flushGraphics();

 //Here we'll update the frame we want to draw.
 //Remember that ActionTable frames range from
 //0 to (max frames * 65536) so updating
 //the frame is not as simple as an increment.
 long time = System.currentTimeMillis();
 frameTime = (int)(time - oldTime);
 oldTime = time;

 //We'll do our frame changes every second
 // thus the divide by 1000
 //We multiply by 30 because we created the animation table
 //at a 30 fps rate, so for every second we want to make
 //sure we are at frame (65536*30*second).
 frame = frame + ((65536 * 30 * frameTime)/1000);
 frame = frame % maxFrames;
 }
 }

 public synchronized void startAnimation() {
 paused = false;

iDEN J2ME™ Developer’s Guide

173
 © 2005 Motorola, Inc.

 Thread t = new Thread(this);

 //save the time here so we can compare when the thread starts
 oldTime = System.currentTimeMillis();
 t.start();
 }

 public synchronized void stopAnimation() {
 paused = true;
 }
}

When rendering to a texture we check if the target texture is null. If it is, then we create a new
instance of Texture object and use it as the target texture. The new texture is returned by the
paint() method. After that we go ahead and assign the target texture to a PointSprite in the scene.

Our GameCanvas3D example is finished now and can be set as the current Displayable in a MIDlet.
The startAnimation() method call should be called from startApp() and the
stopAnimation() method should be called in pauseApp().

4.9.15 Utility
The Utility class provides miscellaneous methods for performing integer-based mathematical
functions. It also provides a method for retrieving the version of the Micro3D engine in use. The
following table lists all of the Utility methods:

static int cos(int angle)
Obtains the cosine approximation of the specified angle.

static String getVersion()
Returns the version of the Micro3D engine.

static int sin(int angle)
Obtains the sine approximation of the specified angle.

static int squareRoot(int x)
Obtains a square root approximation of the specified value.

See the Micro3D API Javadocs for more information on the Utility class.

4.9.16 Memory
Using the Micro3D engine is memory intensive. When developing a 3D MIDlet, always try to conserve
the amount of Figures, Textures, and ActionTables used by your application. Other objects in the
Micro3D package are generally not memory heavy. The MultiTexture object is simply a collection of
references to Texture objects and the Primitives are basically collections of Vector3D, Texture, and
texture coordinate information.

However all non-MultiTexture Texture objects require the same amount of memory—around 82K,
regardless of the actual size of the texture. When using Textures for Primitives try to combine several
images in one Texture for multiple Primitives or animations when possible. The API allows developers
to specify sections of the Texture to be used for Primitives.

iDEN J2ME™ Developer’s Guide

174
 © 2005 Motorola, Inc.

The Renderer class, while unrestricted by the API itself, has practical memory restrictions to be aware
of. The draw() method allows for 65,535 objects to be registered for painting, however the limited
amount of memory available will usually mean a much lower limit. Also, calls to the Renderer class’s
paint() methods require extra memory for the Micro3D engine to actually compose the scene. If
insufficient memory is available when paint is called the scene will not be rendered. The amount of
memory required by the engine varies depending on the complexity of the scene. If your application
renders the same or similar scenes on every paint call, try to limit the amount of object instantiations
made between paints. This will keep the Java heap relatively static and will speed up rendering over
time.

4.9.17 Tips /
• Reuse, reuse, reuse! The API is designed so that complex scenes can be

composed with as few objects as possible.

• Combine as much Texture data as you can into one Texture. Non-sphere textures
can be up to 256 by 256 pixels.

• Try to allocate all the objects you will need up front when your application initializes
to speed up rendering.

• Get familiar with view and viewpoint transforms—most blank rendering results can
be traced back to bad coordinates.

• Use the MIDP 2.0 Gaming API to receive key presses.

• Use the Gaming APIs’ GameCanvas to render your scenes faster.

• The Renderer’s paint method will try to reclaim memory if necessary by performing
garbage collection but heap compaction will not take place. If your heap is
fragmented and you have insufficient memory after garbage collection your scene
will not render (see tip 1 and 3).

4.9.18 Caveats
Calls to System.gc() can be made to ensure that the maximum amount of memory is available for
a call to Renderer.paint() but can noticeably slow down your application.

4.9.19 Compiling & Testing Micro3D MIDlets
The Micro3D API stub classes will allow you to compile your MIDlet, but should not be used for off-
device execution or debugging. The Motorola SDK provides emulation of the Micro3D API.

iDEN J2ME™ Developer’s Guide

175
 © 2005 Motorola, Inc.

4.10 Mobile 3D Graphics API

This API is only available

on these handsets.

Motorola has implemented all features defined in the Mobile
3D Graphics API. The complete specification is defined in
JSR 184 at http://www.jcp.org. Our implementation uses HI
Corp’s Micro3D engine version 4. For more information
about HI Corp visit http://www.hicorp.co.jp.

The basic features of the Mobile 3D Graphics API are:

• Translation, scaling, and rotation (4x4 matrix.) manipulation on the model

• 3D world drawing by scenegraph API (*)

• Strengthening primitive drawing by Immediate Mode (*)

• Bone animation with SkinnedMesh

• Morphing with MorphMesh

• 2D sprite drawing

• Parallel projection and perspective projection (*)

• Alpha blending (*)

• The accurate drawing by Z buffer

• Point light and spot light can be used on top of ambient light and directional light (*)

• Multiple light support

• Fog effect (*)

• Specification of shading method (flat, gouraud.)

• Multiple textures

• Texture animation

(*) features added to JSR 184 implementation, not included in Micro3D version 3.

4.10.1 Immediate mode and retained mode rendering
There are four different rendering methods. The first method is for rendering an entire World.
When this method is used, we say that the API operates in retained mode. The second
method is for rendering scene graph nodes, including Groups. The third and fourth methods
are for rendering an individual submesh. When the node and submesh rendering methods
are used, the API is said to operate in immediate mode.

iDEN J2ME™ Developer’s Guide

176
 © 2005 Motorola, Inc.

There is a current camera and an array of current lights in Graphics3D. These are used by
the immediate mode rendering methods only. The retained mode rendering method
render(World) uses the camera and lights that are specified in the World itself, ignoring
the Graphics3D camera and lights. Instead, render(World) replaces the Graphics3D
current camera and lights with the active camera and lights in the rendered World. This
allows subsequent immediate mode rendering to utilize the same camera and lighting setup
as the World.

4.10.2 Steps for Creating a 3D Application using the Mobile 3D
Graphics API

Create 3D data using 3DStudio MAX, a commercial 3D design tool, or any other tool
supported by HI.

Create a 3D Graphics File Format that complements the Mobile 3D Graphics API (M3G) using
the HI plug-in, the file converter, or any other appropriate tool provided by HI.

*.m3g files contain 3D data (includes models, textures, animation, and scenegraph)

Create J2ME application using i860 SDK or any other J2ME SDKs to load the above files and
execute 3D animation. This is usually called rendering the data in retained mode.

Test the program on the i860 phone.

If there are errors, go back to (1) or (3) and correct the data or the MIDlet

Test the application on the target environment.

Note: Simple 3D applications can be created using the immediate mode API and without using
commercial tools to create data.

4.10.3 Code Examples
The following is an example of creating a retained mode application:

The application needs to obtain the Graphics3D instance (there is only one), bind a target to it,
load m3g data, render everything, and release the target. This is shown in the code fragments
below.

If Canvas is used:

public class MyCanvas extends Canvas
{
 //Get the Graphics3D instance
 Graphics3D myG3D = Graphics3D.getInstance();

 //Load the ready made m3g data
 Object3D aObject3d[] = Loader.load("3D_data.m3g");

 //Retrieve the world object
 World myWorld = (World)aObject3d[0];

 public void paint(Graphics g) {
 try {
 //Bind the rendering target
 myG3D.bindTarget(g);

iDEN J2ME™ Developer’s Guide

177
 © 2005 Motorola, Inc.

 ... update the scene ...

 //Render the 3D context
 myG3D.render(myWorld);

 } finally {
 myG3D.releaseTarget();
 }
}

 If GameCanvas is used:
class MyCanvas extends GameCanvas implements Runnable {

 Graphics3D myG3D2 = Graphics3D.getInstance();
 public void run() {
 try {
 Graphics g = getGraphics();
 myG3D2.bindTarget(g);
 ... update the scene ...
 ... render the scene ...

 } finally {
 myG3D2.releaseTarget();

 flushGraphics();
 }
}

 }

The following is example of an immediate mode application:

Class MyCanvas:

import javax.microedition.lcdui.*;

import javax.microedition.m3g.*;

public class MyCanvas extends Canvas {

 private Graphics3D iG3D;

 private Camera iCamera;

 private Light iLight;

 private float iAngle = 0.0f;

 private Transform iTransform = new Transform();

 private Background iBackground = new Background();

 private VertexBuffer iVb; // positions, normals, colors,

 // texcoords

iDEN J2ME™ Developer’s Guide

178
 © 2005 Motorola, Inc.

 private IndexBuffer iIb; // indices to iVB, forming triangle

 //strips

 private Appearance iAppearance; // material, texture,

 //compositing, ...

 private Material iMaterial = new Material();

 private Image iImage;

 /**

 * Construct the Displayable.

 */

 public MyCanvas() {

 // set up this Displayable to listen to command events

 setCommandListener(new CommandListener() {

 public void commandAction(Command c, Displayable d) {

 if (c.getCommandType() == Command.EXIT) {

 // exit the MIDlet

 MIDletMain.quitApp();

 }

 }

 });

 try {

 init();

 }

 catch(Exception e) {

 e.printStackTrace();

 }

 }

 /**

 * Component initialization.

 */

 private void init() throws Exception {

 // add the Exit command

 addCommand(new Command("Exit", Command.EXIT, 1));

iDEN J2ME™ Developer’s Guide

179
 © 2005 Motorola, Inc.

 // get the singleton Graphics3D instance

 iG3D = Graphics3D.getInstance();

 // create a camera

 iCamera = new Camera();

 iCamera.setPerspective(60.0f, // field of view

 (float)getWidth()/ (float)getHeight(), // aspectRatio

 1.0f, // near clipping plane

 1000.0f); // far clipping plane

 // create a light

 iLight = new Light();

 iLight.setColor(0xffffff); // white light

 iLight.setIntensity(1.25f); // overbright

 // init some arrays for our object (cube)

 // Each line in this array declaration represents a triangle

 // strip for one side of a cube. The only primitive we can draw

 // with is the triangle strip so if we want to make a cube with

 // hard edges we need to construct one triangle strip per face

 // of the cube.

 // 1 * * * * * 0

 // * * *

 // * * *

 // * * *

 // 3 * * * * * 2

 // The ASCII diagram above represents the vertices in the first

 // line

 // (the first tri-strip)

 short[] vert = {

 // front

 10, 10, 10, -10, 10, 10, 10,-10, 10, -10,-10, 10,

 // back

 -10, 10,-10, 10, 10,-10, -10,-10,-10, 10,-10,-10,

iDEN J2ME™ Developer’s Guide

180
 © 2005 Motorola, Inc.

 // left

 -10, 10, 10, -10, 10,-10, -10,-10, 10, -10,-10,-10,

 // right

 10, 10,-10, 10, 10, 10, 10,-10,-10, 10,-10, 10,

 // top

 10, 10,-10, -10, 10,-10, 10, 10, 10, -10, 10, 10,

 // bottom

 10,-10, 10, -10,-10, 10, 10,-10,-10, -10,-10,-10 };

 // create a VertexArray to hold the vertices for the object

 VertexArray vertArray = new VertexArray(vert.length / 3, 3, 2);

 vertArray.set(0, vert.length/3, vert);

 // The per-vertex normals for the cube;

 // these match with the vertices

 // above. Each normal is perpendicular to the

 // surface of the object at the corresponding vertex.

 byte[] norm = {

 0, 0, 127, 0, 0, 127, 0, 0, 127, 0, 0, 127,

 0, 0,-127, 0, 0,-127, 0, 0,-127, 0, 0,-127,

 -127, 0, 0, -127, 0, 0, -127, 0, 0, -127, 0, 0,

 127, 0, 0, 127, 0, 0, 127, 0, 0, 127, 0, 0,

 0, 127, 0, 0, 127, 0, 0, 127, 0, 0, 127, 0,

 0,-127, 0, 0,-127, 0, 0,-127, 0, 0,-127, 0 };

 // create a vertex array for the normals of the object

 VertexArray normArray = new VertexArray(norm.length / 3, 3, 1);

 normArray.set(0, norm.length/3, norm);

 // per vertex texture coordinates

 short[] tex = {

 1, 0, 0, 0, 1, 1, 0, 1,

 1, 0, 0, 0, 1, 1, 0, 1,

 1, 0, 0, 0, 1, 1, 0, 1,

 1, 0, 0, 0, 1, 1, 0, 1,

iDEN J2ME™ Developer’s Guide

181
 © 2005 Motorola, Inc.

 1, 0, 0, 0, 1, 1, 0, 1,

 1, 0, 0, 0, 1, 1, 0, 1 };

 // create a vertex array for the texture

 // coordinates of the object

 VertexArray texArray = new VertexArray(tex.length / 2, 2, 2);

 texArray.set(0, tex.length/2, tex);

 // the length of each triangle strip

 int[] stripLen = { 4, 4, 4, 4, 4, 4 };

 // create the VertexBuffer for our object

 VertexBuffer vb = iVb = new VertexBuffer();

 vb.setPositions(vertArray, 1.0f, null); // unit scale, zero bias

 vb.setNormals(normArray);

 vb.setTexCoords(0, texArray, 1.0f, null); //unit scale,zero bias

 // create the index buffer for our object (this tells how to

 // create triangle strips from the contents

 // of the vertex buffer).

 iIb = new TriangleStripArray(0, stripLen);

 // load the image for the texture

 iImage = Image.createImage("/texture.png");

 // create the Image2D (we need this so we can make a Texture2D)

 Image2D image2D = new Image2D(Image2D.RGB, iImage);

 // create the Texture2D and enable mipmapping

 // texture color is to be modulated with the lit material color

 Texture2D texture = new Texture2D(image2D);

 texture.setFiltering(Texture2D.FILTER_NEAREST,

 Texture2D.FILTER_NEAREST);

 texture.setWrapping(Texture2D.WRAP_CLAMP,

 Texture2D.WRAP_CLAMP);

iDEN J2ME™ Developer’s Guide

182
 © 2005 Motorola, Inc.

 texture.setBlending(Texture2D.FUNC_MODULATE);

 // create the appearance

 iAppearance = new Appearance();

 iAppearance.setTexture(0, texture);

 iAppearance.setMaterial(iMaterial);

 iMaterial.setColor(Material.DIFFUSE, 0xFFFFFFFF); // white

 iMaterial.setColor(Material.SPECULAR, 0xFFFFFFFF); // white

 iMaterial.setShininess(100.0f);

 iBackground.setColor(0xf54588); // set the background color

 }

 /**

 * Paint the scene.

 */

 protected void paint(Graphics g) {

 // Bind the Graphics of this Canvas to our Graphics3D. The

 // viewport is automatically set to cover the entire clipping

 // rectangle of the Graphics object. The parameters indicate

 // that z-buffering, dithering and true color rendering are

 // enabled, but antialiasing is disabled.

 iG3D.bindTarget(g, true,

 Graphics3D.DITHER |

 Graphics3D.TRUE_COLOR);

 // clear the color and depth buffers

 iG3D.clear(iBackground);

 // set up the camera in the desired position

 Transform transform = new Transform();

 transform.postTranslate(0.0f, 0.0f, 30.0f);

 iG3D.setCamera(iCamera, transform);

iDEN J2ME™ Developer’s Guide

183
 © 2005 Motorola, Inc.

 // set up a "headlight": a directional light shining

 // from the direction of the camera

 iG3D.resetLights();

 iG3D.addLight(iLight, transform);

 // update our transform (this will give us a rotating cube)

 iAngle += 1.0f;

 iTransform.setIdentity();

 iTransform.postRotate(iAngle, // rotate 1 degree per frame

 1.0f, 1.0f, 1.0f); // rotate around this axis

 // Render our cube. We provide the vertex and index buffers

 // to specify the geometry; the appearance so we know what

 // material and texture to use; and the transform to tell

 // where to render the object

 iG3D.render(iVb, iIb, iAppearance, iTransform);

 // flush

 iG3D.releaseTarget();

 }

}

Class MIDletMain:
import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

import java.util.*;

public class MIDletMain extends MIDlet

{

 static MIDletMain instance;

 MyCanvas displayable = new MyCanvas();

 Timer iTimer = new Timer();

iDEN J2ME™ Developer’s Guide

184
 © 2005 Motorola, Inc.

 /**

 * Construct the MIDlet.

 */

 public MIDletMain() {

 this.instance = this;

 }

 /**

 * Main method.

 */

 public void startApp() {

 Display.getDisplay(this).setCurrent(displayable);

 iTimer.schedule(new MyTimerTask(), 0, 40);

 }

 /**

 * Handle pausing the MIDlet.

 */

 public void pauseApp() {

 }

 /**

 * Handle destroying the MIDlet.

 */

 public void destroyApp(boolean unconditional) {

 }

 /**

 * Quit the MIDlet.

 */

 public static void quitApp() {

 instance.destroyApp(true);

 instance.notifyDestroyed();

 instance = null;

 }

iDEN J2ME™ Developer’s Guide

185
 © 2005 Motorola, Inc.

 /**

 * Our timer task for providing animation.

 */

 class MyTimerTask extends TimerTask {

 public void run() {

 if(displayable != null) {

 displayable.repaint();

 }

 }

 }

}

4.10.4 The Classification in JSR 184
Below are JSR 184 classes categorized by features:

4.10.4.1 Basic Class
Drawing, transformation, data loader
Class Name Outline

Object3D The basic abstract class for most of the 3D classes

Graphics3D 3D drawing class (rendering is executed only by this
class)

Transform Transformation matrix (4x4)

Transformable Abstract class for Node/Texture2D

Loader Data loader

Scenegraph Structure

Class Name Outline

Node The basic abstract class for all scenegraph elements

World Top level node of scenegraph

Group Group of scenegraph elements

iDEN J2ME™ Developer’s Guide

186
 © 2005 Motorola, Inc.

4.10.4.2 Basic Geometry
Mesh and Sprite: Scenegraph element
Class Name Outline

Mesh Basic 3D object

MorphingMesh Same as above (for morphing)

SkinnedMesh Same as above (for animation)

Sprite3D Sprite

*Mesh is a 3D object composed of polygons (and appearance), and it is the most basic object in
JSR 184

The Mesh component element (Submesh: Polygon = vertices + indices and its
appearance)
Class Name Outline

Appearance Appearance (how polygons look)

TriangleStripArray Neighboring triangle polygon (index buffer)

VertexBuffer Vertex buffer

The Appearance component element
Class Name Outline

PolygonMode Polygon attribute (Two sided, Flat, Smooth, etc.)

CompositeMode Pixel drawing attribute (alpha blending)

Fog Fog attribute

Material Material attribute (The characteristic of each light)

Texture2D Texture

The Sub Mesh/Appearance component element

Class Name Outline

VertexArray Vertex data array (for vertex buffer, etc.)

Image2D 2D image data for Sprite and Texture

Other

Class Name Outline

RayIntersection Light beam and the common part of Mesh/Sprite

iDEN J2ME™ Developer’s Guide

187
 © 2005 Motorola, Inc.

4.10.4.3 Background, Camera, Light
Background, camera, light: Scenegraph element

Class Name Outline

Background background

Camera camera

Light light

Animation

Class Name Outline

AnimationController Manages each animation

AnimationTrack Animation management for each attribute

KeyFrameSequence Sequence definition for animation data

4.10.5 Tips /
• The Java heap size allocated to 3D is limited (2MB). When making or selecting 3D data, the

uncompressed data size should be less than the limit and leave some spaces for the Java
objects. One way to check how much space the data requires is to open the data file using
HI’s V4Examiner; the bottom status bar of this tool will tell you how much space is being
used.

• Animation speed (fps – frame rate per second) is affected by some features, such as camera
type, so the user has to sacrifice features to get desired fps. One way to check how much
effect a feature will have is to toggle the feature on and off through the V4Examiner tool and
check the fps.

• To use your favorite Java SDK that doesn’t support JSR 184 to develop a JSR 184
application, you need to add JSR 184 classes to the MIDP APIs. In the case of KtoolBar, JSR
184 classes with absolute path information need to be added to \WTK21\lib\midpapi20.jar.

• In order to clear depth buffer contents (and color buffer contents, if so desired) after binding a
rendering target, the application must call the clear method, either explicitly or implicitly, by
rendering a World.

iDEN J2ME™ Developer’s Guide

188
 © 2005 Motorola, Inc.

4.11 Multimedia
4.11.1 Overview

This chapter deals with the audio and video features of the iDEN platform. The Mobile Media API
(JSR 135) is an optional API targeted at J2ME™ CLDC-based devices that defines a framework to
support playback and recording of audio and video, photo capture from an onboard camera, in
addition to tone generation.

The Mobile Media API does not mandate support for any specific media type. It does require that
an implementation supporting a given media type must implement certain features in the form of
controls.

In each of the class or interface descriptions that follow, if a particular method is not listed it is
implemented as described in the Sun Javadocs for JSR-135 (MMA 1.0 or MMA 1.1). If a class or
interface listed in the Javadocs is not here, then it is either not implemented or it contains no
methods.

These tables provide a quick glance at the supported content types, controls, protocols, and media
files. See “4.11.7 Tips” section on page 204 for encoding details on these media files.

Content Types vs. Supported Media Files
Media File Types

TONE MIDI` WAV AU MP3
iDEN

Voicenote
Digital

Camera

Video

Content
Type

audio/x-
tone-seq

audio/mid
audio/midi

audio/x-wav
audio/wav

audio/
basic

audio/
mpeg

audio/x-
idenvselp
audio/x-
idenambe
audio/amr

image/
jpeg
image/
rgb565

video/
mpeg
video/
mp4v-es
video/
quicktime

iDEN J2ME™ Developer’s Guide

189
 © 2005 Motorola, Inc.

Controls vs. Supported Media Files
Media File Types

Tone
Sequences

MIDI WAV AU MP3
IDEN

Voicenote

Digital

Camera

Video

Volume Y Y Y Y Y
Y, if the movie
clip has audio

Tone Y
Tempo Y

Record Y

video/quicktime

ONLY

C
on

tr
ol

Video Y Y

Locator Protocols vs. Supported Media Files
Media File Types

Tone
Sequences MIDI WAV AU

MP3

IDEN
Voicenote

Digital
Camera

Video

device:// Y
file:// Y Y Y Y Y Y
http:// Y Y Y Y Y Y

Pr
ot

oc
ol

capture://

Y

video/quicktime

ONLY

There are nine different system properties that can be queried using the method
System.getProperty(String key). There are three conditions that are required to say a device
supports mixing. iDEN handsets meet one of those conditions— a MIDI or Tone Sequence can play
simultaneously with a WAV or AU or MP3. The default encoding for audio recording and snapshots
are in bold.

iDEN J2ME™ Developer’s Guide

190
 © 2005 Motorola, Inc.

Device Specific Reported System Properties

 Key System.getProperty(Key)
microedition.media.version 1.1

supports.mixing false
supports.audio.capture true
supports.video.capture false

supports.recording true
audio.encodings encoding=idenvselp

encoding=idenambe&rate=2200
encoding=idenambe&rate=4400

video.encodings null
video.snapshot.encodings null

streamable.contents null

 Key System.getProperty(Key)
microedition.media.version 1.1

supports.mixing false
supports.audio.capture true
supports.video.capture false

supports.recording true
audio.encodings encoding=idenvselp

encoding=idenambe&rate=2200
encoding=idenambe&rate=4400

video.encodings null
video.snapshot.encodings encoding=jpeg&width=80&height=64

encoding=jpeg&width=128&height=96
encoding=jpeg&width=160&height=120
encoding=jpeg&width=320&height=240
encoding=jpeg&width=640&height=480

i265
only

streamable.contents null

 Key System.getProperty(Key)
microedition.media.version 1.1

supports.mixing false
supports.audio.capture true
supports.video.capture false

supports.recording true
audio.encodings encoding=idenvselp

encoding=idenambe&rate=2200
encoding=idenambe&rate=4400

encoding = amr
video.encodings null

video.snapshot.encodings null

streamable.contents null

iDEN J2ME™ Developer’s Guide

191
 © 2005 Motorola, Inc.

 Key System.getProperty(Key)
microedition.media.version 1.1

supports.mixing false
supports.audio.capture true
supports.video.capture false

supports.recording true
audio.encodings encoding=idenvselp

encoding=idenambe&rate=2200
encoding=idenambe&rate=4400

video.encodings null
video.snapshot.encodings encoding=jpeg&width=120&height=96

encoding=jpeg&width=130&height=130
encoding=jpeg&width=160&height=120
encoding=jpeg&width=320&height=240
encoding=jpeg&width=640&height=480

i275
only

streamable.contents null

 Key System.getProperty(Key)
microedition.media.version 1.1

supports.mixing false
supports.audio.capture true
supports.video.capture true

supports.recording true
audio.encodings encoding=idenvselp

encoding=idenambe&rate=2200
encoding=idenambe&rate=4400

encoding = amr
video.encodings encoding=3gp

video.snapshot.encodings encoding=jpeg&width=128&height=96
encoding=jpeg&width=160&height120

encoding=jpeg&width=176&height=220
encoding=jpeg&width=320&height=240
encoding=jpeg&width=640&height=480

streamable.contents null

4.11.2 Class Description
The Multimedia APIs are all located in package class javax.microedition.media. The following is the
Class Hierarchy for the Multimedia API:

java.lang.Object
 |
 +-- javax.microedition.media.Manager
 |
 +-- javax.microedition.media.protocol.ContentDescriptor

 |
 +--javax.microedition.media.protocol.DataSource

iDEN J2ME™ Developer’s Guide

192
 © 2005 Motorola, Inc.

The following is the Interface Hierarchy for the Multimedia API:

java.lang.Object
 |
 +-- javax.microedition.media.Controllable
 | |
 | +-- javax.microedition.media.Player
 | |
 | +-- javax.microedition.media.protocol.SourceStream
 |
 +-- javax.microedition.media.PlayerListener
 |
 +-- javax.microedition.media.Control
 |
 |
 |
 |
 |
 |
 |

 |
 +-- javax.microedition.media.control.RecordControl
 |
 +-- javax.microedition.media.control.ToneControl
 |
 +-- javax.microedition.media.control.VolumeControl
 |

 |
 |
 |
 |

 +-- javax.microedition.media.control.TempoControl
 |
 +-- javax.microedition.media.control.VideoControl

 +-- javax.microedition.media.TimeBase

4.11.3 Method Descriptions

4.11.3.1 Manager Methods
4.11.3.1.1 createPlayer

Creates a Player from an input locator.

public static Player createPlayer (String locator)

throws IOException, MediaException

For music content stored in the JAR file or in a RMS database, use the protocol file://.
See also the “Locator Protocols vs. Supported Media Files” table on page 189.
public static Player createPlayer (InputStream stream,

String type) throws IOException, MediaException

The type will be checked against the known accepted content-types. However, during the
realize process the actual content of stream will be analyzed for compatible data.

public static Player createPlayer (DataSource source)

throws IOException, MediaException

This method will always throw MediaException. See “4.11.7.8
javax.microedition.media.protocol Tips” section on page 205.

iDEN J2ME™ Developer’s Guide

193
 © 2005 Motorola, Inc.

4.11.3.1.2 getSupportedContentTypes
This method returns the list of supported content types for the given protocol. For
example, if the given protocol is "http", then the supported content types that
can be played back with the http protocol will be returned.

4.11.3.1.3 getSupportedProtocols
This method returns the list of supported protocols given the content type. The
protocols are returned as strings which identify what locators can be used for
creating Players. For example, if the given content_type is "audio/x-wav", then the
supported protocols that can be used to play back audio/x-wav will be returned.

4.11.3.1.2 getSystemTimeBase

This method will always return null.

4.11.3.1.3 playTone
Plays a tone specified by a note and duration.
public static void playTone (int note, int duration, int volume)

throws MediaException

Duration is limited to a maximum of 4 seconds, but exceptions are not thrown if duration
is longer. Likewise, the minimum limit for duration is 2 milliseconds. Similarly, the
maximum and minimum limits on note are 103 and 63. This method throws a
MediaException if any Player object is in the STARTED state or a previous tone is still
playing.

4.11.3.2 Player Methods
4.11.3.2.1 prefetch

Acquires resources and processes as much data as necessary to reduce the start latency.
public void prefetch() throws MediaException

An exception is thrown if:

• the handset is in Vibe-All mode, (does not apply to video-only Player instances)

• Java does not have focus, or

• another Player object of this media-type or other media type which is compatible
with this media type is already in the PREFETCHED state.

Keep in mind this other prefetched Player may be from another MIDlet or MIDlet suite.

iDEN J2ME™ Developer’s Guide

194
 © 2005 Motorola, Inc.

4.11.3.2.2 start
Starts the Player as soon as possible.

public void start() throws MediaException

If playback does not start it may be due to the device sending a DEVICE_UNAVAILABLE
event after the Player was prefetched. Avoid calling start() in a MIDlet’s startApp()
method as this may cause the MIDlet's UI to freeze at MIDlet starting or MIDlet resuming
screens.

4.11.3.2.3 stop
Stops the Player.

public void stop() throws MediaException

Pause and resume functionality is not supported. Stopping any media type means a
subsequent call to start() will play from the beginning of the file.

4.11.3.2.4 getSnapshot

On handsets featuring a built-in camera or
supporting a camera accessory, this method gets a
snapshot of the displayed content.

public byte[] getSnapshot(String imageType) throws MediaException

An exception is thrown if:

• initDisplayMode has not been called.

• the requested format is not supported.

• the caller does not have the security permission to take the snapshot.

For phones without a built-in camera, the getSnapshot() may be used to take a picture
when the camera accessory is connected.

The imageType parameter allows developers to specify certain attributes in the
getSnapshot() method. Note that all attribute and value pairs must be lower-case and
separated with an “&”.

The table below shows which attributes can be set and what values can be used with
them. It is important to use the attributes in the same order as listed in the table. For
example, calling getSnapshot(“lighting=normal&brightness=75”) will fail,
however getSnapshot(“brightness=75&lighting=normal”) will pass.

iDEN J2ME™ Developer’s Guide

195
 © 2005 Motorola, Inc.

The default value for each attribute is used each time getSnapshot() is called. This
means that one call with brightness set to 40 will not affect successive calls where the
brightness attribute is not specified.

Attribute Description Min Max Default

preview

 i265 only

When preview is “yes” the
returned image is always
128x96 and encoded in a
raw RGB format used by
the hardware. The data
can be passed to
Image.createImage()
and displayed on a
Canvas. The speed
advantage of using a
preview image makes it
ideal for showing a
viewfinder. A preview
image is not effected by the
quality attribute.

no yes no

brightness

 i265 only

Adjusts the brightness of
the captured picture, with 1
being very dark and 100
being very light.

1 100 50

“Low” adjusts the camera
aperture for low light
conditions. Use “Normal” in
any other condition.

“low”
“normal”

lighting

 i265 only

Developers
can also turn
“on” the flash.
It behaves
more like an
on/off switch
than a flash.

”on”

“normal”

getSnapshot Attribute Values
Table continued on next page.

iDEN J2ME™ Developer’s Guide

196
 © 2005 Motorola, Inc.

Attribute Description Min Max Default

100 quality Sets the image quality of an
encoded jpeg capture.
Even though a large range
of values is available for
use, the effectiveness is
limited to 1-59 (normal), 60-
79 (better), and 80-100
(best). It is recommended
to use 50, 65, or 80.

1 100

i275 only

65

getSnapshot Attribute Values (continued)

iDEN J2ME™ Developer’s Guide

197
 © 2005 Motorola, Inc.

 i275 only

Handsets with a built-in camera have the ability to specify other
attributes in the createPlayer() method just like getSnapshot()
above. The attribute and value pairs are as follows:

Attribute Description Min Max Default

“jpeg”

encoding The type of video to capture.

“3gp”

“jpeg”

audio

Indicate whether audio should be captured.

“yes”

“no”
“yes”

176

width The width of the captured image, NOT the
viewfinder. See also
"video.snapshot.encodings"

128 640

i275 only

128

createPlayer Attribute Values
Table continued on next page.

iDEN J2ME™ Developer’s Guide

198
 © 2005 Motorola, Inc.

Attribute Description Min Max Default

220

height The height of the captured image, NOT the
viewfinder. See also
"video.snapshot.encodings"

96 480

i275 only

96

zoom

i860 only

Zoom factor for the camera. There are three
supported zooms: 1X, 2X, and 4X.

1 4 1

brightness

i860 only

Adjusts the brightness of the viewfinder and
captured picture, with 1 being very dark and
100 being very light.

1 100 50

contrast

i860 only

Adjusts the contrast of the viewfinder and
captured picture, with 0 being very dark and
10 being very light.

0 10 6

createPlayer Attribute Values (continued)

iDEN J2ME™ Developer’s Guide

199
 © 2005 Motorola, Inc.

4.11.4 Video Playback
This feature enables playback of the multimedia capabilities of the iDEN handset based on
Multimedia API JSR 135 for J2METM devices. An implementation supporting video must provide a
VideoControl.

Players are created using the createPlayer(...) factory method of the
javax.microedition.media.Manager class. The createPlayer(...) method has the
following signatures:

Public static Player createPlayer(String locator)

Public static Player createPlayer(InputStream stream, String
type)

Public static Player createPlayer(DataSource source)

Playing video is similar to playing audio. However, the video player needs to be told where to
display the video. Therefore you get a video control from the video player and display it either as a
Form item or in a Canvas.

To display video as a Form item:
Player player=Manager.createPlayer(“file://video/3gpp”);
player.realize();
VideoControl vc=(VideoControl)player.getControl(“VideoControl”);
if(vc!=null)
{

Item it=(Item)vc.initDisplayMode(VideoControl.USE_GUI_PRIMITIVE,null);
 myForm.append(it);
 player.start();
}

To display video in a Canvas
Player player=Manager.createPlayer(“file://video/3gpp”);
player.realize();
VideoControl vc=(VideoControl)player.getControl(“VideoControl”);
if(vc!=null)
{
 vc.initDisplayMode(VideoControl.USE_DIRECT_VIDEO,myCanvas);
 vc.setVisible(true);
 player.start();
}

The run() method, mandated by the Runnable interface, contains the initialization of the
Player. The rationale behind putting this initialization in a separate thread is that in many cases
(although not this particularly simple example) it may be desirable to perform the potentially time
consuming initialization in the background, so that when rendering of the video is required it starts
with minimum latency. Another reason for performing the initialization in a separate thread is so
that it is possible to update a progress gauge, giving the user valuable feedback as to how the
video acquisition is proceeding. Since VideoCanvas implements the PlayerListener
interface we register this instance with the Player to receive calls back. The prefetch() and
realize() methods are called on the player and a gauge updated at the return of each method.

iDEN J2ME™ Developer’s Guide

200
 © 2005 Motorola, Inc.

public void run(){

 try {

 player = Manager.createPlayer(url);

 player.addPlayerListener(this);

 player.realize();

 player.prefetch();

 } catch (IOException ioe)

 {

 //handle

 } catch (MediaException me)

 {

 //handle

 }

 playVideo();

}

Once the player is in the PREFETCHED state we are ready to render the video content. In this
example our playVideo() method is called immediately.

public void playVideo(){
 try {
 videoControl =
(VideoControl)player.getControl(“VideoControl”);
 if (videoControl != null) {

 videoControl.initDisplayMode(videoControl.USE_DIRECT_VIDEO,
this);
 }
 display.setCurrent(this);
 videoControl.setVisible(true);
 player.start();
 } catch (MediaException me)
 {
 //handle
 }
}

The playVideo() method handles rendering the video onto the Canvas. To do this we must
obtain a VideoControl, by calling getControl() on a realized Player, and cast down
appropriately. The initDisplayMode() method is used to initialize the video mode that
determines how the video is displayed. This method takes an integer mode value as its first
argument with two predefined values USE_GUI_PRIMITIVE or USE_DIRECT_VIDEO. In the case
of the MIDP implementations (supporting the LCDUI) USE_GUI_PRIMITIVE will result in an
instance of a javax.microedition.lcdui.Item being returned. For example:

iDEN J2ME™ Developer’s Guide

201
 © 2005 Motorola, Inc.

Item display =
control.initDisplayMode(control.USE_GUI_PRIMITIVE,”javax.microedition.l
cdui.Item”);

Since our class is an instance of Canvas we must implement a paint() method as shown below

public void paint(Graphics g){
 g.setColor(128, 128, 128);
 g.fillRect(0, 0, getWidth(), getHeight());
}

Here our implementation simple fills the canvas with a suitable background color. The video
content is then rendered directly onto the Canvas by the VideoControl. Since our VideoCanvas
class implements the PlayerListener interface we must provide a playerUpdate() method:

public void playerUpdate(Player p, String event, Object eventData) {
 if (event == PlayerListener.END_OF_MEDIA)
 {
 if (rePlay == null) {
 rePlay = new Command(“re-play”, Command.SCREEN, 1);
 addCommand(rePlay);
 }
 }
}

In the code shown above we simply listen for the END_OF_MEDIA event and add a replay option to
our commands when the trailer has finished playing.

Finally we shall have a look at the commandAction() method mandated by CommandListener.

public void commandAction(Command c, Displayable s) {
 if(c == rePlay)
 {
 try{
 player.start();
 } catch (MediaException me) {
 //handle
 }
 }
 else if(c == close)
 {
 player.close();
 parent.form.delete(1);
 display.setCurrent(parent.form);
 url=null;
 parent=null;
 }
}

iDEN J2ME™ Developer’s Guide

202
 © 2005 Motorola, Inc.

Supported video file type extensions:

Video File Type File Extensions
MJPEG .avi

.mpeg

.mpg

.mpe
MPEG4 .mp4
3GP .mov

.qt

.3gp

4.11.5 Tips and Code Examples /
See Sun’s JSR 135 Javadocs for more use-case scenarios and code examples.

4.11.5.1 Basic Playback
The simplest way to begin playback is the following. It assumes that the MIDI file
“piano_solo.mid” is in the root path of the JAR file.

{

 Player p = Manager.createPlayer("file://piano_solo.mid");

p.start();

}

You can also pass the InputStream as a parameter. It assumes that x contains the buffer
of the media data.

{

Player player =Manager.createPlayer(x,"audio/x-idenvselp");

 player.start();

}

4.11.5.2 Capture Picture
The most straightforward way to capture and display an image from a digital camera is the
following. It assumes the camera is attached. The i860 has a built-in viewfinder capability.
Calling Player.start() will begin the viewfinder and Player.stop() will close it. Taking
a snapshot will take the picture, but then close the viewfinder, putting the player goes into the
PREFETCHED state.

{

 // Create the Player object using the default

 // resolution.

 Player p = Manager.createPlayer("capture://video");

 p.realize();

iDEN J2ME™ Developer’s Guide

203
 © 2005 Motorola, Inc.

 VideoControl vc = (VideoControl)p.getControl("VideoControl");

 if (vc != null)

 {

 vc.initDisplayMode(VideoControl.USE_GUI_PRIMITIVE, null);

 p.start();

 //Take the picture and create Image object

 byte[] jpgImage = vc.getSnapshot(null);

 Image myImage =

Image.createImage(jpgImage, 0, jpgImage.length);

 //Assume Graphics object g is present

 g.drawImage(myImage, 0, 0, g.TOP | g.LEFT);

 }

}

4.11.5.3 Common Mistake
Try to avoid the mistake of reusing the same Player object without first calling its close()
method. It can cause hours of debugging frustration.

{

 Player p = Manager.createPlayer("file://xyz.mid");

 p.start();

 // Object "p" could still be playing. Must call p.close()

 // before reusing. Besides, there would no longer be a

 // reference to the above midi and eventually, the maximum

 // number of Player objects in REALIZED state or beyond

 // will be reached.

 p.close();

 //Reuse "p"

 p = Manager.createPlayer("http://www.soap108.com/abc.mid");

iDEN J2ME™ Developer’s Guide

204
 © 2005 Motorola, Inc.

 p.start(); // <-- Note: An exception would have been

 // thrown during prefetch() if p.close()

 // had not been called.

 // See bullet #3 in section 4.8.3.2.1.

}

4.11.6 Compiling & Testing MMA MIDlets
Use Sun’s Wireless Tool Kit 2.0 to compile code and package JAR / JAD files.

4.11.7 Tips /
4.11.7.1 General Tips:

• Voicenote files are played according to voice volume, not Java volume.

• The packages com.motorola.midi and com.motorola.iden.voicenote are
deprecated.

• The i860 and i605 supports a maximum of 32 Player objects in the REALIZED state or
beyond. All other handsets support a maximum of 10 Player objects in the REALIZED state
or beyond. An existing Player object must be closed before a new Player object can be
realized, when the maximum is reached.

• MIDI files may be either Type-0 or Type-1. The SP-MIDI format is also supported, but note
that iDEN handsets allow for up to 16 instruments at once.

• WAV files must be 8 kHz, 8-bit, mono PCM encoded files, formatted as a RIFF WAV file
with little-endian byte order. RIFX WAV files that support the big-endian byte-ordering scheme
are not recognized. In the file’s 44-byte header, the “format” data must be 16 bytes in length.
This follows the canonical WAV format. Note that Windows WAV files often have 18 bytes of
“format” data. If the Player cannot be realized with such a file, simply remove the two extra
bytes. A PC tool that can automatically strip out these bytes and ensure a canonical format is
at http://www.bluechillies.com/browse/W/B/H/. The application name is “StripWav 2.0.3”.

• AU files must be 8 kHz, 8 bit, mono u-law encoded files. Only big-endian AU files with a
magic number of “.snd” are considered. The magic field name identifies files as a
Next/Sun sound file and is used for type checking and byte ordering information.

• For the i860 and i605, MP3 file must be 8 kHz, 32/48 kbps, mono encoded files.

• When using the camera accessory, the baud rate must be set to Auto. This option is found
in the Main Menu under Settings > Advanced > Baud Rate. . A phone with a built-in
camera is unaffected by the baud rate.

• The first time getSnapshot(), setRecordLocation(), or setRecordStream() is
called, a system security screen pops up and prompts the user to grant or deny. This
screen suspends the MIDlet and causes all Players to go to REALIZED state. Once the
selection is made, the MIDlet resumes but the above methods throw an exception
because the Player is no longer in the right state. The Player will need to be started

iDEN J2ME™ Developer’s Guide

205
 © 2005 Motorola, Inc.

again and another call to this method will be needed. Thus, if permission is granted, it is
highly encouraged that “one shot” not be used. Always select “blanket” or “session.”

Note: The i860 behaves a little differently for getSnapshot(). If permission is granted, the
method will at least return the data for that picture. The player object will however go back to
the REALIZED state.

4.11.7.2 PlayerListener Tips
The following events are not used: BUFFERING_STARTED, BUFFERING_STOPPED,
DURATION_UPDATED, and STOPPED_AT_TIME. No OEM events are implemented.

4.11.7.3 VolumeControl Tips
The lower the volume the more likely the audio will sound scratchy. By default, a Player’s
volume is set to 100% of the Java Volume. See the “Definitions, Abbreviations and Acronyms”
section on page 12.

4.11.7.4 ToneControl Tips
The effective duration of a note should be at most 2.68 seconds. If not, the note will be clipped
to this limit. SILENT notes are not held to this limit. On a PC, this duration limit will not
necessarily exist.

4.11.7.5 TempoControl Tips
Only TempoControl is implemented on iDEN handsets (for MIDI files only), despite inheriting
methods from RateControl. All RateControl methods return –1. The range of values
supported for setTempo() are 10 - 300 beats per minute.

4.11.7.6 RecordControl Tips
This control can be used to capture iDEN Voicenote Files. Recordings to a location beginning
with "file:/" are put in a temporary folder and are removed when the application exits. To
preserve such a recording it must be copied to a permanent location.

4.11.7.7 VideoControl Tips

The method getSnapshot() may be used to take a picture if the camera accessory
is connected or if the handset features an onboard camera. See also
“video.snapshot.encodings” in section 4.13.3.1.3 getSnapshot on page 258.

4.11.7.8 javax.microedition.media.protocol Tips
This MMA implementation does not provide any OEM data sources.

iDEN J2ME™ Developer’s Guide

206
 © 2005 Motorola, Inc.

4.12 Real-time Protocol
4.12.1 Overview

This API is only available

on this handset.

The RTP API provides RTP protocol integration for MIDlets. J2ME
MIDlets can receive and transmit real-time data such as audio, video
or simulation data over a network using the RTP API.

4.12.2 Class Description
The RTP API is divided into four packages:

Package Summary

com.motorola.iden.media Defines the media related classes

com.motorola.iden.media.rtp Implements the abstract classes and interfaces in
javax.media.rtp

com.motorola.iden.media.rtp.event Defines all the event classes

com.motorola.iden.media.protocol This package is defined for supporting the MMAPI

Package com.motorola.iden.media Class Summary

UnsupportedFormatException Defines the exception when media format is not supported.

iDEN J2ME™ Developer’s Guide

207
 © 2005 Motorola, Inc.

Package com.motorola.iden.media.rtp Class Summary

RTPManager RTPManager, the starting point for creating, maintaining
and closing an RTP session.

ReceiveStream Represents a receiving stream within an RTP session.

ReceiveStreamListener Generates the callback for all RTPManager Events.

RTPStream Base interface represents a stream within an RTP
session.

SendStream Represents a sending stream within an RTP session.

SendStreamListener Generates the callback for RTPManager Events.

SessionAddress Encapsulates the RTP session address

SessionManagerException Defines the basic session exception

InvalidSessionAddressException Defines the invalid session address exception

Package com.motorola.iden.media.rtp.event Class Summary

NewReceiveStreamEvent Informs the RTP listener that a new stream of RTP data
packets has been detected.

NewSendStreamEvent Informs the RTP listener that a new transmitting stream has
been created in this RTPManager.

ReceiveStreamEvent The ReceiveStreamEvent will notify a listener of all events that
are received on a particular ReceiveStream.

RTPEvent The Base class of all event notification in the RTPManager.

SendStreamEvent Notifies a listener of all events that are received on a particular
SendStream.

StreamClosedEvent Informs the RTP listener that a transmitting stream has been
closed in the RTPManager

Package com.motorola.iden.media.protocol Class Summary

RTPContentDescriptor Defines the media content in
javax.microedition.media.protocol.DataSource

iDEN J2ME™ Developer’s Guide

208
 © 2005 Motorola, Inc.

Class Hierarchy
The following is the class hierarchy for the RTP API:

com.motorola.iden.media.UnsupportedFormatException

com.motorola.iden.media.rtp.RTPManager
com.motorola.iden.media.rtp.SendStream
com.motorola.iden.media.rtp.ReceiveStream
com.motorola.iden.media.rtp.ReceiveStreamListener
com.motorola.iden.media.rtp.RTPStream
com.motorola.iden.media.rtp.SendStreamListener
com.motorola.iden.media.rtp.InvalidSessionAddressException
com.motorola.iden.media.rtp.SessionManagerException
com.motorola.iden.media.rtp.SessionAddress

com.motorola.iden.media.rtp.event.NewReceiveStreamEvent
com.motorola.iden.media.rtp.event.NewSendStreamEvent
com.motorola.iden.media.rtp.event.ReceiveStreamEvent
com.motorola.iden.media.rtp.event.RTPEvent
com.motorola.iden.media.rtp.event.SendStreamEvent
com.motorola.iden.media.rtp.event.StreamClosedEvent

com.motorola.iden.media.RTPContentDescriptor

4.12.2.1 Class RTPManager

4.12.2.1.1 addFormat
public void addFormat(RTPContentDescriptor f, int payload)

This method is used to add a dynamic payload to format mapping to the RTPManager.
The RTPManager maintains all static payload numbers and their corresponding
formats as mentioned in the Audio/Video profile document. Before streaming dynamic
payloads, an RTPContentDescriptor object needs to be created for each of the
dynamic payload types and associated with a dynamic payload number.

Parameters:

f - The RTPContentDescriptor to be associated with this dynamic payload number.

payload - The RTP payload number must between [96,127]

iDEN J2ME™ Developer’s Guide

209
 © 2005 Motorola, Inc.

24.12.2.1.2 addReceiveStreamListener
public void addReceiveStreamListener(ReceiveStreamListener listener)

Adds a ReceiveStreamListener. This listener listens to all the events that cause state
transitions for a particular ReceiveStream. If the listener is null, no actions will be
taken. To remove a ReceiveStreamListener use
removeReceiveStreamListener(ReceiveStreamListener listener).

Parameters:

listener - the ReceiveStreamListener added to the list of listeners for this RTPManager

4.12.2.1.3 addSendStreamListener
public void addReceiveStreamListener(ReceiveStreamListener listener)

Adds a ReceiveStreamListener. This listener listens to all the events that cause state
transitions for a particular ReceiveStream. If the listener is null, no actions will be
taken. To remove a ReceiveStreamListener use
removeReceiveStreamListener(ReceiveStreamListener listener).

Parameters:

listener - the ReceiveStreamListener added to the list of listeners for this RTPManager

4.12.2.1.4 removeTarget
public void removeTarget(SessionAddress remoteAddress, java.lang.String reason)

 throws InvalidSessionAddressException

Closes all open streams associated with the endpoint defined by remoteAddress.

Parameters:

remoteAddress - The RTP session address of a remote endpoint for this session. i.e.
the IP address/port of a remote host.

reason - A string that the RTCP will send out to other participants as the reason the
local participant has quit the session. This RTCP packet will go out with the default
SSRC of the session. If supplied as null, a default reason will be supplied by the
RTPManager.

Throws:

InvalidSessionAddressException if the SessionAddress is null or cannot be parsed into
a valid IP address

4.12.2.1.5 removeTargets
public void removeTargets(java.lang.String reason)

Closes the open streams associated with all remote endpoints that have been added
previously by subsequent addTarget() calls.

Parameters:

reason - A string that RTCP will send out to other participants as the reason the local
participant has quit the session. This RTCP packet will go out with the default SSRC of
the session. If supplied as null, a default reason will be supplied by the RTPManager.

iDEN J2ME™ Developer’s Guide

210
 © 2005 Motorola, Inc.

4.12.2.1.6 createSendStream
public SendStream createSendStream(javax.microedition.media.protocol.DataSource
dataSource, int streamIndex)

 throws UnsupportedFormatException, java.io.IOException

This method is used to create a sending stream within the RTP session. For each time
the call is made, a new sending stream will be created.

The RTP payload that is used to send this stream is found from the format set on the
SourceStream of the data source supplied.

Parameters:

dataSource - This data source may contain more than one stream. The stream which is
used in creating this RTP stream is specified by the streamIndex parameter.

streamIndex - The index of the sourcestream from which data is sent out on this RTP
stream. An index of 1 would indicate the first sourcestream of this data source should
be used to create the RTP stream. If the index is set to zero, it would indicate a RTP
mixer operation is desired. i.e. all the streams of this data source must be mixed into
one single stream from one single SSRC.

Returns:

The SendStream created by the RTPManager.

Throws:

UnsupportedFormatException - (javax.media.format.UnsupportedFormatException).
This exception is thrown if the format is not set on the SourceStream or a RTP payload
cannot be located for the format set on the SourceStream.

java.io.IOException - Thrown for two possible reasons which will be specified in the
message part of the exception 1) If there was any problem opening the sending
sockets

4.12.2.1.7 dispose
public void dispose()

Releases all objects allocated in the course of the session and prepares the
RTPManager to be garbage collected. This method should be called at the end of any
RTP session.

4.12.2.1.8 getReceiveStreams
public java.util.Vector getReceiveStreams()

Returns the a Vector of ReceiveStream objects created by the RTPManager. These
are streams formed when the RTPManager detects a new source of RTP data. The
ReceiveStream objects returned are a snapshot of the current state in the
RTPManager. The ReceiveStreamListener interface may be used to get notified of
additional streams.

Returns:

A Vector containing all the ReceiveStream objects created by this RTPManager

iDEN J2ME™ Developer’s Guide

211
 © 2005 Motorola, Inc.

4.12.2.1.9 getSendStreams
public java.util.Vector getSendStreams()

Returns the SendStreams created by the RTPManager. SendStreams returned are a
snapshot of the current state in the RTPSesion and the SendStreamListener interface
may be used to get notified of additional streams.

Returns:

A Vector containing all the SendStream objects created by this RTPManager

4.12.2.1.10 initialize
public void initialize(SessionAddress localAddress)

 throws InvalidSessionAddressException, java.io.IOException

Initializes the session. Once this method has been called, the session is "initialized"
and this method cannot be called again.

Parameters:

localAddress - Encapsulates the local control and data addresses to be used for the
session.

Throws:

InvalidSessionAddressException - if the localAddress is null or not a valid local
address.

java.io.IOException - if meeting problems during initialize network.

4.12.2.1.11 addTarget
public void addTarget(SessionAddress remoteAddress)

 throws InvalidSessionAddressException, java.io.IOException

This method opens the session, causing RTCP reports to be generated and callbacks
to be made through the SessionListener interface. This method must be called after
session initialization and prior to the creation of any streams on a session.

Parameters:

remoteAddress - the RTP session address of a remote endpoint for this session. i.e.
the IP address/port of a remote host

Throws:

InvalidSessionAddressException - if the remote control and data addresses given in
localAddress parameter are not valid session addresses.

java.io.IOException - if meeting problems during open network connection.

iDEN J2ME™ Developer’s Guide

212
 © 2005 Motorola, Inc.

4.12.2.1.12 removeReceiveStreamListener
public void removeReceiveStreamListener(ReceiveStreamListener listener)

Removes a ReceiveStreamListener.

Parameters:

listener - the ReceiveStreamListener to be removed

4.12.2.1.13 removeSendStreamListener
public void removeSendStreamListener(SendStreamListener listener)

Removes a SendStreamListener.

Parameters:

listener - the SendStreamListener to be removed

4.12.2.1.14 newInstance
public static RTPManager newInstance()

Create an RTPManager object for the underlying implementation class.

4.12.2.2 Class UnsupportedFormatException

4.12.2.2.1 UnsupportedFormatException
public UnsupportedFormatException()

Constructs a new UnsupportedFormatException with no message string.

4.12.2.2.2 UnsupportedFormatException
public UnsupportedFormatException(java.lang.String message)

Constructs a new UnsupportedFormatException with the specified parameters.

Parameters:

message - A String that contains a message associated with the exception

iDEN J2ME™ Developer’s Guide

213
 © 2005 Motorola, Inc.

4.12.2.3 Class RTPContentDescriptor

4.12.2.3.1 RTPContentDescriptor
public RTPContentDescriptor(java.lang.String contentType, int sample, int ts)

 Construct the RTPContentDescriptor object .

Parameters:

contentType - A String that represents the media content

sample - the sample rate of the media

ts - the time stamp unit in the RTP Header

4.12.2.3.2 getSampleRate
public int getSampleRate()

Returns:

the sample rate in the RTPContentDescriptor

4.12.2.3.3 getTimeStampUnit
public int getTimeStampUnit()

Returns:

the time stamp unit in the RTPContentDescriptor

4.12.2.4 Class SessionAddress

4.12.2.4.1 SessionAddress
public SessionAddress(java.lang.String saddr, int port)

Constructor to create a SessionAddress given the data internet address and data port.

Parameters:

saddr - the internet address

port - the data port of rtp session.

Note: If the value of the port parameter is set to ANY_PORT, the SessionAddress
created will not specify a specific port.

4.12.2.4.2 getIPAddr
public java.lang.String getIPAddr()

This method returns the internet address of this SessionAddress.

4.12.2.4.3 getDataPort
public int getDataPort()

This method returns the data port of this SessionAddress.

iDEN J2ME™ Developer’s Guide

214
 © 2005 Motorola, Inc.

4.12.2.5 Interface ReceiveStream

4.12.2.5.1 getDataSource
public javax.microedition.media.protocol.DataSource getDataSource()

Returns the datasource of the stream

4.12.2.6 Interface ReceiveStreamListener

4.12.2.6.1 update
public void update(ReceiveStreamEvent event)

Call back method used to provide notifications of all ReceiveStream Events.

Parameters:

event - the related RTP event.

4.12.2.7 Interface RTPStream

4.12.2.7.1 getDataSource
public javax.microedition.media.protocol.DataSource getDataSource()

Returns the datasource of the stream.

4.12.2.8 Interface SendStream

4.12.2.8.1 close
public void close()

Removes the stream from the session. When this method is called the RTPSM
deallocates all resources associated with this stream and releases internal references
to this object as well as the Player which had been providing the send stream.

4.12.2.8.2 stop
public void stop()

 throws java.io.IOException

Will temporarily stop the RTPSendStream i.e. the local participant will stop sending out
data on the network at this time.

Throws:

java.io.IOException - Thrown if there was any IO problems when stopping the
RTPSendStream. A stop to the SendStream will also cause a stop() to be called on the
stream's datasource. This could also throw an IOException, consistent with
datasources in JMF.

iDEN J2ME™ Developer’s Guide

215
 © 2005 Motorola, Inc.

4.12.2.8.3 start
public void start()

 throws java.io.IOException

Will resume data transmission over the network on this RTPSendStream.

Throws:

java.io.IOException - Thrown if there was any IO problems when starting the
RTPSendStream. A start to the SendStream will also cause a start() to be called on the
stream's datasource. This could also throw an IOException, consistent with
datasources in JMF.

4.12.2.9 Interface SendStreamListener

4.12.2.9.1 update
public void update(SendStreamEvent event)

Call back method used to provide notifications of all SendStream Events

Parameters:

event - the related RTP event

4.12.2.10 Class InvalidSessionAddressException

4.12.2.10.1 InvalidSessionAddressException
public InvalidSessionAddressException()

Constructs the InvalidSessionAddressException object with no description string.

4.12.2.10.2 InvalidSessionAddressException
public InvalidSessionAddressException(java.lang.String reason)

Construct the InvalidSessionAddressException object with the specified description
string.

Parameters:

reason - the description string for the exception

4.12.2.11 Class SessionManagerException

4.12.2.11.1 SessionManagerException
public SessionManagerException()

Construct the SessionManagerException object with no description string.

iDEN J2ME™ Developer’s Guide

216
 © 2005 Motorola, Inc.

4.12.2.11.2 SessionManagerException
public SessionManagerException(java.lang.String reason)

Construct the SessionManagerException object with the specified description string.

Parameters:

reason - the description string for the exception

4.12.2.12 Class RTPEvent

4.12.2.12.1 RTPEvent
public RTPEvent(RTPManager source)

Construct an RTP event.

Parameters:

source - the RTPManager generating this event.

4.12.2.12.2 getSessionManager
public RTPManager getSessionManager()

Returns:

The RTPManager generating this event.

4.12.2.12.3 getSource
public RTPManager getSource()

Returns:

the RTPManager generating this event.

4.12.2.13 Class ReceiveStreamEvent

4.12.2.13.1 ReceiveStreamEvent
public ReceiveStreamEvent(RTPManager source, ReceiveStream stream)

Construct the ReceiveStreamEvent object.

Parameters:

source - the RTP manager that produces this event

stream - the ReceiveStream related to this event.

4.12.2.13.2 getReceiveStream
public ReceiveStream getReceiveStream()

returns the ReceiveStream object related to this event

iDEN J2ME™ Developer’s Guide

217
 © 2005 Motorola, Inc.

4.12.2.14 Class NewReceiveStreamEvent extends
ReceiveStreamEvent

4.12.2.14.1 NewReceiveStreamEvent
public NewReceiveStreamEvent(RTPManager source, ReceiveStream receiveStream)

Construct the NewReceiveStreamEvent object.

Parameters:

source - the RTPManager generating the event.

receiveStream - the ReceiveStream related to this event.

4.12.2.15 Class SendStreamEvent

4.12.2.15.1 SendStreamEvent
public SendStreamEvent(RTPManager source, SendStream stream)

Construct the SendStreamEvent object.

Parameters:

source - the RTPManager generating this event

stream - the SendStream related to this event.

4.12.2.15.2 getSendStream
public SendStream getSendStream()

get the SendStream related to this event.

4.12.2.16 Class NewSendStreamEvent extends SendStreamEvent

4.12.2.16.1 NewSendStreamEvent
public NewSendStreamEvent(RTPManager source, SendStream sendStream)

Construct the NewSendStreamEvent object.

Parameters:

source - the RTP manager generating this event

sendStream - the SendStream related to this event

iDEN J2ME™ Developer’s Guide

218
 © 2005 Motorola, Inc.

4.12.2.17 Class StreamClosedEvent extends SendStreamEvent

4.12.2.17.1 StreamClosedEvent
public StreamClosedEvent(RTPManager source, SendStream sendStream)

Constructs a new StreamClosedEvent indicating that a transmitting stream has been
closed in an RTPSessionManager.

Parameters:

source - The RTPManager generating this event

sendStream - the send stream related to this event

4.12.3 Code Example
This is an example of using RTP
import javax.microedition.midlet.*;
import com.motorola.iden.media.rtp.*;
import com.motorola.iden.media.rtp.event.*;
import javax.microedition.lcdui.*;
import com.motorola.iden.media.protocol.*;
import com.mot.cldc.io.*;
import com.mot.security.*;
import javax.microedition.media.protocol.*;
public class SendAndRecvTest4 extends javax.microedition.midlet.MIDlet implements
CommandListener,SendStreamListener,ReceiveStreamListener {
 RTPManager Amanager;
 SessionAddress localaddr;
 SessionAddress remoteaddr;
 private Display myDisplay;
 Form fmAnswer;
 public StringItem siRTPText;
 public StringItem siRTPText2;
 Command testCmd;
 Command closeCmd;
 Command exitCmd;
 SendStream sendStream = null;
 //DataSource ds = null;
 public SendAndRecvTest4() {
 fmAnswer = new Form("RTP TEST");
 siRTPText = new StringItem("RTP Send Status:", "");
 siRTPText2 = new StringItem("RTP Recv Status:", "");
 testCmd = new Command("Test", 1, 1);
 closeCmd = new Command("CloseStream",1,1);
 exitCmd = new Command("Exit",1,2);
 fmAnswer.addCommand(testCmd);

 fmAnswer.addCommand(exitCmd);
 fmAnswer.append(siRTPText);
 fmAnswer.append(siRTPText2);
 fmAnswer.setCommandListener(this);
 myDisplay = Display.getDisplay(this);

iDEN J2ME™ Developer’s Guide

219
 © 2005 Motorola, Inc.

 myDisplay.setCurrent(fmAnswer);
 System.out.println("before new instance");
 Amanager = RTPManager.newInstance();
 System.out.println("after new instance");
 }
 public void startApp() {
 RTPContentDescriptor mpegcd = new RTPContentDescriptor("video/mpeg",8100,100);
 RTPContentDescriptor xwavcd = new RTPContentDescriptor("audio/x-wav",8100,100);
 System.out.println("before addFormat");
 Amanager.addFormat(mpegcd,99);
 Amanager.addFormat(xwavcd,100);
 System.out.println("after addFormat");
 //localaddr= new SessionAddress("127.0.0.1", 55000);
 //localaddr= new SessionAddress("127.0.0.1", 55000);
 localaddr= new SessionAddress("173.49.50.117", 55000);
 //remoteaddr = new SessionAddress("127.0.0.1", 55000);
 remoteaddr = new SessionAddress("173.49.50.117", 55000);
 System.out.println("after construct session Address");
 try {
 System.out.println("here to init");
 System.out.println(localaddr.getIPAddr());
 Amanager.initialize(localaddr);
 siRTPText.setText("RTP Initialized");
 }catch (Exception ex) {
 System.out.println("error");
 ex.printStackTrace();
 }
 try {
 System.out.println("before addtarget");
 Amanager.addTarget(remoteaddr);
 System.out.println("after addtarget");
 }catch(Exception ex) {
 //System.out.println("addtarget error");
 //System.out.println(ex.toString());
 }
 }

 public void pauseApp() {
 }
 public void destroyApp(boolean unconditional) {
 }

 public void update(SendStreamEvent ev) {
 System.out.println("send stream event got");
 if (ev instanceof NewSendStreamEvent) {
 //siRTPText.setText("begin to send now");
 System.out.println("here are new send stream");
 }
 if(ev instanceof StreamClosedEvent) {
 siRTPText.setText("send closed");
 System.out.println("here are closed send stream");
 }

iDEN J2ME™ Developer’s Guide

220
 © 2005 Motorola, Inc.

 }

 public void update(ReceiveStreamEvent ev) {
 System.out.println("receive stream event got");
 if (ev instanceof NewReceiveStreamEvent) {
 System.out.println("here are new receive stream");
 ReceiveStream receiveStream = ev.getReceiveStream();
 DataSource ds = receiveStream.getDataSource();
 try{
 ds.start();
 }catch(Exception e)
 {
 }
 SourceStream[] streams = ds.getStreams();
 System.out.println("begin to start thread to receive");
 siRTPText2.setText("begin to receive");
 new Thread(new datasourceReader(streams[0],this)).start();
 }
 }
 public void commandAction(Command command, Displayable displayable)
 {
 int fileLen = 0;
 if(command == testCmd)
 {
 try{
 RandomAccessFile inFile = new
RandomAccessFile("ChatInvt.wav",com.mot.cldc.io.File.R_RSC,"r",new
SecurityToken(SecurityToken.SM_MIDLET_TOKEN));
 fileLen = inFile.length();
 inFile.close();
 }catch(Exception e) {
 System.out.println(e.toString());
 }
 String uri="file://ChatInvt.wav";
 FileDataSource fds = new FileDataSource();
 fds.setLocator(uri);
 //fds.connect();
 Amanager.addSendStreamListener(this);
 Amanager.addReceiveStreamListener(this);
 try {
 fds.connect();
 sendStream = Amanager.createSendStream(fds,1);
 System.out.println("after create sendStream");
 sendStream.start();
 }catch(Exception ex2) {
 System.out.println("create sendStream error " +ex2.toString());
 }
 siRTPText.setText("pls check receive, send file's length is " + fileLen);
 fmAnswer.removeCommand(testCmd);
 fmAnswer.addCommand(closeCmd);
 }

iDEN J2ME™ Developer’s Guide

221
 © 2005 Motorola, Inc.

 if(command == closeCmd)
 {
 System.out.println("begin to close");
 sendStream.close();
 //Amanager.removeTargets(null);
 System.out.println("after to close");
 fmAnswer.removeCommand(closeCmd);
 fmAnswer.addCommand(testCmd);
 }
 if(command == exitCmd)
 {
 Amanager.removeTargets(null);
 Amanager.dispose();
 destroyApp(false);
 notifyDestroyed();
 }
 }

 class datasourceReader implements Runnable {
 private SourceStream stream = null;
 private RandomAccessFile outFile;
 private SendAndRecvTest4 test;
 datasourceReader(SourceStream stream,SendAndRecvTest4 test){
 this.stream=stream;
 this.test = test;
 }
 public void run() {
 System.out.println("begin to read");
 int len=-1;
 int recv_count = 0;
 byte[] buf = new byte[256];
 while(true) {
 try {
 len = stream.read(buf, 0, buf.length);
 //System.out.println("here come data");
 recv_count = recv_count + len;
 test.siRTPText2.setText("have receive " + recv_count+ " bytes");
 //System.out.println("Test Case: receive " + recv_count+ " bytes");
 //outFile.write(buf,0,len);
 }catch(Exception e) {
 System.out.println(e.toString());
 continue;
 }
 }
 }
 }
}

iDEN J2ME™ Developer’s Guide

222
 © 2005 Motorola, Inc.

The following examples are DSR & RTP integration examples

import javax.microedition.midlet.*;
import com.motorola.iden.media.rtp.*;
import com.motorola.iden.media.rtp.event.*;
import javax.microedition.lcdui.*;
import com.motorola.iden.media.protocol.*;
import com.mot.cldc.io.*;
import com.mot.security.*;
import javax.microedition.media.protocol.*;
import com.motorola.iden.speech.recognition.dsr.*;

public class SendDSRData extends javax.microedition.midlet.MIDlet implements
CommandListener,SendStreamListener {
 RTPManager Amanager;
 SessionAddress localaddr;
 SessionAddress remoteaddr;
 private Display myDisplay;
 Form fmAnswer;
 public StringItem siRTPText;
 public StringItem siRTPText2;
 Command testCmd;
 Command closeCmd;
 Command exitCmd;
 SendStream sendStream = null;
 DSRDataSource dsr = null;

 public SendDSRData() {
 fmAnswer = new Form("RTP TEST");
 siRTPText = new StringItem("RTP Send Status:", "");
 siRTPText2 = new StringItem("RTP Recv Status:", "");
 testCmd = new Command("Test", 1, 1);
 closeCmd = new Command("CloseStream",1,1);
 exitCmd = new Command("Exit",1,2);
 fmAnswer.addCommand(testCmd);
 fmAnswer.addCommand(exitCmd);
 fmAnswer.append(siRTPText);
 fmAnswer.append(siRTPText2);
 fmAnswer.setCommandListener(this);
 myDisplay = Display.getDisplay(this);
 myDisplay.setCurrent(fmAnswer);
 Amanager = RTPManager.newInstance();

 }
 public void startApp() {
 RTPContentDescriptor mpegcd = new RTPContentDescriptor("video/mpeg",8100,100);
 RTPContentDescriptor xwavcd = new RTPContentDescriptor("audio/dsr",8100,100);
 //System.out.println("here cd"+cd.getContentType());
 Amanager.addFormat(mpegcd,100);
 Amanager.addFormat(xwavcd,99);
 //localaddr= new SessionAddress("127.0.0.1", 55000);
 //localaddr= new SessionAddress("10.23.6.1", 55000);
 int port = 55000;

iDEN J2ME™ Developer’s Guide

223
 © 2005 Motorola, Inc.

 localaddr= new SessionAddress("173.49.50.117", port);
 remoteaddr = new SessionAddress("173.49.50.117", port);
 try {
 System.out.println("here to init");
 System.out.println(localaddr.getIPAddr());
 Amanager.initialize(localaddr);
 siRTPText.setText("RTP Initialized");
 }catch (Exception ex) {
 System.out.println("error");
 ex.printStackTrace();
 }
 try {
 System.out.println("before addtarget");
 Amanager.addTarget(remoteaddr);
 System.out.println("after addtarget");
 }catch(Exception ex) {
 //System.out.println("addtarget error");
 //System.out.println(ex.toString());
 }
 }

 public void pauseApp() {
 }
 public void destroyApp(boolean unconditional) {
 }

 public void update(SendStreamEvent ev) {
 System.out.println("send stream event got");
 if (ev instanceof NewSendStreamEvent) {
 //siRTPText.setText("begin to send now");
 System.out.println("here are new send stream");
 }
 if(ev instanceof StreamClosedEvent) {
 siRTPText.setText("send closed");
 System.out.println("here are closed send stream");
 }

 }

 public void commandAction(Command command, Displayable displayable)
 {
 int fileLen = 0;
 if(command == testCmd)
 {
 dsr = new DSRDataSource();
 Amanager.addSendStreamListener(this);
 try {
 dsr.connect();
 sendStream = Amanager.createSendStream(dsr,1);
 System.out.println("after create sendStream");
 sendStream.start();
 }catch(Exception ex2) {

iDEN J2ME™ Developer’s Guide

224
 © 2005 Motorola, Inc.

 System.out.println("create sendStream error " +ex2.toString());
 }
 fmAnswer.removeCommand(testCmd);
 fmAnswer.addCommand(closeCmd);
 }
 if(command == closeCmd)
 {
 System.out.println("begin to close");
 sendStream.close();

 dsr.disconnect();
 //Amanager.removeTargets(null);
 System.out.println("after to close");
 fmAnswer.removeCommand(closeCmd);
 fmAnswer.addCommand(testCmd);
 }
 if(command == exitCmd)
 {
 Amanager.removeTargets(null);
 Amanager.dispose();
 destroyApp(false);
 notifyDestroyed();
 }
 }
}

The following examples are DSR & RTP integration examples

import javax.microedition.midlet.*;
import com.motorola.iden.media.rtp.*;
import com.motorola.iden.media.rtp.event.*;
import javax.microedition.lcdui.*;
import com.motorola.iden.media.protocol.*;
import com.mot.cldc.io.*;
import com.mot.security.*;
import javax.microedition.media.protocol.*;
import com.motorola.iden.speech.recognition.dsr.*;

public class SendDSRData extends javax.microedition.midlet.MIDlet implements
CommandListener,SendStreamListener {
 RTPManager Amanager;
 SessionAddress localaddr;
 SessionAddress remoteaddr;
 private Display myDisplay;
 Form fmAnswer;
 public StringItem siRTPText;
 public StringItem siRTPText2;
 Command testCmd;
 Command closeCmd;
 Command exitCmd;
 SendStream sendStream = null;

iDEN J2ME™ Developer’s Guide

225
 © 2005 Motorola, Inc.

 DSRDataSource dsr = null;

 public SendDSRData() {
 fmAnswer = new Form("RTP TEST");
 siRTPText = new StringItem("RTP Send Status:", "");
 siRTPText2 = new StringItem("RTP Recv Status:", "");
 testCmd = new Command("Test", 1, 1);
 closeCmd = new Command("CloseStream",1,1);
 exitCmd = new Command("Exit",1,2);
 fmAnswer.addCommand(testCmd);
 fmAnswer.addCommand(exitCmd);
 fmAnswer.append(siRTPText);
 fmAnswer.append(siRTPText2);
 fmAnswer.setCommandListener(this);
 myDisplay = Display.getDisplay(this);
 myDisplay.setCurrent(fmAnswer);
 Amanager = RTPManager.newInstance();

 }
 public void startApp() {
 RTPContentDescriptor mpegcd = new RTPContentDescriptor("video/mpeg",8100,100);
 RTPContentDescriptor xwavcd = new RTPContentDescriptor("audio/dsr",8100,100);
 //System.out.println("here cd"+cd.getContentType());
 Amanager.addFormat(mpegcd,100);
 Amanager.addFormat(xwavcd,99);
 //localaddr= new SessionAddress("127.0.0.1", 55000);
 //localaddr= new SessionAddress("10.23.6.1", 55000);
 int port = 55000;
 localaddr= new SessionAddress("173.49.50.117", port);
 remoteaddr = new SessionAddress("173.49.50.117", port);
 try {
 System.out.println("here to init");
 System.out.println(localaddr.getIPAddr());
 Amanager.initialize(localaddr);
 siRTPText.setText("RTP Initialized");
 }catch (Exception ex) {
 System.out.println("error");
 ex.printStackTrace();
 }
 try {
 System.out.println("before addtarget");
 Amanager.addTarget(remoteaddr);
 System.out.println("after addtarget");
 }catch(Exception ex) {
 //System.out.println("addtarget error");
 //System.out.println(ex.toString());
 }
 }

 public void pauseApp() {
 }
 public void destroyApp(boolean unconditional) {

iDEN J2ME™ Developer’s Guide

226
 © 2005 Motorola, Inc.

 }

 public void update(SendStreamEvent ev) {
 System.out.println("send stream event got");
 if (ev instanceof NewSendStreamEvent) {
 //siRTPText.setText("begin to send now");
 System.out.println("here are new send stream");
 }
 if(ev instanceof StreamClosedEvent) {
 siRTPText.setText("send closed");
 System.out.println("here are closed send stream");
 }

 }

 public void commandAction(Command command, Displayable displayable)
 {
 int fileLen = 0;
 if(command == testCmd)
 {
 dsr = new DSRDataSource();
 Amanager.addSendStreamListener(this);
 try {
 dsr.connect();
 sendStream = Amanager.createSendStream(dsr,1);
 System.out.println("after create sendStream");
 sendStream.start();
 }catch(Exception ex2) {
 System.out.println("create sendStream error " +ex2.toString());
 }
 fmAnswer.removeCommand(testCmd);
 fmAnswer.addCommand(closeCmd);
 }
 if(command == closeCmd)
 {
 System.out.println("begin to close");
 sendStream.close();

 dsr.disconnect();
 //Amanager.removeTargets(null);
 System.out.println("after to close");
 fmAnswer.removeCommand(closeCmd);
 fmAnswer.addCommand(testCmd);
 }
 if(command == exitCmd)
 {
 Amanager.removeTargets(null);
 Amanager.dispose();
 destroyApp(false);
 notifyDestroyed();
 }
 }

iDEN J2ME™ Developer’s Guide

227
 © 2005 Motorola, Inc.

}

import javax.microedition.midlet.*;
import com.motorola.iden.media.rtp.*;
import com.motorola.iden.media.rtp.event.*;
import javax.microedition.lcdui.*;
import com.motorola.iden.media.protocol.*;
import com.mot.cldc.io.*;
import com.mot.security.*;
import javax.microedition.media.protocol.*;
import com.motorola.iden.speech.recognition.dsr.*;

public class SendDSRData2 extends javax.microedition.midlet.MIDlet implements
CommandListener,SendStreamListener,DSRListener {
 RTPManager Amanager;
 SessionAddress localaddr;
 SessionAddress remoteaddr;
 private Display myDisplay;
 Form fmAnswer;
 public StringItem siRTPText;
 public StringItem siRTPText2;
 Command testCmd;
 Command closeCmd;
 Command exitCmd;
 SendStream sendStream = null;
 DSRDataSource dsr = null;

 public SendDSRData2() {
 fmAnswer = new Form("RTP TEST");
 siRTPText = new StringItem("RTP Send Status:", "");
 siRTPText2 = new StringItem("RTP Recv Status:", "");
 testCmd = new Command("Test", 1, 1);
 closeCmd = new Command("CloseStream",1,1);
 exitCmd = new Command("Exit",1,2);
 fmAnswer.addCommand(testCmd);
 fmAnswer.addCommand(exitCmd);
 fmAnswer.append(siRTPText);
 fmAnswer.append(siRTPText2);
 fmAnswer.setCommandListener(this);
 myDisplay = Display.getDisplay(this);
 myDisplay.setCurrent(fmAnswer);
 Amanager = RTPManager.newInstance();

 RTPContentDescriptor mpegcd = new RTPContentDescriptor("video/mpeg",8100,100);
 RTPContentDescriptor xwavcd = new RTPContentDescriptor("audio/dsr",8100,100);
 Amanager.addFormat(mpegcd,100);
 Amanager.addFormat(xwavcd,99);
 int port = 55000;
 localaddr= new SessionAddress("173.49.50.117", port);
 remoteaddr = new SessionAddress("173.49.50.117", port);
 try {

iDEN J2ME™ Developer’s Guide

228
 © 2005 Motorola, Inc.

 System.out.println("here to init");
 System.out.println(localaddr.getIPAddr());
 Amanager.initialize(localaddr);
 siRTPText.setText("RTP Initialized");
 }catch (Exception ex) {
 System.out.println("error");
 ex.printStackTrace();
 }
 try {
 System.out.println("before addtarget");
 Amanager.addTarget(remoteaddr);
 System.out.println("after addtarget");
 }catch(Exception ex) {
 System.out.println("addtarget error");
 System.out.println(ex.toString());
 }
 }
 public void startApp() {
 }

 public void pauseApp() {
 }
 public void destroyApp(boolean unconditional) {
 }

 public void processEvent(String event)
 {
 if (event.compareTo(DSRListener.DSR_AVAILABLE)==0)
 {
 try
 {
 System.out.println("Receive Event DSR_AVAILABLE");
 sendStream.start();
 System.out.println("SendStream Start Again!");
 fmAnswer.addCommand(exitCmd);
 }catch(Exception ex2)
 {
 System.out.println("start sendStream error " + ex2.toString());
 }
 }

 if (event.compareTo(DSRListener.DSR_STOPPED)==0)
 {
 System.out.println("Receive Event DSR_STOPPED");
 }
 }

 public void update(SendStreamEvent ev) {
 System.out.println("send stream event got");
 if (ev instanceof NewSendStreamEvent) {
 System.out.println("here are new send stream");
 }

iDEN J2ME™ Developer’s Guide

229
 © 2005 Motorola, Inc.

 if(ev instanceof StreamClosedEvent) {
 siRTPText.setText("send closed");
 System.out.println("here are closed send stream");
 }

 }

 public void commandAction(Command command, Displayable displayable)
 {
 int fileLen = 0;
 if(command == testCmd)
 {
 dsr = new DSRDataSource();
 Amanager.addSendStreamListener(this);
 dsr.setDSRListener(this);

 try {
 System.out.println("DSR connect!");
 dsr.connect();
 System.out.println("createSendStream!");
 sendStream = Amanager.createSendStream(dsr,1);
 System.out.println("after create sendStream");
 sendStream.start();
 }catch(Exception ex2) {
 System.out.println("create sendStream error " +ex2.toString());
 }
 fmAnswer.removeCommand(testCmd);
 fmAnswer.addCommand(closeCmd);
 }
 if(command == closeCmd)
 {
 System.out.println("begin to close");
 sendStream.close();

 dsr.disconnect();
 System.out.println("after to close");
 fmAnswer.removeCommand(closeCmd);
 fmAnswer.addCommand(testCmd);
 }
 if(command == exitCmd)
 {
 Amanager.removeTargets(null);
 Amanager.dispose();
 destroyApp(false);
 notifyDestroyed();
 }
 }

}

iDEN J2ME™ Developer’s Guide

230
 © 2005 Motorola, Inc.

4.12.4 Q & A

1. Q: Why doesn’t my ReceiveStreamListener take effect?

 A: make sure you have called RTPManager’s initalize and addTarget before calling

addReceiveStreamListener or addSendStreamListener. Otherwise callback methods will

not be invoked.

2. Q: Can I call RTPManager’s newInstance twice?

A: On a second call to newInstance, the return value will be null. Only after the previous

RTPManager object has been disposed will subsequent calls to newInstance return a new

RTPManager object.

3. Q: Why does addTarget throw InvalidSessionAddressException with session addresses

such as 192.13.12.2 30003?

A: The RTP protocol, requires that the port number be an even number.

4. Q: What is the correct sequence of using RTPManager?

A:

• First construct an RTPManager Object.

RTPManager Amanager=RTPManager.newInstance();

• Create the local endpoint for the local interface on a designed port 5000 or any

valid port.

SessionAddress localaddr=new SessionAddress(A.ipaddress, 5000);

• Initialize the RTP session.

Amanager.initialize(localaddr);

• If client A wants to receive host B’s data through RTP, A will do the following:

Amanager.addTarget(B_ip_address);

Amanager.addReceiveStreamListener(A);

iDEN J2ME™ Developer’s Guide

231
 © 2005 Motorola, Inc.

• If client A wants to send datasource’s 1st stream to the RTP session, A will

construct a SendStream.

SendStream send=Amanager.createSendStream(A_dataSource, 1);

• A starts transmitting.

Send.start();

• A stops transmitting.

• Send.stop();

• A exits the RTP session.

Send.close();

Amanager.dispose();

Host B’s operation is similar to A.

5. Q: How to transmit dynamic payload data between A and B?

A: They should register the dynamic payload media format and its payload number before

RTPManager.initialize. Suppose the media payload names “media-a&b”, the payload

number is 100, the timestamp unit is 1.

RTPCententDescriptor dynamic_payload=new RTPContentDescriptor(“media-

a&b”,8000,40);

Amanager.addFormat(dynamic_payload, 100)

6. Q: How does A get DataSource from ReceiveStream?

A: A can implement the ReceiveStreamListener as below:

update(ReceiveStreamEvent e){

 if(e instanceof NewReceiveStreamEvent) {

 ReceiveStream recvStream=e.getReceiveStream();

 DataSource ds=recvStream.getDataSource();

 // do application stuff

 …………...

 }

iDEN J2ME™ Developer’s Guide

232
 © 2005 Motorola, Inc.

 }

7. Q: What is the correct sequence of using DSR & RTP APIs when using RTP to send

DSR FE data?

• First construct an RTPManager Object.

RTPManager Amanager=RTPManager.newInstance();

• Create the local endpoint for the local interface on a valid port.

SessionAddress localaddr=new SessionAddress(A.ipaddress, 5000);

• Initialize the RTP session.

Amanager.initialize(localaddr);

• If client A want to receive host B’s data through RTP, A will do the following:

Amanager.addTarget(B_ip_address);

Amanager.addReceiveStreamListener(A);

• Create a DSRDataSource stream.

dsr = new DSRDataSource();

 dsr.connect();

• Send DSR stream to the RTP session and construct a SendStream.

SendStream send=Amanager.createSendStream(dsr, 1);

• A starts transmitting

Send.start();

• A stops transmitting.

 Send.stop();

• A exits the RPT session and disconnects the DSRDataSource.

Send.close();

dsr.disconnect();

Amanager.dispose();

Note: When a MIDlet uses RTP to send out DSR FE data, it should regard DSR media as a kind
of DataSource and only connect/disconnect DSR DataSource. It should not call start() or
stop() DSR engine or read() to get DSR FE data. All these APIs are called by RTP APIs.

iDEN J2ME™ Developer’s Guide

233
 © 2005 Motorola, Inc.

4.13 Distributed Speech Recognition
4.13.1 Overview

This API is only available

on this handset.

A DSR system uses an error protected data channel to send a
parameterized representation of speech, which is suitable for recognition.
The processing is distributed between the terminal and the network. The
terminal is the front-end of the speech recognition system and performs
the feature parameter extraction. These features are transmitted over a
data channel to a remote, back-end recognizer. An RTP channel or other
data channel can be used to transmit that data. DSR FE data can be
regarded as a custom media type. Mobile Media API Specification (JSR
135) supports custom media types.

4.13.2 Class Description
The DSR API is located in package com.motorola.iden.speech.recognition.dsr

Interface Summary

DSRListener Interface that specifies callbacks for suspend/resume events.

Class Summary
DSRDataSource A DSRDataSource is an abstraction for media DSR

protocol-handlers. It hides the details of how the data
is read from source--whether the data is coming from
a Microphone or a voice file. It provides methods to
access the input data.

A DSRDataSource contains one SourceStream
because only one DSR engine can be used at one
time. One SourceStream represents one elementary
data stream of the source.

DSRDataSource manages the life-cycle of the media
source by providing a simple connection protocol.

iDEN J2ME™ Developer’s Guide

234
 © 2005 Motorola, Inc.

 Package Tree

 Class Hierarchy
The following will be the class hierarchy for the DSR API:

o class javax.microedition.media.protocol.DataSource

 class com.motorola.iden.speech.recognition.dsr.DSRDataSource

o Interface com.motorola.iden.speech.recognition.dsr.DSRListener

4.13.2.1 Class DSRDataSource

4.13.2.1.1 connect

public void connect() throws java.io.IOException

 Open a connection to the DSR engine.

Throws java.io.IOException - if the DSR engine has already been connected.

Note: The DSR engine on the handset only supports one connection at any time.
Multiple MIDlets cannot access the DSR engine concurrently.

4.13.2.1.2 disconnect

public void disconnect()
Close the connection to the DSR engine source and free resources which are
used to maintain the connection. If no resources are in use, disconnect is
ignored. If stop hasn't already been called, calling disconnect implies a stop.

4.13.2.1.3 start

public void start() throws java.io.IOException, java.lang.IllegalStateException

 Start the DSR engine and initiates data-transfer. The start method must
be called before data is available for reading.

Throws java.lang.IllegalStateException - if the DSRDataSource is not connected.
Throws java.io.IOException - if the DSRDataSource is already started.

iDEN J2ME™ Developer’s Guide

235
 © 2005 Motorola, Inc.

4.13.2.1.4 stop

public void stop() throws java.io.IOException

Stop the DSR engine and stop data-transfer. If the DSRDataSource has not been
connected and started, stop is ignored.

Throws java.io.IOException - if the DSRDataSource can not be stopped
successfully

4.13.2.1.5 getStreams

public javax.microedition.media.protocol.SourceStream[] getStreams()

 throws java.lang.IllegalStateException

Get the collection of streams that this source manages. The collection of streams
is entirely content dependent. The MIME type of this DSRDataSource provides
the only indication of what streams may be available on this connection.

Returns:

The collection of streams for this source

Throws java.lang.IllegalStateException - if the source is not connected.

Tips

If the DSR engine is disconnected, any streams retrieved from a previous
connection should not be used. When the DSR engine is connected again, new
streams will be created. Call getStreams() to get the most current streams.

4.13.2.1.6 getControls

public javax.microedition.media.Control[] getControls()

Obtain the collection of Controls from the object that implements Controllable
interface. If no Control is supported, a zero length array is returned.

Returns:

The collection of Control objects.

The DSRDataSource class does not support any Controls. Calling getControls()
will always return a zero length array.

iDEN J2ME™ Developer’s Guide

236
 © 2005 Motorola, Inc.

4.13.2.1.7 getControl

public javax.microedition.media.Control getControl(java.lang.String controlType)

Obtain the object that implements the specified Control interface. If the specified
Control interface is not supported then null is returned. If the Controllable
supports multiple objects that implement the same specified Control interface,
only one of them will be returned. To obtain all the Control's of that type, use the
getControls method and check the list for the requested type. The
DSRDataSource class does not support any Controls. This method always
returns null.

Parameters:

controlType - the class name of the Control.

Returns:

null.

4.13.2.1.8 setDSRPackets

public void setDSRPackets(byte packets)

 throws java.lang.IllegalStateException,

 java.lang.IllegalArgumentException

Set the number of DSR packets that should be buffered before the DSR engine
sends them to the MIDlet. The amount of DSR packets to buffer should be set
after the DSR engine is connected but before it is started. If the DSR packet
buffer is not set, the buffer size is set to the maximum supported by the DSR
engine.

Parameters:

packets - number of DSR packets the engine should buffer

4.13.2.1.9 getMaxPackets

public byte getMaxPackets()

Get the maximum number of packets that can be buffered by the DSR engine.

Returns:

the maximum number of packets that can be buffered by the DSR engine.

iDEN J2ME™ Developer’s Guide

237
 © 2005 Motorola, Inc.

4.13.2.1.10 setDSRListener

public void setDSRListener(DSRListener listener)

Sets DSRListener for this DSRDataSource. If a MIDlet calls setDSRListener
twice, the previous listener will be replaced by the most recent. To remove an
existing listener, call setDSRListener(null).

Parameters:

Listener - the DSRListener for this DSRDataSource or null to remove an existing
listener

4.13.2.1.11 setNullFrames

public void setNullFrames(byte nullFrames)

throws IllegalArgumentException

 Set how many number of null frames will be constructed when
DSR is stopped.

 Default null frames is 1.

 Parameter:

 nullFrames – number of null frames.

Tips

Throw IllegalArgumentException if the nullFrames parameter is lager than max
number of null frames or less than 1. To get max null frames, call
getMaxNullFrames().

4.13.2.1.12 getMaxNullFrames

public byte getMaxNullFrames()

 Get the max number of null frames which will be constructed when DSR
is stopped.

 Returns:

 the max number of null frames.

iDEN J2ME™ Developer’s Guide

238
 © 2005 Motorola, Inc.

4.13.2.2 Interface DSRListener

Interface that generates the callback for suspend/resume events.

4.13.2.2.1 processEvent

public void processEvent(String event);

Callback method for notification of suspend and resume events.

Parameter:

 event – String indicating suspend/resume events.

4.13.3 Code Example
This is an example of using DSR API.
import com.motorola.iden.speech.recognition.dsr.*;

import javax.microedition.lcdui.*;

import javax.microedition.midlet.*;

import javax.microedition.media.*;

import javax.microedition.media.protocol.*;

import javax.microedition.media.Controllable;

import java.io.IOException;

public class ReadNullFrameTest extends MIDlet implements CommandListener,
DSRListener

{

 DSRDataSource dsr = null;

 SourceStream stream = null;

 ContentDescriptor dsrContentDescriptor = null;

 int bufLen = 0;

 Form fmAnswer;

 Command exitCmd;

 Command testCmd;

 public StringItem siRTPText;

 private Display myDisplay;

 public ReadNullFrameTest()

 {

iDEN J2ME™ Developer’s Guide

239
 © 2005 Motorola, Inc.

 dsr = new DSRDataSource();

 try

 {

 dsr.connect();

 }

 catch(Exception e)

 {

 System.out.println(e);

 }

 fmAnswer = new Form("DSR TEST");

 siRTPText = new StringItem("DSR Test Status:", "");

 fmAnswer.append(siRTPText);

 siRTPText.setText("BasicTest has Finished!");

 testCmd = new Command("Test", 1, 1);

 exitCmd = new Command("Exit",1,2);

 fmAnswer.addCommand(testCmd);

 fmAnswer.addCommand(exitCmd);

 fmAnswer.setCommandListener(this);

 myDisplay = Display.getDisplay(this);

 myDisplay.setCurrent(fmAnswer);

 }

 public void startApp()

 {

 }

 public void pauseApp()

 {

 }

iDEN J2ME™ Developer’s Guide

240
 © 2005 Motorola, Inc.

 public synchronized void destroyApp(boolean flag)

 {

 }

 public void processEvent(String event)

 {

 if (event.compareTo(DSRListener.DSR_AVAILABLE)==0)

 {

 siRTPText.setText("MIDlet receive Event DSR_AVAILABLE");

 fmAnswer.addCommand(testCmd);

 fmAnswer.addCommand(exitCmd);

 }

 if (event.compareTo(DSRListener.DSR_STOPPED)==0)

 {

 System.out.println("MIDlet receive Event DSR_STOPPED");

 }

 }

 public void commandAction(Command command, Displayable displayable)

 {

 if(command == testCmd)

 {

 dsr.setDSRListener(this);

 stream = dsr.getStreams()[0];

 byte packets = 1;

 dsr.setDSRPackets(packets);

 try

 {

 dsr.start();

 }

 catch (Exception e)

 {

iDEN J2ME™ Developer’s Guide

241
 © 2005 Motorola, Inc.

 System.out.println(e);

 }

 DSRReader dsrReader = new DSRReader(stream);

 new Thread(dsrReader).start();

 fmAnswer.removeCommand(testCmd);

 fmAnswer.addCommand(exitCmd);

 }

 if(command == exitCmd)

 {

 try

 {

 dsr.stop();

 dsr.disconnect();

 }

 catch (Exception e)

 {

 System.out.println(e);

 }

 destroyApp(false);

 notifyDestroyed();

 }

 }

}

class DSRReader implements Runnable

{

 SourceStream stream;

 public DSRReader(SourceStream stream)

 {

 this.stream = stream;

iDEN J2ME™ Developer’s Guide

242
 © 2005 Motorola, Inc.

 }

 public void run()

 {

 int bytesRead = 0;

 int i = 0;

 int j = 0;

 int numOfNullFrames = 0;

 int bufLen = stream.getTransferSize();

 byte[] dsrBuf = new byte[bufLen];

 while(true)

 {

 try

 {

 bytesRead = stream.read(dsrBuf,0,bufLen);

 i++;

 System.out.println("Read DSR Data Block " + i
+ ", bytes" + bytesRead);

 boolean isNullFrame = true;

 for (j=0; j<bytesRead; j++)

 {

 if (dsrBuf[j] != 0)

 {

 isNullFrame = false;

 break;

 }

 }

 if (isNullFrame)

 {

 System.out.println("*******Get 1 Null Frame!*******");

 numOfNullFrames++;

 }

iDEN J2ME™ Developer’s Guide

243
 © 2005 Motorola, Inc.

 }

 catch (Exception e)

 {

 System.out.println(e);

 System.out.println("*****************DSR engine stopped!
numOfNullFrames = " + numOfNullFrames + "*********************");

 break;

 }

 }

 }

}

iDEN J2ME™ Developer’s Guide

244
 © 2005 Motorola, Inc.

The following illustrates DSR & RTP integration.

import javax.microedition.midlet.*;

import com.motorola.iden.media.rtp.*;

import com.motorola.iden.media.rtp.event.*;

import javax.microedition.lcdui.*;

import com.motorola.iden.media.protocol.*;

import com.mot.cldc.io.*;

import com.mot.security.*;

import javax.microedition.media.protocol.*;

import com.motorola.iden.speech.recognition.dsr.*;

public class SendDSRData extends javax.microedition.midlet.MIDlet implements
CommandListener,SendStreamListener {

 RTPManager Amanager;

 SessionAddress localaddr;

 SessionAddress remoteaddr;

 private Display myDisplay;

 Form fmAnswer;

 public StringItem siRTPText;

 public StringItem siRTPText2;

 Command testCmd;

 Command closeCmd;

 Command exitCmd;

 SendStream sendStream = null;

 DSRDataSource dsr = null;

 public SendDSRData() {

 fmAnswer = new Form("RTP TEST");

 siRTPText = new StringItem("RTP Send Status:", "");

 siRTPText2 = new StringItem("RTP Recv Status:", "");

 testCmd = new Command("Test", 1, 1);

 closeCmd = new Command("CloseStream",1,1);

 exitCmd = new Command("Exit",1,2);

 fmAnswer.addCommand(testCmd);

iDEN J2ME™ Developer’s Guide

245
 © 2005 Motorola, Inc.

 fmAnswer.addCommand(exitCmd);

 fmAnswer.append(siRTPText);

 fmAnswer.append(siRTPText2);

 fmAnswer.setCommandListener(this);

 myDisplay = Display.getDisplay(this);

 myDisplay.setCurrent(fmAnswer);

 Amanager = RTPManager.newInstance();

 }

 public void startApp() {

 RTPContentDescriptor mpegcd = new
RTPContentDescriptor("video/mpeg",8100,100);

 RTPContentDescriptor xwavcd = new
RTPContentDescriptor("audio/dsr",8100,100);

 //System.out.println("here cd"+cd.getContentType());

 Amanager.addFormat(mpegcd,100);

 Amanager.addFormat(xwavcd,99);

 //localaddr= new SessionAddress("127.0.0.1", 55000);

 //localaddr= new SessionAddress("10.23.6.1", 55000);

 int port = 55000;

 localaddr= new SessionAddress("173.49.50.117", port);

 remoteaddr = new SessionAddress("173.49.50.117", port);

 try {

 System.out.println("here to init");

 System.out.println(localaddr.getIPAddr());

 Amanager.initialize(localaddr);

 siRTPText.setText("RTP Initialized");

 }catch (Exception ex) {

 System.out.println("error");

 ex.printStackTrace();

 }

 try {

 System.out.println("before addtarget");

 Amanager.addTarget(remoteaddr);

 System.out.println("after addtarget");

 }catch(Exception ex) {

iDEN J2ME™ Developer’s Guide

246
 © 2005 Motorola, Inc.

 //System.out.println("addtarget error");

 //System.out.println(ex.toString());

 }

 }

 public void pauseApp() {

 }

 public void destroyApp(boolean unconditional) {

 }

 public void update(SendStreamEvent ev) {

 System.out.println("send stream event got");

 if (ev instanceof NewSendStreamEvent) {

 //siRTPText.setText("begin to send now");

 System.out.println("here are new send stream");

 }

 if(ev instanceof StreamClosedEvent) {

 siRTPText.setText("send closed");

 System.out.println("here are closed send stream");

 }

 }

 public void commandAction(Command command, Displayable displayable)

 {

 int fileLen = 0;

 if(command == testCmd)

 {

 dsr = new DSRDataSource();

 Amanager.addSendStreamListener(this);

 try {

 dsr.connect();

 sendStream = Amanager.createSendStream(dsr,1);

 System.out.println("after create sendStream");

 sendStream.start();

iDEN J2ME™ Developer’s Guide

247
 © 2005 Motorola, Inc.

 }catch(Exception ex2) {

 System.out.println("create sendStream error "
+ex2.toString());

 }

 fmAnswer.removeCommand(testCmd);

 fmAnswer.addCommand(closeCmd);

 }

 if(command == closeCmd)

 {

 System.out.println("begin to close");

 sendStream.close();

 dsr.disconnect();

 //Amanager.removeTargets(null);

 System.out.println("after to close");

 fmAnswer.removeCommand(closeCmd);

 fmAnswer.addCommand(testCmd);

 }

 if(command == exitCmd)

 {

 Amanager.removeTargets(null);

 Amanager.dispose();

 destroyApp(false);

 notifyDestroyed();

 }

 }

}

4.13.4 Using DSR With RTP
• First construct an RTPManager Object

RTPManager Amanager = RTPManager.newInstance();

• Create the local endpoint for the local interface on any valid port

SessionAddress localaddr = new SessionAddress(A_ip_address, 5000);

iDEN J2ME™ Developer’s Guide

248
 © 2005 Motorola, Inc.

• Initialize the RTP session

Amanager.initialize(localaddr);

• If A wants to receive B’s data through RTP and do the application stuff, A
will do the following:

Amanager.addTarget(B_ip_address);

Amanager.addReceiveStreamListener(A);

• Create a DSRDataSource stream;

dsr = new DSRDataSource();

dsr.connect();

• Send DSR stream to the RTP session and construct a SendStream:

SendStream send=Amanager.createSendStream(dsr, 1);

• A starts transmitting

Send.start();

• A stops transmitting

 Send.stop();

• A exits the RTP session and disconnects DSRDataSource.

Send.close();

dsr.disconnect();

Amanager.dispose();

Note: When a MIDlet uses RTP to send DSR FE data, it should regard DSR
media as a kind of DataSource and only connect/disconnect DSR
DataSource. It should not call start() or stop() on the DSR engine or read()
to get DSR FE data. All these APIs are called by the RTP APIs.

iDEN J2ME™ Developer’s Guide

249
 © 2005 Motorola, Inc.

4.14 Lighting
4.14.1 Overview

The Lighting API lets a MIDlet turn on and off various lights on the phone.

4.14.2 Class Description
The Lighting API is located in package com.mot.iden.multimedia

java.lang.Object
 |
 + - com.mot.iden.multimedia.Lighting

4.14.3 Method Description
4.14.3.1 Lighting Methods

4.14.3.1.1 setLighting
Sets the specified light to the specified state

public static void setLighting(int light, int state)
throws IllegalStateException

The table below lists the valid values for a light and state.

Valid Values for Light and State

Light State
LIGHT_DISPLAY LIGHT_STATE_ON / LIGHT_STATE_OFF

LIGHT_KEYPAD LIGHT_STATE_ON / LIGHT_STATE_OFF

LIGHT_STATUS LIGHT_STATE_OFF

LIGHT_STATE_RED

LIGHT_STATE_GREEN

LIGHT_STATE_AMBER

LIGHT_CALL_INDICATOR LIGHT_STATE_OFF

LIGHT_STATE_RED

LIGHT_STATE_GREEN

LIGHT_STATE_BLUE

LIGHT_STATE_YELLOW

LIGHT_STATE_MAGENTA

LIGHT_STATE_CYAN

LIGHT_STATE_WHITE

iDEN J2ME™ Developer’s Guide

250
 © 2005 Motorola, Inc.

If you pass an invalid value for either light or state, this method throws an
IllegalStateException.

These models do not have a status light, but have a call
indicator light instead. If you pass LIGHT_STATUS as the
value for light, this method changes the state of the call
indicator light. This lets you continue to run older
applications that use the status light without needing to
modify them.

This model does not have a status light, but its external
display backlight serves as a call indicator light instead. If
you pass LIGHT_STATUS as the value for light, this
method changes the state of the call indicator light. This
lets you continue to run older applications that use the
status light without needing to modify them.

These models have no status or call indicator light.
Setting LIGHT_STATUS on these handsets has no effect.

4.14.3.1.2 javaOverRideLighting
Gives an application complete control of the device’s lights.
public static void javaOverRideLighting(boolean state)

If state is true, this application is totally responsible for managing the device’s lights while
the application has focus and is in control of the display. The phone itself does not change
the state of the lights.

If state is false, then the phone controls the state of the lights. The application can change
the state of a light with setLighting(), but the phone can change it at any time.

Note that this setting is reset to false when an application loses focus on a display. If the
application wishes to override this setting, it has the opportunity to do so when it regains
control of the display again.

iDEN J2ME™ Developer’s Guide

251
 © 2005 Motorola, Inc.

4.14.3.1.3 getPhotoSensorLevel
Returns the current amount of ambient light according to the photo sensor.
public static int getPhotoSensorLevel()

The returned value ranges from 0 to 255, with 0 being no ambient light and 255 being a
great deal of ambient light.

4.14.3.2 Deprecated APIs
The following APIs have been deprecated since the release of the i95cl.
public static void backlightOn()
public static void backlightOff()
public static void keypadLightOn()
public static void keypadLightOff()
public static void setStatusLight(int color)

4.14.4 Tips /
When an application uses the Lighting API and does not request that it override the native
ergonomic settings, then the state of the light may appear to do strange things. An example of this
is the photo sensor. Say the photo sensor is turned on and a user hits a key, which triggers the
photo sensor light to turn off. Then say the light in the room is low and the photo sensor light turns
back on when the user didn’t press any key. It is recommended if you're going to be doing more
than just flashing the lights, override the light settings to prevent the lights from changing states
unexpectedly.

When overriding the lights, none of the native ergonomic battery savings for powering off the lights
is in effect and great care should be taken. Leaving all of the lights on for extended periods of time
can drain the phone’s battery quickly.

iDEN J2ME™ Developer’s Guide

252
 © 2005 Motorola, Inc.

4.15 Vibrator API
4.15.1 Overview

The Vibrator class lets a MIDlet turn the phone’s vibrator on and off. It also provides the user with
reoccurring effects that can be used with the vibrator. These effects allow the vibrator to turned on
and off in reoccurring patterns. This feature is useful for games or alarms.

Note that the vibrator can be turned on for a maximum of 500 ms at any given time, and it must
remain off for at least 50 ms before being turned it back on. This duty cycle is enforced in the API.
These are important for periodic vibration since these constraints can affect how a MIDlet can use
this class.

4.15.2 Class Description
The API for Vibrator is located in package com.mot.iden.multimedia. This class contains various
multimedia classes like the Vibrator API.

java.lang.Object
 |
 + -- com.mot.iden.multimedia.Vibrator

4.15.3 Method Descriptions
4.15.3.1 Vibrator Methods

4.15.3.1.1 vibrateFor
Turns on the vibrator for the specified amount of time.

public static void vibrateFor(int timeOnInMs)

timeInMs is amount of time in milliseconds to vibrate the phone.

4.15.3.1.2 vibratePeriodically
Turns the vibrator on and off repeatedly.

public static void vibratePeriodicaly(int timOnInMS)

This method continuously turns the vibrator on and off for equal amounts of time.
timeOnInMS is both the amount of time the vibrator is turned on and the amount of time
it’s turned off.

To stop the vibrator from turning on and off, call vibratorOff().

public static void vibratePeriodicaly(int timeOnInMS,
int timeOffInMS)

iDEN J2ME™ Developer’s Guide

253
 © 2005 Motorola, Inc.

This method continuously turns the vibrator on for one amount of time and turns it off for
another amount of time. timeOnInMs is the amount of time to turn the vibrator on in
milliseconds. timeOffInMs is the amount of time to turn the vibrator off in milliseconds.

4.15.3.1.3 vibratorOff / vibratorOn
The following methods allow a MIDlet to turn the vibrator on and off:

public static void vibratorOff()
public static void vibratorOn()

vibratorOff() stops the vibrator. vibratorOn() turns the vibrator on for
MAX_VIBRATE_TIME, 500ms.

4.15.4 Code Examples
4.15.4.1 Example 1
The example below will vibrate the phone for 300 milliseconds

public void vibratePhone()
{
 /* this will have the phone vibrate for 300ms */

Vibrator.vibrateFor(300);
}

4.15.4.2 Example 2
The following example allows the vibrator to vibrate periodically for 300ms using the
vibrateFor() and Thread.sleep() methods:

public void vibratePhone()
{
 while(true){
 /* this will have the phone vibrate for 300ms */
 Vibrator.vibrateFor(300);

 /* have the phone rest for 300 ms */
 Thread.sleep(300);
 }
}

While this works well, the above example would tie up the execution thread. Using the
vibratePeriodicaly() method is ideal for this example.

public void vibratePhone()
{

/* this will have the phone vibrate for periodically 300ms */
 Vibrator.vibratePeriodicaly(300)
}

iDEN J2ME™ Developer’s Guide

254
 © 2005 Motorola, Inc.

4.15.5 Tip /
Vibrating the phone drains the battery. To extend the battery life, limit the use of the vibrator.

4.15.6 Emulator Stub Classes
When a MIDlet uses the Vibrator class, it prints the action being performed on the transcript
window. For example if a MIDlet turns on the vibrator for 10 milliseconds, "Vibrator Turned
On" is displayed on the window.

iDEN J2ME™ Developer’s Guide

255
 © 2005 Motorola, Inc.

4.16 Java Image Utility Library
4.16.1 Overview

This API is only available

on these handsets.

The Java Image Utility Library consists of JPEG encoding, image
resizing, and thumbnail retrieving and embedding. The library is used
to provide support for Java Picture-Editor, Java Icon-decoder and
other Java MIDlets through a JSR 135 extending API.

For JSR 135, please refer to the following web page for details:
http://jcp.org/aboutJava/communityprocess/final/jsr135/

This section focuses on introducing the JSR 135 extending API with
several code examples explaining how to get started using the API.

4.16.2 Class Description
The JSR 135 extending API consists of a subset of the methods found in the following classes and
interfaces:

java.lang.Object
 |
 + - javax.microedition.media.Manager
 |
 + - javax.microedition.media.Control
 |
 + - javax.microedition.media.Player

Manager is the access point for obtaining system dependent resources such as Players for
multimedia processing. A Player is an object used to control and render media that is specific to
the content type of the data. Manager provides access to an implementation specific mechanism
for constructing Players.

A Control object is used to control some media processing functions. The set of operations are
usually functionally related. Thus a Control object provides a logical grouping of media processing
functions.

Player controls the rendering of time based media data. It provides the methods to manage the
Player's life cycle, controls the playback progress, obtains the presentation components,
controls and provides the means to synchronize with other Players.

iDEN J2ME™ Developer’s Guide

256
 © 2005 Motorola, Inc.

4.16.3 Method Description
4.16.3.1 javax.microedition.media.Player

The JSR 135 extending API is involved in the following methods:
createPlayer

 public static Player createPlayer(java.lang.String locator)

 throws java.io.IOException, MediaException

Create a Player for an input locator.

4.16.3.1.1 Examples: input locators format

 /* Thumbnail retrieving with file protocol */

Player p = Manager.createPlayer("file://thumb.jpg");

/* Screen capturing on internal buffer */

Player p =
Manager.createPlayer("capture://screen?display=internal");

Parameters:

locator - A locator string in URI syntax that describes the media
content.

Returns: A new Player.

Throws:

IllegalArgumentException - Thrown if locator is null.

MediaException - Thrown if a Player cannot be created for the
given locator.

java.io.IOException - Thrown if there was a problem connecting
with the source pointed to by the locator.

SecurityException - Thrown if the caller does not have security
permission to create the Player.

Tips:

• For file protocol, the file is located at current Java MIDlet’s RSC directory.

• The default value of Screen Capturing Buffer is LCD internal buffer (176x220).

• Doesn’t support “screen?display=external” (external buffer) in i860.

iDEN J2ME™ Developer’s Guide

257
 © 2005 Motorola, Inc.

4.16.3.1.2 Create a Player for an InputStream.

createPlayer

 public static Player createPlayer(java.io.InputStream stream,
java.lang.String type)

 throws java.io.IOException, MediaException

The type argument specifies the content-type of the input media. If null is given, Manager
will attempt to determine the type. For JSR 135 extending functions, the type should be
“image/jpeg” or “image/x-rgb565” to indicate JPEG or RGB565 input stream respectively.
However, since determining the media type is non-trivial for some media types, it may not
be feasible. The Manager may throw a MediaException to indicate that.

Examples: different input streams

/* JPEG as inputstream */

Player p = Manager.createPlayer(bis, "image/jpeg");

/* RGB565 as inputstream */

Player p = Manager.createPlayer(bis, "image/x-rgb565");

Parameters:

stream - The InputStream that delivers the input media.

type - The ContentType of the media.

Returns:

A new Player.

Throws:

IllegalArgumentException - Thrown if stream is null.

MediaException - Thrown if a Player cannot be created for the given stream and type.

java.io.IOException - Thrown if there was a problem reading data from the
InputStream.

SecurityException - Thrown if the caller does not have security permission to create
the Player.

Tips:

• For the RGB565 as input stream, the 16 bytes Motorola signature (“MOT16BIT” +
height + width) should be added into the input stream as header.

• Doesn’t support RGB888 as input stream in i860.

iDEN J2ME™ Developer’s Guide

258
 © 2005 Motorola, Inc.

4.16.3.1.3 getSnapshot
Gets a snapshot of the displayed content. Features and format of the captured image are
specified by the imageType.

public byte[] getSnapshot(java.lang.String imageType)

 throws MediaException

There are five parameters used in getSnapshot() to support the JSR 135 extending
image functions:

 encoding: JPEG encoding or not

 quality: JPEG encoding quality

 resize: enlarging/shrinking size

 retrieve: thumbnail retrieving or not

 thumbnail thumbnail size & embedding or not

Examples: different operation mode

/* Create JPEG image with resizing to 640x480 and quality = 85 */

byte[] rawImage = vc.getSnapshot(“resize=640x480&quality=85”);

/* Create JPEG image with resizing to 176x220 */

byte[] rawImage = vc.getSnapshot(“resize=176x220”);

/* Thumbnail retrieving */

byte[] rawImage = vc.getSnapshot(“retrieve=yes”);

/* Thumbnail creating */

byte[] rawImage = vc.getSnapshot(“resize=40x30”);

/* Create JPEG image embedding thumbnail */

byte[] rawImage = vc.getSnapshot(“thumbnail=30x40”);

Parameters:

imageType - Format and resolution of the returned image. If null is given, it will be set to
using the default values.

Returns:

image as a byte array in required format.

iDEN J2ME™ Developer’s Guide

259
 © 2005 Motorola, Inc.

Throws:

IllegalStateException - Thrown if initDisplayMode has not been called.

MediaException - Thrown if the requested format is not supported.

SecurityException - Thrown if the caller does not have the security permission to take
the snapshot.

Tips:

• The default parameters of the getSnapshot() are as follows:

o encoding=yes

o quality=80

o retrieve=no

o resizing: no

o thumbnail embedding: no

• For some small size image, the JPEG encoding may be failed if set higher quality.

• Doesn’t support “encoding=no” or “encoding=rbg565” in i860.

• The range of quality is suggested to be set between 55 and 85.

• The maximum of resize is: 640x480.

• The minimum of resize is: 30x30.

• For screen capturing, the retrieve is always set to be no.

• If using RGB565 as input stream, the retrieve is always set to be no.

The parameters used in createPlayer() and getSnapShot() are summarized in the Table
below:

iDEN J2ME™ Developer’s Guide

260
 © 2005 Motorola, Inc.

4.16.4 Code Example

1. Image Resizing (JPEG as InputStream)
…
Player p = null;
VideoControl vc = null;
byte jbuffer[] = new byte[50000];
byte[] rawImage;
…
try {
 /* Using JPEG file as input data */

InputStream in =
this.getClass().getResourceAsStream("Pic2.jpg");

 length = in.available();
 int readLength = 0;
 int writeLength = 0;

 while (writeLength != length)
 {
 readLength = in.read(jbuffer, writeLength, length - readLength);
 writeLength += readLength;
 }
 in.close();

createPlayer() getSnapShot()
Protocol Type imageType Operations Return Data
File
"file://wxyz.jpg"

“encoding=jpeg” Thumbnail
Retrieving

JPEG format

Capture
"capture://scre
en?display=int
ernal"

 “encoding=jpeg&resize=640x480&quality=85
&thumbnail=30x40”

JPEG
Encoding,
Image
Resizing,
Thumbnail
Embedding,

JPEG format

“image/jpeg” (1)“resize=220x176&thumbnail=40x30&quality=79
&retrieve=1&encoding=jpeg”
(2) “retrieve=yes”

JPEG
Encoding,
Thumbnail
Retrieving,
Image
Resizing,
Thumbnail
Embedding

Image/Thumbnail
with JPEG format

InputStream
(RGB or
JPEG)

“image/x-
rgb565”

“encoding=jpeg&quality=78&thumbnail=30x40
&retrieve=0&resize=100x100”

JPEG
Encoding,
Image
Resizing,
Thumbnail
Embedding,

JPEG format

iDEN J2ME™ Developer’s Guide

261
 © 2005 Motorola, Inc.

 byte[] barry = new byte[length];
 System.arraycopy(jbuffer, 0, barry, 0, length);
 ByteArrayInputStream bis = new ByteArrayInputStream(barry);

 /* JPEG as InputStream */
 p = Manager.createPlayer(bis, "image/jpeg");

 if (p.getState() == Player.UNREALIZED) {

p.realize();
 }
 if (vc == null) {

vc = (VideoControl)p.getControl("VideoControl");
 }

if (init != true) {
// only want this to happen once.

 vc.initDisplayMode(VideoControl.USE_GUI_PRIMITIVE, null);
 init = true;
 }

if (p.getState() != Player.STARTED) { p.start(); }

 /* Resizing to VGA size */

rawImage = vc.getSnapshot("resize=640x480&quality=79
&encoding=jpeg");

 …
} catch (MediaException pe) {

System.out.println("Get MediaException here!");
 }
 …

2. Image Resizing (RGB as inputStream)

…
Player p = null;
VideoControl vc = null;
byte jbuffer[] = new byte[50000];
byte[] rawImage;
…
try {
 /* Using RGB565 as input data */

InputStream in =
this.getClass().getResourceAsStream("RGB565.txt");

 length = in.available();
 int readLength = 0;
 int writeLength = 0;

 while (writeLength != length)
 {
 readLength = in.read(jbuffer, writeLength, length - readLength);
 writeLength += readLength;
 }
 in.close();

 byte[] barry = new byte[length];

iDEN J2ME™ Developer’s Guide

262
 © 2005 Motorola, Inc.

 System.arraycopy(jbuffer, 0, barry, 0, length);
 ByteArrayInputStream bis = new ByteArrayInputStream(barry);

 /* RGB as InputStream */
 p = Manager.createPlayer(bis, "image/x-rgb565");

 if (p.getState() == Player.UNREALIZED) {

p.realize();
 }
 if (vc == null) {

vc = (VideoControl)p.getControl("VideoControl");
 }

if (init != true) {
// only want this to happen once.

 vc.initDisplayMode(VideoControl.USE_GUI_PRIMITIVE, null);
 init = true;
 }

if (p.getState() != Player.STARTED) { p.start(); }

 /* Resizing to wallpaper size: quality = 89 */

rawImage = vc.getSnapshot("resize=176x220&
encoding=jpeg&quality=89");

 …
} catch (MediaException pe) {

System.out.println("Get MediaException here!");
 }
 …

3. Thumbnail Retrieving

…
Player p = null;
VideoControl vc = null;
byte[] rawImage;
…
try {

 /* files protocol: thumb.jpg is stored at Java RSC dir */
 p = Manager.createPlayer("file://thumb.jpg");

 if (p.getState() == Player.UNREALIZED) {

p.realize();
 }
 if (vc == null) {

vc = (VideoControl)p.getControl("VideoControl");
 }

if (init != true) {
//only want this to happen once.

 vc.initDisplayMode(VideoControl.USE_GUI_PRIMITIVE, null);
 init = true;
 }

if (p.getState() != Player.STARTED) { p.start(); }

 /* Getting thumbnail in JPEG format */

iDEN J2ME™ Developer’s Guide

263
 © 2005 Motorola, Inc.

rawImage = vc.getSnapshot("encoding=jpeg");

p.close();
p = null;
vc = null;
…

} catch (MediaException pe) {
System.out.println("Get MediaException here!");

 }
 …

4. Screen Capturing (Full Code)

// Java Testing for Screen Capture

// Key6: show girlface.jpg (just JPEG decoding)
// Key7: Create Player
// Key8: Display the content of the Internal Screen Buffer

// Testing Process: Launch the MIDlet. First, press Key6 then
// Key7 and then Key8

// Input data: girlface.jpeg -- phone wallpaper size (176x220)

import javax.microedition.lcdui.*;
import javax.microedition.lcdui.game.*;
import javax.microedition.midlet.*;
import javax.microedition.media.*;
import javax.microedition.media.control.*;

public class Resizing extends MIDlet implements CommandListener {

 private static final int JPEG = 0; // JPEG mode: display picture
 private static final int SCREEN = 1; // SCREEN mode: screen capturing

 /**
 * The screen for this application
 */
 private MainCanvas myCanvas;

 Player p = null;

 /**
 * A reference to the Display
 */
 private Display myDisplay;

 Control c;

 // Testing time
 long t1, t2;

 // Control currentImage and oldImage

iDEN J2ME™ Developer’s Guide

264
 © 2005 Motorola, Inc.

 int yPos = 0;
 int xPos = 0;

 private Image currentImage = null;
 private Image oldImage = null;

 private int width;
 private int height;
 private int imageIndex;
 private int mode = JPEG;
 private boolean on = false;
 private Font font = null;
 private String[] jpegImages = {"/girlface.jpg"};

 int counter;
 /* parameters for getSnapshot() */
 String[] snapshotURIs =
 {
 "encoding=jpeg&resize=220x280&quality=75",
 "encoding=jpeg&resize=40x30&quality=76",
 "encoding=jpeg&resize=640x480&thumbnail=30x40&quality=77",
 "encoding=jpeg&resize=160x230&thumbnail=30x40&quality=78",
 "encoding=jpeg&resize=200x200&quality=79",
 "encoding=jpeg&quality=79",
 "encoding=jpeg&quality=79&thumbnail=30x40",
 "retrieve=yes",
 };

 byte[] rawImage;

 /**
 * Create the Resizing
 */
 public Resizing() {
 myCanvas = new MainCanvas();
 myDisplay = Display.getDisplay(this);
 }

 /**
 * Signals the MIDlet to start providing service and enter the
 * Active state.
 */
 public void startApp() throws MIDletStateChangeException {
 myDisplay.setCurrent(myCanvas);
 }

 /**
 * Signals the MIDlet to stop providing service and enter the
 * Paused state. In the Paused state the MIDlet must stop
 * providing service, and might release all resources and become
 * quiescent.
 */
 public void pauseApp() {

iDEN J2ME™ Developer’s Guide

265
 © 2005 Motorola, Inc.

 }

 /**
 * Signals the MIDlet to terminate and enter the Destroyed state
 * Midlets should perform any operations required before being
 * terminated, such as releasing resources or saving preferences
 * or state.
 */
 public void destroyApp(boolean unconditional) {
 if (p != null)
 p.close();
 }

 public void commandAction(Command c, Displayable s) {
 myDisplay.setCurrent(myCanvas);
 myCanvas.repaint();
 }

 /**
 * The frame class for this application
 */
 class MainCanvas extends Canvas {

 Image myImage;

 int myColor = 0x00ff0000;
 VideoControl vc = null;
 boolean init = false;

 public MainCanvas() {
 width = getWidth();
 height = getHeight();
 }

 /**
 * Renders the Canvas
 * @param g graphics object to render the Canvas with
 */
 public void paint(Graphics g) {
 // clear the screen
 g.setColor(0xFFFFFF); // white
 g.fillRect(0, 0, width, height);

 switch (mode) {
 case JPEG:
 g.setColor(0xff0000);
 g.drawString("JPEG 24-bit dithered", 0,
 yPos, Graphics.LEFT | Graphics.TOP);
 break;

 case SCREEN:
 g.setColor(0x0000ff);
 g.drawString("SCREEN DISPLAY", 0,

iDEN J2ME™ Developer’s Guide

266
 © 2005 Motorola, Inc.

 yPos, Graphics.LEFT | Graphics.TOP);
 break;
 }

 font = g.getFont();
 int y = font.getHeight() + yPos - 1;
 g.setColor(0x000000); // black
 g.drawLine(0, y, width, y);

 if (mode == JPEG)
 {
 if (currentImage != null) {
 g.drawImage(currentImage, xPos, font.getHeight() + yPos,
 Graphics.TOP | Graphics.LEFT);
 //System.out.println("Draw current Image");
 }
 }

 if (mode == SCREEN)
 {
 if (oldImage != null) {
 g.drawImage(oldImage, xPos, font.getHeight() + yPos,
 Graphics.BOTTOM | Graphics.RIGHT);
 //System.out.println("Draw Internal Screen Buffer");
 }
 }
 System.gc();
 }

 public void keyPressed (int key) {

 myColor = 0x00ff0000;

 if (key == Canvas.KEY_NUM6)
 {

mode = JPEG;

 try {

 currentImage = Image.createImage(jpegImages[imageIndex]);
 }
 catch (Exception e) {
 System.err.println(e);
 }

}
 else if (key == Canvas.KEY_NUM7)

{
try {

 reset();
 p = Manager.createPlayer("capture://screen?display=internal");
 } catch(Exception e)
 {}
 }
 else if (key == Canvas.KEY_NUM8)

iDEN J2ME™ Developer’s Guide

267
 © 2005 Motorola, Inc.

 {
 mode = SCREEN;

 try {
 if (p.getState() == Player.UNREALIZED) { p.realize(); }

 if (vc == null) {
 vc = (VideoControl)p.getControl("VideoControl");
 }

 if (vc != null) {

 if (init != true) {
// only want this to happen once.

 vc.initDisplayMode(VideoControl.USE_GUI_PRIMITIVE, null);
 init = true;
 }

 if (p.getState() != Player.STARTED) { p.start(); }

 rawImage = vc.getSnapshot(snapshotURIs[counter]);

 oldImage = Image.createImage(rawImage, 0, rawImage.length);
 xPos = xPos + 60;
 yPos = yPos + 40;
 }
 } catch(Exception e)
 {}

}
else if (getGameAction(key) == Canvas.LEFT)

 {
 xPos = xPos - 10;
 }
 else if (getGameAction(key) == Canvas.RIGHT)
 {
 xPos = xPos + 10;
 }
 else if (getGameAction(key) == Canvas.UP)
 {
 yPos = yPos - 10;
 }
 else if (getGameAction(key) == Canvas.DOWN)
 {
 yPos = yPos + 10;
 }
 else if (key == -21) /* Soft KEY: change parameter */
 {
 counter = (counter + 1) % snapshotURIs.length;
 System.out.println(snapshotURIs[counter]);

}
 else

{
 System.out.println("other keys");

}

iDEN J2ME™ Developer’s Guide

268
 © 2005 Motorola, Inc.

 repaint();
 }

 private void reset()
 {
 if (p != null) {p.close(); p = null;}
 vc = null;
 init = false;
 }
 } //end canvas
} //end midlet

iDEN J2ME™ Developer’s Guide

269
 © 2005 Motorola, Inc.

5
Telephony

5.1 Overview
The following sections describe the telephony management scheme for the iDEN Multi-
Communication Device. This chapter will discuss the following:

• Interconnect, Private (Dispatch), and Selective Dynamic Group Call Initiation

• Call Receiving

• Recent Calls

• Java PIM Package

• Phonebook

5.2 Interconnect/Phone Call Initiation API
5.2.1 Overview

The Call Initiation API provides the ability to request interconnect, dispatch, and SDG calls. The
API supports international and domestic phone numbers, “pause” dialing, and “wait” dialing.

The API does not actually make the call. Instead, it is designed to simply initiate a call request,
wherefore then the end user must grant the request by pressing the Send key (also known as the
Fire key in the Canvas Class). Since an application will be immediately suspended after calling the
API, the employment of this interface must be from a separate thread other than the main thread.
Upon successful call termination, the application will be resumed if the auto revert feature is
enabled.

5.2.2 Class Description
The API for Call Initiation is located in package com.motorola.iden.call. The GenericCall class is
the only class within the package needed to initiate calls and contains one static method to initiate
the service calls.

iDEN J2ME™ Developer’s Guide

270
 © 2005 Motorola, Inc.

java.lang.Object
 |
 + -- com.motorola.iden.call.GenericCall

5.2.3 Method Description
5.2.3.1 GenericCall Method

5.2.3.1.1 makeCall(String number)
Initiates a call request, which the user must grant by pressing the Send key.
public static int makeCall(String number) throws Exception

All MIDlet threads are kept running after calling this function and establishing the call. Packet
data activity is stopped while in the phone call. Currently, you should start a call request only
while the phone is idle (not active in any type of service call). Otherwise, this method throws
an exception.

This method’s argument specifies the number to dial. Its format is as follows:

number ::= [<Prefix Tag>] <Id>

The optional prefix tag included within the string is case insensitive and the Id (which has a
maximum of 64 characters) determines the number dialed.

makeCall() Argument Format
Prefix Tag Id Value Call Behavior

Domestic Interconnect Call
(xxx)xxx-xxxx -Dials xxxxxxxxxx
Xxxxxxxxxx -Dials xxxxxxxxxx
(xxx)xxx-xxxxPyyy
or
(xxx)xxx-xxxx,yyy

-Dials xxxxxxxxxx, connects, and
generates yyy DTMF’s

xxxxxxxxxxPyyPzzPPz
or
xxxxxxxxxx,yy,zz,,z

-Dials xxxxxxxxxx, connects, generates
yy DTMF’s, pauses for 3 seconds,
generates zz DTMF’s, pauses for 6
seconds, and generates z DTMF.

xxxxxxxxxxWyy -Dials xxxxxxxxxx and connects. Once
the user presses the Send (or Fire) key, yy
DTMF’s are generated.

International Interconnect Call
+(xxx)xxx-xxxx -Dials xxxxxxxxxx with international

“type of number”

"phon" or "PHON"
none*

*If the argument does not
contain a tag, the request will
be consider as an interconnect
call.

+xxxxxxxxxxPyy -Dials xxxxxxxxxx with international
“type of number”, connects, and generates
yy DTMF’s.

Dispatch Call “Prvt” or “PRVT”
xxxxx Make a dispatch call to xxxxx.

To place a domestic call, the string argument may be “(XXX) XXX-XXXX”, “XXXXXXXXX”,
“phonXXXXXXXXXX”, or “PHONXXXXXXXXX”. To make an international phone call, a ‘+’
must be placed between the tag and the number to be dialed, as in “+XXXXXXXXX” or

iDEN J2ME™ Developer’s Guide

271
 © 2005 Motorola, Inc.

“phon+XXXXXXXXXX”. To use pause dialing, insert a “P” (case sensitive) or ‘,’ (Comma) as a
pause digit. The first instance of the pause digit separates the phone number to be dialed
from the DTMF tones that will be generated after the call is connected. Any subsequent
“pause digit” inserts a 3-second break into the DTMF string at the specified location (refer to
Table 1). To use wait dialing, insert a “W” (case sensitive) as the wait digit. The first instance
of the wait digit separates the phone number to be dialed from the DTMF. The DTMFs are
not generated until the user presses the Send (or Fire) key after each wait digit. The length of
the ID portion of the argument used in makeCall() (that is, the length of the string excluding
the tag) should not exceed 64 characters. Any number of blank spaces in the number is
ignored. If the number is null or contains any invalid characters, this method throws an
IllegalArgumentException.

Once in the dialing screen, the end user must grant the request by pressing the Send key
(also known as the Fire key in the Canvas Class). If the auto-revert feature is enabled and
the end user does not grant the request (i.e. press the Send key) within 3 seconds, the
application is resumed.

The makeCall()method can successfully process only one request at a time. For example,
if a thread makes a call request and is waiting for the response, any other thread will receive
an exception when attempting to initiate a call. The exception will be thrown for each call
request until the system is no longer busy (i.e. the first thread receives a response).

Return values of the makeCall() method are:

• GenericCall.CALL_RESPONSE_OK if phone call request is placed successfully
(user must grant the request)

• GenericCall.CALL_RESPONSE_FAILURE if request fails because the unit is not
idle (e.g. in an active service call such as a private call)

• GenericCall.CALL_RESPONSE_ERROR if an error occurred during request
because the keypad is disabled and the application was attempting to dial a number
not in the phonebook

• GenericCall.CALL_UNKNOWN_ERROR if an unknown error took place while
requesting

5.2.3.1.1 makeCall(int type, String alias, String[] idList)
Starts a Selective Dynamic Group Call.
public static int makeCall(int type, String alias, String[] idList)
throws Exception

When starting a SDGC call, the app should register the SDGC service first. An app starting
a SDGC call without registering first will receive IllegalAccessException.

The participant list should contain at least 2 unique private ID; otherwise, the call will

return CALL_RESPONSE_ERROR.

iDEN J2ME™ Developer’s Guide

272
 © 2005 Motorola, Inc.

5.2.4 Code Examples
void makePhoneCall() {
 try {
 String number = "9555555555";
 int x = GenericCall.makeCall(number);
 if (X == GenericCall.CALL_RESPONSE_OK) {
 // request to initiate has been successfully made
 // Note: does not mean phone call is finished

 }
 else {
 // Error occurred while making request
 }
 }catch(IllegalArgumentException e){
 }
 catch(Exception e) {
 }
}

5.2.5 Compiling & Testing Interconnect Capable MIDlets
The stubbed GenericCall class is a non-functional class. The class is provided to build and run
within any emulator. The class will make an attempt to display its method’s behavior through
System.out print statements when a method is called.

If the device is idle, makeCall(9555555555) displays the following:

Requesting to call to 9555555555
Waiting for request response

The MIDlet pauses here. After the user presses the Send key,
 the phone call is started and the MIDlet remains paused.

CALL_RESPONSE_OK

If the keypad is disabled and 955555555 is not in the phonebook, makeCall(955555555)
displays the following:

Requesting to call to 955555555
CALL_RESPONSE_ERROR

If the device is busy in another call, makeCall(955555555) displays the following:

Requesting to call to 955555555
CALL_RESPONSE_FAILURE

iDEN J2ME™ Developer’s Guide

273
 © 2005 Motorola, Inc.

5.3 Call Receiving API
5.3.1 Overview

This API is only

available on these
handsets.

The Call Receiving API lets you answer incoming phone calls. The user
can accept, reject, or end an incoming or connected call.

5.3.2 Class Descriptions
The API for the Call Receiving feature is located in package com.motorola.iden.call.

This is the class hierarchy for the CallHandler class:

java.lang.Object
 |
 + - com.motorola.iden.call.CallHandler
 |
 + - com.motorola.iden.call.Call
 |
 + - com.motorola.iden.call.InterconnectCall
 |
 + - com.motorola.iden.call.CallListener
 |

 i830e
 only

 + - com.motorola.iden.call.DispatchCall
 |
 + - com.motorola.iden.call.SdgcCall

CallHandler is a class that provides functionality to register for calls. The Call interface provides
basic call functionality. InterconnectCall is an interface that extends the Call interface, and
provides interconnect call functionality. The CallListener interface provides a listening mechanism
for the different interfaces, such as InterconnectCall, if it is a registered type of call.

iDEN J2ME™ Developer’s Guide

274
 © 2005 Motorola, Inc.

i830e only

Similar to the InterconnectCall interface, the DispatchCall and SdgcCall
interfaces extend the Call interface to provide dispatch and SDG call
functionality, respectively.

5.3.3 Method Descriptions
5.3.3.1 CallHandler Methods

5.3.3.1.1 getInstance
Returns an instance of a Call.

public static com.motorola.iden.call.Call getInstance(int type,
com.motorola.iden.call.CallListener l)

This method returns an instance of a Call. If the method is called again, it returns the
same instance of Call.

type specifies the type of call and l is the call listener, usually the MIDlet. The MIDlet
must call this method once for each type of call it wants to listen to.

This method needs to be called from a thread. Calling it from the startApp() method of
a class is the best way to implement the Call interface. The method needs to be called as
soon as the application launches.

The following example illustrates how the Call instance can be retrieved in a MIDlet’s
startApp() method:

boolean isCallThreadRunning = false;
public void startApp(){
 if(!isCallThreadRunning){

new Thread (new CallThread()).start(); // starting a new
 // thread
 }
}

 //Thread implementation
 public class CallThread extends Thread
 {
 public CallThread(){
 isCallThreadRunning = true;
 try {
 call = (InterconnectCall)
 CallHandler.getInstance(CallHandler.
 INTERCONNECT_CALL, this);
 } catch(IllegalArgumentException e) {

 }

}
}

iDEN J2ME™ Developer’s Guide

275
 © 2005 Motorola, Inc.

5.3.3.1.2 startCallListener
Starts your MIDlet’s callActionListener() method when the call’s state changes.

public void startCallListener()

After you call this method, your MIDlet’s callActionListener() method is called
whenever the call’s state changes. Your MIDlet class must implement the CallListener
interface as a thread that will listen for call state changes while it is running. If the phone
receives a call type that hasn’t been registered for via getInstance(), the listener’s
callback methods are not be called.

In the run method of a CallThread, this method can be called as shown in the following
example:

public void run(){
 try {
 handle.startCallListener();
 } catch(Exception e) {
 }
}

5.3.3.2 CallListener Methods
5.3.3.2.1 callActionListener

Lets you know the state of the phone call.
public void callActionListener(int type, int state)

Implement this method if you want to be notified when the call changes state. When type
is INTERCONNECT_CALL state is one of the following constants:

PHRX_INCOMING_STATE

PHRX_CALL_CONNECTED_STATE

PHRX_CALL_STOPPED_STATE

PHRX_CALL_REJECTED_STATE

PHRX_CALL_CANCELLED_STATE

PHRX_CALL_ENDED_STATE.

iDEN J2ME™ Developer’s Guide

276
 © 2005 Motorola, Inc.

i830e
only

When type is DISPATCH_CALL state is one of the following constants:

PRVT_WAITING_RESPONSE

PRVT_INCOMING_STATE

PRVT_CALL_CANCELED_STATE

PRVT_CALL_STOPPED_STATE

PRVT_INHIBIT_RCVD_STATE

PRVT_PERMIT_RCVD_STATE

PRVT_INHIBIT_XMT_STATE

PRVT_PERMIT_XMT_STATE

If you want this method to be called, you must first call startCallListener(). State
information is received only for registered call types.

public void callActionListener(int type, int state)
{
 // type will be the type of a call
 // state will be the kind of state the call is currently
 if ((type == CallHandler.INTERCONNECT_CALL) &&

 (state == CallHandler.PHRX_CALL_CONNECTED_STATE))
 {
 String s = call.getCallNumber();
 ...

}

i830e

 only

else if((type == CallHandler.DISPATCH_CALL) &&

 (state == CallHandler.PRVT_INHIBIT_RCVD_STATE))
{
 //Receiver De-Keys the PTT button or stops talking.
}

}

iDEN J2ME™ Developer’s Guide

277
 © 2005 Motorola, Inc.

5.3.2.3 Call Methods
5.3.2.3.1 getCallNumber

Returns the phone number of the current call.
public String getCallNumber()

If the string returned by this method is equal to Call.PHRX_NO_CALLER_ID_1 or Call.
PHRX_NO_CALLER_ID_2, then the received call does not have caller ID information.

5.3.2.3.2 getCallState
Returns the current state of a call.

public int getCallState()

This method should be used to stop/start network activities, or can be useful for any
application that supports call receiving functionality. For example, a racing game can also
handle a call, but when a call is in progress, it should not display game functionality, but
should display call related information.

The method can return any of the following constants.

PHRX_INCOMING_STATE

PHRX_CALL_CONNECTED_STATE

PHRX_CALL_STOPPED_STATE

PHRX_CALL_REJECTED_STATE

PHRX_CALL_CANCELLED_STATE

PHRX_CALL_ENDED_STATE

 i830e

 only

PRVT_WAITING_RESPONSE

PRVT_INCOMING_STATE

PRVT_CALL_CANCELED_STATE

PRVT_CALL_STOPPED_STATE

PRVT_INHIBIT_RCVD_STATE

PRVT_PERMIT_RCVD_STATE

PRVT_INHIBIT_XMT_STATE

PRVT_PERMIT_XMT_STATE

5.3.2.3.3 getLineNumber
The method returns the line number of an interconnect call.

public int getLineNumber()

iDEN J2ME™ Developer’s Guide

278
 © 2005 Motorola, Inc.

5.3.2.4 InterconnectCall Methods
5.3.2.4.1 interconnectAction

Lets you accept, reject, or end an incoming call.
public void interconnectAction(int action_type, String phoneNumber)

throws NumberFormatException, IllegalArgumentException

action_type must be one of the following:

InterconnectCall.REJECT_CALL rejects an incoming phone call.

InterconnectCall.END_CALL ends an incoming phone call.

InterconnectCall.HOLD_CALL holds a connected active call.

InterconnectCall.RESUME_CALL resumes a call that’s been put on hold.

phoneNumber should be the number for the incoming call, such as returned by
getCallNumber().

5.3.2.4.2 switchPhoneCall
Switches between two active calls.

public void switchPhoneCall() throws IllegalStateException

If there are two active calls, your MIDlet should display a method for switching between
them. If two calls are not active, this method throws IllegalStateException.

5.3.2.4.3 enableMute
Enables and disables muting in an active phone call.

public void enableMute(boolean state)

To enable muting, state must be true. To disable muting, state must be false.

The application should keep track of whether muting is enabled and should display a way
for the user to turn it on or off.

5.3.2.4.4 enableSpkrPhone
Enables and disables the speaker phone.

public void enableSpkrPhone(boolean state)

To enable the speaker phone, state must be true. To disable the speaker phone, state
must be false.

The application should keep track of whether the speaker phone is enabled and should
display a way for the user to turn it on or off.

iDEN J2ME™ Developer’s Guide

279
 © 2005 Motorola, Inc.

5.3.2.4.5 startDTMF/stopDTMF
Starts and stops sending DTMF tones.

public void startDTMF (char digit)
throws IllegalStateException

public void stopDTMF () throws IllegalStateException

startDTMF() starts sending the DTMF tone specified by digit. stopDTMF() stops the
tone.

If there is not a connected call, these methods throw an IllegalStateException.

5.3.2.4.6 playRinger
Plays the specified ringer.

public void playRinger (int index)
throws IndexOutOfBoundsException

The ringer stops as soon as the interconnect call gets answered, rejected, or ended.

index is the index for a ringer stored on the phone. To play the default ringer, use –1. If
there’s no ringer for index, this method throws an IndexOutOfBoundsException.

Call this method when the phone receives an incoming call.

This is an example of using playRinger():

public void callActionListener(int type, int state)
{
 // type will be the type of a call
 // state will be the kind of state the call is currently
 if ((type == CallHandler.INTERCONNECT_CALL) &&

 (state==CallHandler.PHRX_CALL_CONNECTED_STATE))
 {
 call.playRinger(-1);
 ...
 }

}

5.3.2.5 Dispatch and SDG Call methods

 i830e

 only

The APIs listed below can be used while during an active private or SDG
call. By pressing the Hi/Lo key, the speaker will be turned on/off. The Up-
Down Volume keys will work as it is while actively in either of these types of
calls.

iDEN J2ME™ Developer’s Guide

280
 © 2005 Motorola, Inc.

5.3.2.5.1 DispatchCall.dispatchAction
This method works differently depending upon if the MIDlet is signed or not. If the MIDlet is
not signed, this method will be helpful only to end the active private call. In this case, the
application will behave similar to phone ergonomics. User can press/resume PTT key in order
to start/stop talking.

If the MIDlet is signed, then there are two action_types that can be used.
DispatchCall.PTT_PRESSED can be used in place of PTT key press/ hold during an
active private call (user starts talking). DispatchCall.PTT_RELEASED can be used in
place of PTT key released during an active private call (user stops talking).
public void dispatchtAction(int action_type)

throws NumberFormatException, IllegalArgumentException

action_type must be one of the following:

• DispatchCall.PTT_PRESS Start talking during active private call.

• DispatchCall.PTT_RELEASE Stop talking during active priate call.

• DispatchCall.END_CALL ends a private call.

5.3.2.5.2 SdgcCall.sdgcAction
This method can be used with different action_type values to implement functionality for call
related keys such as the PTT key and END key.

public void sdgcAction(int action_type)

throws IllegalArgumentException

action_type must be one of the following:

• SdgcCall.PTT_PRESS Start talking during active SDG call.

• SdgcCall.PTT_RELEASE Stop talking during active SDG call.

• SdgcCall.END_CALL ends an SDG call.

5.3.2.5.3 DispatchCall.getCallAlias
The method returns the Alias name of the caller from the phonebook.

 public java.lang.String getCallAlias()

5.3.2.5.4 SdgcCall.getCallAlias
The method returns the SDG call alias of the current active call.

 public java.lang.String getCallAlias()

5.3.2.5.5 SdgcCall.getSdgcOriginatorID
The method returns the ID of the current SDG call’s originator.

iDEN J2ME™ Developer’s Guide

281
 © 2005 Motorola, Inc.

 public java.lang.String getSdgcOriginatorID()

5.3.2.5.6 SdgcCall.getSdgcPartList
The method returns the participants of the current SDG call.

 public java.lang.String[] getSdgcPartList()

5.3.2.5.7 SdgcCall.getSdgcPartStat
The method returns the status of the participants of the current SDG call.

 public byte[] getSdgcPartStat()

5.3.2.5.8 SdgcCall.getSdgcTotalPartNumber
The method returns the received participant count of the current SDG call.

 public int getSdgcTotalPartNumber()

5.3.2.5.8 SdgcCall.getSdgcSystemError
The method returns the last system error message of the current SDG call.

 public java.lang.String getSdgcSystemError()

5.3.3 Code Examples
The following is a code example using the Call Receiving feature.

public class ExCall extends MIDlet implements CommandListener
{
 ExCall myMidlet;
 String pnumber = "9999999999";
 Form tScreen;
 Display myDisplay;
 ExternalDisplay ed;
 extCanvas exCan = new extCanvas(); // External Display Canvas
 CallHandler handle = new CallHandler();
 InterconnectCall call;

 public boolean isThreadRun = false;

 public ExCall()
 {

 myMidlet = this;
 myDisplay = Display.getDisplay(this);
 }
 public void startApp()
 {
 // good practice if thread is started just after following
 ed = ExternalDisplay.getDisplay(this);
 ed.setCurrent(exCan);

 if(!isThreadRun)
 new Thread(new CallThread()).start();

iDEN J2ME™ Developer’s Guide

282
 © 2005 Motorola, Inc.

 }
 public void pauseApp(){
 }

 }
 public void destroyApp(boolean unconditional) {
 }

 public void commandAction(Command c, Displayable s)
 {
 if(c == acceptCommand){
 try {
 call.interconnectAction(2, call.getCallNumber());

 }catch (Exception e){
 }
 }
 else if(c == rejectCommand) {
 try {
 call.interconnectAction(1, call.getCallNumber());
 } catch(Exception e){
 }
 }

}

public class CallThread extends Thread implements CallListener
{
 public CallThread()
 {

isThreadRun = true;
 try {
 call = (InterconnectCall)CallHandler.getInstance(

CallHandler.INTERCONNECT_CALL,this);
 }catch(Exception e) {
 }
 }

 public void run()
 {
 try {
 handle.startCallListener();
 } catch(Exception e) {
 }
 }

 public void callActionListener(int type, int state)
 {
 if(state == -1){
 }

iDEN J2ME™ Developer’s Guide

283
 © 2005 Motorola, Inc.

 if (state == CallHandler.PHRX_INCOMING_STATE) {
 String pnumber = call.getCallNumber();

 myTick.setString(pnumber);
 call.playRinger(-1);
 call.getLineNumber();

 }else if (state == CallHandler.PHRX_CALL_CONNECTED_STATE) {

}else if (state == CallHandler.PHRX_CALL_STOPPED_STATE) {
 System.out.println("in stopped state..");
 }
 }
}

The following is a code example using the SDG Call Receiving and Initiation feature.

import com.motorola.iden.call.*;
import java.io.PrintStream;
import javax.microedition.lcdui.*;
import javax.microedition.midlet.MIDlet;
import javax.microedition.midlet.MIDletStateChangeException;
import com.motorola.iden.lcdui.ExternalDisplay;
import com.motorola.iden.lcdui.ExternalDisplayCanvas;
import com.mot.iden.multimedia.Lighting;

public class Sdgc extends MIDlet
 implements CommandListener
{
 class extCanvas extends ExternalDisplayCanvas
 {

 protected void paint(Graphics g)
 {
 String displayStr;
 g.setColor(0xffffff);
 g.fillRect(0, 0, getWidth(), getHeight());
 g.setColor(0);
 Graphics _tmp = g;
 Graphics _tmp1 = g;
 if(callAlias != null) {
 displayStr = callAlias + " active";
 }else {
 displayStr = "";
 }
 g.drawString(displayStr, 0, 0, 0x10 | 0x4);
 }

 protected void showNotify()
 {
 try
 {
 (new Thread(new LightThread())).start();
 repaint();

iDEN J2ME™ Developer’s Guide

284
 © 2005 Motorola, Inc.

 System.out.println("external show notify");
 }
 catch(Exception exception) { }
 }

 public extCanvas()
 {
 }
 }

 class LightThread extends Thread
 {

 public void run()
 {
 Lighting.javaOverRideLighting(true);
 do
 try
 {
 Lighting.setLighting(4, 2);
 Thread.currentThread();
 Thread.sleep(250L);
 Lighting.setLighting(4, 7);
 Thread.currentThread();
 Thread.sleep(250L);
 Lighting.setLighting(4, 4);
 Thread.currentThread();
 Thread.sleep(250L);
 }
 catch(Exception exception) { }
 while(true);
 }

 public LightThread()
 {
 }
 }

 class CallThread extends Thread
 implements CallListener
 {

 public void run()
 {
 try
 {
 handle.startCallListener();
 }
 catch(Exception exception) { }
 }

 public void callActionListener(int i, int j)
 {

iDEN J2ME™ Developer’s Guide

285
 © 2005 Motorola, Inc.

 if(j == CallHandler.SDGC_END_CALL_EVENT) {
 siCallingNumber.setText("sdgc endded, the error is" +
sdgc.getSdgcSystemError());
 //ed.requestDisplay();
 //myDisplay.setCurrent(mainForm);
 callAlias = null;
 }
 if(j == CallHandler.SDGC_CALL_START_EVENT) {
 siCallingNumber.setText("sdgc orginate from" +
sdgc.getSdgcOriginatorID() + " now wait");
 myDisplay.setCurrent(fmAnswer);
 callAlias = sdgc.getSdgcCallAlias();
 }
 if(j == CallHandler.SDGC_LISTEN_PERMIT_EVENT) {
 siCallingNumber.setText("sdgc listen now");
 callAlias = sdgc.getSdgcCallAlias();
 }
 if(j == CallHandler.SDGC_TALK_PERMIT_EVENT) {
 siCallingNumber.setText("sdgc talk");
 callAlias = sdgc.getSdgcCallAlias();
 }
 if(j == CallHandler.SDGC_TALK_INHIBIT_EVENT) {
 siCallingNumber.setText("talk over,come back to wait");
 }
 if(j == CallHandler.SDGC_LISTEN_INHIBIT_EVENT) {
 siCallingNumber.setText("talk over,come back to wait");
 }
 if(j == CallHandler.SDGC_SYSTEM_TERMINATED_EVENT) {
 siCallingNumber.setText("sdgc terminate");
 callAlias = null;
 myDisplay.setCurrent(mainForm);
 isEnd = true;
 }
 }

 public CallThread()
 {
 isThreadRun = true;
 try
 {
 //call = (InterconnectCall)CallHandler.getInstance(1,
this);
 sdgc = (SdgcCall)CallHandler.getInstance(3, this);
 }
 catch(Exception exception)
 {
 isThreadRun = false;
 }
 }
 }
 //private static boolean debug = true;
 ExternalDisplay ed;

iDEN J2ME™ Developer’s Guide

286
 © 2005 Motorola, Inc.

 extCanvas exCan;
 Form fmAnswer;
 StringItem siCallingNumber;
 CallHandler handle;
 Command pttpressCommand;
 Command pttreleaseCommand;
 Command endCommand;
 SdgcCall sdgc;
 public boolean isThreadRun;
 private Display myDisplay;
 private Form mainForm;
 TextField pid1;
 TextField pid2;
 TextField pid3;
 TextField alias;
 private TextBox exceptionTextBox;
 private Command callCommand;
 private Command exitCommand;
 private String[] prvIDList;
 private String callAlias;
 private boolean isEnd;

 public Sdgc()
 {
 isEnd = true;
 isThreadRun = false;
 handle = new CallHandler();
 exCan = new extCanvas();
 myDisplay = Display.getDisplay(this);
 pttpressCommand = new Command("PRESS", 1, 1);
 pttreleaseCommand = new Command("RELEASE", 1, 2);
 endCommand = new Command("End",1,2);
 fmAnswer = new Form("Call Me");
 siCallingNumber = new StringItem("SDGC", "");
 fmAnswer.addCommand(pttpressCommand);
fmAnswer.addCommand(endCommand);
 fmAnswer.append(siCallingNumber);
 fmAnswer.setCommandListener(this);
 mainForm = new Form("SDGC");
 callCommand = null;
 exitCommand = null;
 callAlias = null;
 pid1 = new TextField("privateID1", "50002", 15, TextField.ANY);
 pid2 = new TextField("privateID2", "50003", 15, TextField.ANY);
 pid3 = new TextField("privateID3", "50004", 15, TextField.ANY);
 alias = new TextField("sdgc alias", "alias", 15, TextField.ANY);
 exceptionTextBox = new TextBox("Exception Caught!", "", 100, 0);
 mainForm.append(pid1);
 mainForm.append(pid2);
 mainForm.append(pid3);
 mainForm.append(alias);

 callCommand = new Command("CALL", 1, 2);

iDEN J2ME™ Developer’s Guide

287
 © 2005 Motorola, Inc.

 exitCommand = new Command("EXIT", 1, 2);
 mainForm.addCommand(callCommand);
 mainForm.addCommand(exitCommand);
 mainForm.setCommandListener(this);
 myDisplay.setCurrent(mainForm);
 }

 public void startApp()
 throws MIDletStateChangeException
{
 ed = ExternalDisplay.getDisplay(this);
 ed.setCurrent(exCan);
 if(!isThreadRun)
 (new Thread(new CallThread())).start();
 }

 public void pauseApp()
 {
 if(ed.getFlipState()) {
 ed.requestDisplay();
 }
 }

 public void destroyApp(boolean flag)
 {

 }

 public void commandAction(Command command, Displayable displayable)
 {
 if(command == callCommand) {
 prvIDList = new String[3];
 try {
 prvIDList[0] = pid1.getString();
 prvIDList[1] = pid2.getString();
 prvIDList[2] = pid3.getString();
 callAlias = alias.getString();
 int i = GenericCall.makeCall(3, callAlias, prvIDList);
 if(i == 0) {

System.out.println("GenericCall.CALL_RESPONSE_OK");
 myDisplay.setCurrent(fmAnswer);
 }else {
 if(i == 1)

System.out.println("GenericCall.CALL_RESPONSE_FAILURE");
 else
 if(i == 2)

System.out.println("GenericCall.CALL_RESPONSE_ERROR");
 else
 if(i == -1)

iDEN J2ME™ Developer’s Guide

288
 © 2005 Motorola, Inc.

System.out.println("GenericCall.CALL_UNKNOWN_ERROR");
 }
 }
 catch(Exception ex) {
 myDisplay.setCurrent(exceptionTextBox);
 exceptionTextBox.setString(ex.toString());
 }
 } else {
 if(command == exitCommand) {
 destroyApp(false);
 notifyDestroyed();
 }
 }
 if(command == pttpressCommand) {
 try {
 sdgc.sdgcAction(SdgcCall.PTT_PRESS);
 }catch(Exception exception) {
 notifyDestroyed();
 }
 fmAnswer.removeCommand(pttpressCommand);
 if(isEnd) {
 fmAnswer.removeCommand(endCommand);
 }else {
 fmAnswer.removeCommand(exitCommand);
 }
 fmAnswer.addCommand(pttreleaseCommand);
 if(isEnd) {
 fmAnswer.addCommand(endCommand);
 }else {
 fmAnswer.addCommand(exitCommand);
 }
 }
 if(command == pttreleaseCommand)
 {
 try {
 sdgc.sdgcAction(SdgcCall.PTT_RELEASE);
 }catch(Exception exception) {
 notifyDestroyed();
 }
 fmAnswer.removeCommand(pttreleaseCommand);
 if(isEnd) {
 fmAnswer.addCommand(endCommand);
 }else {
 fmAnswer.removeCommand(exitCommand);
 }
 fmAnswer.addCommand(pttpressCommand);
 if(isEnd) {
 fmAnswer.addCommand(endCommand);
 }else {
 fmAnswer.addCommand(exitCommand);
 }
 }

iDEN J2ME™ Developer’s Guide

289
 © 2005 Motorola, Inc.

 if(command == endCommand)
 {
 try {
 sdgc.sdgcAction(SdgcCall.END_CALL);
 }catch(Exception exception) {
 notifyDestroyed();
 }
 isEnd = false;
 fmAnswer.removeCommand(endCommand);
 fmAnswer.addCommand(exitCommand);
 }
 }
}

5.3.4 Tips /
• The getInstance(), startCallListener(), and callActionListener()

methods must be called from a thread separate from the MIDlet’s main thread, so that
they do not block the MIDlet from running. These methods block while waiting for new call
state information.

• The getInstance() method should be used as early as possible in the application as
this method actually notifies the ergonomics of a phone that the MIDlet will handle the
incoming call. If the application does not call this method within 3-4 seconds, the
ergonomics will assume that the application is taking too long to handle the incoming
phone call, and will pass the incoming callback to the native ergonomics. This will be
considered as a failure of an application. Three failures will select the native ergonomics of
the phone to handle calls from then on. User can always go back to the settings to select
the application again, which will set the failure count to zero again.

• For External Display support, use the ExternalDisplay API. It is a good practice if the
application does setCurrent() on an ExternalDisplay canvas before it starts its listener
thread. This allows the application to render itself on the external display when the flip is
closed and allows for user interaction without opening the flip.

• The getCallNumber() method returns the phone number as a string. The application
can use the PhoneBook API in order to get the person’s name and the type of call
(home/office/cell/other). Other APIs that can be used are Lighting and RecentCalls APIs.

• If the permission of a phone receiving application is set to Ask or Never, the phone
ergonomics will handle the call as we do not want to ask for permission while user
receives a phone call. So, it is- recommended to have the permission set to Always.

5.3.5 Compiling & Testing Call Receiving MIDlets
The following tag should be listed into the JAD file of the MIDlet in order to register the application
as a Call Receiving Application.

iDEN-MIDlet-Phone:

The path of a MIDlet to identify a particular MIDlet as a call receiving capable should be mentioned
after the colon.

Here is a sample .JAD file.

iDEN J2ME™ Developer’s Guide

290
 © 2005 Motorola, Inc.

MIDlet-1: InCall, , com.motorola.iden.call.InCall
MIDlet-Jar-Size: 72575
MIDlet-Jar-URL: InCall.jar
MIDlet-Name: InCall
MIDlet-Vendor: Motorola Inc.
MIDlet-Version: 1.0
MicroEdition-Configuration: CLDC-1.0
MicroEdition-Profile: MIDP-1.0
iDEN-MIDlet-Phone: com.motorola.iden.call.InCall

The lines above in bold have the same class path. This JAD file specifies the InCall MIDlet as a
Call Receiving application.

After installing the Call Receiving MIDlet, the user will have to access the phone’s settings via the
main menu and set the newly installed application as the Call Receiving MIDlet. If the user does
not select the MIDlet in the Java App Control menu, then the previously selected application
(Phone Ergonomics if there is no other Call Receiving MIDlets) will handle the incoming phone
call. The Java App Control option is not available until at least one Call Receiving MIDlet has been
installed on the phone.

For Dispatch Calls:

The following tag should be listed into the JAD file of the MIDlet in order to register the application
as a Call Receiving Application.

iDEN-MIDlet-Prvtcall:

The path of a MIDlet to identify a particular MIDlet as a call receiving capable should be mentioned
after the colon.

Here is a sample .JAD file.

MIDlet-1: DspchCall, , com.motorola.iden.call.DspchCall

MIDlet-Jar-Size: 72575

MIDlet-Jar-URL: DspchCall.jar

MIDlet-Name: DspchCall

MIDlet-Vendor: Motorola Inc.

MIDlet-Version: 1.0

iDEN J2ME™ Developer’s Guide

291
 © 2005 Motorola, Inc.

5.4 RecentCalls API
5.4.1 Overview

This API is available on these

handsets only.

The RecentCalls API lets you access the phone’s recent calls
data. It lets you read and remove recent call entries. However, it
does not let you add to the recent calls list.

5.4.2 Class Descriptions
The API for the RecentCalls is located in package com.motorola.iden.recentcalls.

Following is the class Hierarchy of RecentCalls API.

java.lang.Object
 |
 + - com.motorola.iden.recentcalls.RecentCalls
 |
 + - com.motorola.iden.recentcalls.RecentCallsEntry

Following is the Interface Hierarchy of the RecentCalls API.

com.motorola.iden.recentcalls.RCLListener

5.4.3 Method Descriptions
5.4.3.1 RecentCalls Methods

5.4.3.1.1 entryAt
Returns the RecentCallsEntry at the specified index.

public RecentCallsEntry entryAt(int index)
 throws IllegalArgumentException

Be sure to call refreshList() before using this function, to ensure that the RecentCalls
list is up-to-date.

iDEN J2ME™ Developer’s Guide

292
 © 2005 Motorola, Inc.

index is the number of the RecentCallsEntry to return. Note that the first entry is at index
0.

If index is greater than the index for the last RecentCallsEntry, this method throws
IllegalArgumentException.

If this application does not have the right permissions to read the native recent calls list,
this method throws a SecurityException.

5.5.3.1.2 getStsMsg
Returns the status message string associated with the specific alert.

Public string getStsMsg ()

The code example is as follows:

 System.out.println(
 "The status message of the call for last Entry is "
 + myEntry.getStsMsg ());

5.4.3.1.3 firstEntry
Returns the first RecentCallsEntry if the RecentCalls list is not empty, null if the list is
empty

public RecentCallsEntry firstEntry()

Be sure to call refreshList() before using this function, to ensure that the RecentCalls
list is up-to-date.

If this application does not have the right permissions to read the native recent calls list,
this method throws a SecurityException.

5.4.3.1.4 lastEntry
Returns the last RecentCallsEntry if the RecentCalls list is not empty, null if the list is
empty.

public RecentCallsEntry lastEntry()

Be sure to call refreshList() before using this function, to ensure that the RecentCalls
list is up-to-date.

If this application does not have the right permissions to read the native recent calls list,
this method throws a SecurityException.

5.4.3.1.5 refreshList
Synchronizes this RecentCalls list with the phone’s native list of recent calls.
public boolean refreshList()

This method synchronizes the RecentCalls list with the phone’s native list of recent calls,
adding calls to the RecentCalls list that have been added to the native list and removing
calls from the native list that have been removed from the RecentCalls list.

iDEN J2ME™ Developer’s Guide

293
 © 2005 Motorola, Inc.

Be sure to call this method when the RecentCalls list is first created, or when you call
removeEntryAt() or removeAll(). Additionally, it’s a good idea to call this method
before you access the RecentCalls list, to ensure that the list is up-to-date.

This method returns true if the operation was successful, false otherwise. If the operation
fails, the list is left in the same condition it was in before the operation.

If this application does not have the right permissions to read the native recent calls list,
this method throws a SecurityException.

5.4.3.1.6 capacity
Returns the maximum number of recent calls that this phone can store.
public int capacity()

5.4.3.1.7 doesContain
Returns true if the specified RecentCallsEntry is in this RecentCalls list; false, otherwise.

public boolean doesContain(RecentCallsEntry myEntry)

Be sure to call refreshList() before using this function, to ensure that the RecentCalls
list is up-to-date.

If this application does not have the right permissions to read the native recent calls list,
this method throws a SecurityException.

5.4.3.1.8 indexOf
Returns the index of the specified RecentCallsEntry.

public int indexOf(RecentCallsEntry myEntry)

Be sure to call refreshList() before using this function, to ensure that the RecentCalls
list is up-to-date.

If this application does not have the right permissions to read the native recent calls list,
this method throws SecurityException

5.4.3.1.9 currentUsage
Returns the number of RecentCallsEntries in this RecentCalls list.

public int currentUsage()

Be sure to call refreshList() before using this function, to ensure that the RecentCalls
list is up-to-date.

If this application does not have the right permissions to read the native recent calls list,
this method throws a SecurityException.

iDEN J2ME™ Developer’s Guide

294
 © 2005 Motorola, Inc.

5.4.3.1.10 isListEmpty
Returns true if this RecentCalls list contains no entries; false, otherwise.

public boolean isListEmpty()

Be sure to call refreshList() before using this function, to ensure that the RecentCalls
list is up-to-date.

If this application does not have the right permissions to read the native recent calls list,
this method throws a SecurityException.

5.4.3.1.11 numIncomingCalls
Returns the number of incoming calls in this RecentCalls list.

public int numIncomingCalls()

If this RecentCalls list is empty, this method returns -1.

Be sure to call refreshList() before using this function, to ensure that the RecentCalls
list is up-to-date.

If this application does not have the right permissions to read the native recent calls list,
this method throws a SecurityException.

5.4.3.1.12 numOutgoingCalls
Returns the number of outgoing calls in this RecentCalls list.

public int numOutgoingCalls()

If this RecentCalls list is empty, this method returns -1.

Be sure to call refreshList() before using this function, to ensure that the RecentCalls
list is up-to-date.

If this application does not have the right permissions to read the native recent calls list,
this method throws a SecurityException.

5.4.3.1.13 numMissedCalls
Returns the number of missed calls in this RecentCalls list.

public int numMissedCalls()

If this RecentCalls list is empty, this method returns -1.

Be sure to call refreshList() before using this function, to ensure that the RecentCalls
list is up-to-date.

If this application does not have the right permissions to read the native recent calls list,
this method throws a SecurityException.

5.4.3.1.14 removeEntryAt
Deletes the RecentCallsEntry at the specified index from this RecentCalls list.

public boolean removeEntryAt(int entryNumber)

throws IllegalArgumentException

iDEN J2ME™ Developer’s Guide

295
 © 2005 Motorola, Inc.

This method returns true if the operation is successful, false otherwise. If the operation
fails, check to see if the entry is still there and try again.

You must call refreshList() after calling this method, to ensure that the phone’s native
recent calls list matches this RecentCalls list.

index is the number of the RecentCallsEntry to remove. Note that the first entry is at
index 0.

If index is greater than the index for the last RecentCallsEntry, this method throws an
IllegalArgumentException.

If this application does not have the right permissions to read the native recent calls list,
this method throws a SecurityException.

5.4.3.1.15 removeAll
Deletes every RecentCallsEntry in this RecentCalls list.

public boolean removeAll()

You must call refreshList() after calling this method, to ensure that the phone’s native
recent calls list matches this RecentCalls list.

If this application does not have the right permissions to read the native recent calls list,
this method throws a SecurityException.

5.4.3.1.16 setRCLListener
Set the recent calls listener to be the specified object.

public void setRCLListener(RCLListener l)

The recent call listener notifies the application when the phone’s native recent calls list has
changed by sending the specified object the RCLActionListener() method.

5.4.3.2 RecentCallsEntry Methods
5.4.3.2.1 getServiceCallType

Returns the service call type for this RecentCallsEntry.
public int getServiceCallType()

This method returns JAVA_SERVICE_CALL_TYPE_PHONE,
JAVA_SERVICE_CALL_TYPE_PRIVATE, JAVA_SERVICE_CALL_TYPE_TALKGROUP, or
JAVA_SERVICE_CALL_TYPE_CALLALERT.

5.4.3.2.2 getCallType
Returns the call type for this RecentCallsEntry.

public int getCallType()

If the service call type for this RecentCallsEntry is JAVA_SERVICE_CALL_TYPE_PHONE,
this method returns JAVA_CALL_TYPE_INCOMING, JAVA_CALL_TYPE_OUTGOING, or
JAVA_CALL_TYPE_MISSED. Otherwise, this method returns CALL_TYPE_NO_STATUS.

iDEN J2ME™ Developer’s Guide

296
 © 2005 Motorola, Inc.

5.4.3.2.3 getPhoneNumber
Returns the phone number for this RecentCallsEntry.

public String getPhoneNumber()

5.4.3.2.4 getDuration
Returns the duration of this call in seconds.

public int getDuration()

5.4.3.2.5 getMinute
Returns the minute at which this call was made.

public int getMinute()

5.4.3.2.6 getHour
Returns the hour at which this call was made.

public int getHour()

5.4.3.2.7 getDay
Returns the day in which the call was made, as integer from 1 to 31.

public int getDay()

5.4.3.2.8 getMonth
Returns the month in which the call was made, as an integer from 1 to 12.

public int getMonth()

5.4.3.3 RCLListener Method
5.4.3.3.1 RCLActionListener

Called when the phone’s native recent calls list is changed.
public void RCLActionListener()

You should implement this method to be notified when the RecentCalls list changes.
There can be only one recent calls listener per MIDlet.

5.4.4 Code Examples
The following is the code example of RecentCalls API:

RecentCalls RCL =new RecentCalls();
RecentCallsEntry myEntry = new RecentCallsEntry;

if(RCL.isListEmpty()){
 System.out.println("This Recent Calls List is empty");
} else {
 try {

iDEN J2ME™ Developer’s Guide

297
 © 2005 Motorola, Inc.

 if(RCL.refreshList()){
 try {
 int currentUsage = RCL.currentUsage();
 } catch(Exception e) {
 System.out.println(
 "Exception thrown in currentUsage()" + e);
 }
 try {
 for(int i = 0; i < currentUsage; i++){

 myEntry = RCL.entryAt(i);
 System.out.println("Phone number for Entry " +
 i + " is " + myEntry.getPhoneNumber());
 System.out.println("Call Type for Entry " + i +
 " is " + myEntry.getCallType());
 System.out.println("Service Call Type for Entry "
 + i + " is " + myEntry.getServiceCallType());
 System.out.println(
 "The time of the call for Entry " + i +
 " is " + myEntry.getHour() + ":" +
 myEntry.getMinute());
 System.out.println(
 "The date of the call for Entry " + i +
 " is " + myEntry.getMonth() + "-" +
 myEntry.getDay());
 System.out.println(
 "The duration of the call for Entry " +
 i + " is " + myEntry.getDuration());
 try{
 if(RCL.doesContain(myEntry)){
 System.out.println(
 "doesContain() returned true");
 }else {
 System.out.println(
 "doesContain() returned false");
 }
 } catch(Exception e) {
 System.out.println(
 "Exception thrown in doesContain()" + e);
 }
 }
 } catch(Exception e) {
 System.out.println("Exception thrown in entryAt()" + e);
 }
 try {
 myEntry = RCL.firstEntry();
 System.out.println("Phone number for first Entry is "
 + myEntry.getPhoneNumber());
 System.out.println("Call Type for first Entry is " +
 myEntry.getCallType());

 System.out.println(
 "Service Call Type for first Entry is " +

iDEN J2ME™ Developer’s Guide

298
 © 2005 Motorola, Inc.

 myEntry.getServiceCallType());
 System.out.println(
 "The time of the call for first Entry is " +
 myEntry.getHour() + ":" + myEntry.getMinute());
 System.out.println(
 "The date of the call for first Entry is " +
 myEntry.getMonth() + "-" + myEntry.getDay());
 System.out.println(
 "The duration of the call for first Entry is "
 + myEntry.getDuration());
 } catch(Exception e) {
 System.out.println("Exception thrown in firstEntry()" + e);
 }
 try {
 myEntry = RCL.lastEntry();
 System.out.println("Phone number for last Entry is "
 + myEntry.getPhoneNumber());
 System.out.println("Call Type for last Entry is " +
 myEntry.getCallType());
 System.out.println(
 "Service Call Type for last Entry is " +
 myEntry.getServiceCallType());
 System.out.println(
 "The time of the call for last Entry is " +
 myEntry.getHour() + ":" + myEntry.getMinute());
 System.out.println(
 "The date of the call for last Entry is " +
 myEntry.getMonth() + "-" + myEntry.getDay());
 System.out.println(
 "The duration of the call for last Entry is "
 + myEntry.getDuration());
 } catch(Exception e) {
 System.out.println("Exception thrown in lastEntry() " + e);
 }
 try {
 System.out.println("The number of incoming calls are " +
 RCL.numIncomingCalls());
 } catch(Exception e) {

 System.out.println(
 "Exception thrown in numIncomingCalls() " + e);
 }
 try {
 System.out.println("The number of outgoing calls are " +
 RCL.numOutgoingCalls());
 }catch(Exception e){
 System.out.println(
 "Exception thrown in numOutgoingCalls() " + e);
 }
 try {
 System.out.println("The number of missed calls are " +
 RCL.numMissedCalls());
 } catch(Exception e) {
 System.out.println(

iDEN J2ME™ Developer’s Guide

299
 © 2005 Motorola, Inc.

 "Exception thrown in numMissedCalls() " + e);
 }
 try {
 for(int i = 0; i < 5 ; i++){
 RCL.removeEntryAt(i);
 }
 } catch(Exception e) {
 System.out.println(
 "Exception thrown in removeEntryAt() " + e);
 }
 try {
 RCL.removeAll();
 } catch(Exception e) {
 System.out.println("Exception thrown in removeAll() "
 + e);
 }

 }
 else {
 System.out.println("RefreshList returned false");
 }

}

iDEN J2ME™ Developer’s Guide

300
 © 2005 Motorola, Inc.

5.5 PhoneBook
5.5.1 Overview

The Java-based PhoneBook APIs let you access the user's phonebook data. The methods
support such functionality as opening a phonebook, reading phonebook entries, creation a
phonebook entry, importing a phonebook entry, removing specified phonebook entries, deleting all
phonebook entries, determining available storage and so on.

5.5.2 Class Descriptions
The APIs for Phonebook are all located in package class com.motorola.iden.udm.

The following will be the Class Hierarchy for the UDM API:

 java.lang.Object
 |
 +- com.motorola.iden.udm.UDM
 |
 +- com.motorola.iden.udm.PhoneBook
 |
 +- com.motorola.iden.udm.PhoneBookEntry
 |
 +-java.lang.Throwable
 |
 +-java.lang.Exception
 |
 +-com.motorola.iden.udm.UDMException

The following will be the Interface Hierarchy for the UDM and PhoneBook API:

com.motorola.iden.udm.UDMEntry
com.motorola.iden.udm.UDMList

5.5.3 Class Methods
5.5.3.1 UDM Method

Class for accessing the UDM databases on a device.

5.5.3.1.1 openPhoneBook
Returns a PhoneBook with the phone’s native phonebook entries.

public static PhoneBook openPhoneBook(int mode) throws UDMException

This method returns a PhoneBook, sorted by name. mode must be either READ_ONLY or
READ_WRITE. If you call this method and the phone’s native phonebook is not ready (e.g.
the SIM reads have not been completed), it throws a UDMException.

iDEN J2ME™ Developer’s Guide

301
 © 2005 Motorola, Inc.

Calling this method is equivalent to calling openPhoneBook(mode, NAME_SORT).

public static PhoneBook openPhoneBook(int mode, int sort)
throws UDMException

This method returns a PhoneBook with the phone’s phonebook entries, sorted either by
name or speed dial number. mode must be either READ_ONLY or READ_WRITE. Sort
must be either NAME_SORT or SPEED_NUM_SORT. Otherwise, this method throws an
IllegalArgumentException. Note that if you sort by speed dial number, you may not be able
to retrieve entries without a speed dial number. If you call this method and the phone’s
phonebook is not ready (e.g. the SIM reads have not been completed) it throws a
UDMException.

The first time a MIDlet calls this method, it creates a new PhoneBook object with all the
entries from the device’s native phonebook. When a MIDlet calls it subsequently, it returns
the same PhoneBook object, after repopulating the object with the entries from the native
phonebook. Note that if your MIDlet has changed any PhoneBookEntries and hasn’t
committed them (with the PhoneBookEntry.commit()), those changes are lost.

To determine whether your application has modified a PhoneBookEntry without
committing the change (with PhoneBookEntry.commit()) use
PhoneBookEntry.isModified(). To determine whether the native PhoneBook
database has been changed since a PhoneBook was created, use
PhoneBook.isCurrent().

5.5.3.2 PhoneBookEntry Methods
5.5.3.2.1 commit

Writes the data in the PhoneBookEntry to the phone’s native phone book.
public void commit() throws UDMException

This method locks the native phone book, writes the data, and then unlocks the
phonebook.

If this PhoneBookEntry contains only a name without a phone number, IP address, group
ID, or email address, this method throws a UDMException with the string “Number
Required”. If this PhoneBookEntry lacks a name, this method throws a UDMException
with the string "Name Required".

If the phone database is busy, this method throws a UDMException with the string "Native
DB is busy”. This often occurs after an application calls
deleteAllPhoneBookEntries(). When this happens, try to sleep for a period of time
and try again later. It takes approximately 30 seconds to clear the phone book.

5.5.3.2.2 isModified
Returns true if any of this element's fields have been modified since the element was
retrieved or last committed.

public boolean isModified ()

iDEN J2ME™ Developer’s Guide

302
 © 2005 Motorola, Inc.

5.5.3.2.3 getAvailSpeedNum
Returns the next or last available speed dial number.

public int getAvailSpeedNum(boolean reverseOrder)
throws UDMException

Use this method to generate default values for the SPEED_NUM field. If reverseOrder is
false, this method returns the lowest unused speed dial number. If reverseOrder is true,
it returns the highest unused speed dial number.

If the SIM card type is GSM SIM or ENDEAVOR SIM and reverseOrder is true, this
method throws a UDMException with the string "PhoneBook does not support reverse
order".

5.5.3.2.4 getFieldDataType
Returns the data type for the given field ID
public int getFieldDataType(int fieldID) throws UDMException

Use this method to find the data types for field IDs that may have different types of data in
each element. This table lists the data types for the fields in a PhoneBook entry:

Field ID Field Data Type
TEL, SPEED_NUM, PRIV UDMEntry.TYPED_STRING

REVISION UDMEntry.DATE

EMAIL, FORMATTED_NAME, GRP, IP,

HUB*

UDMEntry.STRING

RINGER UDMEntry.INT

 *FieldID HUB applies to the i325

5.5.3.2.5 getInt
Returns the value of the specified integer field.

public int getInt(int fieldID) throws UDMException

If fieldID is not RINGER, this method throws a UDMException with the string "Not
supported field ID". To read the available ringers, use
com.motorola.iden.call.CallReceive.playRinger(int index). The value for
RINGER is an integer from 0 to the 250, which maps to one of the ringers stored on the
phone. The value of the default ringer is 0xff.

5.5.3.2.6 setInt
Sets the value of the specified integer field.

public void setInt(int fieldID, int value) throws UDMException

If fieldID is not RINGER, this method throws a UDMException with the string "Not
supported field ID". The value for RINGER is an integer from 0 to the 250 that maps to one
of the ringers stored on the phone. The value of the default ringer is 0xff.

iDEN J2ME™ Developer’s Guide

303
 © 2005 Motorola, Inc.

5.5.3.2.7 getString
Returns the value of the specified string field.

public String getString(int fieldID) throws UDMException

If fieldID is not FORMATTED_NAME, GRP, IP or EMAIL, this method throws a
UDMException with the string "Not supported field ID".

The fieldID for this handset is expanded to include HUB.

5.5.3.2.8 setString
Sets the value of the specified string field.

public void setString(int fieldID, String value)
throws UDMException

If fieldID is not FORMATTED_NAME, GRP, IP or EMAIL, this method throws a
UDMException with the string "Not supported field ID".

The fieldID for this handset is expanded to include HUB

The HUB value can contain three or fewer digits that represent a value between 1
and 255.

Keep these pointers in mind when you set the value:

• The valid values for the FORMATTED_NAME field depend on the phone’s SIM type.
If SIM type is FALCON SIM and the name contains no Unicode characters, the
maximum length of the name is 20 characters. If the name contains Unicode
characters, the maximum length of the name is 10 characters.

• If the SIM type is any other SIM and the name contains no Unicode character, the
maximum length of the name is 11 characters. If the name contains Unicode
characters, the maximum length of the name is 5 characters.

• The GRP field can contain three or fewer digits that represent a value between 1
and 255.

• For the IP field, the value should be a valid IP address.

• For the EMAIL field, the value should be a valid email address.

iDEN J2ME™ Developer’s Guide

304
 © 2005 Motorola, Inc.

5.5.3.2.9 getDate
Returns the value of the specified date field.

public long getDate(int fieldID) throws UDMException

If fieldID is not REVISION, this method throws a UDMException with the string "Not
supported field ID".

5.5.3.2.10 setDate
Sets the value of the specified date field.

public void setDate(int fieldID, long value) throws UDMException

If fieldID is not REVISION, this method throws a UDMException with the string "Not
supported field ID". The value should not be less than the date offset in milliseconds from
January 1, 1970, to January 1, 1999.

5.5.3.2.11 setTypedString
Sets the value of the specified typed string field.

public void setTypedString(int fieldID, int typeID, String value)

throws UDMException

If fieldID is not TEL, SPEED_NUM, or PRIV, this method throws a UDMException with
the string "Not supported field ID". If typeID is not a type supported by the field, this
method throws a UDMException. A list of fields and their supported types is at the
PhoneBook method getSupportedTypes().

For the TEL field, the value should be a valid Phone Number and contain only the values
in this character set: "0123456789+pwPW*#". The maximum length of the number
depends on the SIM type. If the SIM type is FALCON, the maximum length is 64
characters. Otherwise, the maximum length is 20 characters.

“P” or “p” inserts a three-second pause into the DTMF string. “W” or “w” stops sending
DTMF tones until the user presses the Send key.

For the PRIV field, the value must be a valid Private Number that contains only digits. The
maximum length is 18 characters.

5.5.3.3 PhoneBook Methods
5.5.3.3.1 importPhoneBookEntry

Adds the specified PhoneBookEntry to this PhoneBook.
public PhoneBookEntry importPhoneBookEntry(PhoneBookEntry element)

throws UDMException

If you opened the PhoneBook in read-only mode, this method throws a UDMException.

5.5.3.3.2 isSupportedField
Returns true if this PhoneBook supports the given field.
public boolean isSupportedField(int fieldID) throws UDMException

iDEN J2ME™ Developer’s Guide

305
 © 2005 Motorola, Inc.

Here are the fields that this phone supports:

Fields Supported or Not
PhoneBookEntry.TEL,
PhoneBookEntry.SPEED_NUM,
PhoneBookEntry.FORMATTED_NAME,
PhoneBookEntry.REVISION

Supported.

PhoneBookEntry.NAME_FAMILY,
PhoneBookEntry.NAME_GIVEN,
PhoneBookEntry.NAME_OTHER,
PhoneBookEntry.NAME_PREFIX,
PhoneBookEntry.NAME_SUFFIX,

PhoneBookEntry.NICKNAME,

PhoneBookEntry.VOICE_NAME

Not supported.

PhoneBookEntry.PRIV,
PhoneBookEntry.GRP

If SIM Type is SIM_GSM, it’s supported.
Otherwise, it’s not supported.

PhoneBookEntry.IP If SIM Type is SIM_CONDOR or
SIM_FALCON, it’s supported. Otherwise,
it’s not supported.

PhoneBookEntry.EMAIL,
PhoneBookEntry.RINGER

If SIM Type is SIM_FALCON, they’re
supported. Otherwise, they’re not
supported.

5.5.3.3.3 isCurrent
Returns true if a PhoneBookEntry object has been created since the last native
phonebook update.
public static boolean isCurrent()

5.5.3.3.4 getSupportedTypes
Returns an array of the supported types for the given field.
public int[] getSupportedTypes(int fieldID) throws UDMException

Before you call this method, call isSupportedField(int fieldID) to make sure the
field is supported.

iDEN J2ME™ Developer’s Guide

306
 © 2005 Motorola, Inc.

Here are the fields that have types and which types they support:

fieldID Supported types
PhoneBookEntry.TEL,
PhoneBookEntry.SPEED_NUM

If SIM type is FALCON, the types are
PhoneBookEntry.TYPE_OTHER,
PhoneBookEntry.TYPE_HOME,
PhoneBookEntry.TYPE_MOBILE,
PhoneBookEntry.TYPE_PAGER,
PhoneBookEntry.TYPE_WORK_1,
PhoneBookEntry.TYPE_WORK_2, and
PhoneBookEntry.TYPE_FAX

If SIM type is CONDOR, the types are
PhoneBookEntry.TYPE_OTHER,
PhoneBookEntry.TYPE_HOME,
PhoneBookEntry.TYPE_MOBILE,
PhoneBookEntry.TYPE_PAGER,
PhoneBookEntry.TYPE_WORK_1,
PhoneBookEntry.TYPE_FAX, and
PhoneBookEntry.TYPE_MAIN.

Otherwise, the only supported type is
PhoneBookEntry.TYPE_MAIN

PhoneBookEntry.PRIV PhoneBookEntry.TYPE_PRIVATE

5.5.3.3.5 removePhoneBookEntry
Removes the specified PhoneBookEntry from the PhoneBook.
public void removePhoneBookEntry(PhoneBookEntry element)

throws UDMException

If the PhoneBookEntry is not in this PhoneBook, this method throws a UDMException with
“PhoneBookEntry is not in PhoneBook”.

If you opened the PhoneBook in read-only mode, this method throws a UDMException
with the string "PhoneBook is Read only".

If the native phone database DB is busy, this method throws a UDMException with the
string "Native DB is busy”. This often occurs after an application calls
deleteAllPhoneBookEntries(). When this happens, try to sleep for a period of time
and try again later. It takes approximately 30 seconds to clear the phone book.

5.5.3.3.6 deleteAllPhoneBookEntries
Removes all PhoneBookEntries from the list.
public void deleteAllPhoneBookEntries() throws UDMException

If you opened the PhoneBook in read-only mode, this method throws a UDMException
with the string "PhoneBook is Read only"

If the native phone database DB is busy, this method throws a UDMException with the
string "Native DB is busy”. This often occurs after an application calls

iDEN J2ME™ Developer’s Guide

307
 © 2005 Motorola, Inc.

deleteAllPhoneBookEntries(). When this happens, try to sleep for a period of time
and try again later. It takes approximately 30 seconds to clear the phone book.

5.5.3.3.7 getAvailableStorage
Returns an array listing the number of slots available in the native database.
public int[] getAvailableStorage() throws UDMException

The numbers returned depend on the type of SIM cared in the device. For example, a
device with an Endeavor SIM returns an array of three numbers representing the number
of available phone number slots, private number slots, and talk group slots. A device with
a Condor SIM would return an array with one number representing the total number of
slots available. This table shows what’s returned depending on the SIM card:

SIM Type Total
Available

Phone
Available

Private
Available

Talkgroup
Available

i2000 GSM N/A 100 100 30

Standard GSM N/A 100 N/A N/A

32K SIM 250 N/A N/A N/A

64K SIM 600 N/A N/A N/A

5.5.4 Code Examples
The following is the code example of PhoneBook:

/**
 * Demo program of Motorola iDEN SDK PhoneBook APIs
 * Filename: MyPhoneBook.java
 * <p></p>
 * <hr/>
 * MOTOROLA and the Stylized M Logo are registered trademarks of
 * Motorola, Inc. Reg. U.S. Pat. & Tm. Off.

 * © Copyright 2003 Motorola, Inc. All Rights Reserved.
 * <hr/>
 *
 * @version iDEN Phonebook demo 1.0
 * @author Motorola, Inc.
 */

import com.motorola.iden.udm.*;
import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
import java.util.Enumeration;
import java.lang.Thread;

public class MyPhoneBook extends MIDlet implements CommandListener {

 private Form textform;
 private Command exitCommand, checkCommand;

iDEN J2ME™ Developer’s Guide

308
 © 2005 Motorola, Inc.

 private PhoneBook contacts;
 private PhoneBookEntry contact;
 private StringItem username;
 int[] type;

 /**
 * Print all contacts in a phonebook.
 * <p></p>
 * @param pbk Phonebook to be read
 */
 public void printList(PhoneBook pbk)
 {
 contacts = pbk;

 try
 {
 for (Enumeration v = contacts.elements(); v.hasMoreElements();)
 {
 /* Get one contact from phonebook */
 contact = (PhoneBookEntry)v.nextElement();
 type = contact.getFields();

 /* Get contact's name */
 username = new StringItem("name",
 contact.getString(PhoneBookEntry.FORMATTED_NAME));
 textform.append(username);

 for (int j= 0; j<type.length; j++)
 {
 /* Get String labels for the given field IDs */
 System.out.print("Fields "+type[j] + " , " +
 contact.getFieldLabel(type[j]) + " ,");

 /* Get an integer array containing the supported type
 * IDs for the given field ID
 */
 int [] alltype = contacts.getSupportedTypes(type[j]);

 /* Get 3 types String fields from PhoneBookEntries. */
 if (alltype.length == 0)
 {
 if (contact.getFieldDataType(type[j]) ==
 UDMEntry.STRING)
 System.out.print(contact.getString(type[j]) +
 " ,");
 else if (contact.getFieldDataType(type[j]) ==
 UDMEntry.DATE)
 System.out.print(contact.getDate(type[j])+
 " ,");
 else if (contact.getFieldDataType(type[j]) ==
 UDMEntry.INT)
 System.out.print(contact.getInt(type[j])+

iDEN J2ME™ Developer’s Guide

309
 © 2005 Motorola, Inc.

 " ,");
 }
 else
 { /* Get String fields with specific types
 * in the PhoneBookEntry.
 */
 for (int ii =0; ii<alltype.length; ii++)
 {
 System.out.print(
 contact.getTypedString(type[j],
 alltype[ii])+ " ,");
 }
 }
 System.out.println("\n");
 }
 System.out.println("\n");
 }
 }
 catch (Exception ex)
 {
 ex.printStackTrace();
 }
 }

 public MyPhoneBook() {

 textform = new Form("Hello, PhoneBook!");
 exitCommand = new Command("exit", Command.EXIT, 2);
 checkCommand = new Command("check", Command.OK, 1);
 textform.addCommand(exitCommand);
 textform.addCommand(checkCommand);
 textform.setCommandListener(this);

 int[] type;
 Enumeration v;

 String title;
 try
 {
 /* Creates a PhoneBook by read and write mode */
 contacts = UDM.openPhoneBook(UDM.READ_WRITE);
 if (contacts != null)
 { /* Get the amount of entries (not individual numbers)
 * in the list
 */
 int no = contacts.getNumOfEntries();
 System.out.println("Number of entries is" + no);
 }

 /* Get an integer array the amount of slots available
 * on the native database.
 */
 int[] slots = contacts.getAvailableStorage();

iDEN J2ME™ Developer’s Guide

310
 © 2005 Motorola, Inc.

 for (int i = 0; i < slots.length; i++)
 {
 System.out.println(slots[i]);
 }

 int index =0;
 printList(contacts);

 /* Removes a specific PhoneBookEntry from the list. */
 Enumeration e;
 e = contacts.elements();
 contact = (PhoneBookEntry)e.nextElement();
 contacts.removePhoneBookEntry(contact);

 /* Create a PhoneBookEntry for this PhoneBookEntry list. */
 contact = contacts.createPhoneBookEntry();

 contact.setString(PhoneBookEntry.FORMATTED_NAME,
 "abcdefghijklmopqrstu");
 contact.setTypedString(PhoneBookEntry.TEL,
 PhoneBookEntry.TYPE_HOME, "6795588");

 contact.setString(PhoneBookEntry.EMAIL,
 "someone@somesite.com");
 contact.setString(PhoneBookEntry.IP, "127.0.0.1");
 contact.setInt(PhoneBookEntry.RINGER, 2);
 contact.setTypedString(PhoneBookEntry.TEL,
 PhoneBookEntry.TYPE_WORK_1, "1234567");
 contact.commit();

 Thread.sleep(200);

 slots = contacts.getAvailableStorage();
 for (int i= 0; i < slots.length; i++)
 {
 System.out.println(slots[i]);
 }

 }
 catch (Exception ex)
 {
 ex.printStackTrace();
 }
 }

 public void startApp()
 {
 Display.getDisplay(this).setCurrent(textform);
 }

 public void pauseApp()
 { }

iDEN J2ME™ Developer’s Guide

311
 © 2005 Motorola, Inc.

 public void destroyApp(boolean unconditional)
 { }

 public void commandAction(Command c, Displayable d) {
 if(c == exitCommand) {
 try {
 contacts.close();
 }
 catch(Exception t) { }
 notifyDestroyed();
 }
 else if (c == checkCommand)
 {
 System.out.println(PhoneBook.isCurrent());
 }
 }

}

5.5.5 Compiling & Testing PhoneBook MIDlets
• Method PhoneBook.isCurrent() always returns true since there is no native support

for this method.

• Method PhoneBook.getAvailableStorage()always returns an empty array since
there is no native support for this method.

• Method PhoneBookEntry.getAvailSpeedNum()always returns 1 since there is no
native support for this method.

iDEN J2ME™ Developer’s Guide

312
 © 2005 Motorola, Inc.

5.6 Java PIM Package
5.6.1 Overview

i275

only

This API is only available on
these handsets.

This API provides access to Personal Information Management
(PIM) data on J2ME devices. This development guide is a
supplement to JSR 75 PIM optional package.

Not all classes and methods are addressed in this developer
guide. For those classes and methods, please refer to JSR 75
document.

Package:

javax.microedition.pim

com.motorola.iden.pim

Classes:

 javax.microedition.pim.Contact.java

 javax.microedition.pim.ContactList.java

 javax.microedition.pim.Event.java

 javax.microedition.pim.EventList.java

 javax.microedition.pim.FieldEmptyException.java

 javax.microedition.pim.FieldFullException.java

 javax.microedition.pim.PIM.java

 javax.microedition.pim.PIMException.java

 javax.microedition.pim.PIMItem.java

 javax.microedition.pim.PIMList.java

 javax.microedition.pim.RepeatRule.java

 javax.microedition.pim.ToDo.java

 javax.microedition.pim.ToDoList.java

 javax.microedition.pim.UnsupportedFieldException.java

 com.motorola.iden.pim.PIMExtension

Note that this API is dependent upon the SIM card used on the handset. The following table lists
the types of SIM cards available and the handsets on which they ship with. However, SIM cards
are transferable so the actual SIM card on a handset can vary.

iDEN J2ME™ Developer’s Guide

313
 © 2005 Motorola, Inc.

SIM type Ships With Handset

64K i730, i710, i830, i830e, i275, i285, i325, i355,
i860, i605

32K i85s, i88s, i30sx, i80s, i90c, i95cl

i2000 GSM i2000

Standard GSM Does not ship with iDEN handsets.

5.6.2 Package Description
The API for the PIM feature is located in package javax.microedition.pim.

The Java PIM package implementation supports Contact and Event in the JSR. No ToDo
functionality is supported.

Class Hierarchy

• class java.lang.Object
o class javax.microedition.pim.PIM
o class javax.microedition.pim.RepeatRule
o class java.lang.Throwable

 class java.lang.Exception
• class javax.microedition.pim.PIMException
• class java.lang.RuntimeException

o class
javax.microedition.pim.FieldEmptyException

o class
javax.microedition.pim.FieldFullException

o class
javax.microedition.pim.UnsupportedFieldExcep
tion

Interface Hierarchy

• interface javax.microedition.pim.PIMItem
o interface javax.microedition.pim.Contact
o interface javax.microedition.pim.Event
o interface javax.microedition.pim.ToDo

• interface javax.microedition.pim.PIMList
o interface javax.microedition.pim.ContactList
o interface javax.microedition.pim.EventList
o interface javax.microedition.pim.ToDoList

iDEN J2ME™ Developer’s Guide

314
 © 2005 Motorola, Inc.

5.6.2.1 Class Description
5.6.2.1.1 javax.microedition.pim.PIM
public PIMItem[] fromSerialFormat(InputStream is, String enc)

This method creates and fills one or more PIM items from data provided in the given
InputStream object where the data is expressed in a valid data format supported by this
platform.

Tip: Parameter must be one of null, “UTF-8”, “UTF_8”, “ISO10646_1", “US_ASCII",
“ISO10646”, “ISO8859_1”, “ISO_8859_1”. Otherwise,
java.io.UnsupportedEncodingException will be thrown out.

public String[] listPIMLists(int pimListType)

This method returns a list of all PIM List names for the given PIM list type.

Tip: If pimListType is PIM.TODO_LIST, a zero-length string array will be returned.

public String[] supportedSerialFormats(int pimListType)

This method returns the supported data formats for items used when converting a
PIMItem's data to and from data streams.

Tips: The implementation supports “VCARD/2.1” and “VCARD/3.0” for contact list.

The implementation supports “VCALENDAR/1.0” for event list.

public void toSerialFormat(PIMItem item, OutputStream os, String
enc, String dataFormat)

This method writes the data from the given item to the given OutputStream object as
Unicode characters in a format indicated by the String parameter.

Tip: Parameter must be one of null, “UTF-8”, “UTF_8”, “ISO10646_1", “US_ASCII",
“ISO10646”, “ISO8859_1”, “ISO_8859_1”. Otherwise,
java.io.UnsupportedEncodingException will be thrown out.

5.6.2.1.2 javax.microedition.pim.ContactList
public void addCategory(java.lang.String category)

This method adds the provided category to the PIM list.

Tip: Categories are only supported on 64K SIM for ContactList.

Categories are case sensitive in the underlying system. I.e. “Work” and “WORK” are two
different categories. The maximum length of a category is 16 Unicode characters.

ContactList supports up to 64 categories.

public int getFieldDataType(int field)

This method returns an int representing the data type of the data associated with the given
field.

Following are the data types for extended fields in ContactList:

iDEN J2ME™ Developer’s Guide

315
 © 2005 Motorola, Inc.

Extended field name Data type

PIMExtension.MAILER PIMItem.STRING

PIMExtension.TIMEZONE PIMItem.STRING

PIMExtension.GEO PIMItem.STRING

PIMExtension.ROLE PIMItem.STRING

PIMExtension.SORT_STRING PIMItem.STRING

PIMExtension.PRODID PIMItem.STRING

PIMExtension.RINGER PIMItem.INT

public int[] getSupportedFields()

This method gets all fields that are supported in this list.

The support fields and their corresponding native entries for each SIM type are listed
below:

64K SIM:

Field Native Entry

Attribute Native Entry

Contact.ATTR_HOME Home #

Contact.ATTR_MOBILE Mobile #

Contact.ATTR_PAGER Pager #

Contact.ATTR_FAX Fax #

Contact.ATTR_OTHER Other #

Contact.ATTR_WORK Work1 #

Contact.TEL

PIMExtension.ATTR_WORK2 Work2 #

PIMExtension.PRIV Private #

PIMExtension.IP IP

PIMExtension.EMAIL Email

PIMExtension.GRP Talk group

PIMExtension.SDG SDG

Contact.FORMATTED_NAME Phonebook entry Name

Contact. FORMATTED_ADDR Unknown type

Contact. NICKNAME Unknown type

Contact. NOTE Unknown type

iDEN J2ME™ Developer’s Guide

316
 © 2005 Motorola, Inc.

Contact. ORG Unknown type

Contact. TITLE Unknown type

Contact. UID Unknown type

Contact. URL Unknown type

Contact. PHOTO_URL Unknown type

Contact. PUBLIC_KEY_STRING Unknown type

Contact. NAME Unknown types

Contact. ADDR Unknown type

Contact. BIRTHDAY Unknown type

Contact. REVISION Phonebook entry revision

Contact. PHOTO Phonebook entry picture

PIMExtension CLASS Unknown type

PIMExtension.TIMEZONE Unknown type

PIMExtension GEO Unknown type

PIMExtension ROLE Unknown type

PIMExtension SORT_STRING Unknown type

PIMExtension PRODID Unknown type

PIMExtension RINGER Ring tone index

iDEN J2ME™ Developer’s Guide

317
 © 2005 Motorola, Inc.

32K SIM:

Field Native Entry

Attribute Native Entry

Contact.ATTR_HOME Home #

Contact.ATTR_MOBILE Mobile #

Contact.ATTR_PAGER Pager #

Contact.ATTR_FAX Fax #

Contact.ATTR_OTHER Other #

Contact.ATTR_WORK Work1 #

Contact.TEL

PIMExtension.ATTR_MAIN Work2 #

PIMExtension.PRIV Private #

PIMExtension.IP IP

PIMExtension.GRP Talk group

Contact.FORMATTED_NAME Phonebook entry Name

Contact. REVISION Phonebook entry revision

 i2000 GSM SIM:

Field Native Entry

Contact.TEL Telephone #

PIMExtension.PRIV Private #

PIMExtension.GRP Talk group

Contact.FORMATTED_NAME Phonebook entry Name

Contact. REVISION Phonebook entry revision

Standard GSM SIM:

Field Native Entry

Contact.TEL Telephone #

Contact.FORMATTED_NAME Phonebook entry Name

Contact. REVISION Phonebook entry revision

iDEN J2ME™ Developer’s Guide

318
 © 2005 Motorola, Inc.

public boolean isSupportedAttribute(int field, int attribute)

This method indicates whether or not the given attribute is supported in this PIM list for the
indicated field.

Tip:

• Fields other than Contact.TEL only support Contact.ATTR_NONE.

Below are the supported attributes for field Contact.TEL in ContactList:

SIM type Supported attributes for Contact.TEL

64K Contact.ATTR_HOME,

Contact.ATTR_MOBILE,

Contact.ATTR_PAGER,

Contact.ATTR_FAX,

Contact.ATTR_OTHER,

Contact.ATTR_WORK,

PIMExtension.ATTR_WORK2,

Contact.ATTR_PREFERRED

32K Contact.ATTR_HOME,

Contact.ATTR_MOBILE,

Contact.ATTR_PAGER,

Contact.ATTR_FAX,

Contact.ATTR_OTHER,

Contact.ATTR_WORK,

PIMExtension.ATTR_MAIN,

Contact.ATTR_PREFERRED

i2000 GSM PIMExtension.ATTR_MAIN

Standard GSM PIMExtension.ATTR_MAIN

public int maxCategories()

This method returns the maximum number of categories that this list can have.

It returns 64 for 64K SIM, 0 for other SIM types.

public int maxValues(int field)

This method indicates the total number of data values that a particular field supports in this
list.

Tips:

For 64K SIM and 32K SIM, it returns 7 for Contact.TEL, 1, for other fields.

For i2000 GSM SIM and Standard GSM SIM, it always returns 1.

iDEN J2ME™ Developer’s Guide

319
 © 2005 Motorola, Inc.

5.6.2.1.3 javax.microedition.pim.Contact
public void commit()

This method persists the data in the item to its PIM list.

If this contact belongs to a category that are not present in its contact list, the category will
be added to its contact list. This scenario happens when the contact is imported from a
contact that was retrieved from a vcard stream.

public byte[] getBinary(int field, int index)

This method gets a binary data value for a field from the item.

Tip: For Contact.PHOTO field on 64K SIM, if the picture is forward locked in the MRM
database, a zero-length byte[] will be returned.

public int maxCategories()

This method returns the maximum number of categories that this item can be assigned to.

It returns 1 for 64K SIM, 0 for others.

5.6.2.1.4 javax.microedition.pim.EventList
public void addCategory(java.lang.String category)

This method adds the provided category to the PIM list.

Categories are case sensitive in the underlying system. I.e. “Work” and “WORK” are two
different categories. The maximum length of a category is 16 Unicode characters.

EventList supports up to 64 categories.

public int getFieldDataType(int field)

This method returns an int representing the data type of the data associated with the given
field.

Below is the data type for extended fields in EventList:

Extended field name Data type

PIMExtension.MIDLET PIMItem.STRING

PIMExtension.MIDLET_SUITE PIMItem.STRING

PIMExtension.STYLE PIMItem.STRING

PIMExtension.RINGER PIMItem.INT

iDEN J2ME™ Developer’s Guide

320
 © 2005 Motorola, Inc.

public int[] getSupportedFields()

This method gets all fields that are supported in this list.

 Following are the support fields:

Field

PIMExtension.STYLE

PIMExtension.MIDLET_SUITE

PIMExtension.MIDLET

PIMExtension.RINGER

Event.ALARM

Event.END

Event.LOCATION

Event.REVISION

Event.START

Event.SUMMARY

Event.UID

public boolean isSupportedAttribute(int field, int attribute)

This method indicates whether or not the given attribute is supported in this PIM list for the
indicated field.

Fields only support Event.ATTR_NONE.

public int maxCategories()

This method returns 64 categories, the maximum number of categories this list can have.

5.6.3 Code Examples
The following is a code example using the PIM API:

void fromSerialFormatTest()

{

 byte[] vCardCorrect = new String("BEGIN:vCard
\r\nTEL;CELL;WORK;HOME:5555555\r\nTEL;TYPE=VOICE;WORK;HOME:5555555\r
\nORG;\r\n
ENCODING=BASE64;HOME;WORK:Loon:\r\nVERSION:2.1\r\nN:Doe;John\r\n
\r\nEND:vCard
BEGIN:vCard\r\nFN:a16551\r\nTEL;PAGER:5555555\r\nEND:vCard").getByte
s();

 InputStream is;

iDEN J2ME™ Developer’s Guide

321
 © 2005 Motorola, Inc.

 try

 {

 is = (InputStream)new ByteArrayInputStream(vCardCorrect);

 PIM.getInstance().fromSerialFormat(is, null);

 }

 catch(UnsupportedEncodingException e)

 {

 }

 catch(Exception e)

 {

 }

}

void itemsTest()

{

 try

 {

 ContactList theList = (ContactList
)PIM.getInstance().openPIMList(PIM.CONTACT_LIST, PIM.READ_WRITE);

 int num = 0;

 Enumeration enum = theList.items();

 while(enum.hasMoreElements())

 {

 Contact c = (Contact)enum.nextElement();

 if(c.getString(Contact.FORMATTED_NAME, 0).equals("First
PERSON") ||

 c.getString(Contact.FORMATTED_NAME,
0).equals("Second Guy") ||

 c.getString(Contact.FORMATTED_NAME, 0).equals("Third
Person"))

 {

 ++num;

 }

 }

 theList.close();

iDEN J2ME™ Developer’s Guide

322
 © 2005 Motorola, Inc.

 }

 catch(Exception e)

 {

 }

}

void removeValueTest()

{

 int i;

 try

 {

 ContactList theList = (ContactList
)PIM.getInstance().openPIMList(PIM.CONTACT_LIST, PIM.READ_WRITE);

 Enumeration enum = theList.items();

 Contact c = (Contact)enum.nextElement();

 int[] fields1 = c.getFields();

 for(i=c.countValues(Contact.FORMATTED_NAME); i>0; i--)

 {

 c.removeValue(Contact.FORMATTED_NAME, 0);

 }

 for(i=c.countValues(Contact.TEL); i>0; i--)

 {

 c.removeValue(Contact.TEL, 0);

 }

 theList.close();

 }

 catch(Exception e)

 {

 }

}

void removeEventTest()

{

 try {

iDEN J2ME™ Developer’s Guide

323
 © 2005 Motorola, Inc.

 EventList eventList =
(EventList)PIM.getInstance().openPIMList(PIM.EVENT_LIST,
PIM.READ_WRITE);

 Enumeration rmevents = eventList.items();

 Event rmevent = eventList.createEvent();

 while(rmevents.hasMoreElements())

 {

 rmevent = (Event)rmevents.nextElement();

 eventList.removeEvent(rmevent);

 rmevents = eventList.items();

 }

 catch(Exception pe)

 {

 }

}

iDEN J2ME™ Developer’s Guide

324
 © 2005 Motorola, Inc.

6
File System and Storage

6.1 Overview
• Record Management System

• MIDP 2.0 File Input / Output

• Secure File Input / Output

• File Connection

• Java ZIP

6.2 MIDP 2.0 Record Management System (RMS)
6.2.1 Overview

The most common mechanism for persistently storing data on a MIDP device is through RMS.
RMS lets a MIDlet store variable length records on the device. Those records are accessible to
any MIDlet in the MIDlet suite, and also to MIDlets outside of the MIDlet suite if permission is given
when the record is created. The RMS implementation on iDEN handsets is MIDP 2.0 compliant.

MIDlets within a suite can access each other's record stores directly. New APIs in MIDP 2.0 let
you explicitly share record stores if the MIDlet creating the record store chooses to give such
permission. Sharing is accomplished through the ability to name a record store created by another
MIDlet suite.

You define access controls when you create a record store that’s to be shared. Access controls
are enforced when RecordStores are opened. The access modes allow private use or shareable
with any other MIDlet suites.

6.2.2 Class Description
The API for the RecordStore is located in the package javax.microedition.rms.

iDEN J2ME™ Developer’s Guide

325
 © 2005 Motorola, Inc.

6.2.3 Code Examples
The following simple code example opens a record store. If any exception occurs it is caught.

try {
System.out.println("Opening RecordStore " + rsName + " ...");

//try to open a record Store
recordStore = RecordStore.openRecordStore(rsName, true);

//keep a note for the last modified time for record store
Date d = new Date(recordStore.getLastModified());
System.out.println(recordStore.getName()+"modified last time: " +
d.toString());

}
catch (RecordStoreException rse) {

//process the IOException
}

The following simple code example will open (and possibly create) a record store that can be
shared with other MIDlet suites. The record store is owned by the current MIDlet suite. The
authorization mode is set when the record store is created, as follows:

AUTHMODE_PRIVATE allows only the MIDlet suite that created the record store to access
it. This case behaves identically to openRecordStore(recordStoreName,
createIfNecessary).

AUTHMODE_ANY allows any MIDlet to access the record store. Note that this makes your
record store accessible by any other MIDlet on the device. This could have privacy and
security issues depending on the data being shared. Please use carefully.

try {
System.out.println("Opening RecordStore " + rsName + " ...");

//try to open a record store
recordStore = RecordStore.openRecordStore(rsName,true,

(byte)RecordStore.AUTHMODE_ANY, true);

//keep a note for the last modified time for record store
Date d = new Date(recordStore.getLastModified());
System.out.println(recordStore.getName()+"modified last time: " +

d.toString());
} catch (RecordStoreException rse) {

//process the IOException
}

6.2.4 Tips /
• It is much faster to read and write in big chunks than it is to do so in small chunks. The

optimal size for reading and writing is 512 bytes.

• Whenever you close a record store, close() does not return until all the pending writes
have been written. A successful close() call guarantees that the data was written. It is

iDEN J2ME™ Developer’s Guide

326
 © 2005 Motorola, Inc.

then safe to power off the phone. Because of this, close() may take a while to return.
Therefore, if a record store is opened and closed for every write, performance will slow
down greatly.

6.2.5 Caveats
• iDEN handsets support a maximum of 2048 record stores. If there is no file space

available, you cannot create extra record stores or records. Once the phone contains 2048
record stores, you cannot create more. MIDI ringers, voice notes, wallpapers, PNG
images included with a MIDl are all files. If a MIDlet has many images, such as sprites
used in animations, it may be advantageous to have them all in one image file and use
clipping to display only what you need.

• A record store can be of any size as long as there is file space available. A zero byte
record store is also allowed.

• Each MIDlet suite is guaranteed to be able to open at least 5 files or record stores
simultaneously.

• There is an additional pool of 16 files and record stores that can be opened. This pool is
shared among all MIDlet suites, giving a MIDlet suite the potential to simultaneously open
21 files or record stores.

6.2.6 Compiling and Testing RMS MIDlets
This is a standard MIDP 2.0 package so there is no need for stub classes to compile the MIDlet
with RMS APIs.

iDEN J2ME™ Developer’s Guide

327
 © 2005 Motorola, Inc.

6.3 MIDP 2.0 File I/O and Secure File I/O
6.3.1 Overview

The objective of the File I/O and secure File I/O API is to provide a generic platform for the Java
developer to use to open, read, write, append and delete a file sequentially. The goal is to provide
UNIX-like file access APIs, as a simple alternative to Record Management System (RMS). This
lets MIDlets save information between invocations; this is called “persistent storage.” Examples
include:

• Saving data such as notes, phone numbers, tasks, and so on.

• Keeping a history of recent URLs

Secure File I/O API provides a generic
platform for the Java developer to
protect the persistent storage with
password protection.

Handsets that do not provide Secure
File I/O provide all functionality
specified for unsecured File I/O.

6.3.2 Class Description
The File I/O and Secure File I/O APIs are located in package javax.microedition.io.

6.3.3 Method Description
6.3.3.1 Connector Method

6.3.3.1.1 open
Opens or deletes the specified file.

public static Connection open(String name)
throws IOException

public static Connection open(String name, int mode)
throws IOException

public static Connection open(String name, int mode,
boolean timeouts) throws IOException

iDEN J2ME™ Developer’s Guide

328
 © 2005 Motorola, Inc.

Opening a file gives your application exclusive access to that particular file until it is
explicitly closed or the program ends. Opening a secure file gives your application
password-protected access to that particular file until it is explicitly closed or the program
ends.

name is a URL that contains the name of the file to open, and can also include keywords
that specify the mode in which to open it. Here are some examples:

• "file://temp.txt" specifies that file is to be opened in the default mode,
which is READ_WRITE.

• "file://temp.txt;APPEND" specifies that file is to be opened in an APPEND
mode.

• "sfile://temp.txt;PASSWORD=313" specifies that the file is a secure file to
be opened with the password 313 and in the default mode, READ_WRITE.

• "sfile://temp.txt;PASSWORD=313;APPEND" specifies that the file is a
secure file to be opened with the password 313 and in an APPEND mode.

You can also delete a file with the DELETE keyword. Note that all the InputStreams,
OutputStreams and StreamConnections associated with a file should be closed before deleting the
file. If a file cannot be deleted, these methods throw an IOException. Here are some examples of
name parameters that delete a file:

"file://temp.txt;DELETE" deletes temp.txt.

"sfile://temp.txt;PASSWORD=313;DELETE" deletes the secure file temp.txt with the
password 313.

mode, if included, must have one of these three values: READ, WRITE, or READ_WRITE.

timeout has no effect on the method call and is ignored.

These are five basic steps for reading and writing a file:

1. Open the file using the open() method of Connector class. This returns a
StreamConnection object for file. Otherwise, an IOException is thrown.

2. Get the output stream using the openOutputStream() method of OutputConnection.

3. Get the input stream using the openInputStream() method of InputConnection.

4. Once the connection has been established, simply use the normal methods of any input or
output stream to read and write data.

5. Close the file using the close() method of Connection.

6. For more information, see the Javadocs.

iDEN J2ME™ Developer’s Guide

329
 © 2005 Motorola, Inc.

6.3.4 Code Examples
6.3.4.1 Example # 1 (File/Secure File Snippet)

The following example shows how to open a file, write bytes to the file and read the same
number of bytes.

StreamConnection sc = null;
InputStream is = null;
OutputStream os = null;

//For regular file
String name = "file://temp.txt";

//For secure file
String name = "sfile://temp.txt;PASSWORD=4509";
try {
 // open a file, default mode: READ_WRITE
 sc = (StreamConnection)Connector.open(name);

 // get OutputStream
 os = sc.openOutputStream();

 // get InputStream
 is = sc.openInputStream();
 String b = "Hello World";

 // write the bytes
 os.write(b.getBytes());
 int dataAvailable = is.available();
 byte [] b1 = new byte[dataAvailable];

 // read the bytes
 is.read(b1);
} finally {
 if (sc != null)
 sc.close();
 if (is != null)
 is.close();
 if (os != null)
 os.close();
}

iDEN J2ME™ Developer’s Guide

330
 © 2005 Motorola, Inc.

6.3.4.2 Example # 2 (Complete File MIDlet Code)
The following example is a simple MIDlet that will provide the overall operation of the file I/O
interface and how most of the APIs can be used. The MIDlet also shows a simple alternative
to RMS to store data as a persistent storage.

import javax.microedition.io.*;
import java.io.*;
import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
public class Example2 extends MIDlet implements CommandListener{

/**
 * List of available tests
 */
StreamConnection sc;
String[] testList = {"file to w/r", "setData",

"write/append/read", "delete"};
TextBox tf1;
TextBox tf2;

/**
 * Reference to Display object associated with this Display
 */
Display myDisplay;

/* default file name */
String fileURL = "temp.txt";

/*default amount of data*/
int dataNum = 0;

/*default string to write in file*/
String stringNum ="Hello World";

/**
 * The output screen
 */
Form myOutput;

/**
 * The list of tests
 */
List myList;

/**
 * Ok command to indicate a test was selected
 */
Command okCommand;

/**
 * Create NetTests
 */

iDEN J2ME™ Developer’s Guide

331
 © 2005 Motorola, Inc.

public Example2() {

}

/**
 * Start running
 */
 protected void startApp() {
 myDisplay = Display.getDisplay(this);
 myOutput = new Form("Results");
 myList = new List("Select test:", List.IMPLICIT, testList,
 null);
 okCommand = new Command("OK", Command.OK, 1);
 myOutput.addCommand(okCommand);
 myList.addCommand(okCommand);
 myOutput.setCommandListener(this);
 myList.setCommandListener(this);
 tf1 = new TextBox("file to w/r", fileURL, 28, TextField.ANY);
 tf1.addCommand(okCommand);
 tf1.setCommandListener(this);
 tf2 = new TextBox("Set Data to Send", stringNum, 28,
 TextField.ANY);
 tf2.addCommand(okCommand);
 tf2.setCommandListener(this);
 myDisplay.setCurrent(myList);

 }

 /**
 * Stop running
 */
 protected void pauseApp() {
 }

 /**
 * Destroy App
 */
 protected void destroyApp(boolean unconditional) {
 }
 /**
 * Handle ok command
 */
 public void commandAction(Command c, Displayable s) {
 if (((s == tf1) || (s == tf2)) && (c == okCommand)) {
 if(s==tf1) fileURL = tf1.getString();
 if(s==tf2) {
 /* data in the string form */
 stringNum = tf2.getString();
 /* convert the string into the integer form */
 dataNum = stringNum.length();
 }
 }
 if (s == myList) {
 switch (((List)s).getSelectedIndex()) {

iDEN J2ME™ Developer’s Guide

332
 © 2005 Motorola, Inc.

 case 0:
 myDisplay.setCurrent(myOutput);
 setFileName();
 break;
 case 1:
 myDisplay.setCurrent(myOutput);
 setData();
 break;
 case 2:
 myDisplay.setCurrent(myOutput);
 readWrite();
 break;
 case 3:
 myDisplay.setCurrent(myOutput);
 deleteFile();
 break;
 }
 } else {
 myDisplay.setCurrent(myList);
 }
 }
 private void setFileName() {
 myDisplay.setCurrent(tf1);
 }

 private void setData() {
 myDisplay.setCurrent(tf2);
 }

 private void readWrite() {
 int length = dataNum;
 byte[] message = new byte[length];
 message = stringNum.getBytes();
 OutputStream os = null;
 InputStream is = null;
 try {
 //open a file in the mode APPEND
 sc = (StreamConnection)Connector.open("file://" +
 fileURL + ";" + "APPEND");

 //get OutputStream
 os = sc.openOutputStream();

 //get InputStream
 is = sc.openInputStream();

 //write the bytes to the file
 os.write(message);
 myOutput.append("write/append done");

 //create an array to store available data
 // from the file
 byte [] b1 = new byte[is.available()];

iDEN J2ME™ Developer’s Guide

333
 © 2005 Motorola, Inc.

 //read the bytes
 is.read(b1);
 String readString = new String(b1);

 //printout the data in the phone screen
 myOutput.append(readString);
 myOutput.append("read finished");

 //close all the opened streams
 if (is != null)
 is.close();
 if (os != null)
 os.close();
 if (sc != null)
 sc.close();
 } catch (Exception e) {
 System.out.println("Exception: " + e.getMessage());

 try {
 if (is != null)
 is.close();
 if (os != null)
 os.close();
 if (sc != null)
 sc.close();
 }
 catch(Exception ex) {
 }
 }
 }
 private void deleteFile() {
 try {

 //open a file in the delete mode
 //by doing this existing file is eventually delete
 sc = (StreamConnection)Connector.open("file://" +
 fileURL + ";" + "DELETE");

 //close the stream
 if (sc != null)
 sc.close();
 myOutput.append("file deleted");
 } catch (Exception ex1) {
 System.out.println("Exception: " + ex1.getMessage());
 try {
 if (sc != null)
 sc.close();
 }
 catch(Exception ex) {
 }
 }

iDEN J2ME™ Developer’s Guide

334
 © 2005 Motorola, Inc.

 }
}

6.3.4.3 Example # 3 (Complete Secure File MIDlet Code)
The following example is a simple MIDlet that provides the overall operation of the secure file
I/O interface and how most of the APIs can be used. The MIDlet also shows a simple
alternative to RMS to store data as a persistent storage with password protection.

import javax.microedition.io.*;
import java.io.*;
import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
public class Example4 extends MIDlet implements CommandListener{

/**
 * List of available tests
 */
StreamConnection sc;
String[] testList = {"file to w/r","setData","write/append/read","delete"};
TextBox tf1;
TextBox tf2;

/**
 * Reference to Display object associated with this Display
 */
Display myDisplay;

/* default file name */
String fileURL = "temp.txt;PASSWORD=1413";

/*default amount of data*/
int dataNum = 0;

/*default string to write in file*/
String stringNum ="Hello World";

/**
 * The output screen
 */
Form myOutput;

/**
 * The list of tests
 */
List myList;

/**
 * Ok command to indicate a test was selected
 */
Command okCommand;

iDEN J2ME™ Developer’s Guide

335
 © 2005 Motorola, Inc.

/**
 * Create NetTests
 */
public Example4() {

}

/**
 * Start running
 */
 protected void startApp() {
 myDisplay = Display.getDisplay(this);
 myOutput = new Form("Results");
 myList = new List("Select test:", List.IMPLICIT, testList,
 null);
 okCommand = new Command("OK", Command.OK, 1);
 myOutput.addCommand(okCommand);
 myList.addCommand(okCommand);
 myOutput.setCommandListener(this);
 myList.setCommandListener(this);
 tf1 = new TextBox("file to w/r", fileURL, 28, TextField.ANY);
 tf1.addCommand(okCommand);
 tf1.setCommandListener(this);
 tf2 = new TextBox("Set Data to Send", stringNum, 28,
 TextField.ANY);
 tf2.addCommand(okCommand);
 tf2.setCommandListener(this);
 myDisplay.setCurrent(myList);
 }

 /**
 * Stop running
 */
 protected void pauseApp() {
 }

 /**
 * Destroy App
 */
 protected void destroyApp(boolean unconditional) {
 }

 /**
 * Handle ok command
 */
 public void commandAction(Command c, Displayable s) {
 if (((s == tf1) || (s == tf2)) && (c == okCommand)) {
 if(s==tf1) fileURL = tf1.getString();
 if(s==tf2) {
 /* data in the string form */

iDEN J2ME™ Developer’s Guide

336
 © 2005 Motorola, Inc.

 stringNum = tf2.getString();
 /* convert the string into the integer form */
 dataNum = stringNum.length();
 }
 }
 if (s == myList) {
 switch (((List)s).getSelectedIndex()) {
 case 0:
 myDisplay.setCurrent(myOutput);
 setFileName();
 break;
 case 1:
 myDisplay.setCurrent(myOutput);
 setData();
 break;
 case 2:
 myDisplay.setCurrent(myOutput);
 readWrite();
 break;
 case 3:
 myDisplay.setCurrent(myOutput);
 deleteFile();
 break;
 }
 } else {
 myDisplay.setCurrent(myList);
 }
 }
 private void setFileName() {
 myDisplay.setCurrent(tf1);
 }
 private void setData() {
 myDisplay.setCurrent(tf2);
 }
 private void readWrite() {
 int length = dataNum;
 byte[] message = new byte[length];
 message = stringNum.getBytes();
 OutputStream os = null;
 InputStream is = null;
 try {
 //open a file in the mode APPEND
 sc = (StreamConnection)Connector.open("sfile://" +
 fileURL + ";" + "APPEND");

 //get OutputStream
 os = sc.openOutputStream();

 //get InputStream
 is = sc.openInputStream();

 //write the bytes to the file
 os.write(message);

iDEN J2ME™ Developer’s Guide

337
 © 2005 Motorola, Inc.

 myOutput.append("write/append done");

 //create an array to store available data from the file
 byte [] b1 = new byte[is.available()];

 //read the bytes
 is.read(b1);
 String readString = new String(b1);

 //printout the data in the phone screen
 myOutput.append(readString);
 myOutput.append("read finished");

 //close all the opened streams

 if (is != null)
 is.close();
 if (os != null)
 os.close();
 if (sc != null)
 sc.close();
 } catch (Exception e) {
 System.out.println("Exception: " + e.getMessage());
 try {
 if (is != null)
 is.close();
 if (os != null)
 os.close();
 if (sc != null)
 sc.close();
 }
 catch(Exception ex) {
 }
 }
 }

 private void deleteFile() {
 try {
 //open a file in the delete mode
 //by doing this existing file is eventually delete
 sc = (StreamConnection)Connector.open("sfile://" +
 fileURL + ";" + "DELETE");

 //close the stream
 if (sc != null)
 sc.close();
 myOutput.append("file deleted");
 } catch (Exception ex1) {
 System.out.println("Exception: " + ex1.getMessage());
 try {
 if (sc != null)
 sc.close();
 }

iDEN J2ME™ Developer’s Guide

338
 © 2005 Motorola, Inc.

 catch(Exception ex) {
 }
 }
 }
}

6.3.5 Tips /
• Like RMS, it is much faster to read and write in big chunks than it is to do so in small

chunks. The optimal size for reading and writing is 512 bytes.

• File I/O is a simple alternative to Record Management System (RMS). When used
effectively, direct file I/O can speed up storing and retrieving data.

• After creating a file from a MIDlet suite, the file is associated with the current MIDlet suite
only. No other MIDlet suite can access it.

• If a MIDlet suite is updated to another version, then the file(s) associated with the current
version of MIDlet suite can be maintained for the new version to use. The user is
prompted to keep the old data, or delete it.

• If a MIDlet suite is deleted, all files associated with it are deleted.

• It is a MIDlet’s responsibility to coordinate the use of multiple threads to access a file since
unintended consequences may result.

• Whenever you close a file, the close() command will not return until all the pending
writes have been completed; thus closing a file guarantees that all of the data is written. It
is then safe to power off the device. One consequence is that the close()command may
take a while to return. Therefore, if you open and close the file every time a write is
required, performance will be greatly affected.

• Secure File I/O API has all the functionality of regular File I/O, but in addition it provides
password protection to the persistent storage.

6.3.6 Caveats
• This File Access System is a sequential system. This means once you write a particular

chunk of data to the file, you can’t go back and manipulate it.

• Theoretically, the maximum number of files supported is 2048. If there is no file space
available, one cannot create extra files. And once the phone contains 2048 files, it will not
be able to create more. MIDI ringers, voice notes, wallpapers, PNG images included with
a MIDlet are all files. If a MIDlet has many images, such as sprites used in animations, it
may be advantageous to have them all in one image file and use clipping to display only
what you need.

• The file name can contain up to 32 alphanumeric characters.

• A file can be of any size as long as file space is available.

• A zero-byte file is not allowed. Unwanted behavior may occur when a file is opened and
nothing is written into it before closing it.

• It is recommended that only 21 files remain open at one time. Exceeding the maximum
number of opened files can result in unintended behavior.

iDEN J2ME™ Developer’s Guide

339
 © 2005 Motorola, Inc.

• The InputStream method markSupported()returns true only if the file open mode is
READ or APPEND. This means that in any other file open mode, the mark() and reset()
methods do not work.

• In the InputStream method mark(), the readlimit argument tells the input stream to
allow that many bytes to be read before the mark position gets invalidated. Since this
operation is on a file, “remembering” the entire contents of stream/file does not incur any
type of cost, so the readlimit parameter is ignored, preventing mark position
invalidation.

• A secure file can only be opened with the correct password. A wrong password cannot
open the file and will throw an exception.

• A password can have length up to 32 alphanumeric characters.

6.3.7 Compiling and Testing File/Secure File MIDlets
The file I/O APIs and secure file I/O APIs are based off of generic Connector.Open() APIs, so
there is no need of any stub classes to compile the MIDlet with these APIs.

iDEN J2ME™ Developer’s Guide

340
 © 2005 Motorola, Inc.

6.4 FileConnection
6.4.1 Overview

The primary goal of the FileConnection APIs is to provide access to file systems on devices and/or
mounted memory cards. File system connectivity through the Generic Connection Framework may
be supported by an implementation if the target device has the necessary underlying operating
system and hardware support for file systems. Connections to a file system may be opened to file
systems located either on memory cards or in a device’s memory, depending on device and
operating system limitations.

6.4.2 Package javax.microedition.io.file
APIs for FileConnection are all located in package javax.microedition.io.file.

Class Summary
FileSystemRegistry The FileSystemRegistry is a central registry for file system

listeners interested in the adding and removing (or
mounting and unmounting) of file systems on a device.

ConnectionClosedException Represents an exception thrown when a method is invoked
on a file connection but the method cannot be completed
because the connection is closed.

IllegalModeException Represents an exception thrown when a method is invoked
requiring a particular security mode (e.g. READ or WRITE),
but the connection opened is not in the mode required. The
application does pass all security checks, but the
connection object is in the wrong mode.

Interface Summary
FileConnection This interface is intended to access files or directories that

are located on file system on a device.

FileSystemListener This class is used for receiving status notification when
adding or removing a file system root.

6.4.2.1 Package Tree

6.4.2.1.1 Class Hierarchy
The following will be the Class Hierarchy for the FileConnection API:

interface javax.microedition.io.Connection
interface javax.microedition.io.InputConnection

iDEN J2ME™ Developer’s Guide

341
 © 2005 Motorola, Inc.

interface javax.microedition.io.StreamConnection (also extends
javax.microedition.io.OutputConnection)

interface javax.microedition.io.file.FileConnection

interface javax.microedition.io.OutputConnection

interface javax.microedition.io.StreamConnection (also extends
javax.microedition.io.InputConnection)

interface javax.microedition.io.file. FileConnection

interface javax.microedition.io.file.FileSystemListener

6.4.2.2 CLASS FileSystemRegistry

6.4.2.2.1 addFileSystemListener
static boolean addFileSystemListener
(javax.microedition.io.file.FileSystemListener listener);

This method is used to register a FileSystemListener that is notified in case of adding and
removing a new file system root.

6.4.2.2.2 removeFileSystemListener
public static boolean removeFileSystemListener

(javax.microedition.io.file.FileSystemListener listener)

This method is used to remove a registered FileSystemListener. If file systems are
not supported on a device, false will be returned from the method.

6.4.2.2.3 listRoots
public static java.util.Enumeration listRoots()

This method returns the currently mounted root file systems on a device

Tip: Only one root “./” is supported.

6.4.2.3 FileConnection interface
6.4.2.3.1 openInputStream ()
public java.io.InputStream openInputStream() throws
java.io.IOException

This method opens and returns an input stream for a connection.

Tip: Connector.open() will be used first and the connection shall be checked by
fileconnection.exists(). If a connection does not exist, an exception will be
thrown.

iDEN J2ME™ Developer’s Guide

342
 © 2005 Motorola, Inc.

6.4.2.3.2 openDataInputStream ()
public java.io.DataInputStream openDataInputStream() throws
java.io.IOException

This method opens and returns a data input stream for a connection.

Tip: Connector.open() will be used first and the connection shall be checked by
fileconnection.exists(). If a connection does not exist, an exception will be
thrown.

6.4.2.3.3 openOutputStream ()
public java.io.OutputStream openOutputStream() throws
java.io.IOException

This method opens and returns an output stream for a connection.

Tip: Connector.open() will be used first and the connection shall be checked by
fileconnection.exists(). If the connection does not exist an exception will be
thrown.

6.4.2.3.4 openDataOutputStream ()
public java.io.DataOutputStream openDataOutputStream() throws
java.io.IOException

This method opens and returns a data output stream for a connection.

Tip: Connector.open() will be used first and the connection shall be checked by
FileConnection.exists(). If the connection does not exist an exception will be
thrown.

6.4.2.3.5 openOutputStream ()
public java.io.OutputStream openOutputStream(int byteOffset) throws
java.io.IOException

This method opens an output stream and positions it at the indicated byte offset in the file.
Tips:

• The Connector.open() will be used first and the connection shall be checked by
FileConnection.exist(). If the connection does not exist an exception will be
thrown.

• The byteOffset can’t access the connection length. If the byteOffset accesses
the range of the file length, an exception will be thrown.

6.4.2.3.6 totalSize ()
public long totalSize()

This method determines the total size of the file system on which the connection's target
resides.

iDEN J2ME™ Developer’s Guide

343
 © 2005 Motorola, Inc.

6.4.2.3.7 availableSize ()
public long availableSize()

This method determines the free memory that is available on the file system on which the
file or directory resides.

6.4.2.3.8 usedSize ()
public long usedSize()

This method determines the used memory of a file system on which the connection's
target resides.

6.4.2.3.9 directorySize (boolean includeSubDirs)
public long directorySize(boolean includeSubDirs) throws
java.io.IOException

This method determines the size in bytes on a file system of all of the files that are
contained in a directory.

6.4.2.3.10 fileSize ()
public long fileSize() throws java.io.IOException

This method determines the size of a file.

Tip: only used for file size; if used for directory size, an exception will be thrown out.

6.4.2.3.11 canRead ()
public boolean canRead()

This method checks if the file or directory is readable.

Tip: This method is not supported and returns true on iDEN handsets.

6.4.2.3.12 canWrite ()
public boolean canWrite()

This method checks if the file or directory is writeable.

Tip: This method is not supported and returns true on iDEN handsets.

6.4.2.3.13 isHidden ()
public boolean isHidden()

This method checks if the file or directory is hidden.

Tip: This method is not supported and returns false on iDEN handsets.

6.4.2.3.14 setReadable(boolean readable)
public void setReadable(boolean readable) throws java.io.IOException

This method sets the file or directory readable attribute to the indicated value

Tip: This method is not supported and does nothing on iDEN handsets.

iDEN J2ME™ Developer’s Guide

344
 © 2005 Motorola, Inc.

6.4.2.3.15 setWritable(boolean writable)
public void setWritable(boolean writable) throws java.io.IOException

This method sets the file or directory writable attribute to the indicated value.

Tip: This method is not supported and does nothing on the iDEN phone.

6.4.2.3.16 setHidden(boolean hidden)
public void setHidden(boolean hidden) throws java.io.IOException

This method sets the file or directory hidden attribute to the indicated value.

Tip: This method is not supported and does nothing on iDEN handsets.

6.4.2.3.17 list()
public java.util.Enumeration list()throws java.io.IOException

This method gets a list of all files and directories contained in a directory.

6.4.2.3.18 list(java.lang.String filter, boolean includeHidden)
public java.util.Enumeration list(java.lang.String filter,
boolean includeHidden)throws java.io.IOException

This method gets a list of all files and directories contained in a directory.

6.4.2.3.19 create
public void create() throws java.io.IOException

This method creates a file corresponding to the file string provided in the
Connector.open() method for this FileConnection.

Tip: This method is only used to create a file; if a new directory is needed, use mkdir().

6.4.2.3.20 mkdir ()
public void mkdir()throws java.io.IOException

This method creates a directory corresponding to the directory string provided in the
Connector.open() method.

6.4.2.3.21 exists ()
public boolean exists()

This method checks if the file or directory specified in the URL passed to the
Connector.open() method exists.

6.4.2.3.22 isDirectory ()
public boolean isDirectory()

This method checks if the URL passed to the Connector.open() is a directory.

iDEN J2ME™ Developer’s Guide

345
 © 2005 Motorola, Inc.

6.4.2.3.23 delete ()
public void delete()throws java.io.IOException

This method deletes the file or directory specified in the Connector.open() URL.

6.4.2.3.24 rename ()
public void rename(java.lang.String newName) throws
java.io.IOException

This method renames the selected file or directory to a new name in the same directory.

6.4.2.3.25 truncate ()
public void truncate(int byteOffset) throws java.io.IOException

This method truncates the file, discarding all data from the given byte offset to the current
end of the file.

6.4.2.3.26 setFileConnection (java.lang.String fileName)
public void setFileConnection(java.lang.String fileName) throws
java.io.IOException

This method resets this FileConnection object to another file or directory.

6.4.2.3.27 getName ()
public java.lang.String getName()

This method returns the name of a file or directory excluding the URL schema and all
paths.

6.4.2.3.28 getPath ()
public java.lang.String getPath()

This method returns the path excluding the file or directory name and the "file" URL
schema and host from where the file or directory specified in the Connector.open()
method is opened.

6.4.2.3.29 getURL ()
public java.lang.String getURL()

This method returns the full file URL including the scheme, host, and path from where the
file or directory specified in the Connector.open() method is opened

6.4.2.3.30 lastModified ()
public long lastModified()

This method returns the time that the file denoted by the URL specified in the
Connector.open() method was last modified.

Tip: This method is not supported and returns 0 on the IDEN phone.

iDEN J2ME™ Developer’s Guide

346
 © 2005 Motorola, Inc.

6.4.2.3.31 isOpen ()
public Boolean isOpen()

This method returns an indication of whether the file connection is currently open or not.

6.4.2.4 Class FileSystemListener
6.4.2.4.1 rootChanged ()
public void rootChanged(int state,java.lang.String rootName)

This method is invoked when a root on the device has changed state.

Tip: Only one root “./ “ is supported on the IDEN phone.

6.4.2.5 Compatibility
6.4.2.5.1 getProperty ()

When System.get Property() is called with key
“microedition.io.file.FileConnnection.version” the version string”1.0” shall be returned if
FCOP is supported on the handset.

6.4.2.6 File Connection Code Example
import javax.microedition.midlet.*;

import javax.microedition.io.*;

import javax.microedition.io.file.*;

import java.io.*;

import java.util.Enumeration;

public class DemoFC extends MIDlet

{

 protected void startApp()throws MIDletStateChangeException

 {

 version();

 create();

 write_read();

 attrdemo();

 renamedemo();

 getdemo();

 setFC();

 truncate_size_demo();

iDEN J2ME™ Developer’s Guide

347
 © 2005 Motorola, Inc.

 list();

 notifyDestroyed();

 }

 private void version()

 {

 String v = System.getProperty(
"microedition.io.file.FileConnection.version");

 if(v !=null)

 {

 System.out.println("FCOP is available "+v);

 }

 else

 {

 System.out.println("FCOP is not available");

 }

 Enumeration roots = FileSystemRegistry.listRoots();

 for (; roots.hasMoreElements() ;)

 {

 System.out.println("Roots:" + roots.nextElement());

 }

 FileSystemListener File_listen = (FileSystemListener) new
FileListener();

 System.out.println("add one FileSystemListner:
"+FileSystemRegistry.addFileSystemListener(File_listen));

 System.out.println("add one FileSystemListner:
"+FileSystemRegistry.removeFileSystemListener(File_listen));

 }

 private void create()

 {

 try {

 FileConnection fconn =
(FileConnection)Connector.open("file:///./a1b1c2file");

 if(!fconn.exists())

 {

 fconn.create();

iDEN J2ME™ Developer’s Guide

348
 © 2005 Motorola, Inc.

 }

 fconn.close();

 fconn =
(FileConnection)Connector.open("file:///./a1b1c2dir");

 if(!fconn.exists())

 {

 fconn.mkdir();

 }

 fconn.close();

 } catch (Exception ioe) {}

 }

 private void list()

 {

 try {

 FileConnection fconn =
(FileConnection)Connector.open("file:///./");

 Enumeration a = fconn.list();

 for(int i=0;a.hasMoreElements();i++)

 {

 System.out.println(a.nextElement());

 }

 System.out.println("list(d*,false)");

 a = fconn.list("d*",false);

 for(int i=0;a.hasMoreElements();i++)

 {

 System.out.println(a.nextElement());

 }

 System.out.println("list(*,true)");

 a = fconn.list("*",true);

 for(int i=0;a.hasMoreElements();i++) {

 System.out.println(a.nextElement());

 }

 } catch (IOException ioe) {

 System.err.println(ioe.toString());

 }

iDEN J2ME™ Developer’s Guide

349
 © 2005 Motorola, Inc.

 }

 private void write_read()

 {

 try {

 FileConnection fconn =
(FileConnection)Connector.open("file:///./f_abcde");

 if(!fconn.exists())

 {

 fconn.create();

 }

 OutputStream os = fconn.openOutputStream();

 os.write(11);

 os.write(22);

 os.write(33);

 os.close();

 InputStream is = fconn.openInputStream();

 System.out.println("OUT:" + is.read());

 System.out.println("OUT:" + is.read());

 System.out.println("OUT:" + is.read());

 is.close();

 fconn.close();

 fconn =
(FileConnection)Connector.open("file:///./f_abcde");

 if(!fconn.exists())

 {

 fconn.create();

 }

 DataOutputStream os_data = fconn.openDataOutputStream();

 os_data.write(77);

 os_data.write(99);

 os_data.write(66);

 os_data.close();

 DataInputStream is_data = fconn.openDataInputStream();

 System.out.println("OUT:" + is_data.read());

iDEN J2ME™ Developer’s Guide

350
 © 2005 Motorola, Inc.

 System.out.println("OUT:" + is_data.read());

 System.out.println("OUT:" + is_data.read());

 is_data.close();

 fconn.close();

 } catch (IOException ioe) {

 System.err.println(ioe.toString());

 }

 }

 private void attrdemo() {

 try {

 FileConnection fconn =
(FileConnection)Connector.open("file:///./dir_1");

 if(!fconn.exists())

 {

 fconn.mkdir();

 }

 System.out.println("dir_1 exist:"+fconn.exists());

 System.out.println("dir_1
isDirectory:"+fconn.isDirectory());

 System.out.println("dir_1 isHidden:"+fconn.isHidden());

 System.out.println("dir_1 canWrite:"+fconn.canWrite());

 System.out.println("dir_1 canRead:"+fconn.canRead());

 fconn.setHidden(true);

 System.out.println("dir_1
isHidden(true):"+fconn.isHidden());

 fconn.setHidden(false);

 System.out.println("dir_1
isHidden(false):"+fconn.isHidden());

 fconn.setWritable(false);

 System.out.println("dir_1
canWrite(false):"+fconn.canWrite());

 fconn.setWritable(true);

 System.out.println("dir_1
canWrite(true):"+fconn.canWrite());

 fconn.setReadable(false);

iDEN J2ME™ Developer’s Guide

351
 © 2005 Motorola, Inc.

 System.out.println("dir_1
canWrite(false):"+fconn.canRead());

 fconn.setReadable(true);

 System.out.println("dir_1
canWrite(true):"+fconn.canRead());

 fconn.close();

 } catch (IOException ioe) {

 System.out.println("IOException"+ioe);

 }

 }

 private void renamedemo()

 {

 try {

 FileConnection fconn =
(FileConnection)Connector.open("file:///./rename");

 if(!fconn.exists()) {

 fconn.mkdir();

 }

 fconn.close();

 fconn =
(FileConnection)Connector.open("file:///./rename/f1");

 if(!fconn.exists())

 {

 fconn.create();

 OutputStream os = fconn.openOutputStream();

 os.write(11);

 os.write(22);

 os.write(33);

 os.close();

 }

 fconn.close();

iDEN J2ME™ Developer’s Guide

352
 © 2005 Motorola, Inc.

 fconn =
(FileConnection)Connector.open("file:///./rename/f2");

 if(fconn.exists())

 {

 fconn.delete();

 }

 fconn.close();

 fconn =
(FileConnection)Connector.open("file:///./rename/f1");

 fconn.rename("f2");

 fconn.close();

 fconn =
(FileConnection)Connector.open("file:///./rename/dir1");

 if(!fconn.exists())

 {

 fconn.mkdir();

 }

 fconn.close();

 fconn =
(FileConnection)Connector.open("file:///./rename/dir2");

 if(fconn.exists()) {

 System.out.println("dir2 exits and delete");

 fconn.delete();

 }

 fconn.close();

 fconn =
(FileConnection)Connector.open("file:///./rename/dir1");

 fconn.rename("dir2");

 fconn.close();

 System.out.println("show rename result");

 fconn =
(FileConnection)Connector.open("file:///./rename");

 Enumeration a = fconn.list();

 for(int i=0;a.hasMoreElements();i++) {

iDEN J2ME™ Developer’s Guide

353
 © 2005 Motorola, Inc.

 System.out.println(a.nextElement());

 }

 fconn.close();

 } catch (IOException ioe)

 {

 System.out.println(ioe);

 }

 }

 private void getdemo() {

 try {

 FileConnection fconn =
(FileConnection)Connector.open("file:///./getxxx");

 if(!fconn.exists())

 {

 fconn.mkdir();

 }

 System.out.println("getxxx/getURL:"+fconn.getURL());

 System.out.println("getxxx/getName:"+fconn.getName());

 System.out.println("getxxx/getPath:"+fconn.getPath());

 fconn.close();

 fconn =
(FileConnection)Connector.open("file:///./getxxxfile");

 if(!fconn.exists())

 {

 fconn.create();

 }

 System.out.println("getxxxfile/getURL:"+fconn.getURL());

System.out.println("getxxxfile/getName:"+fconn.getName());

iDEN J2ME™ Developer’s Guide

354
 © 2005 Motorola, Inc.

System.out.println("getxxxfile/getPath:"+fconn.getPath());

 fconn.close();

 } catch (IOException ioe) {

 System.out.println(ioe);

 }

 }

 private void setFC() {

 try {

 FileConnection fconn =
(FileConnection)Connector.open("file:///./BB");

 if(!fconn.exists())

 {

 fconn.mkdir();

 }

 fconn.close();

 fconn = (FileConnection)Connector.open("file:///./BB");

 fconn.setFileConnection("..");

 System.out.println("file:///./ URL:" + fconn.getURL());

 System.out.println("file:///./ Name:" + fconn.getName());

 System.out.println("file:///./ Path:" + fconn.getPath());

 fconn.close();

 }

 catch (Exception ioe) {

 System.err.println(ioe.toString());

 }

 }

 private void truncate_size_demo()

 {

 ByteArrayOutputStream baos = new ByteArrayOutputStream();

 DataOutputStream outputStream = new DataOutputStream(baos);

iDEN J2ME™ Developer’s Guide

355
 © 2005 Motorola, Inc.

 byte[] ba ;

 OutputStream os;

 FileConnection fconn ;

 try {

 fconn =
(FileConnection)Connector.open("file:///./file_to_truncate");

 if(!fconn.exists())

 {

 fconn.create();

 }

 os = fconn.openOutputStream();

 long a_length = 1000;

 for(long i=0; i<a_length;i++)

 {

 try

 {

 outputStream.writeByte(0);

 } catch (IOException e) {}

 }

 ba = baos.toByteArray();

 os.write(ba, 0, ba.length);

 os.close();

 fconn.close();

 fconn =
(FileConnection)Connector.open("file:///./file_to_truncate");

 System.out.println("Total size before
truncate:"+fconn.totalSize());

 System.out.println("Avail size before
truncate:"+fconn.availableSize());

 System.out.println("Used size before
truncate:"+fconn.usedSize());

iDEN J2ME™ Developer’s Guide

356
 © 2005 Motorola, Inc.

 System.out.println("File size before
truncate:"+fconn.fileSize());

 fconn.close();

 fconn =
(FileConnection)Connector.open("file:///./file_to_truncate");

 fconn.truncate(900);

 System.out.println("truncate "+ 900+ "size for
file_to_truncate");

 System.out.println("Total size after
truncate:"+fconn.totalSize());

 System.out.println("Avail size after
truncate:"+fconn.availableSize());

 System.out.println("Used size after
truncate:"+fconn.usedSize());

 System.out.println("File size after
truncate:"+fconn.fileSize());

 fconn.delete();

 fconn.close();

 fconn = (FileConnection)Connector.open("file:///./");

 System.out.println("root directory size
includeSubDirs:"+fconn.directorySize(true));

 System.out.println("root directory size not
includeSubDirs:"+fconn.directorySize(false));

 fconn.close();

 } catch (IOException ioe) {}

 }

 /**

 * Pause the MIDlet

 */

 protected void pauseApp() {

 }

 /**

 * Called by the framework before the application is unloaded

 */

iDEN J2ME™ Developer’s Guide

357
 © 2005 Motorola, Inc.

 protected void destroyApp(boolean unconditional)

 throws MIDletStateChangeException {

 }

 public class FileListener implements FileSystemListener

 {

 public FileListener()

 {

 }

 public void rootChanged(int state, java.lang.String rootName)

 {

 }

 }

}

iDEN J2ME™ Developer’s Guide

358
 © 2005 Motorola, Inc.

6.5 Java ZIP
6.5.1 Overview

The Java Zip API has been included as an enhancement especially well suited for a limited
bandwidth data device such as an iDEN phone. It allows for file deflation before sending data via
the network and inflation after receiving data from the network to best use the bandwidth available.
Downloading a zipped file and then decompressing on the device is usually much faster than
downloading uncompressed content.

The Java ZIP API consists of ZipEntry, ZipInputStream, ZipOutputStream, and ZipException. This
package provides classes for reading and writing data in the standard ZIP (WinZip archive) format.

The Java ZIP API is compatible with the Sun's J2SE™ v1.4 ZIP API (java.util.zip). Please refer to
the following web page for details: http://java.sun.com/j2se/1.4.2/docs/api/index.html.

6.5.2 Class Description
The API for the ZIP is located in the com.mot.iden.zip package.

java.lang.Object
 |
 + - com.mot.iden.zip.ZipEntry

6.5.3 Method Descriptions
Please refer to the relevant Javadocs (java.util.zip).

6.5.4 Code Example
6.5.4.1 Get ZipEntry information
public static void print(ZipEntry e)
{
 PrintStream err = System.err;
 err.print("added " + e.getName());
 if (e.getMethod() == ZipEntry.DEFLATED) {
 long size = e.getSize();
 if (size > 0) {
 long csize = e.getCompressedSize();
 long ratio = ((size-csize)*100) / size;
 err.println(" (deflated " + ratio + "%)");
 } else {
 err.println(" (deflated 0%)");
 }
 } else {
 err.println(" (stored 0%)");
 }
}

iDEN J2ME™ Developer’s Guide

359
 © 2005 Motorola, Inc.

6.5.4.2 ZipOutputStream/ZipInputStream
try {

 ByteArrayOutputStream gis = new ByteArrayOutputStream(1024);

 // (1) Compression: Define ZIPOutputStream with
 // ByteArrayOutputStream
 ZipOutputStream os = new ZipOutputStream(gis);

 ZipEntry zipentry = new ZipEntry("TEST1");
 /* set the 1st entry name */
 os.putNextEntry(zipentry);

 // (2) Writes the string to the ZIPOutputStream
 os.write("This chapter covers how to configure a system "+
 "without a name service. Administration is ...".getBytes());

 zipentry = new ZipEntry("TEST2");
 /* set the 2nd entry name */
 os.putNextEntry(zipentry);

 // (3) Writes the string to the ZIPOutputStream
 os.write("The document you requested is not found. " +
 "It may have expired or moved.".getBytes());

 os.close();

 // (4) Decompression: Get input compressed data
 // from the gis stream
 ByteArrayInputStream gis1 =
 new ByteArrayInputStream(gis.toByteArray());

 // (5) Define ZIPInputStream with ByteArrayInputStream
 ZipInputStream os1 = new ZipInputStream(gis1);

 byte[] buf1 = new byte[2048]; /* Decompressed buffer */
 int ch;
 ZipEntry entry;

 // (6) Reads the compressed stream to the decompressed buffer
 while ((entry = os1.getNextEntry()) != null) {
 System.out.println("Extracting: " + entry);

 while ((ch = os1.read(buf1, 0, buf1.length - 1)) >= 0) {
 System.out.println(new String(buf1, 0, ch));
 }
 }

 os1.close();

} catch (Exception e) {
 e.printStackTrace();
}

iDEN J2ME™ Developer’s Guide

360
 © 2005 Motorola, Inc.

7
Networking and Security

7.1 Overview
This section will present an in-depth explanation with examples of the following networking and
security features:

• J2ME™ Networking

• Push registry

• Wireless Messaging

• WMA over MMS

• MIDP 2.0 Security

• Cryptography

• JAXP

• JAX-RPC

7.2 J2ME™ Networking
7.2.1 Overview

iDEN handsets provide the following protocols specified in MIDP 2.0:

• HTTP

• HTTPS

• TCP Sockets

• SSL Secure Sockets

• Server Sockets

• UDP Sockets

• Serial Port Access

iDEN J2ME™ Developer’s Guide

361
 © 2005 Motorola, Inc.

7.2.2 Timeouts
The timeout period for the TCP implementation is 40 seconds for an open operation. The timeout
period for read/write operations is about 120 seconds if the timeout flag is set to true, and about
180 seconds if the timeout flag is set to false. The lingering time for closing sockets is 10 seconds,
so if a new socket is requested within this time frame and the maximum number of sockets opened
has been reached, an IOException is thrown.

Applications requesting a network resource for any protocol must use one of these three methods:

Connector.open(String URL) – default READ_WRITE, no timeout
Connector.open(String URL, int mode) - defaults to no timeout
Connector.open(String URL, int mode, Boolean timeout)

The URL is the distinguishing argument that determines the difference between HTTP, UDP,
Serial, and so on. The following chart details the prefixes that should be used for the supported
protocols.

Supported Networking Protocols
Protocol URL Format
HTTP http://
HTTPS https://
TCP Sockets socket://host:port
SSL Secure Sockets ssl://host:port or

ssocket://host:port
Server Sockets socket://:port or

serversocket://:port
UDP Sockets datagram://
Serial Port comm:com0 or comm:0;

RFCOMM
btspp://host or
btspp://localhost:UUID

L2CAP
btl2cap://host or
btl2cap://localhost:UUID

OBEX

btgoep://host:UUID or
tcpobex://localhost:port or
tcpobex://localhost or
tcpobex://

7.2.3 Protocols
7.2.3.1 HTTP

The HTTP implementation follows the MIDP 2.0 standard. The Connector.open() methods
return an HttpConnection object that is then used to open streams for reading and writing.
The following is a code example:

HttpConnection hc =

(HttpConnection)Connector.open("http://www.motorola.com");

iDEN J2ME™ Developer’s Guide

362
 © 2005 Motorola, Inc.

In this particular example, the standard port 80 is used, but you can specify this parameter as
in the following example:

HttpConnection hc =

(HttpConnection)Connector.open("http://www.motorola.com:8080");

The other static Connector methods work in the same manner, but they provide the application
additional control in dealing with the properties of the connection. By default, HTTP 1.1
persistency is used to increase efficiency while requesting multiple pieces of data from the
same server. In order to disable persistency, set the “Connection” property of the HTTP
header to “close”.

7.2.3.2 HTTPS
The HTTPS implementation follows the MIDP 2.0 standard, except for the security aspects.
The Connector.open() methods return an HttpsConnection object that is then used to open
streams for reading and writing. The following is a code example:

HttpsConnection hc =

(HttpsConnection)Connector.open("https://www.motorola.com");

In this particular example, the standard port 443 is used, but you can specify this parameter as
in the following example:

HttpsConnection hc =

HttpsConnection)Connector.open("http://www.motorola.com:8888");

The other static Connector methods work in the same manner, but they provide the application
additional control in dealing with the properties of the connection.

Note that only VeriSign security certificates are supported. The following is a list of supported
features:

• SSL 3.0

• TLS 1.0

• Server Authentication

7.2.3.3 TCP Sockets
The low-level socket used to implement the higher-level HTTP protocol is exposed to
applications via the Generic Connection Framework. The use is similar to the examples
above; however, a SocketConnection is returned by the Connection.open() method, as in
the following example:

SocketConnection sc =

 (SocketConnection)Connector.open("socket://www.motorola.com:8000");

Although similar to HTTP, notice the required port number at the end of the remote address. In
the previous protocols, those ports are well known and registered so they are not required, but
in the case of low level sockets, this value is not defined. The port number is a required
parameter for this protocol stack.

iDEN J2ME™ Developer’s Guide

363
 © 2005 Motorola, Inc.

7.2.3.4 SSL Secure Sockets
The low-level socket used to implement the higher-level HTTPS protocol is also exposed to
applications via the Generic Connection Framework. The usage is similar to the examples
above:

SecureSocketConnection sc =

(SecureSocketConnection)Connector.open("ssl://www.motorola.com:8000")
;

As with non-secure sockets, the port number is a required parameter for this protocol stack.

7.2.3.5 Server Sockets
In addition to acting as a data requestor, some applications may act as data providers or
servers. In order to accomplish this without workarounds or polling, a server socket is
required. This functionality is provided via the Generic Connection Framework. Opening a
ServerSocket with the Connector object returns a ServerSocketConnection. Unlike the other
networking protocols, the ServerSocketConnection does not contain any accessor methods to
retrieve data, but rather only one method to accept and open a SocketConnection. This
method blocks until a Socket connection is available, at which time it returns a
ServerSocketConnection object. The following example illustrates this:

ServerSocketConnection scn =

(ServerSocketConnection)Connector.open("socket://:8000");

ServerSocketConnection sc =

(ServerSocketConnection)scn.acceptAndOpen();

The URL parameter passed in is similar to that used for TCP sockets, with the exception of the
target address. In this particular instance, the target address is left blank, assuming the socket
is to be opened on the local device. The port number however, is still required. The
acceptAndOpen() method of the ServerSocketConnection object is a blocking call, so
applications that utilize the particular protocol, should take this into consideration.

Note that to close the socket, you must close the associated ServerSocketConnection.

7.2.3.6 UDP Sockets
If networking efficiency is of greater importance than reliability, datagram (UDP) sockets are
also available to the application in much the same manner as other networking protocols. The
Connector object in this case returns an UDPDatagramConnection object, as is shown in
the following example:

UDPDatagramConnection dc =

(UDPDatagramConnection)Connector.open(

"datagram://70.69.168.167:8000");

Much like low-level sockets, accessing UDP requires both a target address and a port number.
iDEN handsets support a maximum outgoing and incoming payload of 1472 bytes and 2944
bytes, respectively.

iDEN J2ME™ Developer’s Guide

364
 © 2005 Motorola, Inc.

7.2.3.7 Serial Port Access
Applications using the bottom connector (serial port) to communicate with a variety of devices
are given exclusive access to the port until either the application voluntarily releases the port
or the application is terminated. Much like any other networking connection, opening a serial
port is not guaranteed and an exception may be thrown. If another application—native or
Java—is using the port, or a cable is not attached to the device, an IOException is thrown. In
the normal usage scenario, the Connector object in this instance returns a CommConnection,
as is shown in the following example:

The following example shows how a CommConnection would be used to access a simple
loopback program:

CommConnection cc = (CommConnection)

Connector.open("comm:com0;baudrate=19200");

Both old connection optional parameters from iDEN OEM Connection implementation and new
connection parameters from MIDP 2.0 are allowed. The new optional parameters are
recommended, as these are specified in MIDP 2.0.

These are the old parameters:

Old Connection Optional Parameters
Parameter Syntax Options Default
baud rate baud rate = x [300,1200,2400,4800,9600,19200,38400,57600,11

5200]
19200

Data bits data bits = x [8,7] 8
Stop bits stop bits = x 1 1
parity with
mapping

parity = x [n,o,e,s,m] n=none, o = odd, e=even, s=space,
m=mark

n

Flow
control

flowcontrol =
outflow/inflow

[n, s, h] / [n, s, h] n=none, s=software, h=hardware N/n

Note - The following combinations of properties are not supported.
7 databits with none parity
8 databits with mark parity
8 databits with space parity
8 databits with odd parity
8 databits with even parity.

IOException will be thrown while trying to use any of the unsupported combinations in
Connector.open().

iDEN J2ME™ Developer’s Guide

365
 © 2005 Motorola, Inc.

And here are the new parameters:

New Connection Optional Parameters

Parameter Default Description
baud rate platform dependent The speed of the port.
bitsperchar 8 The number bits per character(7 or 8).
stopbits 1 The number of stop bits per char(1 or 2)
parity None The parity can be odd, even, or none.
blocking On If on, wait for a full buffer when reading.
autocts On If on, wait for the CTS line to be on before writing.

autorts On If on, turn on the RTS line when the input buffer is not
full. If off, the RTS line is always on.

iDEN J2ME™ Developer’s Guide

366
 © 2005 Motorola, Inc.

7.2.3.8 RFCOMM, L2CAP, and OBEX
These connections take advantage of communications using Bluetooth technology. iDEN handsets provide
these connections only when equipped with Bluetooth hardware. For more information on these
connection types and the Bluetooth APIs provided see section 7.10, JavaTM APIs for BluetoothTM Wireless
Technology.

7.2.4 Implementation Notes I
As stated in the previous sections, a vast array of networking options is supported. The
networking options, however, are limited by both memory and bandwidth, which place hard
restrictions on the applications. These limitations manifest themselves mainly in the number of
simultaneous connections that can be opened. Boundary conditions for each networking stack
can be found in Appendix A:
Specification Sheets

 page 525.

7.2.5 Tips /
• Keep in mind the blocking nature of many javax.microedition.io and java.io

object methods. It’s recommended to spawn another thread specifically dedicated to
retrieving data in order to keep the user interface interactive. If a single thread is used to
retrieve data on a blocking call, the user interface becomes inactive with the end-user
perceiving the application as dead.

• When the length of the data is known, reading from an InputStream using an array is
faster then reading byte by byte. For example, if the content length is provided in the
header of the HttpConnection, then an array of the specified size can be used to read the
data.

• The InputStream and OutputStream as well as the Connection object need to be
completely closed.

• An application in the suspended state can still continue to actively use the networking
facilities of the handset.

• The platform does not support simultaneous voice and data transmissions.

• Only one serial port is available. If you try to open two concurrent serial port connections,
an exception is thrown.

iDEN J2ME™ Developer’s Guide

367
 © 2005 Motorola, Inc.

7.3 Wireless Messaging
7.3.1 Overview

The Wireless Messaging API allows a MIDlet to open a connection
and send or receive messages through this connection. It supports
both SMS and datagram as the underlying protocol.

Developers SHOULD read the JSR before reading this guide.

Not all classes and methods are addressed in this developer guide. For those classes and
methods, please refer to JSR 205 document found at http://www.jcp.org.

7.3.2 Method Descriptions
7.3.2.1 Connector Method

7.3.2.1.1 open
Returns a connection to the specified phone number or IP address.
public static Connection open(String name) throws IOException

Equals to Connector.open(name, READ_WRITE).

If you’re using the iDEN SMS protocol, name should contain “1” plus the phone number or
“+1” plus the phone number. For example, either
Connector.open("sms://19545555555:5000") or
Connector.open("sms://+19545555555:5000") opens a connection to the device
with the phone number 954-555-5555 at SMS port 5000.

If you’re using the iDEN datagram protocol, name should contain the IP address. For
example, Connector.open("udp://120.2.12.20:5000") opens a connection to
the device at the IP address 120.2.12.20 at port 500.

iDEN J2ME™ Developer’s Guide

368
 © 2005 Motorola, Inc.

7.3.2.2 MessageAddress Method
7.3.2.2.1 MessageAddress
Creates a new message address.
public MessageAddress(String address)

throws IllegalArgumentException

address consists of two parts; the host and the port fields, separated by a colon. The host
field must contain either 0–9 digits or ‘+’ followed by 0–9 digits. The port field must be a
number between 0 and the GSM maximum port number 65,535. If address doesn’t follow
this rule, this method throws an IllegalArgumentException.

For a Message that has been sent using the Datagram as the underlying protocol, this
method will return the IP address associated with this message rather than a phone number
like in WMA over SMS.

7.3.2.2.3 Protocol Methods
7.3.2.2.4 newMessage

Creates a new text or binary message object.
public Message newMessage(String type)

type must be either MessageConnection.BINARY_MESSAGE or
MessageConnection.TEXT_MESSAGE. type should be the default address from the
original open.

7.3.2.2.5 send
Sends a Message over the connection.
public void send(Message msg) throws IOException

Before using this method, be sure the connection is still open. Otherwise, this message
throws an IOException. The message and host must not be nulls.

7.3.2.2.6 receive
Returns a Message, created from the bytes sent over the connection.
public Message receive() throws IOException

Before using this method, be sure the connection is still open. Otherwise, this method
throws an IOException. You cannot receive a message on a connection that was opened
in client mode.

iDEN J2ME™ Developer’s Guide

369
 © 2005 Motorola, Inc.

7.3.2.2.7 numberOfSegments
Returns how many segments would be required to send the specified message.
public int numberOfSegments(Message msg)

If msg is null or is not a Message object, this method returns 0.

Neither of the two protocols that this phone supports (WMA over SMS and WMA over
Datagram) let you send messages that require more than one segment. Use this method
before sending a message to make sure it fits in one segment.

7.3.3 Caveat for WMA over SMS
iDEN’s WMA implementation supports both SMS send and receive. It does not support CBS.

iDEN’s SMS implementation partly follows GSM 03.40, so iDEN’s WMA over SMS implementation
has the following restrictions:

• It supports only 8-bit encoding scheme.

• The maximum size of one message is 140 bytes without a destination port, and 132 bytes
with a destination port.

• It does not support concatenation.

• If you do not specify a port number when sending a message, the message is routed to
the destination unit’s native SMS application.

The port number can be any number from 0 to 16999, except for restricted numbers specified in
Appendix A of WMA 1.1 Specification.

This API is intended for sending SMS within the Nextel network only due to the iDEN’s Caveat for
WMA over Datagram.

iDEN’s WMA implementation supports send and receive over UDP datagram with the following
restrictions:

• It supports only 8-bit encoding scheme.

• The maximum length is 1467 bytes for a text message and 1465 bytes for a binary
message.

• It does not support concatenation.

iDEN J2ME™ Developer’s Guide

370
 © 2005 Motorola, Inc.

7.4 WMA over MMS

This API is only available

on these handsets.

The Wireless Messaging API over MMS allows a MIDlet to open a
connection and send or receive messages with multimedia contents through
this connection.

Not all classes and methods are addressed in this developer guide. For
those classes and methods, please refer to JSR 205 document.

7.4.1 Package Description
APIs for WMA over MMS are all located in package javax.microedition.io and
javax.wireless.messaging.

7.4.2 Package Tree
7.4.2.1 Class Hierarchy

The following will be the Class Hierarchy for the WMA over MMS API:

 java.lang.Object

 |

 +--javax.microedition.io.Connector

 |

 +-- javax.wireless.messaging.MessagePart

 |

 +--java.lang.Throwable

 |

 +--java.lang.Exception

 |

 +--java.io.Ioexception

 |

 +-- javax.wireless.messaging.SizeExceededException

iDEN J2ME™ Developer’s Guide

371
 © 2005 Motorola, Inc.

7.4.2.2 Interface Hierarchy
The following will be the Interface Hierarchy for the WMA over MMS API:
interface javax.wireless.messaging.Message

interface javax.wireless.messaging.BinaryMessage

interface javax.wireless.messaging.MultipartMessage

interface javax.wireless.messaging.TextMessage

interface javax.wireless.messaging.MessageConnection

interface javax.wireless.messaging.MessageListener

7.4.2.3 javax.microedition.io.Connector

7.4.2.3.1 open(String name)
public static javax.microedition.io.Connection open(String name)

throws IOException

Creates and opens a Connection.

Tips

• If you are using iDEN MMS protocol, name must start with “mms://”, and contain an
email address, phone number, or IP address. Shortcode addressing is not supported
on iDEN handsets.

• A MIDlet can open no more than 7 concurrent MMS connections.

• The application id “com.mot.cldc.io.j2me.mms” is reserved. An application can’t open
a connection in server mode using this application ID. Any messages sent to an
address with this application ID will be discarded.

7.4.2.3.2 open(String name, int mode)
public static javax.microedition.io.Connection open(String name,
int mode)

throws IOException

Create and open a Connection with the specified access mode.

7.4.2.3.3 open(String name, int mode, boolean timeouts)
public static javax.microedition.io.Connection open(String name,
int mode,

boolean timeouts) throws IOException

Create and open a Connection with the specified access mode. The Connection is created
with timeout exceptions if specified.

iDEN J2ME™ Developer’s Guide

372
 © 2005 Motorola, Inc.

7.4.2.3.4 openDataInputStream(String name)
public static java.io.DataInputStream openDataInputStream(String
name)

throws IOException

Create and open a connection input stream.

Tip: This function is not supported on MMS connections. When the name starts with
“mms://” an IllegalArgumentException will be thrown.

7.4.2.3.5 openDataOutputStream(String name)
public static java.io.DataOutputStream openDataOutputStream(String
name)

throws IOException

Creates and opens a connection output stream.

Tip: This function is not supported on MMS connections. When the name starts with
“mms://” an IllegalArgumentException will be thrown.

7.4.2.3.6 openInputStream(String name)
public static java.io.InputStream openInputStream(String name)

throws IOException

Create and open a connection input stream.

Tip: This function is not supported on MMS connections. When the name starts with
“mms://” an IllegalArgumentException will be thrown.

7.4.2.3.7 openOutputStream (String name)
public static java.io.OutputStream openOutputStream(String name)

throws IOException

Create and open a connection output stream.

Tip: This function is not supported on MMS connections. When the name starts with
“mms://” an IllegalArgumentException will be thrown.

7.4.2.4 javax.wireless.messaging.TextMessage

7.4.2.4.1 setPayloadText(String data)
public void setPayloadText (String data)

Sets the payload data of this message.

Tip: The length of the payload data should not exceed 30K.

iDEN J2ME™ Developer’s Guide

373
 © 2005 Motorola, Inc.

7.4.2.5 javax.wireless.messaging. MessageConnection

7.4.2.5.1 numberOfSegments(Message msg)
public int numberOfSegments (Message msg)

Returns the number of segments in the underlying protocol that would be needed for
sending the specified Message.

Tip: If the length of a message exceeds 30K, this function will return 0, otherwise return 1.

7.4.2.5.2 newMessage(String type)
public javax.wireless.messaging.Message newMessage(String type)

Constructs a new Message object of a given type.

Tip: The type parameter should not be set to BINARY_MESSAGE. MMS servers for iDEN
handsets do not support mime type for binary messages and will reject binary messages.

7.4.2.5.2 newMessage(String type, String address)
public javax.wireless.messaging.Message newMessage(String type,
String address)

Constructs a new Message object of a given type and initializes it with the given
destination address. The semantics related to the parameter type are the same as for
the method signature with just the type parameter.

7.4.2.6 javax.wireless.messaging.MessagePart

7.4.2.6.1 MessagePart(byte[] contents, String mimeType, String
contentId, String contentLocation, String enc)

 public MessagePart(byte[] contents, String mimeType, String
contentId, String contentLocation, String enc) throws
SizeExceededException

Constructor of class MessagePart.

Tip: "text/plain" is often used for text content; "application/smil" is used for smil content.

An IllegalArgumentException should be thrown for unsupported mime types. The
following table lists the supported mime types:

iDEN J2ME™ Developer’s Guide

374
 © 2005 Motorola, Inc.

7.4.2.6.2 MessagePart(InputStream is, String mimeType, String
contentId, String contentLocation, String enc)

public MessagePart(InputStream is, String mimeType, String
contentId, String contentLocation, String enc) throws
IOException,SizeExceededException

Constructs a MessagePart object from an InputStream. The contents of the
MessagePart are loaded from the InputStream during the constructor call until the end
of the stream is reached.

text/* text/html text/plain text/x-hdml text/x-ttml

text/x-vCalendar text/x-vCard text/vnd.wap.wml text/vnd.wap.wmlscri
pt

text/vnd.wap.wta-
event

multipart/* multipart/mixed multipart/form-data multipart/byterantes multipart/alternative

application/* application/java-vm application/x-www-
form-urlencoded application/x-hdmlc application/vnd.wap.

wmlc
application/vnd.wa
p.wmlscriptc

application/vnd.wa
p.wta-eventc

application/vnd.wa
p.uaprof

application/vnd.wap.
wtls-ca-certificate

application/vnd.wap.
wtls-user-certificate

application/x-x509-
ca-cert

application/x-x509-
user-cert image/* image/gif image/jpeg

image/tiff image/png image/vnd.wap.wb
mp

application/vnd.wap.
multipart.*

application/vnd.wap.
multipart.mixed

application/vnd.wa
p.multipart.form-
data

application/vnd.wa
p.multipart.byteran
ges

application/vnd.wa
p.multipart.alternati
ve

application/xml text/xml

application/vnd.wa
p.wbxml

application/x-x968-
cross-cert

application/x-x968-
ca-cert

application/x-x968-
user-cert text/vnd.wap.si

application/vnd.wa
p.sic text/vnd.wap.sl application/vnd.wa

p.slc text/vnd.wap.co application/vnd.wap.
coc

application/vnd.wa
p.multipart.related

application/vnd.wa
p.sia

text/vnd.wap.conne
ctivity-xml

application/vnd.wap.
connectivity-wbxml

application/pkcs7-
mime

application/vnd.wa
p.hashed-certificate

application/vnd.wa
p.signed-certificate

application/vnd.wa
p.cert-response

application/xhtml+xm
l application/wml+xml

text/css application/vnd.wa
p.mms-message

application/vnd.wa
p.rollover-certificate multipart/related application/vnd.wap.

wml+xml

text/x-wap-wta-wml application/x-wap-
wta-wmlc

text/vnd.wap.chann
el application/smil application/x-

shockwave-flash
image/bmp image/pjpeg image/svg+xml audio/amr audio/GSM-EFR
audio/imelody audio/mpeg audio/midi audio/mid audio/pcma
audio/pcmu audio/x-ms-wma audio/x-wav audio/sp-midi audio/x-idenambe
video/mp4 video/h263 video/x-ms-wmv

iDEN J2ME™ Developer’s Guide

375
 © 2005 Motorola, Inc.

7.4.2.6.3 MessagePart(byte[] contents, int offset, int length, String
mimeType, String contentId, String contentLocation, String enc)

public MessagePart(byte[] contents, int offset, int length, String
mimeType, String contentId, String contentLocation, String enc)
throws SizeExceededException

Constructs a MessagePart object from a subset of the byte array. This constructor is
only useful, if the data size is small (roughly less than 10K). For larger content the
InputStream based constructor should be used.

7.4.2.7 javax.wireless.messaging.MultipartMessage

7.4.2.7.1 addAddress(String type, String address)
public boolean addAddress(String type, String address)

Adds an address to the multipart message.

Tips:

• Shortcode address is not supported on iDEN handsets.

• The length of this address must be less than 256.

• iDEN handsets’ MMS implementation does not support BCC addresses. Although an
application can add BCC addresses, the message will not be sent to the BCC
address.

• All addresses of receivers including “to” and “cc” combined either contain 0 or 1
application ID. This application ID will be used for all addresses.

• The maximum number of total receivers specified by “to”, “cc” and “bcc” combined is
20.

7.4.2.7.2 addMessagePart(MessagePart part)
public void addMessagePart(javax.wireless.messaging.MessagePart
part)

throws SizeExceededException

Attaches a MessagePart to the multipart message.

Tip: The total length of this message should not exceed 30K.

iDEN J2ME™ Developer’s Guide

376
 © 2005 Motorola, Inc.

7.4.3 Code Examples
The following is a code example demonstrating the usage of MMS-based messaging:

/**

 * Demo program of Motorola iDEN WMA on MMS

 * Filename: wmaTest.java

 *

 * @version 1.0

 * @author Motorola, Inc.

 */

import java.io.*;

import javax.microedition.midlet.*;

import javax.microedition.io.*;

import javax.microedition.lcdui.*;

import javax.wireless.messaging.*;

public class wmaTest extends MIDlet implements CommandListener

{

 Display display = Display.getDisplay(this);

 Displayable resumeScreen = null;

 Form backForm = new Form("Test WMA over MMS");

 TextField destinationTextField = new TextField("To", null, 20,
TextField.ANY);

 Command startCommand = new Command("Start", Command.OK, 1);

 Command exitCommand = new Command("Exit", Command.EXIT, 2);

 Command viewCommand = new Command("View", Command.OK, 3);

 MessageConnection messconn = null;

 MultipartMessage msg;

 public wmaTest()

 {

iDEN J2ME™ Developer’s Guide

377
 © 2005 Motorola, Inc.

 /* Add UI items to form */

 backForm.append(destinationTextField);

 backForm.addCommand(startCommand);

 backForm.addCommand(exitCommand);

 backForm.setCommandListener(this);

 resumeScreen = backForm;

 }

 public void sendMMS() throws IOException

 {

 MessagePart mp;

 String to = destinationTextField.getString();

 msg =
(MultipartMessage)(messconn.newMessage(MessageConnection.MULTIPART_ME
SSAGE, to));

 msg.setSubject("Test MMS from JAVA!");

 /* Add a text content to MMS */

 String s = new String("\nPls enjoy this MMS!");

 byte[] buf = s.getBytes("ISO-8859-1");

 mp = new MessagePart(buf, "text/plain", "txt1", null, "ISO-
8859-1");

 msg.addMessagePart(mp);

 /* Add a jpeg content to MMS */

 InputStream in = this.getClass().getResourceAsStream("/2.jpg");

 mp = new MessagePart(in, "image/jpeg", "jpeg2", null, null);

 msg.addMessagePart(mp);

 in.close();

 /* Add a jpeg content to MMS */

 in = this.getClass().getResourceAsStream("/4.jpg");

 mp = new MessagePart(in, "image/jpeg", "jpeg4", null, null);

 msg.addMessagePart(mp);

 in.close();

iDEN J2ME™ Developer’s Guide

378
 © 2005 Motorola, Inc.

 messconn.send(msg);

 backForm.append("\nSending MMS SUCCESS!");

 msg = null;

 }

 public void receiveMMS()throws IOException

 {

 msg = (MultipartMessage)(messconn.receive());

 backForm.append("\nReceive MMS SUCCESS!");

 backForm.addCommand(viewCommand);

 }

 public void viewMsg() throws UnsupportedEncodingException

 {

 MessagePart mp;

 MessagePart[] mpArray;

 byte[] content;

 Image imageItem;

 String mime_type, s;

 if (msg == null)

 {

 return;

 }

 mpArray = msg.getMessageParts();

 backForm.deleteAll();

 backForm.append("\nSubject : " + msg.getSubject());

 backForm.append("\nFrom : " + msg.getAddress());

 for (int k = 0; k < mpArray.length; k++)

 {

 mp = mpArray[k];

 mime_type = mp.getMIMEType();

 content = mp.getContent();

iDEN J2ME™ Developer’s Guide

379
 © 2005 Motorola, Inc.

 if (mime_type.equals("image/jpeg"))

 {

 imageItem = Image.createImage(content, 0,
mp.getLength());

 backForm.append(imageItem);

 }

 else if (mime_type.equals("text/plain"))

 {

 backForm.append("\n");

 if (mp.getEncoding() != null)

 {

 s = new String(content, mp.getEncoding());

 }

 else

 {

 s = new String(content, "UTF-8");

 }

 backForm.append(s);

 }

 }

 }

 public void commandAction(Command c, Displayable s)

 {

 try

 {

 if (c == exitCommand)

 {

 destroyApp(false);

 notifyDestroyed();

 }

 else if (c == startCommand)

 {

 if (0 == destinationTextField.size())

iDEN J2ME™ Developer’s Guide

380
 © 2005 Motorola, Inc.

 {

 backForm.append("\nPls input the destination
address!");

 }

 else

 {

 messconn =
(MessageConnection)Connector.open("mms://:com.mot.oyye");

 sendMMS();

 receiveMMS();

 }

 }

 else if (c == viewCommand)

 {

 viewMsg();

 }

 }

 catch (Exception e)

 {

 e.printStackTrace();

 }

 }

 /**

 * startApp should return immediately to keep the dispatcher

 * from hanging.

 */

 public void startApp()

 {

 display.setCurrent(resumeScreen);

 }

 /**

 * Remember what screen is showing

 */

 public void pauseApp()

iDEN J2ME™ Developer’s Guide

381
 © 2005 Motorola, Inc.

 {

 resumeScreen = display.getCurrent();

 }

 /**

 * Destroy must cleanup everything.

 * @param unconditional true if a forced shutdown was requested

 */

 public void destroyApp(boolean unconditional)

 {

 try

 {

 if (messconn != null)

 {

 messconn.close();

 }

 }

 catch (Exception e)

 {

 e.printStackTrace();

 }

 }

}

iDEN J2ME™ Developer’s Guide

382
 © 2005 Motorola, Inc.

7.5 MIPD 2.0 Push Registry
7.5.1 Overview

Push registration lets a MIDlet set itself to be launched automatically. The push registry allows for
registering network and timing based activation and also manages the MIDlet activation process
defined by MIDP 2.0 push registry.

The iDEN implementation of push registry supports all methods defined in the MIDP 2.0
PushRegistry class.

7.5.2 Network Launch
The iDEN implementation supports three network protocols: datagram (UDP), socket (TCP) and
SMS. An application can be statically registered by defining a property in a descriptor file or it can
register dynamically by calling the register connection API during run time. To register an
application for static socket (TCP) connections, the device must have packet data service. To
receive inbound messages, the device must have packet data or SMS service. This can require
special provisioning by the carrier or service provider. iDEN handsets support a maximum of
twelve push registrations; a MIDlet may have multiple push registrations.

The iDEN implementation buffers the first incoming datagram or SMS message before it launches
the MIDlet. Once the MIDlet launches, the connection delivers this message, and all subsequent
messages are delivered directly to the application. The MIDlet is of course responsible for opening
the connection using the Generic Connection framework. For sockets, the MIDlet is launched
when a TCP connection is established, and the connection is transferred to an application after it
is launched.

The sections below describe device-specific information regarding registration. For more
information on PushRegistry consult the MIDP 2.0 specification.

7.5.3 Time-based Launch
Time-based launch is accomplished using the registerAlarm() method detailed below. Each
application only has access to one alarm and only one future event can be pending. The maximum
number of alarms that are available at any one time is 32. An application is launched only if the
phone is powered on. If the phone is powered off and an alarm goes off, the application will not be
launched.

7.5.4 Class Description
The API for the PushRegistry is located in package javax.microedition.io.

java.lang.Object
 |
 + - javax.microedition.io.PushRegistry

iDEN J2ME™ Developer’s Guide

383
 © 2005 Motorola, Inc.

7.5.5 Method Description
7.5.5.1 PushRegistry Method

7.5.5.1.1 registerAlarm
static long registerAlarm (String midlet, long time)

throws ClassNotFoundException, ConnectionNotFoundException

You can delete a previously registered alarm by setting the time parameter to zero. The
registered time must be local time. The time must be a minimum of two minutes in the
future from the current time.

7.5.6 Tips /
• It’s recommended that you open the connection immediately in a separate thread in the

MIDlet’s startApp() and read the received message.

• Applications should not use any reserved ports as defined by IANA; for example FTP,
Telnet, or HTTP.

iDEN J2ME™ Developer’s Guide

384
 © 2005 Motorola, Inc.

7.6 MIDP 2.0 Security API
7.6.1 Overview

The MIDP 2.0 Security API consists of HttpsConnection, SecureConnection, SecurityInfo,
Certificate and CertificateExecption.

The HttpsConnection class defines the necessary methods and constants to establish a secure
network connection. The URL that specifies HTTPS when passed to Connector.open will return
an HttpsConnection.

The SecureConnection class defines the secure socket stream connection. A secure connection is
established using Connector.open() and a URL that specifies SSL. The secure connection is
established before the open method returns. If the secure connection cannot be established due
to errors related to certificates, a CertificateException is thrown. A secure socket is accessed using
a generic connection string with an explicit host and port number. The host may be specified as a
fully qualified host name or IPv4 number. For example, ssl://host.com:79 defines a target
socket on the host.com system at port 79. Note that RFC1900 recommends the use of names
rather than IP numbers for best results in the event of IP number reassignment.

The SecurityInfo class defines methods to access information about a secure network connection.
Protocols that implement secure connections may use this interface to report the security
parameters of the connection. It provides the certificate, protocol, version, and cipher suite, etc.
that is in use.

Certificates are used to authenticate information for secure Connections. The Certificate interface
provides to the application information about the origin and type of the certificate.

The CertificateException encapsulates an error that occurred while a Certificate is being used. If
multiple errors are found within a Certificate the more significant error should be reported in the
exception.

7.6.2 Class Descriptions
The API for the HttpsConnection, SecureConnection, and SecurityInfo is located in package
java.microedition.io. The API for the Certificate and CertificateException is located in package
java.microedition.pki.

java.lang.Object
 |
 + - java.microedition.io.HttpsConnection
 |
 + - java.microedition.io.SecureConnection
 |
 + - java.microedition.io.SecurityInfo
 |
 + - java.microedition.pki.Certificate
 |
 + - java.microedition.pki.CertificateException

iDEN J2ME™ Developer’s Guide

385
 © 2005 Motorola, Inc.

7.6.3 Method Descriptions
Please refer to MIDP 2.0 Javadocs.

7.6.4 Code Examples
7.6.4.1 HttpsConnection

The following is the code example of HttpsConnection; open a HTTPS connection, set its
parameters, then read the HTTP response.

void getViaHttpsConnection (String url)
throws CertificateException, IOException

{
 HttpsConnection c = null;
 InputStream is = null;
 try {
 c = (HttpsConnection) Connector.open(url);

 // Getting the InputStream ensures that the connection
 // is opened (if it was not already handled by
 // Connector.open()) and the SSL handshake is exchanged,
 // and the HTTP response headers are read.
 // These are stored until requested.
 is = c.openDataInputStream();

 if (c.getResponseCode() == HttpConnection.HTTP_OK)
 {
 // Get the length and process the data
 int len = (int)c.getLength();
 if (len > 0)
 {
 byte[] data = new byte[len];
 int actual = is.readFully(data);
 ...
 } else {
 int ch;
 while ((ch = is.read()) != -1) {
 ...
 }
 }
 } else {
 ...
 }
 } finally {
 if (is != null)
 is.close();
 if (c != null)
 c.close();
 }
 }

iDEN J2ME™ Developer’s Guide

386
 © 2005 Motorola, Inc.

7.6.4.2 SecureConnection
The following examples show how a SecureConnection would be used to access a sample
loopback program.

SecureConnection sc = (SecureConnection)
Connector.open("ssl://host.com:79");
SecurityInfo info = sc.getSecurityInfo();
boolean isTLS = (info.getProtocolName().equals("TLS"));

sc.setSocketOption(SocketConnection.LINGER, 5);

InputStream is = sc.openInputStream();
OutputStream os = sc.openOutputStream();

os.write("\r\n".getBytes());
int ch = 0;
while(ch != -1) {
 ch = is.read();
}

is.close();
os.close();
sc.close();

7.6.4.3 SecurityInfo
HttpsConnection c = null;
InputStream is = null;

c = (HttpsConnection) Connector.open("https://www.bellsouth.com/",
 Connector.READ_WRITE, true);
is = c.openInputStream();

try {
 secuInfo = c.getSecurityInfo();
} catch(Throwable t) {
 t.printStackTrace();
}

System.out.println(" ProtocolVersion "+secuInfo.getProtocolVersion());
System.out.println(" ProtocolName " + secuInfo.getProtocolName());
System.out.println(" CipherSuite " + secuInfo.getCipherSuite());

7.6.4.4 Certificate
Certificate cer = secuInfo.getServerCertificate();

System.out.println(" CA Type " + cer.getType());
System.out.println(" CA Version " + cer.getVersion());
System.out.println(" CA NotAfter " + cer.getNotAfter());
System.out.println(" CA NotBefore " + cer.getNotBefore());
System.out.println(" CA Subject " + cer.getSubject());

iDEN J2ME™ Developer’s Guide

387
 © 2005 Motorola, Inc.

System.out.println(" CA Issuer " + cer.getIssuer());
System.out.println(" CA SerialNumber " + cer.getSerialNumber());

7.6.4.5 CertificateException
try {
 c = (HttpsConnection)Connector.open("https://www.bellsouth.com/",
 Connector.READ_WRITE, true);
 is = c.openInputStream();

} catch (CertificateException ce) {
 System.out.println ("Unexpected CertificateException " + ce);
}

7.6.5 Tips /
• HTTPS is the secure version of HTTP (IETF RFC2616), a request-response protocol in

which the parameters of the request must be set before the request is sent.

• In addition to the normal IOExceptions that may occur during invocation of the various
methods that cause a transition to the Connected state, CertificateException (a subtype of
IOException) may be thrown to indicate various failures related to establishing the secure
link. The secure link is necessary in the Connected state so the headers can be sent
securely. The secure link may be established as early as the invocation of
Connector.open() and related methods for opening input and output streams and
failure related to certificate exceptions may be reported.

• MIDP 2.0 devices are expected to operate using standard Internet and wireless protocols
and techniques for transport and security. The current mechanisms for securing Internet
content is based on existing Internet standards for public key cryptography:

o [RFC2437] - PKCS #1 RSA Encryption Version 2.0

o [RFC2459] - Internet X.509 Public Key Infrastructure

o [WAPCERT] - WAP-211-WAPCert-20010522-a - WAP Certificate Profile
Specification

• Only VeriSign server security certificates are supported. Using other server certificates will
cause a CertificateException to be thrown.

iDEN J2ME™ Developer’s Guide

388
 © 2005 Motorola, Inc.

7.7 Cryptography APIs
7.7.1 Overview

This API is only available on

these handsets.

To complement SSL/TLS/HTTPS and enrich secure Java applications,
iDEN handsets include a set of lightweight cryptography APIs that
provide flexible and customizable end-to-end application-layer security
in the J2ME™ environment. A rich variety of cryptographic mechanisms
and algorithms are incorporated into these APIs, thus providing
confidentiality, integrity and authentication. Cryptographic algorithms
and schemes supported include: message digest (MD5 and SHA-1),
secure random number generator (FIPS186 RNG), ciphers (DES,
DESede, AES, RC4, and others), digital signatures (ECDSA and
others) and key agreement (DH and ECDH).

7.7.2 Class Descriptions
The Crypto APIs are located in the packages com.motorola.iden.crypto and
com.motorola.iden.security.

java.lang.Object
|
+-com.motorola.iden.crypto.Cipher
|
+-com.motorola.iden.crypto.KeyAgreement
|
+-com.motorola.iden.security.MessageDigestSpi
|
+-com.motorola.iden.security.MessageDigest
|
+-com.motorola.iden.security.Signature

7.7.2.1 MessageDigest Description
MessageDigest is a one-way hash function that takes arbitrary-sized data and outputs a fixed-
length hash value. All the information in the message is used to construct the message digest, but
the message cannot be recovered from the hash. The message digest provides data integrity.

• Algorithms MD5 and SHA-1 are supported in this platform.

• The MessageDigest class provides applications with the functionality of a message digest
algorithm, such as MD5 or SHA-1.

• SHA-1 is a basic hash function that takes an entire message (or several parts of a single
message submitted in separate blocks) and produces a 160-bit message digest value.

iDEN J2ME™ Developer’s Guide

389
 © 2005 Motorola, Inc.

• MD5 is a hash function that takes an entire message (or several parts of a single message
submitted in separate blocks) and produces a 128-bit message digest value.

7.7.2.2 Cipher Description
• Encryption is a tool used to protect data. Typical uses are to protect files in a file system or

to encrypt network communications.

Two kinds of ciphers are supported:

• Symmetric Ciphers use a single secret key to encrypt and decrypt data.

• Asymmetric Ciphers use a pair of keys. One key is public and may be freely distributed.
The other key is private and should be kept secret. Data encrypted with either key can be
decrypted using the other key.

This class provides the functionality of a cryptographic cipher for encryption and
decryption.

7.7.2.3 Signature Description
A digital signature is simply a message digest that has been processed with a signer’s private
key. The signature can be passed around with the data, providing proof that whoever signed
the data had access to the private key.

The Signature class provides the functionality of signing and verifying a digital signature.

7.7.2.4 KeyAgreement Description
KeyAgreement can establish shared secrets without exchanging a secret key. KeyAgreement
relies on public-public key pairs, just like asymmetric encryption. Your own private key and
another party’s public key generate the shared secret. The generated shared secret can be
used as a key for symmetric encryption.

The class KeyAgreement that is located in package com.motorola.iden.crypto contains the
method of generating and verifying a digital signature. Algorithms Diffie-Hellman (DH) and
ECC Diffie-Hellman (ECDH) are supported. For algorithm DH, standard ANSI X9.63 KDF is
followed and for ECDH, ANSI X9.42 KDF is followed. For ECDH, only curve WTLS-7 (160 bits)
is supported.

iDEN J2ME™ Developer’s Guide

390
 © 2005 Motorola, Inc.

7.7.3 Method Descriptions
7.7.3.1 MessageDigest Methods

7.7.3.1.1 getInstance
Creates a MessageDigest instance.

public static MessageDigest getInstance(String algorithm)
 throws NoSuchAlgorithmException

This method generates a MessageDigest instance, which implements one of the above
algorithms.

algorithm is the name of the algorithm requested; for example, “MD5” or “SHA”.

7.7.3.1.2 update
Updates the digest with the specified bytes.
public void update(byte[] input, int offset, int len)

This method updates the message digest with an array of bytes that represents one of
several parts of a single message. A message can be submitted in separate blocks. This
method can be called multiple times.

input is the array of bytes. offset is the offset to start from in the array of bytes. len is
the number of bytes to use.

7.7.3.1.3 digest
Returns a completed digest, created from the parts specified with calls to update().

public byte[] digest()

After you finish updating the entire message, this method finishes the operation and
produces the digest.

7.7.3.2 Cipher Methods
7.7.3.2.1 getInstance

Creates a Cipher instance.
public static final Cipher getInstance(String transformation)

throws NoSuchAlgorithmException, NoSuchPaddingException

This method generates a Cipher instance that represents a certain cipher algorithm and
possible associated padding scheme.

transformation is the name of the transformation in the form “algorithm/mode/padding”
or “algorithm”; for example, "DES/CBC/PKCS5Padding" or "DES".

If the transformation is specified by algorithm only, the mode and padding are set to the
default values for the algorithm provider.

The following table lists all supported cipher algorithms, modes, and padding.

iDEN J2ME™ Developer’s Guide

391
 © 2005 Motorola, Inc.

Supported Cipher Algorithms

Algorithm Mode Padding
DES ECB;CBC;CFB;OFB PKCS5Padding

DESede ECB;CBC;CFB;OFB PKCS5Padding
AES ECB;CBC;CFB_128;OFB_128 PKCS5Padding

ARC4 (or RC4) ----- -----

7.7.3.2.2 init
Initializes a Cipher instance with an operation mode, key, and algorithm specifications.

public final void init(int opmode, Key key,
AlgorithmParameterSpec params)
throws InvalidKeyException, InvalidAlgorithmParameterException

Before you perform any other operation on the Cipher, call this method to initialize it with
the operation mode (encrypt or decrypt), a key, and the proper algorithm parameters (such
as the initial vector).

opmode is the operation mode of this cipher (e.g. ENCRYPT_MODE, DECRYPT_MODE).
key is the encryption key. params is the algorithm parameters.

7.7.3.2.3 update
Updates the cipher with the specified bytes.
public final byte[] update(byte[] input, int offset, int len)

 throws IllegalStateException

This method places information into the cipher to start or to continue a multiple-part
encryption or decryption operation..

input is the input buffer. offset is the offset in input where the input starts. len is
the input length.

7.7.3.2.4 doFinal
Returns a completed cipher, created from the parts specified with calls to update().

public final byte[] doFinal()

 throws IllegalStateException, IllegalBlockSizeException,

 BadPaddingException

This method finishes a multiple-part encryption or decryption operation and produces the
cipher (if the operation was encryption) or plain text (if the operation was decryption).

iDEN J2ME™ Developer’s Guide

392
 © 2005 Motorola, Inc.

7.7.3.3 Signature Methods
7.7.3.3.1 getInstance

Creates a Signature instance.
public static Signature getInstance(String algorithm)

 throws NoSuchAlgorithmException

This method creates a Signature instance that implements the specified signature.

algorithm is the name of the algorithm, such as "ECDSA".

7.7.3.3.2 initSign
Initializes the Signature for signing with the specified key.
public final void initSign(PrivateKey privateKey)

 throws InvalidKeyException

Before you perform any signing operation, you must call this method to specify the private
key.

privateKey is the private key of the identity whose signature is to be generated.

7.7.3.3.3 initVerify
Initializes the Signature for verification with the specified key.
public final void initVerify(PublicKey publicKey)

 throws InvalidKeyException

Before you perform any verification operation, you must call this method to specify the
public key.

publicKey is the public key of the identity whose signature is going to be verified.

7.7.3.3.4 update
Updates the data to be signed or verified with the specified bytes.
public final void update(byte[] data, int offset, int len)

 throws SignatureException

This method updates the data to be signed or verified with the specified array of bytes.

data is the array of bytes. offset is the offset to start from in the array of bytes. len is
the number of bytes to use, starting at offset.

7.7.3.3.5 sign
Returns the signature for the data specified with update().

public final byte[] sign() throws SignatureException

This method returns the signature bytes of the input data. The format of the signature
depends on the underlying signature scheme. Calling this method resets this signature
object to the state it was in when initialized with initSign().

iDEN J2ME™ Developer’s Guide

393
 © 2005 Motorola, Inc.

7.7.3.3.6 verify
Returns true if the specified signature matches the data specified with update().

public final boolean verify(byte[] signature)

 throws SignatureException

This method verifies that the specified signature is for the data specified with update().

Calling this method resets this signature object to the state it was in when initialized with
initVerify().

7.7.3.4 KeyAgreement Methods
7.7.3.4.1 getInstance

Creates a KeyAgreement instance.
public static KeyAgreement getInstance(String algorithm)

throws NoSuchAlgorithmException

This method generates a KeyAgreement object that implements the specified key
agreement algorithm. In the current implementation, algorithm DH and ECDH are
available.

algorithm is the name of the key agreement algorithm; that is “DH” or “ECDH”.

7.7.3.4.2 init
Initializes the KeyAgreement.
public final void init(Key key, AlgorithmParameterSpec params)

throws InvalidKeyException, InvalidAlgorithmParameterException

Before you can use the KeyAgreement, you must call this method to initialize it with the
given key and set of algorithm parameters.

key is the party's private information. For example, in the case of the Diffie-Hellman key
agreement, this would be the party's own Diffie-Hellman private key.

params is the key agreement parameters.

7.7.3.4.3 doPhase
Updates the KeyAgreement with a key received from one of the other parties involved in
this key agreement.
public final Key doPhase(Key key, boolean lastPhase)

throws InvalidKeyException

key is the key for this phase. For example, in the case of Diffie-Hellman between two
parties, this would be the other party's Diffie-Hellman public key.

lastPhase is a Boolean flag that indicates whether this is the last phase of this key
agreement. Currently, only one phase is supported so this argument should always be
true. Using false causes this method to throw an exception.

iDEN J2ME™ Developer’s Guide

394
 © 2005 Motorola, Inc.

7.7.3.4.4 generateSecret
Returns the shared secret based on the keys obtained from init() and doPhase().

public final byte[] generateSecret()

This method resets this KeyAgreement instance, so that it can be reused for further key
agreements. Unless this key agreement is reinitialized with one of the init() methods,
the same private information and algorithm parameters are used for subsequent key
agreements.

7.7.4 Example Code
7.7.4.1 MessageDigest Example #1
public CDemo1()
{
 byte[] message1 = new byte[25];
 byte[] message2 = new byte[250];
 byte[] digest;
 try{
 //get an Instance of MessageDigest whose algorithm
 //is MD5
 MessageDigest md = MessageDigest.getInstance ("MD5");

 //update message1 into MessageDigest context
 md.update(message1,0,25);

 //update part of message2 (start at element 2, length //125)
 // into MessageDigest context
 md.update(message2,2,125);

 //finalize and get MessageDigest
 digest = md.digest();
 } catch (NoSuchAlgorithmException) {}
}

7.7.4.2 MessageDigest Example #2
public CDemo2()
{
 byte[] message1 = new byte[25];
 byte[] message2 = new byte[250];
 byte[] digest;
 try{
 //get an Instance of MessageDigest whose algorithm
 //is SHA-1
 MessageDigest sha = MessageDigest.getInstance("SHA");

 //update message1 into MessageDigest context
 sha.update(message1,0,25);

 //update part of message2 (start at element 2, length //125)

iDEN J2ME™ Developer’s Guide

395
 © 2005 Motorola, Inc.

 // into MessageDigest context
 sha.update(message2,2,125);

 //finalize and get MessageDigest
 digest = sha.digest();
 } catch (NoSuchAlgorithmException) {}
}

7.7.4.3 Cipher Example
public cipherdemo1()
{
 //message needs to be encrypted
 String info = "Hello World!"

 //cipher
 byte[] cipher;

 //Decrypted message
 String output;

 try {
 //get a cipher instance for encryption
 Cipher A = Cipher.getInstance("DES/CBC/PKCS5Padding");

 //get a cipher instance for decryption
 Cipher B = Cipher.getInstance("DES/CBC/PKCS5Padding");

 //setup a des key
 byte key_input[] = {0,1,2,3,4,5,6,7};

 //key instance
 //DES_Key implements interface Key
 DES_Key key = new DES_Key(key_input);

 //initial vector
 byte [] iv;

 //init cipher A
 A.init(Cipher.ENCRYPT_MODE, key);

 //get generated IV
 iv = A.getIV();

 //encrypt
 cipher = A.doFinal(info.getBytes());

 //new IvParameterSpec for decryption
 IvParameterSpec ips = new IvParameterSpec(iv);

 //init cipher for decryption
 B.init(Cipher.DECRYPT_MODE,key,(AlgorithmParameterSpec)ips);

iDEN J2ME™ Developer’s Guide

396
 © 2005 Motorola, Inc.

 //decrypt the message
 byte out[] = B.doFinal(encrypted3);

 //get the decrypted info
 output = new String(out, 0, out.length);
 }
 catch (Exception e) {
 }
}

7.7.4.4 Signature Example
public CDemo3()
{
 Signature sig, verify;

 try {
 //get new Signature instance for signing.
 sig = Signature.getInstance("ECDSA");

 //setup ECDSAParameterSpec for initialization
 ECDSAParameterSpec ecdsaparameter = new
 ECDSAParameterSpec(Security.WTLS7,null);
 sig.setParameter(ecdsaparameter);

 //initialize for signing
 sig.initSign((ECC_PrivateKey)privatekey);

 //update the message to be signed
 sig.update("testtesttest".getBytes(),0,12);

 //get the signature (s-value)
 byte[] signature = sig.sign();

 //get the r-value and store it into ecdsaparameter
 ecdsaparameter = (ECDSAParameterSpec)sig.getParameter();

 //get new Signature instance for verifying
 verify = Signature.getInstance("ECDSA");

 //set ECDSAParameterSpec for verifying
 //setup both curve and r-value
 verify.setParameter(ecdsaparameter);

 //initialize for verifying
 verify.initVerify((ECC_PublicKey)publickey);

 //update the message to be verified
 verify.update("testtesttest".getBytes(),0,12);

 //verify
 boolean b = sig2.verify(signature);

 }

iDEN J2ME™ Developer’s Guide

397
 © 2005 Motorola, Inc.

 catch (Exception e){
 }
}

7.7.4.5 Key Address Example
public CDemo4()
{
 //initialize variables used in this Key Agreement
 KeyAgreement dh;
 KeyAgreement dh2;

 KeyPair keypair;
 KeyPair keypair2;

 DHParameterSpec dhspec;
 DHParameterSpec dhspec2;

 KeyPairGenerator dhgen;
 KeyPairGenerator dhgen2;

 PublicKey publickey;
 PublicKey publickey2;

 PrivateKey privatekey;
 PrivateKey privatekey2;

 byte[] BobS;
 byte[] AliceS;

 int i;
 try {
 //BOB
 //create dhspec
 dhspec = new DHParameterSpec(p,g,q);

 //create dhgen
 dhgen = KeyPairGenerator.getInstance("DH");

 //init dhgen
 dhgen.initialize(dhspec);

 //gen keypair
 keypair = dhgen.generateKeyPair();

 //get publickey and privatekey for dh
 publickey = keypair.getPublic();
 privatekey = keypair.getPrivate();

 //Alice
 //create dhspec
 dhspec2 = new DHParameterSpec(p,g,q);

iDEN J2ME™ Developer’s Guide

398
 © 2005 Motorola, Inc.

 //create dhgen
 dhgen2 = KeyPairGenerator.getInstance("DH");

 //init dhgen
 dhgen2.initialize(dhspec2);

 //gen keypair
 keypair2 = dhgen2.generateKeyPair();

 //get publickey and privatekey for dh
 publickey2 = keypair2.getPublic();
 privatekey2 = keypair2.getPrivate();

 //get dh
 dh = KeyAgreement.getInstance("DH");

 //init dh
 dh.init((DH_PrivateKey)privatekey,dhspec);

 //doPhase
 dh.doPhase((DH_PublicKey)publickey2,true);

 //generate secret key using Bob’s private key and Alice’s
 //public Key
 BobS = dh.generateSecret();

 //get dh
 dh2 = KeyAgreement.getInstance("DH");

 //init dh
 dh2.init((DH_PrivateKey)privatekey2,dhspec2);

 //doPhase
 dh2.doPhase((DH_PublicKey)publickey,true);

 //generate secret key using Alice’s private key and Bob’s
 //public Key
 AliceS = dh2.generateSecret();

} catch (Exception e) {
 }
}

iDEN J2ME™ Developer’s Guide

399
 © 2005 Motorola, Inc.

7.7.5 Tips /
• In order to use DES, DESede, AES, and ARC4, a MIDlet must implement the Key

interface.

• DES supports 56-bit key (8 bytes, including parity). DES key parity check and weak key
detection are not supported.

• DESede, also called 3DES (“triple DES”), supports 168-bit keys (24 bytes, including
parity). Parity check and weak key detection are not supported.

• AES supports 128, 192 or 256-byte key.

• ARC4, also called RC4, supports a key size that is less than 256 bits.

7.7.6 Compiling & Testing Cryptography Enhanced MIDlets

This tip is only applicable to the stub classes for emulators: Instead of executing actual
cryptographic operations, console messages are displayed for certain operations. This allows
rudimentary debugging of applications without actual cryptographic operations.

iDEN J2ME™ Developer’s Guide

400
 © 2005 Motorola, Inc.

7.8 JAXP
7.8.1 Overview

This API is only available

on these handsets.

JAXP provides APIs that allow a J2ME application to access a XML
parser and parse XML document using SAX. The detailed description
of JAXP subset is defined in J2ME Web Services Specification 1.0.

• The javax.xml.parsers, org.xml.sax and org.xml.sax.helpers packages contain the basic
classes needed to access XML parser to parse XML document.

• This feature supports obtaining and referencing a platform’s given parser implementation. It
includes the following classes in JSR172: SAXParser; SAXParserFactory,
ParserConfigurationException, FactoryConfigurationError.

• This feature contains a subset of the SAX 2.0 API classes and interfaces. It includes
Attributes, Locator, InputSource, SAXException, SAXNotRecognizedException,
SAXNotSupportedException, SAXParseException.

• This feature supports applications to extend to receive parse events.

7.8.2 Package javax.xml.parsers
Class Summary
SAXParser Defines the API that represents a simple SAX parser.

SAXParserFactory Defines a factory API that enables applications to configure and obtain a
SAX based parser to parse XML documents.

Exception Summary

ParserConfigurationException
Indicates a serious configuration error.
It will be thrown when a parser cannot be created which satisfies the
request configuration when invoking SAXParserFactory.newSAXParser().

Error Summary

FactoryConfigurationError
Thrown when a problem with configuration with the Parser Factories
exists. This exception will be thrown when the class of a parser factory
specified in the system properties cannot be found or instantiated.

iDEN J2ME™ Developer’s Guide

401
 © 2005 Motorola, Inc.

7.8.3 Package org.xml.sax
Interface Summary
Attributes Interface for a list of XML attributes.
Locator Interface for associating a SAX event with a document location.

Class Summary
InputSource A single input source for an XML entity.

Exception Summary

SAXException Encapsulates a general SAX error or warning. It is extended by the
following three exceptions:

SAXNotRecognizedException Exception class for an unrecognized identifier. A DefaultHandler will throw
this exception when it finds an unrecognized feature or property identifier

SAXNotSupportedException
Exception class for an unsupported operation. A DefaultHandler will throw
this exception when it recognizes a feature or property identifier, but
cannot perform the requested operation (setting a state or value).

SAXParseException
Encapsulates a XML parse error or warning. This exception is passed to
DefaultHandler’s error(), fatalError(), warning() as parameters to report the
information when an error occurs in the original XML document.

7.8.4 Package org.xml.sax.helpers
Class Summary

DefaultHandler Default base class for SAX2 event handlers.

iDEN J2ME™ Developer’s Guide

402
 © 2005 Motorola, Inc.

7.8.5 Package Tree
7.8.5.1 Class Hierarchy
The following will be the Class Hierarchy for the JAXP API:

o class java.lang.Object
o class org.xml.sax.helpers.DefaultHandler
o class org.xml.sax.InputSource
o class javax.xml.parsers.SAXParser
o class javax.xml.parsers.SAXParserFactory
o class java.lang.Throwable

o class java.lang.Error
o class javax.xml.parsers.FactoryConfigurationError

o class java.lang.Exception
o class javax.xml.parsers.ParserConfigurationException
o class org.xml.sax.SAXException

o class org.xml.sax.SAXNotRecognizedException
o class org.xml.sax.SAXNotSupportedException
o class org.xml.sax.SAXParseException

7.8.5.2 Interface Hierarchy
The following will be the Interface Hierarchy for the JAXP API :

o interface org.xml.sax.Attributes
o interface org.xml.sax.Locator

7.8.5.3 Class javax.xml.parsers.SAXParser

parse(InputStream is, DefaultHandler dh)

Parses the content of the given InputStream instance as XML using the specified
DefaultHandler.

parse(InputSource is, DefaultHandler dh)

Parses the content given InputSource as XML using the specified DefaultHandler.

Tip. The implementation will use the InputSource object to determine how to read XML input.
If there is a character stream available, the parser will read that stream directly; if not, the
parser will use a byte stream, if available; if neither a character stream nor a byte stream is
available, the parser will attempt to open a connection to the resource identified by the
system identifier.

iDEN J2ME™ Developer’s Guide

403
 © 2005 Motorola, Inc.

7.8.5.4 Class javax.xml.parsers.SAXParserFactory
7.8.5.4.1 newInstance()

public static SAXParserFactory newInstance() throws
FactoryConfigurationError

Obtain a new instance of SAXParserFactory.

Tip: This static method creates a new factory instance of the platform default
SAXParserFactory instance. Once an application has obtained a reference to a
SAXParserFactory it can use the factory to configure and obtain parser instances.

7.8.5.4.2 newSAXParser()
Creates a new instance of a SAXParser using the currently configured factory
parameters.

7.8.5.4.3 setFeature(String name, boolean value)/getFeature(String
name)

Sets/gets the particular feature in the underlying implementation.

Tips:

• A list of the core features and properties can be found at
http://www.megginson.com/SAX/Java/features.html

• NAMESPACES and NAMESPACE_PREFIXES are supported features. When
processing VALIDATION a SAXNotSupportedException will be thrown. When
processing any other features a SAXNotRecognizedException will be thrown.

7.8.5.4.4 Class org.xml.sax.helpers.DefaultHandler
Default base class for SAX2 event handlers. This class is available as a convenience base
class for SAX2 applications: it provides default implementations for applications to extend.
Application writers can extend this class when they need to implement only part of an
interface.

7.8.5.4.5 Interface org.xml.sax.Attributes
This interface simply provides a list of XML attributes. The list can be accessed in three
ways:

• by attribute index;

• by Namespace-qualified name; or

• by qualified (prefixed) name.

If the namespace-prefixes feature (see above) is false, access by qualified name may not
be available.. If the http://xml.org/sax/features/namespaces feature is false,
access by Namespace-qualified names may not be available.

iDEN J2ME™ Developer’s Guide

404
 © 2005 Motorola, Inc.

7.8.6 Code Examples
The following is the code example of JAXP:

/**
 * Demo program of Motorola iDEN SDK JAXP APIs
 * Filename: MyJAXP.java
 * <p></p>
 * <hr/>
 * MOTOROLA and the Stylized M Logo are registered trademarks of
 * Motorola, Inc. Reg. U.S. Pat. & Tm. Off.

 * © Copyright 2003 Motorola, Inc. All Rights Reserved.
 * <hr/>
 *
 * @version iDEN JAXP demo 1.0
 * @author Motorola, Inc.
 */
import javax.microedition.lcdui.*;
import javax.microedition.midlet.MIDlet;

public class MyJAXP extends MIDlet
 implements CommandListener
{

 private Form textform;
 ParserApp parser;
 XMLDataStore xmlData;

 Command testCommand,exitCommand;

 public MyJAXP()
 {
 textform = new Form("XML Test Form!");
 testCommand = new Command("Test", 1, 1);
 exitCommand = new Command("Exit", 1, 2);
 textform.addCommand(testCommand);
 textform.addCommand(exitCommand);
 textform.setCommandListener(this);
 }

 public void startApp()
 {
 Display.getDisplay(this).setCurrent(textform);
 parser = new ParserApp();
 xmlData = new XMLDataStore();

 }

 public void pauseApp()
 {
 }

iDEN J2ME™ Developer’s Guide

405
 © 2005 Motorola, Inc.

 public void destroyApp(boolean flag)
 {
 }

 public void commandAction(Command command, Displayable
displayable)
 {

 if (command == testCommand)
 {
 String s = null;
 s = "fire.xml";
 xmlData.resetXMLDataStore();
 parser.startParsing(xmlData, new String(s));
 Display.getDisplay(this).setCurrent(textform);
 }
 else if (command == exitCommand)
 {
 notifyDestroyed();
 }
 }
}

/**
 * Demo program of Motorola iDEN SDK JAXP APIs
 * Filename: XMLDataStore.java
 * <p></p>
 * <hr/>
 * MOTOROLA and the Stylized M Logo are registered trademarks of
 * Motorola, Inc. Reg. U.S. Pat. & Tm. Off.

 * © Copyright 2003 Motorola, Inc. All Rights Reserved.
 * <hr/>
 *
 * @version iDEN JAXP demo 1.0
 * @author Motorola, Inc.
 */

import java.util.Vector;
import org.xml.sax.Attributes;

class XMLDataStore
{

 Vector elements;
 Vector attrList;

 public XMLDataStore()
 {
 elements = new Vector();
 attrList = new Vector();
 }

 public void resetXMLDataStore()

iDEN J2ME™ Developer’s Guide

406
 © 2005 Motorola, Inc.

 {
 elements.removeAllElements();
 attrList.removeAllElements();
 }

 public void insertElement(String s, Attributes attributes)
 {
 Attributes attributes1 = attributes;
 elements.addElement(s);
 int i = attributes.getLength();
 Vector vector = new Vector(4);
 for(int j = 0; j < i; j++)
 vector.addElement(new String(attributes.getValue(j)));

 attrList.addElement(vector);
 }

 public String getElement(int i)
 {
 return (String)elements.elementAt(i);
 }

 public Vector getAttributes(int i)
 {
 return (Vector)attrList.elementAt(i);
 }

 public String getAttribute(int i, int j)
 {
 Vector vector = (Vector)attrList.elementAt(i);
 return vector.elementAt(j).toString();
 }

 public int getSize()
 {
 return elements.size();
 }
}

/**
 * Demo program of Motorola iDEN SDK JAXP APIs
 * Filename: ParserApp.java
 * <p></p>
 * <hr/>
 * MOTOROLA and the Stylized M Logo are registered trademarks of
 * Motorola, Inc. Reg. U.S. Pat. & Tm. Off.

 * © Copyright 2003 Motorola, Inc. All Rights Reserved.
 * <hr/>
 *
 * @version iDEN JAXP demo 1.0
 * @author Motorola, Inc.
 */
import java.io.PrintStream;

iDEN J2ME™ Developer’s Guide

407
 © 2005 Motorola, Inc.

import java.io.Writer;
import javax.xml.parsers.SAXParser;
import javax.xml.parsers.SAXParserFactory;
import org.xml.sax.Attributes;
import org.xml.sax.helpers.DefaultHandler;
import org.xml.sax.SAXParseException;

class ParserApp extends DefaultHandler
{

 SAXParserFactory factory;
 SAXParser myParser;
 DefaultHandler handler;
 private Writer out;
 int noOfElements;
 XMLDataStore xmlData;

 public ParserApp()
 {
 noOfElements = 0;
 xmlData = null;
 }

 public void startParsing(XMLDataStore xmldatastore, String s)
 {
 xmlData = xmldatastore;
 try
 {
 factory = SAXParserFactory.newInstance();
 myParser = factory.newSAXParser();
 }
 catch(Exception exception)
 {
 System.out.println("Couldn't create parser");
 }
 try
 {
 handler = this;
 java.io.InputStream inputstream = null;
 Class class1 = null;
 class1 = getClass();
 inputstream = class1.getResourceAsStream(s);
 myParser.parse(inputstream, handler);
 }
 catch(Exception exception1)
 {
 System.out.println("Some Exception occured");
 exception1.printStackTrace();
 }
 }

 public void startDocument()
 {

iDEN J2ME™ Developer’s Guide

408
 © 2005 Motorola, Inc.

 System.out.println("start document here");
 emit("<?xml version=1.0 encoding=utf-8 standalone=yes
?>\n");
 }

 public void endDocument()
 {
 emit("\nEND OF DOCUMENT");
 }

 public void startElement(String s, String s1, String s2,
Attributes attributes)
 {
 System.out.println("a start element");
 Attributes attributes1 = attributes;
 xmlData.insertElement(s2, attributes1);
 emit("<" + s2);
 int i = 0;
 i = attributes.getLength();
 for(int j = 0; j < i; j++)
 {
 emit("\t" + attributes.getQName(j));
 emit("=" + attributes.getValue(j));
 }

 emit(">");
 }

 public void endElement(String s, String s1, String s2)
 {
 emit("</" + s2 + ">");
 System.out.println("a end element");
 }

 public void characters(char ac[], int i, int j)
 {
 String s = new String(ac, i, j);
 s.trim();
 emit(s);
 }

 public void fatalError (SAXParseException e)
 {
 System.out.println("fatal error here");
 }

 public void emit(String s)
 {
 System.out.println(s);
 }
}

iDEN J2ME™ Developer’s Guide

409
 © 2005 Motorola, Inc.

7.8.7 Compiling & Testing JAXP MIDlets
• Method SAXParserFactory.IsValidating() & SAXParser.isValidating() always returns false

since the implementation supports a non-validating parser only.
• Method SAXParserFactory.SetValidating() does nothing since the implementation supports a

non-validating parser only.

iDEN J2ME™ Developer’s Guide

410
 © 2005 Motorola, Inc.

7.9 JAX-RPC

7.9.1 Overview

This API is only available

on this handset.

JAX-RPC provides an API that allows a J2ME application to dispatch Remote
Procedure Call (RPC) to remote SOAP / XML based web services. The
detailed description of the JAX-RPC subset is defined in J2ME Web Services
Specification 1.0.

The javax.microedition.xml.rpc, javax.xml.namespace, javax.xml.rpc and
java.rmi packages contain the basic classes needed to dispatch Remote
Procedure Call (RPC) to remote SOAP / XML based web services.

7.9.2 Package javax.microedition.xml.rpc
Interface Summary

FaultDetailHandler Implemented by stubs that handle custom faults.

Class Summary

ComplexType Provides a special Type instance used to represent an
xsd:complextype defined in a Web Service’s WSDL definition.

Element Provides a special Object used to represent an xsd:element defined in a Web
Service’s WSDL definition.

Operation Corresponds to a wsdl:operation defined for a target service
endpoint.

Type Provides a type safe enumeration of allowable types that are used to identify simple
types defined in a Web Service’s WSDL definition.

Exception Summary

FaultDetailException Returns service specific exception detail values, and an associated QName, to a
Stub instance.

7.9.3 Package javax.xml.namespace
Class Summary

QName
Represents a qualified name as defined in the XML specifications:
XML Schema Part2: Datatypes specification, Namespaces in XML,
Namespaces in XML Errata.

iDEN J2ME™ Developer’s Guide

411
 © 2005 Motorola, Inc.

7.9.4 Package javax.xml.rpc
Interface Summary

Stub Which is the interface for javax.xml.rpc.Stub, the common base interface for the
stub classes.

Class Summary
NamespaceConstants Constants used in JAX-RPC for namespace prefixes and URIs

Exception Summary

JAXRPCException Which is thrown from the core JAX-RPC APIs to indicate an exception related to
the JAX-RPC runtime mechanisms.

7.9.5 Package java.rmi
Interface Summary

Remote Serves to identify interfaces whose methods may be invoked
from a non-local virtual machine.

Exception Summary

MarshalException
This exception is thrown if a java.io.IOException occurs while
marshalling the remote call header, arguments, or return value for a
remote method call.

RemoteException
This exception is the common superclass for a number of
communication-related exceptions that may occur during the
execution of a remote method call.

ServerException

This exception is thrown as a result of a remote method invocation
when a RemoteException is thrown while processing the invocation
on the server, either while unmarshalling the arguments, executing
the remote method itself, or marshalling the return value.

iDEN J2ME™ Developer’s Guide

412
 © 2005 Motorola, Inc.

7.9.6 Class and Interface Heirarchy
The following is the Class Hierarchy for the JAX-RPC API:

• class java.lang.Object
 class javax.microedition.xml.rpc.Operation
 class javax.microedition.xml.rpc.Type

• class javax.microedition.xml.rpc.Element
• class javax.microedition.xml.rpc.ComplexType

 class javax.xml.namespace.QName
 class javax.xml.rpc.NamespaceConstants
 class java.lang.Throwable

• class java.lang.Exception
o class

javax.microedition.xml.rpc.FaultDetailException
o class java.io.IOException

 class java.rmi.RemoteException
• class java.rmi.MarshalException
• class java.rmi.ServerException

o class java.lang.RuntimeException
 class javax.xml.rpc.JAXRPCException

The following is the Interface Hierarchy for the JAX-RPC API:

• class java.lang.Object
o interface javax.microedition.xml.rpc.FaultDetailHandler
o interface javax.xml.rpc.Stub
o interface java.rmi.Remote

iDEN J2ME™ Developer’s Guide

413
 © 2005 Motorola, Inc.

7.9.7 Development Procedure
Web service developers do not need to use the above classes directly to develop web
service applications. Instead, the application will call the functions of stubs and then the
stubs call the functions provided by the above classes. The aim of this document is to
instruct the developer how to write the client application to access the web services when
receiving a WSDL file with the WSDL-to-java tool.

7.9.8 Background Knowledge
Web services enable local applications to call service procedures located on remote
servers. The web services are designed to be platform and language independent, so a
standard file is needed to describe the service – the WSDL file. WSDL files describe the
operations, the request/response message format for each operation, the message format
binding and transport binding and service URI. Appendix A gives a sample WSDL file.

 In order to develop a client application for one kind of web service, client application
developers should get the WSDL file for this web service, then use the WSDL-to-java tool
(for example, Sun’s WTK) to create stubs.

The stubs generated by a WSDL-to-java tool include: a) A public class for each
complexType defined in the web service’s WSDL file. b) A service endpoint interface - a
public interface for the portType and binding operations defined in the web services’s
WSDL file. c) A stub file that implements the portType and binding class, for creating
connections with the service endpoint and handling data streaming.

The interaction between the local application, the stubs, the Service Provider Interface,
and the J2ME Web Services implementation is showed in Figure 1.

iDEN J2ME™ Developer’s Guide

414
 © 2005 Motorola, Inc.

Typical RPC Scenario
(1) The local application makes calls to the stubs.

(2) The stub makes calls to the Service Provider Interface (SPI).

The SPI defines the interface between the stubs and the web service implementation. It
ensures that any stub generated on any implementation of J2ME Web Services will work
with any other implementation.

The SPI is used by the generated stub to execute RPC calls. The SPI is defined by the
Type, Element, Complex Type and Operation classes. These classes are used by the stub
to describe the input parameters and return type of an RPC. An object graph of these
classes represents a description of the serialization of the values in a complex type.

(3) The SPI makes calls to the Java Web Services implementation.

The J2ME Web Services implementation uses the information received from the stub via
the SPI to form SOAP message and open a network connection to send the message to
remote service; After receiving the response SOAP message from the remote service, the
J2ME Web Services implementation will parse it and return the result to the stubs via the
SPI.

Local application

stubs

SPI

WS implementation

Web
Service

(1)

(2)

(3)

(4)
Network

iDEN J2ME™ Developer’s Guide

415
 © 2005 Motorola, Inc.

7.9.9 Development Steps
In this section, an example is given to explain how to develop a web service application.

(1) Get the WSDL for one kind of web service. Web service providers publish the
WSDL files on the Internet. The WSDL file in appendix A is used as an example
WSDL. In this service, if the string “<username>!” is sent to server, the server will
send the string “ Hello <username>!” back.

(2) Use the WSDL as the input file for the WTK or another WSDL-to-java tool to
generate the stub code. In this case, 4 files are generated: HelloIF.java,
HelloIF_Stub.java, SayHello.java and SayHelloResponse.java. They are put in
appendix B. HelloIF.java defines the service interface. HelloIF_Stub.java is the
implementation class of interface HelloIF and interface javax.xml.rpc.Stub.
SayHello.java and SayHelloResponse.java are classes for complexType defined
in the web service’s WSDL file.

(3) After the stub code is generated, the application can invoke the remote procedure
call (RPC). First, the application should create an instance of HelloIF_Stub: stub
= new HelloIF_Stub(); Second, the application can call stub._setProperty() to set
properties that are needed to invoke an RPC:

//Set the service address

 stub._setProperty(javax.xml.rpc.Stub.ENDPOINT_ADDRESS_PROPERTY,

"http://localhost:8080/authhello-jaxrpc/authhello");

 //Set the username and password if the service requires authentication

 stub._setProperty(javax.xml.rpc.Stub.PASSWORD_PROPERTY,

 "xdl_1234");

 stub._setProperty(javax.xml.rpc.Stub.USERNAME_PROPERTY,

 "tinaf");

Finally, the application can place the remote call stub.sayHello("Tina!").

7.9.10 Sample Application
7.9.10.1 Code Sample
The following is the whole application source code of the example mentioned
above:

import javax.microedition.lcdui.*;
import javax.microedition.midlet.MIDlet;
import java.io.*;
import staticstub.*;
import java.rmi.*;
import javax.xml.rpc.*;

iDEN J2ME™ Developer’s Guide

416
 © 2005 Motorola, Inc.

import javax.xml.namespace.*;

public class BasicAuth extends MIDlet
implements CommandListener
{
 private Form homeScr;
 private Form settingsScr;
 private StringItem anwser;
 TextBox errorScr;
 TextBox msgScr;
 Command exitC,goC,settingsC;
 Command backC,applyC;
 TextField stdEndpoint;
 TextField userName;
 TextField passWord;

 Display display; // The display for this MIDlet

 HelloIF_Stub stub;

 public BasicAuth()
 {

 display = Display.getDisplay(this);

 homeScr = new Form("web service Test Form!");
 homeScr.setCommandListener(this);

 settingsScr = new Form("Settings");
 settingsScr.setCommandListener(this);
 stdEndpoint =
 new TextField("Standard Endpoint", "http://", 255,
 TextField.ANY);
 settingsScr.append(stdEndpoint);
 userName = new TextField("User Name", null, 50,
 TextField.ANY |
 TextField.INITIAL_CAPS_WORD);
 passWord = new TextField("Pass Word", null, 50,
 TextField.ANY |
 TextField.INITIAL_CAPS_WORD);
 settingsScr.append(userName);
 settingsScr.append(passWord);

 errorScr = new TextBox("Error:", null, 500,
TextField.ANY);
 errorScr.setCommandListener(this);
 msgScr = new TextBox("Message:", null, 500,
TextField.ANY);
 msgScr.setCommandListener(this);

iDEN J2ME™ Developer’s Guide

417
 © 2005 Motorola, Inc.

 exitC = new Command("Exit", Command.EXIT, 1);
 settingsC = new Command("Settings", Command.SCREEN, 1);
 goC = new Command("Go", Command.SCREEN, 2);
 backC = new Command("Back", Command.BACK, 1);
 applyC = new Command("Apply", Command.SCREEN, 1);

 stub = new HelloIF_Stub();

 //default

stub._setProperty(javax.xml.rpc.Stub.ENDPOINT_ADDRESS_PROPERTY,
 "http://localhost:8080/authhello-
jaxrpc/authhello");

 stub._setProperty(javax.xml.rpc.Stub.PASSWORD_PROPERTY,
 "xdl_1234");
 stub._setProperty(javax.xml.rpc.Stub.USERNAME_PROPERTY,
 "tinaf");
 }

 public void startApp()
 {
 showHomeScreen();

 }

 public void pauseApp()
 {
 }

 public void destroyApp(boolean flag)
 {
 }

 void showHomeScreen() {
 clearCommands(homeScr);
 homeScr.addCommand(exitC);
 homeScr.addCommand(goC);
 homeScr.addCommand(settingsC);
 display.setCurrent(homeScr);
 }

 void showSettingsScreen() {
 settingsScr.setTitle("Settings");
 clearCommands(settingsScr);
 settingsScr.addCommand(backC);
 settingsScr.addCommand(applyC);
 display.setCurrent(settingsScr);
}

 void showErrorScreen(String text) {
 clearCommands(errorScr);

iDEN J2ME™ Developer’s Guide

418
 © 2005 Motorola, Inc.

 errorScr.setString(text);
 errorScr.addCommand(backC);
 display.setCurrent(errorScr);
}

 void showMsgScreen(String text) {
 clearCommands(msgScr);
 msgScr.setString(text);
 msgScr.addCommand(backC);
 display.setCurrent(msgScr);
 }

 void clearCommands(Displayable d) {
 d.removeCommand(exitC);
 d.removeCommand(settingsC);
 d.removeCommand(backC);
 d.removeCommand(applyC);

 d.removeCommand(goC);
 }

 boolean setSettings() {

 stub._setProperty(
 javax.xml.rpc.Stub.ENDPOINT_ADDRESS_PROPERTY,
 stdEndpoint.getString());
 stub._setProperty(javax.xml.rpc.Stub.PASSWORD_PROPERTY,
 passWord.getString());
 stub._setProperty(javax.xml.rpc.Stub.USERNAME_PROPERTY,
 userName.getString());

 return true;
}

 public void commandAction(Command command, Displayable s)
 {
 if (command == goC)
 {
 System.out.println("Web service Test start
here...");

 try {

 showMsgScreen(stub.sayHello("Tina!"));

 }
 catch (java.rmi.RemoteException re) {
 showErrorScreen(re.getMessage());
 re.printStackTrace();
 }
 catch (Throwable t) {
 showErrorScreen(t.getMessage());

iDEN J2ME™ Developer’s Guide

419
 © 2005 Motorola, Inc.

 }
 return;
 }

 if (command == settingsC) {
 //have a chance to change the endpoint
 showSettingsScreen();
 return;
 }
 if (command == applyC) {
 if (setSettings()) {
 showHomeScreen();
 } else {
 settingsScr.setTitle("Settings: Retry");
 }
 return;
 }

 if (command== backC) {
 if (s == settingsScr ||s==msgScr|| s == errorScr)
 {
 showHomeScreen();
 }

 return;
 }

 if (command == exitC)
 {
 notifyDestroyed();
 }

 }

 }

7.9.10.2 WSDL Sample
<?xml version="1.0" encoding="UTF-8"?>

<definitions name="MyHelloService"
targetNamespace="urn:Foo"
xmlns:tns="urn:Foo"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/">
 <types>
<schema targetNamespace="urn:Foo"
xmlns:tns="urn:Foo"
xmlns:soap11-enc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns="http://www.w3.org/2001/XMLSchema">

iDEN J2ME™ Developer’s Guide

420
 © 2005 Motorola, Inc.

 <import
namespace="http://schemas.xmlsoap.org/soap/encoding/"/>
 <complexType name="sayHello">
 <sequence>
 <element name="String_1" type="string"
nillable="true"/>
</sequence>
</complexType>
 <complexType name="sayHelloResponse">
 <sequence>
 <element name="result" type="string" nillable="true"/>
 </sequence>
 </complexType>
 <element name="sayHello" type="tns:sayHello"/>
<element name="sayHelloResponse" type="tns:sayHelloResponse"/>
 </schema>
 </types>
 <message name="HelloIF_sayHello">
 <part name="parameters" element="tns:sayHello"/></message>
 <message name="HelloIF_sayHelloResponse">
 <part name="result"
element="tns:sayHelloResponse"/></message>
 <portType name="HelloIF">
 <operation name="sayHello">
 <input message="tns:HelloIF_sayHello"/>
 <output
message="tns:HelloIF_sayHelloResponse"/></operation></portType>
 <binding name="HelloIFBinding" type="tns:HelloIF">
 <operation name="sayHello">
 <input>
 <soap:body use="literal"/></input>
 <output>
 <soap:body use="literal"/></output>
 <soap:operation soapAction=""/></operation>
<soap:binding transport="http://schemas.xmlsoap.org/soap/http"
style="document"/>
</binding>
 <service name="MyHelloService">
 <port name="HelloIFPort" binding="tns:HelloIFBinding">
<soap:address location="REPLACE_WITH_ACTUAL_URL"/></port>
 </service>
</definitions>

7.9.10.3 Generated stub code
7.9.10.3.1 HelloIF.java
// This class was generated by 172 StubGenerator.
// Contents subject to change without notice.
// @generated

package staticstub;

public interface HelloIF extends java.rmi.Remote {

iDEN J2ME™ Developer’s Guide

421
 © 2005 Motorola, Inc.

 public java.lang.String sayHello(java.lang.String string_1)
throws java.rmi.RemoteException;

}

7.9.10.3.2 HelloIF_Stub.java
// This class was generated by 172 StubGenerator.
// Contents subject to change without notice.
// @generated

package staticstub;

import javax.xml.rpc.JAXRPCException;
import javax.xml.namespace.QName;
import javax.microedition.xml.rpc.Operation;
import javax.microedition.xml.rpc.Type;
import javax.microedition.xml.rpc.ComplexType;
import javax.microedition.xml.rpc.Element;

public class HelloIF_Stub implements staticstub.HelloIF,
javax.xml.rpc.Stub {
 private String[] _propertyNames;
 private Object[] _propertyValues;

 public HelloIF_Stub() {
 _propertyNames = new String[]
{ENDPOINT_ADDRESS_PROPERTY};
 _propertyValues = new Object[]
{"REPLACE_WITH_ACTUAL_URL"};
 }

 public void _setProperty(String name, Object value) {
 int size = _propertyNames.length;
 for (int i = 0; i < size; ++i) {
 if (_propertyNames[i].equals(name)) {
 _propertyValues[i] = value;
 return;
 }
 }
 // Need to expand our array for a new property
 String[] newPropNames = new String[size + 1];
 System.arraycopy(_propertyNames, 0, newPropNames, 0,
size);
 _propertyNames = newPropNames;
 Object[] newPropValues = new Object[size + 1];
 System.arraycopy(_propertyValues, 0, newPropValues,
0, size);
 _propertyValues = newPropValues;

 _propertyNames[size] = name;
 _propertyValues[size] = value;
 }

iDEN J2ME™ Developer’s Guide

422
 © 2005 Motorola, Inc.

 public Object _getProperty(String name) {
 for (int i = 0; i < _propertyNames.length; ++i) {
 if (_propertyNames[i].equals(name)) {
 return _propertyValues[i];
 }
 }
 if (ENDPOINT_ADDRESS_PROPERTY.equals(name) ||
USERNAME_PROPERTY.equals(name) ||
PASSWORD_PROPERTY.equals(name)) {
 return null;
 }
 if (SESSION_MAINTAIN_PROPERTY.equals(name)) {
 return new java.lang.Boolean(false);
 }
 throw new JAXRPCException("Stub does not recognize
property: "+name);
 }

 protected void _prepOperation(Operation op) {
 for (int i = 0; i < _propertyNames.length; ++i) {
 op.setProperty(_propertyNames[i],
_propertyValues[i].toString());
 }
 }

 //
 // Begin user methods
 //

 public java.lang.String sayHello(java.lang.String string_1)
throws java.rmi.RemoteException {
 // Copy the incoming values into an Object array if
needed.
 Object[] inputObject = new Object[1];
 inputObject[0] = string_1;

 Operation op = Operation.newInstance(_qname_sayHello,
_type_sayHello, _type_sayHelloResponse);
 _prepOperation(op);
 op.setProperty(Operation.SOAPACTION_URI_PROPERTY,
"");
 Object resultObj;
 try {
 resultObj = op.invoke(inputObject);
 } catch (JAXRPCException e) {
 Throwable cause = e.getLinkedCause();
 if (cause instanceof java.rmi.RemoteException)
{
 throw (java.rmi.RemoteException) cause;
 }
 throw e;
 }
 java.lang.String result;

iDEN J2ME™ Developer’s Guide

423
 © 2005 Motorola, Inc.

 // Convert the result into the right Java type.
 // Unwrapped return value
 Object resultObj2 = ((Object[])resultObj)[0];
 result = (java.lang.String)resultObj2;
 return result;
 }
 //
 // End user methods
 //

 protected static final QName _qname_String_1 = new
QName("", "String_1");
 protected static final QName _qname_result = new QName("",
"result");
 protected static final QName _qname_sayHello = new
QName("urn:Foo", "sayHello");
 protected static final QName _qname_sayHelloResponse = new
QName("urn:Foo", "sayHelloResponse");
 protected static final Element _type_sayHello;
 protected static final Element _type_sayHelloResponse;
 static {
 // Create all of the Type's that this stub uses,
once.
 Element _type_String_1;
 _type_String_1 = new Element(_qname_String_1,
Type.STRING);
 ComplexType _complexType_sayHello;
 _complexType_sayHello = new ComplexType();
 _complexType_sayHello.elements = new Element[1];
 _complexType_sayHello.elements[0] = _type_String_1;
 _type_sayHello = new Element(_qname_sayHello,
_complexType_sayHello);
 Element _type_result;
 _type_result = new Element(_qname_result,
Type.STRING);
 ComplexType _complexType_sayHelloResponse;
 _complexType_sayHelloResponse = new ComplexType();
 _complexType_sayHelloResponse.elements = new
Element[1];
 _complexType_sayHelloResponse.elements[0] =
_type_result;
 _type_sayHelloResponse = new
Element(_qname_sayHelloResponse,
_complexType_sayHelloResponse);
 }

}

7.9.10.3.3 SayHello.java
// This class was generated by the JAXRPC SI, do not edit.
// Contents subject to change without notice.
// JSR-172 Reference Implementation wscompile 1.0, using:
JAX-RPC Standard Implementation (1.1, build R59)

iDEN J2ME™ Developer’s Guide

424
 © 2005 Motorola, Inc.

package staticstub;

public class SayHello {
 protected java.lang.String string_1;

 public SayHello() {
 }

 public SayHello(java.lang.String string_1) {
 this.string_1 = string_1;
 }

 public java.lang.String getString_1() {
 return string_1;
 }

 public void setString_1(java.lang.String string_1) {
 this.string_1 = string_1;
 }
}

7.9.10.3.4 SayHelloResponse.java
// This class was generated by the JAXRPC SI, do not edit.
// Contents subject to change without notice.
// JSR-172 Reference Implementation wscompile 1.0, using:
JAX-RPC Standard Implementation (1.1, build R59)

package staticstub;

public class SayHelloResponse {
 protected java.lang.String result;

 public SayHelloResponse() {
 }

 public SayHelloResponse(java.lang.String result) {
 this.result = result;
 }

 public java.lang.String getResult() {
 return result;
 }

 public void setResult(java.lang.String result) {
 this.result = result;
 }
}

iDEN J2ME™ Developer’s Guide

425
 © 2005 Motorola, Inc.

7.10 JavaTM APIs for BluetoothTM Wireless Technology
and Object Push Protocol

7.10.1 Overview

This API is only available

on this handset.

Certain iDEN handsets provide access to accessories and networking via
Bluetooth. Several Bluetooth services are provided via Sun’s dedicated
Bluetooth API, JSR 82. This section covers iDEN’s implementation of JSR 82
with emphasis on device specific limitations.

JSR 82 provides the following Bluetooth capabilities:

• Device Discovery

• Service Discovery

• Service Registration

• Generic Access Profile

• Serial Port Profile

• Logical Link Control and Adaptation Protocol (L2CAP)

• Object Exchange Protocol

In addition, iDEN handsets featuring Bluetooth also provide an OEM
implementation of the Object Push Protocol.

7.10.2 Device and Service Discovery
This API allows developers to discover other Bluetooth devices and the services that they offer.
MIDlets can initiate queries for devices and services and receive callbacks when either are
found through the DiscoveryListener interface. This section does not describe how to use
this API in detail. For sample code and detailed explanations of the API, see the JSR 82
specification.

7.10.2.1 Package Description

APIs for Bluetooth Service Discovery API are all located in javax.bluetooth package.

Interface Summary

DiscoveryListener Allows an application to receive device discovery and service discovery
events.

iDEN J2ME™ Developer’s Guide

426
 © 2005 Motorola, Inc.

Class Summary

DiscoveryAgent Provides methods to perform device and service discovery.

7.10.2.2 Platform Specific Limitations

1. iDEN handsets can only perform one device or service inquiry at a time.
2. Once populateRecord() is called in LocalDevice, a device/service inquiry

will throw an exception.
3. The maximum cache devices found in the previously performed inquiry is 10.
4. The trusted devices are always pre-known devices.
5. The maximum length of a service search response is 512 bytes. If the response

length exceeds 512 bytes the regsitered DiscoveryListener’s servicesDiscovered
method will be called with SEARCH_SERVICE_ERROR passed as the transID.

6. One device inquiry can find at most 10 devices.
7. Inquiry scanning and service searching are not allowed during a connection.
8. Inquiry and service search are not allowed during a connection.

7.10.3 Service Registration
The structure and use of service records is specified by the Bluetooth specification in the
Service Discovery Protocol (SDP) document. Most of the Bluetooth Profile specifications also
describe the structure of the service records used by the Bluetooth services that conform to the
profile.

An SDP Server maintains a Service Discovery Database (SDDB) of service records that
describe the services on the local device. Remote SDP clients can use the SDP to query an
SDP server for any service records of interest. A service record provides sufficient information
to allow an SDP client to connect to the Bluetooth service on the SDP server's device.

There might be many service attributes in a service record, and the SDP protocol makes it
possible to specify the subset of the service attributes that an SDP client wants to retrieve from
a remote service record. The ServiceRecord interface treats certain service attribute IDs as
default IDs, and, if present, these service attributes are automatically retrieved during service
searches.

The Service Record API defines a subset of the server responsibilities having to do with
advertising a service to client devices. It mainly includes the following functions: Create a
service record that describes the service offered by the application; Add a service record to the
server’s SDDB to make potential clients aware of this service; Update the service record in the
server’s SDDB if characteristics of the service change; Remove or disable the service record in
the server’s SDDB when the service is no longer available.

For additional details about the Service Record API, please refer to SDP document and the
Bluetooth Profile specification.

iDEN J2ME™ Developer’s Guide

427
 © 2005 Motorola, Inc.

7.10.3.1 Package Description

APIs for service registration are located in the javax.bluetooth package.

Interface Summary

ServiceRecord Implemented by stubs that describes characteristics of a Bluetooth
service.

Class Summary

DataElement Defines the various data types that a Bluetooth service attribute value
may have.

UUID Defines universally unique identifiers.

LocalDevice Defines the basic functions of the Bluetooth manager

Exception Summary

ServiceRegistrationException
Thrown when there is a failure to add a service record to the local Service
Discovery Database (SDDB) or to modify an existing service record in the
SDDB.

7.10.3.2 Platform Specific Limitations

1. SDDB server supports at most 13 Java service records.
2. Memory allocated for a service record is limited by the Java heap.
3. When providing a service record, first set the discoverable mode of the device.
4. When a device/service inquiry is running, the populateRecord() method will always
return false.

7.10.3.3 Sample Code

 /** Describes this service name. */

private static final String SERVICE_NAME1 = new String(“Service
Name1”);

private static final String SERVICE_NAME2 = new String(“Service
Name2”);

 /** Describes this server. */
 private static final UUID SERVICE_UUID = new UUID(0x6789);

 /** The attribute id of the record item with service names. */
 private static final int SERVICE_ATTRIBUTE_ID = 0x2345;

 /** Keeps the local device. */
 private LocalDevice localDevice;

 /** Accepts new connections. */
 private StreamConnectionNotifier notifier;

iDEN J2ME™ Developer’s Guide

428
 © 2005 Motorola, Inc.

 /** Keeps the information about this service. */
private ServiceRecord record;

public void createServiceRecord()
{
/*
 * Create Service Record
 */

 try {
 // get the local device
 localDevice = LocalDevice.getLocalDevice();

 // set device are discoverable
 if (!localDevice.setDiscoverable(DiscoveryAgent.GIAC)) {
 throw new IOException("Can't set discoverable
mode...");
 }

 // prepare a URL to create a notifier
 StringBuffer url = new StringBuffer("btspp://");

 // indicate this is a server
 url.append("localhost").append(':');

 // add the UUID to identify this service
 url.append(SERVICE_UUID.toString());

 // add the name for our service
 url.append(";name=Service1");

 // request all of the client to be authenticate
 url.append(";authenticate=true");

 // create notifier now
 notifier = (StreamConnectionNotifier) Connector.open(
 url.toString());

 // remember the service record for the later updates
 record = localDevice.getRecord(notifier);

 // create a special attribute with service names

DataElement base = new DataElement(DataElement.DATSEQ);
DateElement serviceName = new

DataElement(DataElement.STRING, SERVICE_NAME1);
Base.addElement(serviceName);

record.setAttributeValue(SERVICE_ATTRIBUTE_ID, base);

// get the records Attribute ID array list
attrIDs = record.getAttributeIDs();

if ((attrIDs == null)) {

iDEN J2ME™ Developer’s Guide

429
 © 2005 Motorola, Inc.

 System.out.println ("attribute ID array is null");
}

 } catch (Exception e) {
 System.err.println("Can't initialize bluetooth: " + e);
 }
 }

 /**
 * Update Service Record
 *
 */
 public void updateServiceRecord()
 {
 try {

// get the record from service to update
base = record.getAttributeValue(SERVICE_ATTRIBUTE_ID);

// check the DataElement object is created already
DataElement de = (DataElement)

dataElements.get(SERVICE_NAME1);

// if no, then create a new DataElement
de = new DataElement(DataElement.STRING, SERVICE_NAME2);

base.addElement(de);
record.setAttributeValue(IMAGES_NAMES_ATTRIBUTE_ID, base);

 localDevice.updateRecord(record);

 } catch (Exception e) {
 System.err.println("Can't Update service record: " + e);
 }

 }

 /**
 * Print Service Record
 */
 public static void printServiceRecord(ServiceRecord r)
 {
 // get the records Attribute ID array list
 int[] attrIDs = r.getAttributeIDs();

 System.out.println("Print Service Record URL
"+r.getConnectionURL(ServiceRecord.NOAUTHENTICATE_NOENCRYPT, false)
);

 for (int i=0; i < attrIDs.length; i++)
 {
 DataElement el = r.getAttributeValue(attrIDs [i]);
 printDataElement(el);
 }
 }

iDEN J2ME™ Developer’s Guide

430
 © 2005 Motorola, Inc.

 /**

* Print DataElement
*/

 public static void printDataElement(DataElement e)
 {
 Enumeration enum;
 if((de.getDataType() == DataElement.DATALT)||(de.getDataType()
== DataElement.DATSEQ))
 {
 System.out.println("it is DATALT or DATSEQ,size is " +
de.getSize());
 enum = (Enumeration)de.getValue();
 while(enum.hasMoreElements())
 {
 printDataElement((DataElement) enum.nextElement());
 }
 }
 else
 {
 switch(de.getDataType()){
 case DataElement.U_INT_4:
 case DataElement.U_INT_1:
 case DataElement.U_INT_2:
 case DataElement.INT_4:
 case DataElement.INT_1:
 case DataElement.INT_2:
 case DataElement.INT_8:
 System.out.println(de.getLong());
 break;
 case DataElement.U_INT_8:
 case DataElement.U_INT_16:
 case DataElement.INT_16:
 byte[] byteArray = (byte[])de.getValue();
 StringBuffer sbuffer = new StringBuffer();
 for(int count =0; count<byteArray.length;count++)
 {
 sbuffer.append((new
Byte(byteArray[count])).toString());
 }
 break;
 default:
 System.out.println(de.getValue().toString());
 break;
 }
 }
 }
 }

iDEN J2ME™ Developer’s Guide

431
 © 2005 Motorola, Inc.

7.10.4 Generic Access Profile

Bluetooth’s Generic Access Profile is made available by a small subset of classes defined by
JSR 82. These classes are essential to the APIs described above: device discovery, service
discovery, and service registration.

The LocalDevice class, one of the defining classes of GAP, has been described above. This
section will describe its counterpart, RemoteDevice.

For more detailed information on the classes that implement the GAP, see the JSR 82
specification.

7.10.4.1 Package Description

APIs for GAP are located in the javax.bluetooth package.

Class Summary
RemoteDevice Represents a remote Bluetooth device.

7.10.4.2 Platform Specific Limitations

1. The authorize() method is not supported currently. However, if the device is trusted,
authorize() will return true or false.
2. Before the getFriendlyName() method is called, set the discoverable mode of the
device.

7.10.4.3 Sample Code

try {

 // Retrieve the connection string to connect to
 // the server
 LocalDevice local =
 LocalDevice.getLocalDevice();

 DiscoveryAgent agent = local.getDiscoveryAgent();

 String connString = agent.selectService(
 new UUID("86b4d249fb8844d6a756ec265dd1f6a3", false),
 ServiceRecord.NOAUTHENTICATE_NOENCRYPT, false);

 if (connString != null) {
 try {
 // Connect to the server and send 'Hello, World'
 StreamConnection conn = (StreamConnection)
 Connector.open(connString);

iDEN J2ME™ Developer’s Guide

432
 © 2005 Motorola, Inc.

 /* Get remote device */
 RemoteDevice remDev =
RemoteDevice.getRemoteDevice(conn);
 /* Get remote device addr */
 String remoteAdd = remDev.getBluetoothAddress();
 /* Get remote device name */
 String deviceName = remDev.getFriendlyName(true);
 /* If the remote device trusted */
 if(!remDev.isTrustedDevice()) {
 System.out.println("Remote Device:" + remoteAdd +
 " not is trusted.");
 }
 else
 System.out.println("Remote Device:" + remoteAdd +
 " is trusted.");
 /* If the remote device Authenticated */
 if (!remDev.isAuthenticated()) {
 System.out.println("Remote Device:" + remoteAdd +
 " is not Authenticated.");
 /* The connection to remDev is not currently
 * Authenticated, so turn on Authenticated.
 */
 if (!remDev.authenticate()) {
 System.out.println("Remote Device:" + remoteAdd
+" set Authenticated failed");
 }
 else {
 System.out.println("Remote Device:" + remoteAdd
+" set Authenticated sucessfully.");
 }
 }

 /* If the remote device Authorized */
 if (!remDev.isAuthorized(conn)) {
 System.out.println("Remote Device:" + remoteAdd +
 " is not Authorized.");

 /* The connection to remDev is not currently
 * authorize, so turn on authorize.
 */
 if (!remDev.authorize(conn)) {
 System.out.println("Remote Device:" + remoteAdd +
 " set Authorized failed");
 }
 System.out.println("Remote Device:" + remoteAdd +
 " set Authorized successfully.");
 }

 } catch (IOException e) {
 System.err.println("Can't initialize bluetooth: " + e);
 }

iDEN J2ME™ Developer’s Guide

433
 © 2005 Motorola, Inc.

7.10.5 Serial Port Profile

In the JSR 82 specification, the Serial Port Profile is defined to establish an RFCOMM
connection and supports wireless data communication between Bluetooth devices by providing
a stream-based Java API to the RFCOMM connection. No new methods or classes are
introduced for the RFCOMM API. Instead, the API reuses existing classes and interfaces from
the Generic Connection Framework (GCF) in CLDC.

For more detailed information on the classes that implement the GAP, see the JSR 82
specification.

7.10.5.1 Package Description

Refer to the javax.microedition.io package for detailed explanations of the classes that define
J2ME’s GCF.

7.10.5.2 Using javax.microedition.io.Connector For RFCOMM

All RFCOMM connections are initiated with javax.microedition.io.Connector.open (String
name) where name is a valid USL of form {scheme}:{target}{params}

 {scheme} is “btspp” (RFCOMM link only)

 {target} is the networking address starting with “//”

 {params} are formed as series of equates of the form “;encrypt=false”

To open a server connection, the target specified is localhost concatenated with the UUID.

 example: localhost:102030405060740A1B1C1D1E100

To open a client connection the target specified is the server address concatenated with the
server channel identifier.

 example: FFFF7777FFFF:7

iDEN J2ME™ Developer’s Guide

434
 © 2005 Motorola, Inc.

The following table describes valid parameter strings for RFCOMM.

Name Description Values Client or Server

authenticate Remote device must be
authenticated

true, false both

authorize All connections to this device must
receive authorization

true, false server

encrypt Link must be encrypted true, false both

master This device must be the Master true, false both

name Service-Name attribute in service
record

Valid string server

example: name=SPP;encrypt=true;authenticate=true;authorize=true

7.10.5.3 Sample Code

The following is a client and server code example of JSR-82 RFCOMM API:

import java.io.*;
import javax.microedition.midlet.MIDlet;
import javax.microedition.lcdui.*;
import javax.microedition.io.*;
import javax.bluetooth.*;

/* This is RFCOMM client test code */
public final class SPP5Client extends MIDlet implements CommandListener,
Runnable
{

 /** Soft button for exiting the demo. */
 private boolean SIMPLE_TEST = false;

 private final Command EXIT_CMD = new Command("Exit", Command.EXIT, 2);

 /** Soft button for launching a client or sever. */
 private final Command OK_CMD = new Command("Start", Command.SCREEN,
1);

 /* fix server Bluetooth address and channel id */
 private TextField addrTF = new TextField("Destination",
"FFFF7777FFFF:7", 14, TextField.ANY);

 private StringItem strItem = new StringItem(null, "");

 /** A menu list instance */
 private final Form menu = new Form("SPP Client ");

 /* data strings: 4 X 78 characters */
 private String input_data = " (1) Hello Hello World! This is the first
RFCOMM message I sent out. Do you get it? (2) Hello Hello World! This is
the first RFCOMM message I sent out. Do you get it? (3) Hello Hello World!

iDEN J2ME™ Developer’s Guide

435
 © 2005 Motorola, Inc.

This is the first RFCOMM message I sent out. Do you get it? (4) Hello
Hello World! This is the first RFCOMM message I sent out. Do you get it?";

 private boolean stop = false;

 private StreamConnection conn;

 int k = 0;

 /**
 * Constructs main screen of the MIDlet.
 */
 public SPP5Client()
 {
 menu.addCommand(OK_CMD);
 menu.append(strItem);
 menu.append(addrTF);
 menu.setCommandListener(this);
 }

 /**
 * Creates the demo view and action buttons.
 */
 public void startApp() {
 Display.getDisplay(this).setCurrent(menu);
 }

 /**
 * Destroys the application.
 */
 protected void destroyApp(boolean unconditional) {
 }

 /**
 * Does nothing. Redefinition is required by MIDlet class.
 */
 protected void pauseApp() {}

 /**
 * Responds to commands issued on "client or server" form.
 *
 * @param c command object source of action
 * @param d screen object containing actioned item
 */
 public void commandAction(Command c, Displayable d)
 {
 if (c == EXIT_CMD)
 {
 System.out.println("Send " + k + " Bytes");
 destroyApp(true);
 notifyDestroyed();
 return;
 }

iDEN J2ME™ Developer’s Guide

436
 © 2005 Motorola, Inc.

 else if (c == OK_CMD)
 {
 new Thread(this).start();
 }
 }

 /** Shows main menu of MIDlet on the screen. */
 public void run()
 {
 int i = 0;
 int j = 0;
 String result = "";

 while(true)
 {
 try
 {

 StringBuffer url = new StringBuffer("btspp://");

 url.append(addrTF.getString());

 strItem.setText("url:" + url);
 System.out.println("url:" + url);

/* open RFCOMM connection from client side */
 conn = (StreamConnection)
 Connector.open(url.toString(),
Connector.READ_WRITE, true);

 strItem.setText("Connected");

 System.out.println("(1) Connected");

 OutputStream out = conn.openOutputStream();
 InputStream in = conn.openInputStream();

/* send data to server */
 out.write(input_data.getBytes());
 out.write(input_data.getBytes());

 System.out.println("(2) Write");

 out.flush();

 System.out.println("(3) flush");

 Thread.sleep(10000);

 System.out.println("(4) sleep");

 out.close();
 in.close();

 }

iDEN J2ME™ Developer’s Guide

437
 © 2005 Motorola, Inc.

 catch (Exception e)
 {
 System.out.println("Exception " + e.toString());
 strItem.setText(e.toString());
 }

 try {

 System.out.println("(5) close");
 conn.close();
 }
 catch (Exception e)
 {
 System.out.println("Exception " + e.toString());

 strItem.setText(e.toString());
 }

 try {
 Thread.sleep(5000);
 }
 catch (Exception e)
 {}
 }
 }

} // end of class

import java.io.*;
import javax.microedition.midlet.MIDlet;
import javax.microedition.lcdui.*;
import javax.microedition.io.*;
import javax.bluetooth.*;

/* This is RFCOMM server test code */
public final class SPP5Server extends MIDlet implements CommandListener,
Runnable {

 /** Soft button for exiting the demo. */
 private boolean SIMPLE_TEST = false;

 private final Command EXIT_CMD = new Command("Exit", Command.EXIT, 2);

 /** Soft button for launching a client or sever. */
 private final Command OK_CMD = new Command("Start", Command.SCREEN,
1);

 private StringItem strItem = new StringItem(null, "");

 /** A menu list instance */

iDEN J2ME™ Developer’s Guide

438
 © 2005 Motorola, Inc.

 private final Form menu = new Form("SPP Server ");

 int i = 0;
 int j = 0;
 String result = "";

 int buffersize = 201, counter = 0, ch = -5, timeout = 0;

 private byte[] buffer = new byte[1500];
 private int count = 0;
 private StringBuffer url;
 private LocalDevice localDevice;

 private StreamConnectionNotifier notifier = null;

 /**
 * Constructs main screen of the MIDlet.
 */
 public SPP5Server() {
 menu.addCommand(OK_CMD);
 menu.append(strItem);
 menu.setCommandListener(this);
 }

 /**
 * Creates the demo view and action buttons.
 */
 public void startApp() {
 Display.getDisplay(this).setCurrent(menu);
 }

 /**
 * Destroys the application.
 */
 protected void destroyApp(boolean unconditional) {
 }

 /**
 * Does nothing. Redefinition is required by MIDlet class.
 */
 protected void pauseApp() {}

 /**
 * Responds to commands issued on "client or server" form.
 *
 * @param c command object source of action
 * @param d screen object containing actioned item
 */
 public void commandAction(Command c, Displayable d)
 {
 if (c == EXIT_CMD)
 {
 System.out.println(result + "\nReceived " + i + " Bytes\nLast

iDEN J2ME™ Developer’s Guide

439
 © 2005 Motorola, Inc.

one is" + j);
 destroyApp(true);
 notifyDestroyed();
 return;
 }
 else if (c == OK_CMD)
 {
 new Thread(this).start();
 }
 }

 /** Shows main menu of MIDlet on the screen. */
 public void run() {

// (1) start server
 try
 {
 localDevice = LocalDevice.getLocalDevice();

 if (!localDevice.setDiscoverable(DiscoveryAgent.GIAC))
 {
 throw new IOException("Can't set discoverable mode...");
 }

url = new StringBuffer("btspp://localhost:");

 // add the UUID to identify this service
 url.append(new UUID(0x1101).toString());

 // add the name for the service
 url.append(";name=SPP Server");

 strItem.setText("url:" + url);
 System.out.println("url:" + url);

 notifier = (StreamConnectionNotifier)
 Connector.open(url.toString(),
Connector.READ_WRITE, true);

 }
 catch (Exception e)
 {
 System.out.println("Can't open notifier" + e.toString());
 }

// (2) start connection object
 while (true)
 {

 try {
 strItem.setText("url:" + url + "\nAddress:" +
localDevice.getBluetoothAddress()
 + "\nWaiting...");

iDEN J2ME™ Developer’s Guide

440
 © 2005 Motorola, Inc.

 System.out.println(localDevice.getBluetoothAddress());
 System.out.println("Waiting...");
 StreamConnection conn = notifier.acceptAndOpen();

 strItem.setText("Connected");
 System.out.println("Connected");

 OutputStream out = conn.openOutputStream();
 System.out.println("openOutputStream");

 InputStream in = conn.openInputStream();
 System.out.println("openInputStream");

 while (true)
 {

 counter = 0;
 timeout = 0;
 ch = 0;

 System.out.println("Reading...");

 try {

 while (counter <= 620)
 {
 ch = in.read();
 System.out.print((char)ch);
 counter++;
 if (ch == -1) break;
 }
 System.out.println("\n");

 } catch (Exception e) {

 System.out.println("\n");
 System.out.println("Server: Error while" + "
available()/read() " + e);
 break;
 }

 System.out.println(" counter = " + counter + "
timeout = " + timeout);

 /* just got 620 characters from client */
 if (counter >= 620 || ch == -1) break;
 }

 System.out.println("close");
 in.close();
 out.close();
 conn.close();
 System.out.println("pass close");

 }
 catch (Exception e)
 {

iDEN J2ME™ Developer’s Guide

441
 © 2005 Motorola, Inc.

 System.out.println("Execption in conn object" +
e.toString());
 }

 }

 }

} // end of class

7.10.6 Logical Link Control and Adaptation Protocol

(L2CAP)
The Bluetooth L2CAP API allows a MIDlet to open a connection and send or receive data over
the Logical Link Control and Adaptation Protocol.

For more detailed information on the classes that implement the L2CAP, see the JSR 82
specification.

7.10.6.1 Package Description

APIs for L2CAP are located in the javax.bluetooth package.

Interface Summary
L2CAPConnection Represents a connection-oriented L2CAP channel

L2CAPConnectionNotifier Provides an L2CAP connection notifier.

7.10.6.2 Using javax.microedition.io.Connector For L2CAP

All L2CAP connections are initiated with javax.microedition.io.Connector methods. URLs
must start with “btl2cap://”, and contain a Bluetooth address plus a psm value to open a client
connection, or “localhost” plus a UUID to open a server connection.

7.10.6.3 Platform Specific Limitations

1. When opening a connection, the ReceiveMTU and TransmitMTU parameters specified in
the name must not be less than 48, and must not be greater than 672. Otherwise an
IllegalArgumentException will be thrown.

2. The Bluetooth implementation on iDEN handsets supports only one connection at a time.
There can be several server connections opened waiting for remote connection requests, but
only one connection between two devices can be created successfully at any time.

3. Bluetooth L2CAP connections only support timeout when receiving data.

iDEN J2ME™ Developer’s Guide

442
 © 2005 Motorola, Inc.

4. The following Connector open methods do not support L2CAP connections:

 openDataInputStream

 openDataOutputStream

 openInputStream

 openOutputStream

5. L2CAP connections do not provide flow control. When sending data, it is the responsibility
of upper application to do flow control. Otherwise some data may be lost when transferring
large blocks of data. The data transfer speed of L2CAP is about 36,000 bits per second.

6. When upper application closes a connection immediately after sending some data, the link
between the two devices is broken. According to JSR 82, it is illegal to read data from a
closed connection. So another device may not be able to receive the last block of data. To
avoid this problem, flow control must be implemented in the upper applications.

7.10.7 Object Exchange Protocol

The OBEX protocol provides a high-level API for transferring data between hosts. JSR 82
provides an implementation of the OBEX protocol over Bluetooth. In iDEN handsets OBEX
resides on top of two reliable transports, TCP/IP stream sockets and Bluetooth RFCOMM
connection.

For more detailed information on the classes that implement the OBEX, see the JSR 82
specification.

7.10.7.1 Package Description

While defined by JSR 82, the OBEX API is located in the javax.obex package.

Class

PasswordAuthentication This class holds user name and password combinations.

ResponseCodes The ResponseCodes class contains the list of valid response
codes a server may send to a client.

ServerRequestHandler The ServerRequestHandler class defines an event
listener that will respond to OBEX requests made to the
server.

Interface

Authenticator This interface provides a way to respond to authentication
challenge and authentication response headers.

ClientSession The ClientSession interface provides methods for OBEX
requests.

HeaderSet The HeaderSet interface defines the methods that set and
get the values of OBEX headers.

Operation The Operation interface provides ways to manipulate a

iDEN J2ME™ Developer’s Guide

443
 © 2005 Motorola, Inc.

single OBEX PUT or GET operation.

SessionNotifier The SessionNotifier interface defines a connection
notifier for server-side OBEX connections.

7.10.7.2 Using javax.microedition.io.Connector For OBEX

To create an OBEX client or server connection object, the application uses the GCF, following
the same format as other connection strings in that framework:

{protocol}:[{target}][{params}]

The definition of {protocol}, {target}, and {params} depends on the transport layer that OBEX
uses. In general, {protocol} is defined to be {transport}obex, but OBEX over RFCOMM is an
exception to this rule and is discussed next.

These protocols should be implemented based on the actual transport mechanisms available
on the device. In our device, the supported protocol is “btgoep” and “tcpobex”. Calling
Connector.open() on an unsupported transport protocol throws a
ConnectionNotFoundException.

7.10.7.2.1 OBEX Over RFCOMM

The {protocol} for OBEX over RFCOMM is defined as btgoep because this is the
implementation of the Generic Object Exchange Profile (GOEP) defined by the Bluetooth
SIG. The {target} for client connections is the Bluetooth address and channel identifier of the
device that the client wishes to connect to, separated by a colon (for example,
0050C000321B:4). The {target} for a server always is localhost followed by a colon and the
service class UUID. The valid {params} for OBEX over RFCOMM are authenticate, encrypt,
authorize, and master. The default value for all of these {params} is “false”. Tthe only other
valid value is “true”.

The following is a valid client connection string for OBEX over RFCOMM:

btgoep://0050C000321B:12

The following is a valid server connection string for OBEX over RFCOMM:

btgoep://localhost:12AF51A9030C4B2937407F8C9ECB238A

iDEN J2ME™ Developer’s Guide

444
 © 2005 Motorola, Inc.

When an application passes a valid OBEX over RFCOMM server connection string to
Connector.open(), a Bluetooth service record is created. These attributes will be added by
the device automatically: ServiceRecordHandle (generated and added by SDDB),
ServiceClassIDList (the UUID retrieved from Server URL), ProtocolDescriptorList (added by
our implementation), and ServiceName (retrieved from the Server URL parameter).

7.10.7.2.2 OBEX Over TCP/IP

If OBEX uses TCP/IP as its transport protocol, the {protocol} is tcpobex. For an OBEX client,
the {target} is the IP address of the server followed by a colon and port number. (for example,
12.34.56.100:5005). If no port number is specified, port number 650 is used (this is the port
number reserved for OBEX by IANA, the Internet Assigned Numbers Authority). A server’s
{target} is a colon followed by the port number (for example, :5005). If no port number is
given, port number 650 is opened by default. There are no valid {params} for OBEX over
TCP/IP.

The following are valid client connection strings for OBEX over TCP/IP:

tcpobex://132.53.12.154:5005

tcpobex://132.53.12.154

The first string creates a client that connects to port 5005. The second string creates a client
that connects to port 650.

The following are valid server connection strings for OBEX over TCP/IP:

tcpobex://:5005

tcpobex://

The first string creates a server that listens on port 5005. The second string creates a server
that listens on port 650.

7.10.7.3 Creating An OBEX Client

To create a client connection for OBEX, the client application uses the appropriate string and
passes this string to Connector.open(). Connector.open() returns a javax.obex.ClientSession
object.

To establish an OBEX connection, the client creates a javax.obex.HeaderSet object using the
createHeaderSet() method in the ClientSession interface. Using the HeaderSet object, the
client can specify header values for the CONNECT request. An OBEX CONNECT packet also
contains the OBEX version number, flags, and maximum packet length, which are maintained
by the implementation. To complete a CONNECT request, the client supplies the HeaderSet
object to the connect() method in the ClientSession interface. After the CONNECT request
finishes, the OBEX headers received from the server are returned to the application. If no
header object is provided as an input parameter, a javax.obex.HeaderSet object still is returned
from the connect() method. To determine whether or not the request succeeded, the client calls
the getResponseCode() method in the HeaderSet interface. This method returns the response
code sent by the server, defined in the javax.obex.ResponseCodes class.

A DISCONNECT request is completed in the same way as a CONNECT request except that
the disconnect() method is called instead of connect(). If the javax.obex.HeaderSet object
contains more headers than can fit in one OBEX packet, a java.io.IOException is thrown.

iDEN J2ME™ Developer’s Guide

445
 © 2005 Motorola, Inc.

To complete a SETPATH operation, the client calls the setPath() method in the ClientSession
object. To specify the name of the target directory, set the name header to the desired target by
calling setHeader() on the HeaderSet provided to setPath(). The client also may specify
whether or not the server should back up one directory level before applying the name and
whether or not the server should create the directory if it does not already exist. If the header is
too large to send in one OBEX packet, a java.io.IOException is thrown.

To complete a PUT or GET operation, the client creates a javax.obex.HeaderSet object with
createHeaderSet(). After specifying the header values, the client calls the put() or get() method
in the javax.obex.ClientSession object. The implementation sends the headers to the server
and receives the reply. The put() and get() methods return the javax.obex.Operation object.
With this object, the client can determine whether or not the request succeeded. If the request
succeeded, the client may put or get a data object using output or input streams, respectively.
When the client is finished, the appropriate stream should be closed. To ABORT a PUT or GET
request, the client calls the abort() method in the javax.obex.Operation object. The abort()
method closes all input and output streams and ends the operation by calling the close()
method on the Operation object.

7.10.7.4 Creating An OBEX Server

To create a server connection, the server provides a string to Connector.open().
Connector.open() returns a javax.obex.SessionNotifier object. The SessionNotifier object waits
for a client to create a transport layer connection by calling acceptAndOpen(). A single server
may serve multiple clients by calling acceptAndOpen() multiple times. The acceptAndOpen()
method returns a javax.obex.Connection object. This object represents a connection to a single
client. The server specifies the request handler that will respond to OBEX requests from the
client by passing the javax.obex.ServerRequestHandler object to acceptAndOpen().

The server must create a new class that extends the javax.obex.ServerRequestHandler class.
The server needs to implement only those methods for the OBEX requests that it supports. For
example, if the server does not support SETPATH requests, it need not override the
onSetPath() method. As requests are received, the appropriate methods are called and the
server processes the requests. When the server is finished, it must return the appropriate final
response code defined in the javax.obex.ResponseCodes class.

Server applications should not call the abort() method; if a server applications calls abort() the
javax.obex.Operation argument that is part of the onGet() and onPut() methods throws a
java.io.IOException.

If the server implementation is not able to pass all the headers that are specified by the server
application in a reply, then the server implementation returns an
OBEX_HTTP_REQ_TOO_LARGE. If the server application returns a response code that is not
defined in the javax.obex.ResponseCodes class, then the server implementation sends an
OBEX_HTTP_INTERNAL_ERROR response to the client.

iDEN J2ME™ Developer’s Guide

446
 © 2005 Motorola, Inc.

7.10.7.5 Platform Specific Limitations

For both the Object Exchange over RFCOMM and TCP/IP, only one connection at a time is
supported. That means one server can communicate with one client at one time. Additionally,
for for Object Exchange over TCP/IP, MIDlets must handle SessionNotifier one by one. For
example, if a MIDlet calls acceptAndOpen in a loop, once a client connects to the server, the
server should create a thread to handle that. When this thread closes the session, the
acceptAndOpen will throw an IOException. It is recommendes that MIDlets handle
SessionNotifier one by one instead of in multiple thread.

7.10.8 Object Push Protocol

The OPP API allows a MIDlet to exchange data with another Bluetooth device. This package
defines classes and interfaces for both clients and servers.

The main features of the OPP API are:
1. With a single command, it’s possible to establish a connection, transfer data and disconnect.
2. OPP handles segmentation and reassembly of OBEX packages automatically, as needed.
3. Can act both as a client and a server, limited to only one session at a time.

In the following section the concept “session” is used. From the OPP API’s point of view, a
session is started when a client requests to push or pull a new object. The session is completed
when the last confirmation for that object is received, regardless how many requests and confirms
have been sent in between.

Detailed information on OBEX response codes is outside the scope of this document. For more
information, see Infrared Data Association (IrDA) Object Exchange Protocol OBEX version 1.3 3
at http://www.irda.org.

7.10.8.1 Package Description

The OPP API is located in the com.motorola.iden.bluetooth.opp package.

Class

OppClient Provides APIs for OPP clients.

OppObject Defines a structure for data transferred in OPP sessions.

OppServer Provides APIs for OPP servers.

Interface

OppClientRequestHandler The OppClientRequestHandler interface defines an event
listener that will respond to OPP response made to the client.

OppObjectFormat The interface defines the formats be used in OPP.

OppResponseCodes Defines result codes used in OPP sessions.

OppServerRequestHandler Defines an event listener for responding to OPP requests
made to a server.

iDEN J2ME™ Developer’s Guide

447
 © 2005 Motorola, Inc.

7.10.8.1.1 Class OppClient

This class defines the APIs for a J2ME OPP client. Requests are sent via the APIs defined
here.

7.10.8.1.1.1 public void openClient(OppClientRequestHandler
reqHandle) throws IllegalArgumentException,
IOException

This method initializes the OPP client. Push and pull calls will throw an IOException if the
client has not been opened.

Calling openClient with a null reqHandle will cause an IllegalArgumentException to be
thrown. An IOException will be thrown if the Bluetooth stack can not be opened
successfully, for example if an OPP client is already open.

7.10.8.1.1.2 public boolean close(boolean friendlyClose) throws
InterruptedException, IOException

This method will be called to close the current OPP connection.

This method will return false and leave the connection open if friendlyClose is set to true
and the connection has pending pushes or pulls.

This method will return true and close the connection if friendlyClose is set to true and the
connection has no pending pushes or pulls or if friendlyClose is false. Note that any
pending pushes or pulls may not complete if this method is called with friendlyClose set
to false.

7.10.8.1.1.3 public void pushReq(byte[] serverAddr, OppObject
oppObject, int totalLen, boolean isLastSession) throws
IllegalArgumentException, IOException

This method pushes an object to a specified server.

If the size of serverAddr is not 6 bytes an IllegalArgumentException will be thrown.

If isLastSession is true the connection will be closed automatically after the current push
operation finished. Clients setting isLastSession to true should not call disconnectReq().
Calling disconnectReq() when isLastSession is true will cause an IOException to be
thrown. It is recommend to set isLastSession to true in the last pushReq() of an object.

An object can be divided and sent in several PUSH operations. In this case, do not need
to fill the same NAME&DESCRIPTION in the following fragment.

iDEN J2ME™ Developer’s Guide

448
 © 2005 Motorola, Inc.

7.10.8.1.1.4 public void pullReq(byte[] serverAddr, boolean
isLastSession) throws IllegalArgumentException,
IOException

Try to pull vCard data from the specified server.

If size of serverAddr is not 6 bytes an IllegalArgumentException will be thrown.

If isLastSession is true the connection will be closed automatically after the current pull
operation finishes. Clients setting isLastSession to true do not need to call
disconnectReq(). Calling disconnectReq() when isLastSession is true will cause an
IOException to be thrown. If one object should be pulled in several pull request, only the
“isLastSession” of first pull request can be accepted.

7.10.8.1.1.5 public void abortReq(String description) throws
IOException,IllegalArgumentException

Send out an abort request for the current transfer operation.

The description parameter is optional and can be null.

The abortReq() method can only be called while data is being transferred, otherwise an
IOException will be thrown and the abort request will not be sent out.

7.10.8.1.1.6 public void disconnectReq()throws IOException

Closes the connection.

If the isLastSession parameter in a call to pushReq() or pullReq was set to true this
method should not be called, otherwise an IOException will be thrown and the disconnect
request will not be sent out.

This method can’t be called while data is being transferred, otherwise an IOException will
be thrown and the disconnect request will not be sent out.

7.10.8.1.2 Class OppClientRequestHandler

The OppClientRequestHandler interface defines a set of callback
methods for OPP related events that a typical OPP client would be
interested in.

7.10.8.1.2.1 public void onConnectInd()

This method defines a callback for client connections.

iDEN J2ME™ Developer’s Guide

449
 © 2005 Motorola, Inc.

7.10.8.1.2.2 public void onDisconnectInd(int oppResult)

This method defines a callback for client disconnections made automatically via a push or
pull request whose isLastSession parameter was true.

oppResult is the result of the disconnect. Possible values are

• OPP_OK

 • OPP_PADAPT_FAILED

7.10.8.1.2.3 public void onDisconnectCfm(int oppResult)

This method defines a callback for client disconnections as a result of a disconnect
request.

oppResult is the result of the disconnect. Possible values are

• OPP_OK

 • OPP_PADAPT_FAILED

7.10.8.1.2.4 public void onPushCfm(int oppResult, byte
responseCode, String description)

This method defines a callback indicating a server response to a push request.

The oppResult parameter holds the result of the push session. Positive results are:

• OPP_OK

• OPP_CONTINUE

Negative results are:

• OPP_PADAPT_FAILED

• OPP_SDAP_FAILED

• OPP_OBEX_FAILED

• OPP_OBEX_HEADER_FAILED

• OPP_NO_MATCHING_SERVICE

• OPP_CALL_ERROR

If the result is OPP_OBEX_FAILED, the responseCode parameter will contain one of the
OBEX response codes below specifying the error:

• OBEX_NOT_ACCEPTABLE

• OBEX_UNSUPPORTED_MEDIA_TYPE

• OBEX_SERVICE_UNAVAILABLE

• OBEX_REQUEST_TIME_OUT

iDEN J2ME™ Developer’s Guide

450
 © 2005 Motorola, Inc.

7.10.8.1.2.5 public void onPullCfm(int oppResult, byte
responseCode, OppObject obj, int totalLen)

This method defines a callback indicating the result of a pull from a server.

The oppResult parameter holds the result of the pull session. Positive results are

OPP_OK This is the final package of data.

OPP_CONTINUE The server has more data to send. Use another pullReq() to

 request more.

Negative results are

• OPP_PADAPT_FAILED

• OPP_SDAP_FAILED

• OPP_OBEX_FAILED

• OPP_OBEX_HEADER_FAILED

• OPP_NO_MATCHING_SERVICE

• OPP_CALL_ERROR

If the result is OPP_OBEX_FAILED, the responseCode parameter will contain one of the
OBEX response codes below specifying the error:

• OBEX_NOT_ACCEPTABLE

• OBEX_UNSUPPORTED_MEDIA_TYPE

• OBEX_SERVICE_UNAVAILABLE

• OBEX_REQUEST_TIME_OUT

iDEN J2ME™ Developer’s Guide

451
 © 2005 Motorola, Inc.

7.10.8.1.2.6 public void onAbortCfm(int oppResult, byte
responseCode, String description)

This method defines a callback indicating confirmation of an abort request.

The OppResult parameter holds the result of the abort request. Positive results are:

• OPP_OK

Negative results are:

• OPP_OBEX_FAILED

• OPP_OBEX_HEADER_FAILED

• OPP_CALL_ERROR

If the result is OPP_OBEX_FAILED, the client application should terminate the OBEX
connection. If the result is OPP_OBEX_FAILED the responseCode parameter will contain
the OBEX response code specifying the error.

The OBEX response code. Notable negative response code is

• OBEX_REQUEST_TIME_OUT

iDEN J2ME™ Developer’s Guide

452
 © 2005 Motorola, Inc.

7.10.8.1.3 Class OppServer

This interface defines the APIs for a J2ME OPP server. Responses
from servers to clients should be sent out via these APIs.

7.10.8.1.3.1 public void openServer(OppServerRequestHandler
handle, byte[] serviceName, byte incomingSecLevel)
throws IOException, IllegalArgumentException

This method allows an OPP server to be opened. The service record will be registered
enabling clients to find the server. The openServer method behaves differently from the
openClient method in that the client is opened immediately after the method returns.
However, the server is opened after onOpenCfm() in handle is called.

If handle is null an IllegalArgumentException will be thrown. An IOException will be
thrown if the OPP server can not be opened successfully, for example if there is already
an open server or the Bluetooth device is busy.

The serviceName parameter is optional. If serviceName is null the default service name
value is set to “Java-OBEX-Object-Push”. The maximum length of the string is 100.

incomingSecLevel is a bit map field. Set the following bits as needed:

 Bit 0: SEC_INCOMING_AUTHENTICATION_REQUIRED

 Bit 1: SEC_INCOMING_AUTHORIZATION_REQUIRED

 Bit 2 SEC_INCOMING_ENCRYPTION_REQUIRED

 Bit 6 SEC_INCOMING_CONNECTIONLESS_ALLOWED

7.10.8.1.3.2 public boolean close(boolean friendlyClose) throws
InterruptedException, IOException

This method closes the current OPP connection.

This method will return false and leave the connection open if friendlyClose is set to true
and the connection has pending pushes or pulls.

This method will return true and close the connection if friendlyClose is set to true and the
connection has no pending pushes or pulls or if friendlyClose is false. Note that any
pending pushes or pulls may not complete if this method is called with friendlyClose set
to false.

iDEN J2ME™ Developer’s Guide

453
 © 2005 Motorola, Inc.

7.10.8.1.3.3 public void pushRsp(byte responseCode, String
descriptionString) throws IOException,
IllegalArgumentException

This method sends a response to a client.

pushRsp can only be called once there is an incoming push indication.

The descriptionString parameter is optional. The maximum length is 100.

The responseCode parameter is the OBEX response code. Positive responses are:

• OBEX_SUCCESS

 Shall be used if the isLastMessage parameter in onPushInd() was equal
to true.

• OBEX_CONTINUE

 Shall be used if the isLastMessage parameter in onPush was equal to
false.

Any other response code is a negative response. Notable responses are:

• OBEX_NOT_ACCEPTABLE

• OBEX_UNSUPPORTED_MEDIA_TYPE

• OBEX_SERVICE_UNAVAILABLE

iDEN J2ME™ Developer’s Guide

454
 © 2005 Motorola, Inc.

7.10.8.1.3.4 public void pullRsp(byte responseCode, oppObject obj,
int totalLength) throws IOException,
IllegalArgumentException

Try to respond to the client which sent the pull request.

This method can only be called once there is an incoming pull indication.

The response code is specified with the responseCode parameter. Positive responses
are:

• OBEX_SUCCESS

Shall be used if this message is the last one from OPP’s point of view. For
example, the oppObject body field is pointing to a buffer which holds the
complete object.

• OBEX_CONTINUE

Shall be used if this message isn’t the last one from OPP’s point of view. For
example, the oppObject body field is pointing to a buffer which doesn’t hold the
complete object.

Any other response code is a negative response. Notable negative responses are:

• OBEX_NOT_ACCEPTABLE

• OBEX_UNSUPPORTED_MEDIA_TYPE

• OBEX_SERVICE_UNAVAILABLE

7.10.8.1.3.5 public void abortRsp(byte responseCode, String

description) throws IOException,
IllegalArgumentException

Sends an abort response.

This method can only be called once there is an incoming abort indication.

The response code is specified with the rspCode parameter. The only positive
responses is OBEX_SUCCESS. Any other response code is a negative response which
causes the client to disconnect.

7.10.8.1.3.6 public void changeSecLevelReq(byte outgoingSecLevel)

throws IOException, IllegalArgumentException

This method provides the application layer with the ability to modify the outgoing OPP
security level. The method is intended to be invoked from within the context of the
registered OPP server application layer task.

If a call to changeSecLevel is made while another call is pending an IOException will be
thrown.

iDEN J2ME™ Developer’s Guide

455
 © 2005 Motorola, Inc.

7.10.8.1.4 Class OppServerRequestHandler

 The OppServerRequestHandler interface defines an event listener that will respond to OPP
requests made to the server.

 A J2ME MIDlet acting as an OPP server should implement this interface.

7.10.8.1.4.1 public void onConnectInd()

This method defines a callback for server connections.

7.10.8.1.4.2 public void onDisconnectInd(int oppResult)

This method defines a callback for server disconnections.

oppResult is the result of the disconnect. Possible values are

• OPP_OK

 • OPP_PADAPT_FAILED

7.10.8.1.4.3 public void onPushInd(byte[] clientAddr, OppObject

oppObject, int totalLength, boolean isLastFragment)

This method defines a callback for client object pushes to the server.

The isLastFragment parameter indicates whether it is the last fragment being sent.

The object being pushed by the client is held in oppObject. This object may be null.

7.10.8.1.4.4 public void onPullInd(byte[] clientAddr)

This method defines a callback for client pull requests.

7.10.8.1.4.5 public void onAbortInd(String description)

This method defines a callback for operation aborts.

7.10.8.1.4.6 public void onPullCompleteInd()

This method defines a callback for the completion of an object pull from the client. The
object being pulled by the client has been sent when this callback is made.

iDEN J2ME™ Developer’s Guide

456
 © 2005 Motorola, Inc.

7.10.8.1.5 Class OppObject

 This class represents an OPP object. One object may be split into several OppObject
instances.

7.10.8.2 Sample Code

/**

 * OPP Client

 */

import java.io.*;

import java.lang.*;

import com.motorola.iden.bluetooth.opp.*;

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

import javax.obex.ResponseCodes;

public class ClientTest extends MIDlet implements
CommandListener{

 Display display;

 List mainList;

 public OppClient OppImpl;

 public byte[] serverAddr =
{0x07,(byte)0xaa,(byte)0xff,0x55,0x0c,0x00};//bluetooth address
of PC

 public OppClientListener oppListener;

 public OppObject pushObj;

 public byte[] pushBody = {0x42 ,0x45 ,0x47 ,0x49 ,0x4e
,0x3a ,0x56 ,0x43 ,0x41 ,0x52 ,0x44 ,0x0d ,0x01 ,0x56 ,0x45
,0x52,

 0x53 ,0x49 ,0x4f ,0x4e ,0x3a
,0x32 ,0x2e ,0x31 ,0x0d ,0x0a ,0x4e ,0x3a ,0x5a ,0x68 ,0x61
,0x6e,

 0x67 ,0x3b ,0x43 ,0x69 ,0x6e
,0x0d ,0x0a ,0x45 ,0x4d ,0x41 ,0x49 ,0x4c ,0x3b ,0x49 ,0x4e
,0x54,

iDEN J2ME™ Developer’s Guide

457
 © 2005 Motorola, Inc.

 0x45 ,0x52 ,0x4e ,0x45 ,0x54
,0x3a ,0x64 ,0x61 ,0x69 ,0x73 ,0x79 ,0x7a ,0x40 ,0x6e ,0x6a
,0x2e,

 0x73 ,0x63 ,0x2e ,0x6d ,0x63
,0x65 ,0x6c ,0x2e ,0x6d ,0x6f ,0x74 ,0x2e ,0x63 ,0x6f ,0x6d
,0x0d,

 0x0a ,0x45 ,0x4e ,0x44 ,0x3a
,0x56 ,0x43 ,0x41 ,0x52 ,0x44 ,0x0d ,0x0a};

 public int bodyLen = 0x5c;

 private final static Command CMD_SEL = new
Command("Select",Command.SCREEN,1);

 private final static Command CMD_EXIT = new
Command("Exit",Command.SCREEN,1);

 private final static Command CMD_BACK = new
Command("Back",Command.SCREEN,1);

 private firstOpenFlag = true;

 /**

 * object push form

 */

 public Form spushForm;

 /**

 * object pull form

 */

 public Form spullForm;

 public ClientTest()

 {

 mainList = new List("Select Function", List.IMPLICIT);;

 mainList.append("Simple Push",null);

 mainList.append("Simple Pull",null);

 mainList.addCommand(CMD_SEL);

 mainList.addCommand(CMD_EXIT);

 mainList.setCommandListener(this);

iDEN J2ME™ Developer’s Guide

458
 © 2005 Motorola, Inc.

 spushForm = new Form("Push Object");

 spushForm.addCommand(CMD_BACK);

 spushForm.setCommandListener(this);

 spullForm = new Form("Push Object");

 spullForm.addCommand(CMD_BACK);

spullForm.setCommandListener(this);

 //open OPP client

 OppImpl = new OppClient();

 oppListener = new OppClientListener(this);

 try

 {

 OppImpl.openClient(oppListener);

 }

 catch(IOException e)

 {

 e.printStackTrace();

 }

 }

 public void startApp()

 {

if(firstOpenFlag)

{

 System.out.println("start");

 display = Display.getDisplay(this);

 display.setCurrent(mainList);

 firstOpenFlag = false;

 }

 }

iDEN J2ME™ Developer’s Guide

459
 © 2005 Motorola, Inc.

 public void pauseApp()

 {

 }

 public void destroyApp(boolean unconditional)

 {

 try

 {

 /** close OPP client */

 OppImpl.close(false);

 }

 catch (Exception e)

 {

 e.printStackTrace();

 }

 }

 public void commandAction(Command c, Displayable s)

 {

 if (CMD_EXIT == c)

 {

 destroyApp(false);

 notifyDestroyed();

 }

 else if(CMD_BACK == c)

 {

 display.setCurrent(mainList);

 }

 else if(CMD_SEL == c)

 {

 workMode = mainList.getSelectedIndex();

 //OppImpl.wmode = workMode;

iDEN J2ME™ Developer’s Guide

460
 © 2005 Motorola, Inc.

 switch(workMode)

 {

 case 0:

 simplePush();

 break;

 case 1:

 simplePull();

 break;

 default:

 break;

 }

 }

 }

 private void simplePush()

 {

 spushForm.deleteAll();

 // fill object

 String strName = new String("jimtest.vcf");

 String strDes = new String("jimtestdes");

 pushObj = new
OppObject(pushBody,0,bodyLen,OPP_FORMAT_VCARD,strName,strDes);

 //push object

 try

 {

 OppImpl.pushReq(serverAddr,pushObj,bodyLen,true);

 }

 catch(Exception e)

 {

 e.printStackTrace();

 }

 }

iDEN J2ME™ Developer’s Guide

461
 © 2005 Motorola, Inc.

 public void simplePushConInd(boolean flag)

 {

 if(flag)

 {

 spushForm.append("-->Connect Ind: (true)");

 }

 else

 {

 spushForm.append("-->Connect Ind: (false)");

 }

 display.setCurrent(spushForm);

 }

 public void simplePushCfm(String str)

 {

 spushForm.append("-->Push Cfm: "+str);

 display.setCurrent(spushForm);

 }

 public void simplePushDisconInd(int tp)

 {

 spushForm.append("-->Disconnect :"+tp);

 display.setCurrent(spushForm);

 }

 private void simplePull()

 {

 spullForm.deleteAll();

 spullForm.append("-->Send PullReq");

 display.setCurrent(spullForm);

 //push object

 try

 {

iDEN J2ME™ Developer’s Guide

462
 © 2005 Motorola, Inc.

 /* send a pull request */

 OppImpl.pullReq(serverAddr,true);

 }

 catch(IOException e)

 {

 e.printStackTrace();

 }

 }

 public void simplePullConInd(boolean flag)

 {

 if(flag)

 {

 spullForm.append("-->Connect Ind: (true)");

 }

 else

 {

 spullForm.append("-->Connect Ind: (false)");

 }

 display.setCurrent(spullForm);

 }

 public void simplePullCfm(String str)

 {

 spullForm.append("-->Pull Cfm: "+str);

 display.setCurrent(spullForm);

 }

 public void simplePullDisconInd(int tp)

 {

 spullForm.append("-->Disconnect :"+tp);

 display.setCurrent(spullForm);

 }

}

iDEN J2ME™ Developer’s Guide

463
 © 2005 Motorola, Inc.

/** event listener */

import java.io.*;

import java.lang.*;

import com.motorola.iden.bluetooth.opp.*;

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

import javax.obex.ResponseCodes;

public class OppClientListener implements OppClientRequestHandler

{

 public ClientTest parent;

 public OppClientListener(ClientTest p)

 {

 parent = p;

 }

 /** handle connect ind */

 public void onConnectInd()

 {

 switch(parent.workMode)

 {

 case 0:

 parent.simplePushConInd(isOpen);

 break;

 case 1:

 parent.simplePullConInd(isOpen);

 break;

 default:

 break;

 }

 }

iDEN J2ME™ Developer’s Guide

464
 © 2005 Motorola, Inc.

 /** handle disconnect ind */

 public void onDisconnectInd(int OppResult)

 {

 System.out.println("OppClientListener.java:
onDisconnectInd");

 switch(parent.workMode)

 {

 case 0:

 parent.simplePushDisconInd(OppResult);

 break;

 case 1:

 parent.simplePullDisconInd(OppResult);

 break;

 default:

 break;

 }

 }

 /** handle push cfm*/

 public void onPushCfm(int oppResult,byte rspCode,String
desStr)

 {

 parent.simplePushCfm("OppCode="+oppResult+";
OBEXCode="+rspCode+" "+desStr);

 }

 public void onPullCfm(int oppResult,byte rspCode,OppObject
obj,int totalBodyLen)

 {

 parent.simplePullCfm("OppCode="+oppResult+"; OBEXCode="
+rspCode+

 " \n Obj Type =
"+obj.objType+

 " \n Obj Name =
"+obj.objName+

 " \n Obj Desc =
"+obj.objDes+

iDEN J2ME™ Developer’s Guide

465
 © 2005 Motorola, Inc.

 " \n Obj Size =
"+obj.obj.length);

 }

 }

/**

 * OPP server(PUSH) example.

 */

import java.io.*;

import java.lang.*;

import com.motorola.iden.bluetooth.opp.*;

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

import javax.obex.ResponseCodes;

public class OppServer extends MIDlet implements
CommandListener,OppObjectFormat, ResponseCodes

{

 Display display;

 public Form mainForm;

 public com.motorola.iden.bluetooth.opp.OppServer OppImpl;

 public boolean onImplFlag = false;

 public int workMode;

 public OppServerListener oppListener;

 public OppObject lObj;

 public byte[] phoneName =
{0x4d,0x6f,0x74,0x41,0x46,0x35,0x32,0x31};

 public byte[] serviceName = {0x4a ,0x69 ,0x6d ,0x4f ,0x62
,0x65 ,0x78};

iDEN J2ME™ Developer’s Guide

466
 © 2005 Motorola, Inc.

 /**

 *commands

 */

 private final static Command CMD_EXIT = new
Command("Exit",Command.SCREEN,1);

 private final static Command CMD_BACK = new
Command("Back",Command.SCREEN,1);

 private final static Command CMD_OPEN = new
Command("Open",Command.SCREEN,1);

 private final static Command CMD_CLOSE = new
Command("Close",Command.SCREEN,1);

 public int fragnum=0;

 public OppServer()

 {

 mainForm = new Form("OPP Server");

 mainForm.addCommand(CMD_EXIT);

 mainForm.setCommandListener(this);

 //open OPP SERVER

 OppImpl = new
com.motorola.iden.bluetooth.opp.OppServer();

 oppListener = new OppServerListener(this);

 try

 {

 OppImpl.openServer(oppListener,null,(byte)0);

 }

 catch(Exception e)

 {

 e.printStackTrace();

 }

 }

iDEN J2ME™ Developer’s Guide

467
 © 2005 Motorola, Inc.

 public void startApp()

 {

 display = Display.getDisplay(this);

 display.setCurrent(mainForm);

 }

 public void pauseApp()

 {

 }

 public void destroyApp(boolean unconditional)

 {

 }

 public void commandAction(Command c, Displayable s)

 {

 if (CMD_EXIT == c)

 {

 try

 {

 /** close OPP */

 OppImpl.close(false);

 }

 catch(Exception e)

 {

 e.printStackTrace();

 }

 destroyApp(false);

 notifyDestroyed();

 }

 else if(CMD_BACK == c)

 {

iDEN J2ME™ Developer’s Guide

468
 © 2005 Motorola, Inc.

 display.setCurrent(mainForm);

 }

 }

 public void onConInd()

 {

 mainForm.append("Connect Ind:");

 display.setCurrent(mainForm);

 }

 public void onDisconInd(int oppCode)

 {

 mainForm.append("Disconnect Ind:"+oppCode);

 display.setCurrent(mainForm);

 }

 public void onPushInd(byte[] clientAddr,OppObject pObj,int
totalLen,boolean last)

 {

 if(last)

 {

 if(pObj!=null)

 mainForm.append("Push Ind:\n objName
:"+pObj.objName+ "objLen:"+pObj.obj.length);

 display.setCurrent(mainForm);

 try

 {

 OppImpl.pushRsp(ResponseCodes.OBEX_HTTP_OK,null);

 }

 catch(Exception e)

 {

 e.printStackTrace();

 }

iDEN J2ME™ Developer’s Guide

469
 © 2005 Motorola, Inc.

 fragnum = 0;

 }

 else

 {

 try

 {

 mainForm.append("Push Ind("+fragnum+") :\n
objName :"+pObj.objName+ "objLen:"+pObj.obj.length);

OppImpl.pushRsp(Opp.OBEX_HTTP_CONTINUE,null);

 }

 catch(Exception e)

{

 e.printStackTrace();

 }

 }

 }

}

import java.io.*;

import java.lang.*;

import com.motorola.iden.bluetooth.opp.*;

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

import javax.obex.ResponseCodes;

public class OppServerListener extends OppServerRequestHandler

{

 public OppServer parent;

 public OppServerListener(OppServer p)

 {

 parent = p;

iDEN J2ME™ Developer’s Guide

470
 © 2005 Motorola, Inc.

 }

 public void onOpenCfm(boolean isOpen)

 {

 System.out.println("OppServerListener.java: opencfm
"+isOpen);

 }

 public void onConnectInd(boolean isOpen)

 {

 System.out.println("OppServerListener.java:
onConnectInd");

 parent.onConInd();

 }

 public void onDisconnectInd(int OppResult)

 {

 System.out.println("OppServerListener.java:
onDisconnectInd");

 parent.onDisconInd(OppResult);

 }

 public void onPushInd(byte[] clientAddr,OppObject obj,int
totalLen,boolean last)

 {

 System.out.println("OppServerListener.java: onPushInd");

 parent.onPushInd(clientAddr,obj,totalLen,last);

 }

}

iDEN J2ME™ Developer’s Guide

471
 © 2005 Motorola, Inc.

8
Handset Features

8.1 Overview
This section will present the handset features of the iDEN Multi-Communication Device not previously
covered in other chapters. These features include:

• MIDP 2.0 Platform Request

• Datebook

• Status Manager

• Location API

• Javax Location Package

• Customer Care

8.2 MIDP 2.0 Platform Request
8.2.1 Overview

The Platform Request API allows a Java application to pass a URL to the phone to have it handled
by one of the phone’s native applications. The iDEN Platform Request implementation supports
only one type of URL: initiating a telephone call.

8.2.2 Class Description
The Platform Request API is located in package javax.microedition.midlet.

java.lang.Object
 |
 + - javax.microedition.midlet.MIDlet

iDEN J2ME™ Developer’s Guide

472
 © 2005 Motorola, Inc.

8.2.2.1 Method Description
8.2.2.1.1 platformRequest method

Passes a URL to the device to be handled be one of the phone’s native applications.
public final boolean platformRequest(String URL)

throws ConnectionNotFoundException

The URL must begin with either "call:" or "tel:". If the URL begins with "call:",
the rest of the URL should contain a valid phone number. If the URL begins with "tel:",
the rest of the URL must be formatted according to RFC2806, which can be found at
http://www.ietf.org/rfc/rfc2806.txt. When you pass this method a URL with "call:" or
"tel:", this method launches the native phone application, automatically entering the
phone number from the URL. The user must press the Send key to complete the phone
call.

8.2.3 Code Examples
public class platReq extends MIDlet implements CommandListener
{
 Display myDisplay;
 List myList;

 public void startApp() throws MIDletStateChangeException
 {
 myDisplay = Display.getDisplay(this);
 myList = new List("Select test:", List.IMPLICIT);

 myList.append("Call Test",null);
 myList.append("Tel Test",null);

 myList.append("Empty",null);
 myList.append("Invalid",null);
 myList.setCommandListener(this);
 myDisplay.setCurrent(myList);
 }

 public void pauseApp()
 {
 }

 public void destroyApp(Boolean unconditional)
 {
 }

 public void commandAction(Command c, Displayable s)
 {

iDEN J2ME™ Developer’s Guide

473
 © 2005 Motorola, Inc.

 if (s == myList)
 {
 try
 {
 switch (((List)s).getSelectedIndex())
 {
 case 0:
 platformRequest("call:5552313");
 break;
 case 1:
 platformRequest("tel:5552312;postd=10101010");
 break;
 case 2:
 platformRequest("");
 break;
 case 3:
 platformRequest("this is an invalid URL");
 break;
 }
 }
 catch(Exception e)
 {
 }
 }
 }

}

8.2.4 Tips /
Once the native application receives the request, the application should be suspended and the
user should be asked if he or she wants to follow through with the action.

iDEN J2ME™ Developer’s Guide

474
 © 2005 Motorola, Inc.

8.3 DateBook
8.3.1 Overview

Java-based DateBook APIs provide methods to access the user's datebook data stored within the
native database. The methods support such functionality as opening the datebook, adding an
except date, removing an except date, getting except dates, retrieving dates of an event, setting
dates for an event, getting repeat times, setting repeat times, getting number of events in the
datebook, creating datebook events, importing datebook events, getting the elements of the
datebook, removing datebook events, deleting all datebook events, determining the available
storage, determining the event count, and choosing a MIDlet to launch when the event times out.

8.3.2 Class Descriptions
APIs for DateBook are all located in package class com.motorola.iden.udm.

The following will be the class hierarchy for the UDM API:

java.lang.Object

|

+--com.motorola.iden.udm.UDM

|

+--com.motorola.iden.udm.DateBook

|

+--com.motorola.iden.udm.DateBookEvent

|

+--com.motorola.iden.udm.DateBookRepeatEvent

|

+--java.lang.Throwable

|

+--java.lang.Exception

 |

 +--com.motorola.iden.udm.UDMException

The following is the Interface Hierarchy for the UDM and DateBook API:

com.motorola.iden.udm.UDMEntry

com.motorola.iden.udm.UDMList

iDEN J2ME™ Developer’s Guide

475
 © 2005 Motorola, Inc.

8.3.3 Method Descriptions
8.3.3.1 UDM Method

8.3.3.1.1 openDateBook
Creates a DateBook with the phone’s native datebook entries.
public static DateBook openDateBook(int mode) throws UDMException

mode must be either READ_ONLY or READ_WRITE.

The first time a MIDlet calls this method, it creates a new DateBook object with all the
entries from the device’s native datebook. When a MIDlet calls it subsequently, it returns
the same DateBook object, after repopulating the object with the entries from the active
datebook. Note that if your MIDlet has changed any DateBookEvents and hasn’t
committed them (with the DateBookEvent.commit()), those changes are lost.

To determine whether your application has modified a DateBookEvent without committing
the change (with DateBookEvent.commit())., use DateBookEvent.isModified().
To determine whether the phone’s native datebook database has been changed since the
DateBook was created, use DateBook.isCurrent().

8.3.3.2 DateBookEvent Methods
8.3.3.2.1 commit

Writes the data in the DateBookEvent to the phone’s native datebook.
public void commit() throws UDMException

This method locks the phone’s native datebook, writes the data, and then unlocks the
datebook.

If this DateBookEvent is invalid, this method throws a UDMException. The DateBookEvent
is invalid if its summary is null, its start time or end time is unspecified, its alarm is before
current time, or it has an alarm but is an untimed event.

8.3.3.2.2 isModified
Returns true if any of this element's fields have been modified since the element was
retrieved or last committed.
public boolean isModified ()

8.3.3.2.3 getFieldDataType
Returns the data type for the given field ID.
public int getFieldDataType(int fieldID) throws UDMException

If fieldID is START, END, ALARM, or REVISION, this method returns a
UDMEntry.DATE. If fieldID is SUMMARY, LOCATION, STYLE, MIDLET_SUITE, or
MIDLET, this method returns UDMEntry.STRING. If fieldID is RINGER, this method
returns UDMEntry.INT.

iDEN J2ME™ Developer’s Guide

476
 © 2005 Motorola, Inc.

8.3.3.2.4 getDate
Returns the value of the specified date field.
public long getDate(int fieldID) throws UDMException

The date is returned in milliseconds.

If you use this method with any field other than START, END, ALARM or REVISION, this
method throws a UDMException with the string "Not supported field ID".

8.3.3.2.5 setDate
Sets the value of the specified date field.
public void setDate(int fieldID, long value) throws UDMException

If you use this method with any field other than START, END, ALARM or REVISION, this
method throws a UDMException with the string "Not supported field ID".

Keep the following pointers in mind when setting these values:

• The phone’s native datebook contains only events that occur between a month in
the past and a year in the future. If you try to set the START or END fields to a
value outside those bounds, this method throws an IllegalArgumentException with
either the string “invalid start time” or “invalid end time.”

• The event’s START field must earlier than its END field. Otherwise the method
throws IllegalArgumentException with the string “start time should be before end
timer.”

• The event’s ALARM field must between 0 and 10080. (Max minutes of alarm – 7
days). Otherwise the method throws IllegalArgumentException with the string
“invalid alarm value.”

• The REVISION field is read-only. If you try to set it, this method throws a
UDMException with the string "Revision is read only field".

8.3.3.2.6 getInt
Returns the value of the specified integer field.
public int getInt(int fieldID) throws UDMException

If the fieldID is not RINGER, this method throws a UDMException with the string "Not
supported field ID".

8.3.3.2.7 setInt
Sets the value of the specified integer field.
public void setInt(int fieldID, int value) throws UDMException

If the fieldID is not RINGER, this method throws a UDMException with the string "Not
supported field ID". To read the available ringers, use
com.motorola.iden.call.CallReceive.playRinger(int index). The value for
RINGER is an integer from 0 to the 250, which maps to one of the ringers stored on the
phone. The value of the default ringer is 0xff.

iDEN J2ME™ Developer’s Guide

477
 © 2005 Motorola, Inc.

8.3.3.2.8 getString
Returns the value of the specified string field.
public String getString(int fieldID) throws UDMException

If fieldID is not SUMMARY, LOCATION, STYLE, MIDLET_SUITE, or MIDLET, this method
throws a UDMException with the string "Not supported field ID".

8.3.3.2.9 setString
Sets the value of the specified string field.
public void setString(int fieldID, String value) throws
UDMException

If fieldID is not SUMMARY, LOCATION, STYLE, MIDLET_SUITE, or MIDLET, this method
throws a UDMException with the string "Not supported field ID".

Keep the following pointers in mind when setting these values:

The SUMMARY and LOCATION fields can contain a maximum of 64 characters if the strings
have no Unicode characters, or a maximum of 32 characters if the strings do have
Unicode characters.

The MIDLET_SUITE and MIDLET fields let you specify a MIDlet that is launched when
this event times out. Always set the MIDLET_SUITE field before setting the MIDLET field.
Note that the names are of the suite and MIDlet are case sensitive. If this method cannot
find a suite or MIDlet with the specified name, this method does not set the values and
throws an IllegalArgumentException.

8.3.3.2.10 getTypedString / setTypedString
Return or set the value of the specified typed string field.
public String getTypedString(int fieldID, int typeID)

throws UDMException

public void setTypedString(int fieldID, int typeID, String value)

throws UDMException

The DateBookEvent class does not contain any typed string fields. This method always
throws a UDMException with the string "Not supported field ID".

8.3.3.3 DateBookRepeatEvent Methods
This class represents a description for a repeating pattern for a DateBookEvent element.
The fields are a subset of the capabilities of the RRULE field in VEVENT defined by the
vCalendar 1.0 specification from the Internet Mail Consortium (http://www.imc.org). It is
used on a DateBookEvent to determine how often the Event occurs.

The following table specifies the valid values for the settable fields in
DateBookRepeatEvent.

iDEN J2ME™ Developer’s Guide

478
 © 2005 Motorola, Inc.

Field Ids Set Method Valid Values
COUNT setInt Any positive int
FREQUENCY setInt DAILY, WEEKLY, MONTHLY,

YEARLY
INTERVAL setInt Any positive int
END setDate Any valid Date
MONTH_IN_YEAR setInt JANUARY, FEBRUARY, MARCH,

APRIL, MAY, JUNE, JULY,
AUGUST, SEPTEMBER,
OCTOBER, NOVEMBER,
DECEMBER

DAY_IN_WEEK setInt SUNDAY, MONDAY, TUESDAY,
WEDNESDAY, THURSDAY,
FRIDAY, SATURDAY

WEEK_IN_MONTH setInt FIRST, SECOND, THIRD,
FOURTH, FIFTH

DAY_IN_MONTH setInt 1-31
DAY_IN_YEAR setInt 1-366

8.3.3.3.1 addExceptDate
Adds a date to the repeat pattern’s list of dates on which the event will not occur.
public void addExceptDate(long date)

The date should greater than date offset in milliseconds from January 1, 1970, to January
1, 1999, that means date should greater than 915148800000L. Otherwise, this method
throws an IllegalArgumentException.

8.3.3.3.2 removeExceptDate
Removes a date from the repeat pattern’s list of dates on which the event will not occur.
public void removeExceptDate(long date)

The date should greater than date offset in milliseconds from January 1, 1970, to January
1, 1999, that means date should greater than 915148800000L. Otherwise, this method
throws an IllegalArgumentException.

8.3.3.3.3 getInt
Returns the value of the specified integer field.
public int getInt(int fieldID)

If the fieldID is not COUNT, FREQUENCY, MONTH_IN_YEAR, WEEK_IN_MONTH,
DAY_IN_WEEK or DAY_IN_MONTH, this method throws a UDMException with the string
"Not supported field ID".

iDEN J2ME™ Developer’s Guide

479
 © 2005 Motorola, Inc.

8.3.3.3.4 setInt
Sets the value of the specified integer field.
public void setInt(int fieldID, int value)

If the fieldID is not COUNT, FREQUENCY, MONTH_IN_YEAR, WEEK_IN_MONTH,
DAY_IN_WEEK or DAY_IN_MONTH, this method throws a UDMException with the string
"Not supported field ID".

The value of the FREQUENCY field must be DAILY, WEEKLY, MONTHLY or YEARLY. If not,
this method throws an IllegalArgumentException with the string “value is not valid.”

8.3.3.3.5 getDate
Returns the value of the specified date field.
public long getDate(int fieldID)

If the fieldID is not END, this method throws a UDMException with the string "Not
supported field ID".

8.3.3.3.6 setDate
Sets the value of the specified date field.
public void setDate(int fieldID, long value)

If the fieldID is not END, this method throws a UDMException with the string "Not
supported field ID".

The phone’s native datebook contains only events that occur between a month in the past
and a year in the future. If you try to set the END field to a value outside those bounds, this
method throws an IllegalArgumentException.

8.3.3.4 DateBook Methods
8.3.3.4.1 createDateBookEvent

Creates a DateBookEvent for this DateBook.
public DateBookEvent createDateBookEvent() throws UDMException

If there are not enough slots in the native database for a new DateBookEvent, this method
throws a UDMException with the string “DateBook is full".

8.3.3.4.2 importDateBookEvent
Adds the DateBookEvent to this DateBook
public DateBookEvent importDateBookEvent(DateBookEvent element)

throws UDMException

If you opened the DateBook in read-only mode, this method throws a UDMException with
the string “DateBook is Read only".

iDEN J2ME™ Developer’s Guide

480
 © 2005 Motorola, Inc.

8.3.3.4.3 isCurrent
Returns true if a DateBookEvent object has been created since the last native datebook
update.
public static boolean isCurrent ()

8.3.3.4.4 isSupportedField
Returns true if this DateBook supports the given field.
public boolean isSupportedField(int fieldID) throws UDMException

Only these fields are supported: DateBookEvent.START, DateBookEvent.END,
DateBookEvent.ALARM, DateBookEvent.SUMMARY,
DateBookEvent.LOCATION, DateBookEvent.REVISION,
DateBookEvent.RINGER, DateBookEvent.STYLE,
DateBookEvent.MIDLET_SUITE, and DateBookEvent.MIDLET.

8.3.3.4.5 elements
Returns an Enumeration of DateBookEvents in this DateBook.
public Enumeration elements() throws UDMException

This method returns an Enumeration of all DateBookEvents in this DateBook. The order is
not defined.
public Enumeration elements(long startDate, long endDate)

throws UDMException

This method returns an Enumeration of all the DateBookEvents in this DateBook whose
START field is greater than the given start date and whose END field is less than the given
end date. The order is undefined.

If the startDate is greater than the endDate, this method throws a UDMException.

Note that the phone’s native datebook contains only events that occur between a month in
the past and a year in the future. If the startDate or endDate don’t fall within those
bounds, this method throws an IllegalArgumentException.

8.3.3.4.6 getEventCount
Returns an integer array of the number of used and empty slots in the native datebook
database.
public int[] getEventCount() throws UDMException

Each non-repeat event occupies 1 slot. Each repeat event occupies two slots. To access
the cells in the array, use the constants NUM_OF_REPEAT_EVENTS,
NUM_OF_NON_REPEAT_EVENTS and NUM_OF_EVENTS. If the native database is closed or
is no longer accessible, this method throws a UDMException.

iDEN J2ME™ Developer’s Guide

481
 © 2005 Motorola, Inc.

8.3.3.4.7 removeDateBookEvent
Removes the specified DateBookEvent from the DateBook.
public void removeDateBookEvent(DateBookEvent element)

throws UDMException

If the specified DateBookEvent is not in the DateBook, this method throws a
UDMException.

8.3.4 Code Examples
The following is the code example of DateBook:

/**
 * Demo program of Motorola iDEN SDK DateBook APIs
 * Filename: MyDateBook.java
 * <p></p>
 * <hr/>
 * MOTOROLA and the Stylized M Logo are registered trademarks of
 * Motorola, Inc. Reg. U.S. Pat. & Tm. Off.

 * © Copyright 2003 Motorola, Inc. All Rights Reserved.
 * <hr/>
 *
 * @version iDEN Datebook demo 1.0
 * @author Motorola, Inc.
 */

import com.motorola.iden.udm.*;
import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
import java.util.Enumeration;

public class MyDateBook extends MIDlet implements CommandListener
{
 private Form textform;
 private Command exitCommand, checkCommand;
 private DateBook calendars;
 private DateBookEvent dateEvent;
 private StringItem userName;

 public MyDateBook()
 {
 textform = new Form("Hello, DateBook!");
 exitCommand = new Command("exit", Command.EXIT, 2);
 checkCommand = new Command("check", Command.OK, 1);
 textform.addCommand(exitCommand);
 textform.addCommand(checkCommand);
 textform.setCommandListener(this);

 try
 {
 /* Create a datebook with read and write mode. */
 calendars = UDM.openDateBook(UDM.READ_WRITE);

iDEN J2ME™ Developer’s Guide

482
 © 2005 Motorola, Inc.

 if (calendars != null)
 {
 /* Get number of entries in DateBook. */
 int no = calendars.getNumOfEntries();
 System.out.println(
 "Number of entries in this DateBook is " + no);
 }

 Enumeration e;

 for (e = calendars.elements(); e.hasMoreElements();)
 {
 dateEvent = (DateBookEvent)e.nextElement();

 int[] type;
 type = dateEvent.getFields();

 /* Get the event's detail information. */
 userName = new StringItem("subject",
 dateEvent.getString(DateBookEvent.SUMMARY));
 textform.append(userName);
 userName = new StringItem("location",
 dateEvent.getString(DateBookEvent.LOCATION));
 textform.append(userName);

 for (int j= 0; j<type.length; j++)
 {
 System.out.println("Fields " + type[j] + " " +
 dateEvent.getFieldLabel(type[j]));
 if (dateEvent.getFieldDataType(type[j]) ==
 UDMEntry.STRING)
 System.out.println(dateEvent.getString(type[j]));
 if (dateEvent.getFieldDataType(type[j]) ==
 UDMEntry.DATE)
 System.out.println(dateEvent.getDate(type[j]));
 if (dateEvent.getFieldDataType(type[j]) ==
 UDMEntry.INT)
 System.out.println(dateEvent.getInt(type[j]));
 }

 /* Get how often and when this event occurs. */
 DateBookRepeatEvent rpevent = dateEvent.getRepeat();
 if (rpevent != null)
 {
 int data = rpevent.getInt(
 DateBookRepeatEvent.FREQUENCY);
 System.out.println("FREQUENCY " +
 Integer.toString(data, 16));

 data = rpevent.getInt(
 DateBookRepeatEvent.MONTH_IN_YEAR);
 System.out.println("MONTH_IN_YEAR " +
 Integer.toString(data, 16));

iDEN J2ME™ Developer’s Guide

483
 © 2005 Motorola, Inc.

 data = rpevent.getInt(
 DateBookRepeatEvent.WEEK_IN_MONTH);
 System.out.println("WEEK_IN_MONTH " +
 Integer.toString(data, 16));
 data = rpevent.getInt(
 DateBookRepeatEvent.DAY_IN_WEEK);
 System.out.println("DAY_IN_WEEK " +
 Integer.toString(data, 16));
 data = rpevent.getInt(
 DateBookRepeatEvent.DAY_IN_MONTH);
 System.out.println(data);
 System.out.println("Repeat End "+
 rpevent.getDate(DateBookRepeatEvent.END));
 long[] except = rpevent.getExceptDates();
 for (int d = 0; d < except.length; d++)
 {

System.out.println("Except date is " + except[d]);
 }
 }
 }

 /* Get an array of integers representing the amount of

additional slots that can be stored on the native database.
 * Each non-repeat event occupies 1 slot.
 * Each repeat event occupies two slots.
 */
 int[] entryField;
 entryField = calendars.getAvailableStorage();
 for (int i= 0; i < entryField.length; i++)
 {
 System.out.println(String.valueOf(entryField[i]));
 }

 entryField = calendars.getEventCount();
 for (int i= 0; i < entryField.length; i++)
 {
 System.out.println(String.valueOf(entryField[i]));
 }

 /* Create one event */
 System.out.println("Current phone time is "+
 System.currentTimeMillis());
 long currentTime = 0;
 dateEvent = calendars.createDateBookEvent();
 dateEvent.setString(DateBookEvent.SUMMARY,
 "Non-Repeat Event");
 currentTime = System.currentTimeMillis()+ 60*60000;
 dateEvent.setDate(DateBookEvent.START, currentTime);

dateEvent.setDate(DateBookEvent.END, currentTime + 600000);

/* Associate a midlet_suite_name and a midlet_name

 * with this event
 */

iDEN J2ME™ Developer’s Guide

484
 © 2005 Motorola, Inc.

 dateEvent.setString(MIDLET_SUITE, "midlet_suite_name");
 dateEvent.setString(MIDLET, "midlet_name");
 dateEvent.commit();

 }
 catch (Exception ex)
 {
 ex.printStackTrace();
 }
 }

 public void startApp()
 {
 Display.getDisplay(this).setCurrent(textform);
 }

 public void pauseApp()
 { }

 public void destroyApp(boolean unconditional)
 { }

 public void commandAction(Command c, Displayable d)
 {
 if(c == exitCommand)
 {
 try
 {
 calendars.close();
 }
 catch (Exception e) { }
 notifyDestroyed();
 }
 else if (c == checkCommand)
 {
 System.out.println(DateBook.isCurrent());
 }
 }
}

8.3.5 Compiling & Testing Datebook MIDlets
• Method DateBook.getEventCount() always returns an empty array since there is no

native support for this method.

• Method DateBook.isCurrent() always returns true since there is no native support for
this method.

• Method DateBook.entryIsModified(PhoneBookEntry entry) always returns
false since there is no native support for this method.

iDEN J2ME™ Developer’s Guide

485
 © 2005 Motorola, Inc.

8.4 Status Manager
8.4.1 Overview

This API is only available

on these handsets.

The StatusManager class lets an application query the status of various
features on the device. These features include: battery level, signal strength,
pack data registration, mobile IP registration, whether call forwarding is
enabled, the current active line, number of unread text messages, total
number of text messages, unheard voice mail messaged, total number of
voice mail messages, number of unread NetAlert messages, the total number
of NetAlert messages, and the state of the high audio speaker.

8.4.2 Class Description
The API for the StatusManager is located in package com.mot.iden.device.

java.lang.Object

 |

 + - com.mot.iden.device.StatusManager

8.4.3 Method Descriptions
8.4.3.1 StatusManager Methods

8.4.3.1.1 getStatus
Returns the status of the specified feature.
public static int getStatus(int feature)

throws IllegalArgumentException

feature must be one of the following:

• BATTERY_LEVEL

• SIGNAL_STRENTH

• CALL_FORWARD_STATE

• CURRENT_ACTIVE_LINE

• NUM_UNREAD_TEXT_MSG

iDEN J2ME™ Developer’s Guide

486
 © 2005 Motorola, Inc.

• NUM_TEXT_MSG

• NUM_UNHEARD_VOICE_MAIL

• NUM_VOICE_MAIL

• NUM_UNREAD_NET_ALERT

• NUMD_NET_ALERT

• HIGH_AUDIO_STATE

• CURRENT_VIBE_STYLE_LINE1

• CURRENT_VIBE_STYLE_LINE2

• CURRENT_VIBE_STYLE_ALERT

If feature is not one of those values, this method throws an IllegalArgumentException.

8.4.3.1.2 isRegistered
Returns true if the specified feature has registered; false, otherwise.
public static boolean isRegistered(int feature)

throws IllegalArgumentException

feature must be one of the following:

PD_REGISTRATION

MIP_REGISTRATION

If feature is not one of those values, this method throws an IllegalArgumentException.

iDEN J2ME™ Developer’s Guide

487
 © 2005 Motorola, Inc.

8.5 Location API
8.5.1 Overview

The Location API lets users and developers access GPS position information such as latitude,
longitude, altitude, speed, and so on. This feature is provided as a built-in application in the
phone’s standard ergonomics and as a J2ME™ API developers can use to create custom AGPS-
based applications. This section describes some of the phone’s features that affect AGPS
accuracy and availability from a J2ME™ MIDlet. This API provides access to NMEA stream of
messages and can turn on the GPS chip set’s NMEA capabilities.

• Accuracy—The GPS receiver is designed to receive location fixes within a preset level of
geographic accuracy as determined by the network provider. Using the Location API,
J2ME™ developers can retrieve a fix; however, the location value is not guaranteed to be
within this level of accuracy. The API provides methods to determine whether a given fix is
accurate or not.

Motorola strives to achieve the highest possible accuracy; however, no GPS system can
provide perfect accuracy in all situations. GPS accuracy can be affected by a multitude of
potential error-introducing factors, including GPS satellite signal conditions and packet
data availability. Position accuracy is not guaranteed nor implied.

• Assist Data—AGPS uses cellular assisted data to retrieve a location fix. The Location API
provides J2ME™ developers with a method to determine whether cellular assisted data is
used for a given fix.

The API provides the location functionalities required for Java applications to access GPS position
information such as the following:

• Latitude

• Longitude

• Altitude

• Time Stamp

• Travel Direction

• Speed

• Altitude Uncertainty

• Speed Uncertainty

The Location API uses the GPS Privacy setting in the Main Menu of the phone when a MIDlet
invokes the API. Based on the GPS Privacy setting value, the MIDlet does or does not have the
access to the position information. The API will use the user’s Privacy setting accordingly before
providing position information. Some examples include:

• If the user’s GPS Privacy setting is set to “Restricted”, the Java API will return the position
with all the attributes set to UNAVAILABLE and with the PositionConnection’s status code
set to POSITION_RESPONSE_RESTRICTED.

iDEN J2ME™ Developer’s Guide

488
 © 2005 Motorola, Inc.

• If the user’s GPS Privacy setting is set to “Unrestricted”, the Java API will be able to
access GPS data and will return the position.

• If the user’s GPS Privacy setting is set to “By Permission”, the application is suspended,
as the Java API brings up a system screen to prompt the user for permission to grant
position access for this application. If the user does not grant permission, the Java API will
return the position with all the attributes set to UNAVAILABLE and with the
PositionConnection’s status code set to POSITION_RESPONSE_RESTRICTED. After
selecting one of the permission options, the user needs to resume the application.

After permission is granted, the Java API brings up a system screen to prompt the user if the
Almanac data in the phone is out of date or invalid, and the phone is not provisioned for packet
data service. This is done only once after the phone powers up. If the user gives permission to
override Almanac data, the Java API tries to retrieve position data. If user does not grant the
Almanac override, the Java API returns the position with its attributes set to UNAVAILABLE and
the status of PositionConnection set to POSITION_RESPONSE_NO_ALMANAC_OVERRIDE.

8.5.2 Class Description
The API for the NMEA output messages is located in package com.motorola.iden.position.

java.lang.Object

 |

 + - com.motorola.iden.position.PositionConnection

The PositionConnection interface supports the creation of a connection to the GPS receiver
(driver). GPS position can be retrieved and status can be obtained after creating a connection.
Only one connection is allowed at a time. This API must be called from a separate thread from the
main application thread.

To get a PositionConnection, the MIDlet must use the generic Connector class. For example:

com.motorola.iden.position.PositionConnection sc =

(com.motorola.iden.PositionConnection)Connector.open(String name);

String name should be one of the following:

• name = "mposition:delay=no"

• name = "mposition:delay=low"

• name = "mposition:delay=high"

The following descriptions of delay values are based on the default settings. These settings are
carrier definable and can differ among carriers. Java has no access to change these values.

• delay=no This option is designed to provide the serving cell latitude and longitude to an
application immediately after it requests them. Because all other attributes in the
AggregatePosition class may be set to UNAVAILABLE, an application should use this
connection only to access the serving cell latitude and longitude. This request does not
make use of the GPS chipset. If the handset is outside of the network coverage area, the
serving cell latitude and longitude will be set to 0.

• delay=low This option provides a response to the application in a few seconds. New
assist data is retrieved only if no assist data exists or if the assist data is older than the
Maximum Assist Data Age (MADA). This operation is transparent to the application. This

iDEN J2ME™ Developer’s Guide

489
 © 2005 Motorola, Inc.

option is designed to provide all the position attributes with assistance from the Location
Enhanced Service (LES) Server. To exercise this option, the device needs to have packet
data service. Currently the maximum response time for this type of request is 32 seconds.
If the API times out, the position will be returned with appropriate status and error code. If
a low-delay request is made outside of the network coverage area, then the API will not
get the assist data from the LES. The fix will proceed without assist data, and the timeout
will remain at the low-delay value of 32 seconds.

• delay=high This option provides a response to the application where delay is longer
than a delay=low setting. It provides for an assisted or autonomous fix for the
application. The phone uses existing assist data only if it is available and valid; otherwise,
the location fix shall proceed autonomously. Currently, maximum response time for this
type of request is 180 seconds. If the response times out, position will be returned with the
appropriate status and error code.

Only one request of getPosition() can be made or be pending at any time. If the application
makes multiple requests without getting a response to the previous request, a null position value is
returned or an exception is thrown. The next section provides more detail on this method.

8.5.3 Method Descriptions
8.5.3.1 PositionConnection Methods

8.5.3.1.1 getPosition
Returns a position.
public AggregatePosition getPosition()

This method returns a position using the same delay setting used for
Connector.open().

This method is a synchronous, blocking method, which means it blocks until a response,
error, or timeout occurs. Closing the PositionConnection from a separate thread can
unblock these calls. Once the connection is closed, it needs to be opened again using
Connector.open().

If the PositionConnection is closed while a call to this method is pending or a second call
has been made to this method, then this method returns a null position. Unknown errors
may occur during a location fix, which may also cause null position value to be returned.
public AggregatePosition getPosition(String name)

This method returns a new position with the delay parameters specified by name. This
method also allows an application to obtain a fix with an accurate velocity and heading
direction. Note that obtaining an accurate velocity and heading direction may cause a
significant delay with weak GPS signal strength. In strong GPS signal coverage this
operation may take no longer than a standard fix.

The argument required for accurate velocity and heading direction is as follows:

String name = "delay=low;fix=extended"; // or

String name = "delay=high;fix=extended";

This method is a synchronous, blocking method, which means it blocks until a response,
error, or timeout occurs. Closing the PositionConnection from a separate thread can

iDEN J2ME™ Developer’s Guide

490
 © 2005 Motorola, Inc.

unblock these calls. Once the connection is closed, it needs to be opened again using
Connector.open().

If the PositionConnection is closed while a call to this method is pending or a second call
has been made to this method, then this method returns a null position. Unknown errors
may occur during a location fix, which may also cause null position value to be returned.

8.5.3.1.2 requestPending
Returns true if there is a pending position request.
public boolean requestPending()

Call this method on a connection before making a new request from another thread.

8.5.3.1.3 getStatus
Returns the status for the last getPosition() call.

public int getStatus()

Call this method only after calling getPosition(). Use the position obtained only if
getStatus() returns POSITION_RESPONSE_OK. The following is a list of the possible
return values for this method:

• POSITION_NO_RESPONSE indicates that the device is not responding. No
position information will be available, and all the attributes of the position will be
set to UNAVAILABLE.

• POSITION_RESPONSE_ERROR indicates that an error occurred while retrieving
the position. If possible, the cell latitude and longitude will be available, but all
position’s attributes will be set to UNAVAILABLE.

• POSITION_RESPONSE_OK indicates that the obtained position is a valid position.
All position’s attributes will be available.

• POSITION_RESPONSE_RESTRICTED indicates that the user has set the device
so it does not provide the position information. No position information will be
available, and the position’s attributes will be set to UNAVAILABLE.

• POSITION_WAITING_RESPONSE indicates that the API is waiting for a response
from the position device. POSITION_WAITING_RESPONSE will be returned if
getStatus() method is called before getPosition() method.

• POSITION_RESPONSE_NO_ALMANAC_OVERRIDE indicates that the Almanac is
outdated, and the user is restricted to override. No position information will be
available, and all the attributes of the position will be set to UNAVAILABLE.

8.5.3.1.4 getNMEASentence()
Returns an NMEA Sentence for the specified type.

public String getNMEASentence (int type)
throws IllegalArgumentException

Following are the valid NMEA message types.

• PositionDevice.GPGGA

• PositionDevice.GPGLL

iDEN J2ME™ Developer’s Guide

491
 © 2005 Motorola, Inc.

• PositionDevice.GPGSA

• PositionDevice.GPGSV1

• PositionDevice.GPGSV2

• PositionDevice.GPGSV3

• PositionDevice.GPRMC

• PositionDevice.GPVTG

If the message type is other than above, this method throws an IllegalArgumentException.

If the method cannot fulfill the request for an NMEA sentence, this method returns a null
string.

This first time you call this message, it turns on the GPS chip for NMEA messages. It’s the
application’s responsibility to stop the NMEA request once it is done using it.

8.5.3.1.5 stopNMEASentence
Stops the NMEA request and turns off the GPS chip after 10 seconds.
public void stopNMEASentence()

This method stops only the NMEA access and keeps the connection open so the
application can use the connection to retrieve the position fix or reuse it for NMEA
messages.

8.5.3.2 AggregatePosition Methods
8.5.3.2.1 getResponseCode

Returns the response code for this position.
public int getResponseCode ()

The following is a list of returned response codes:

• POSITION_OK indicates that the obtained position is valid and accurate.

• ACC_NOT_ATTAIN_ASSIST_DATA_UNAV indicates that the location fix has timed
out. The fix could not be accurately obtained since assistance data was not
unavailable.

• ALMANAC_OUT_OF_DATE indicates that the Almanac is out of date.

• ACCURACY_NOT_ATTAINABLE indicates that the location fix has timed out, and
the requested accuracy is not attainable.

• BATTERY_TOO_LOW indicates that the battery is too weak to retrieve a fix.

• FIX_NOT_ATTAIN_ASSIST_DATA_UNAV indicates that the location fix has timed
out because a fix is not attainable, and assist data is unavailable.

• FIX_NOT_ATTAINABLE indicates that the location fix has timed out because a fix
is not attainable.

• GPS_CHIPSET_MALFUNCTION indicates that the GPS chipset is malfunctioning.

iDEN J2ME™ Developer’s Guide

492
 © 2005 Motorola, Inc.

• UNAVAILABLE indicates that an unknown error has occurred. This is the default
response code.

These response codes are used in conjunction with
PositionConnection.getStatus() to determine the quality of the retrieved position.
These values are valid only when either POSITION_RESPONSE_ERROR or
POSITION_RESPONSE_OK have been returned.

The following table shows the possible combinations of response codes for these two
methods:

PositionConnection Status Values Response Codes
POSITION_RESPONSE_OK POSITION_OK

ACCURACY_NOT_ATTAINABLE
ACC_NOT_ATTAIN_ASSIST_DATA_UNAV

POSITION_RESPONSE_ERROR FIX_NOT_ATTAINABLE
FIX_NOT_ATTAIN_ASSIST_DATA_UNAV
BATTERY_TOO_LOW
GPS_CHIPSET_MALFUNCTION
ALMANAC_OUT_OF_DATE, UNAVAILABLE

8.5.3.2.2 getAssistanceUsed

Checks if a fix has been retrieved using assistance.
public boolean getAssistanceUsed ()

8.5.4 Code Examples
void getViaPositionConnection() throws IOException {

 PositionConnection c = null;

 String name = "mposition:delay=low";

 try{

 c = (PositionConnection)Connector.open(name);

 AggregatePosition oap = c.getPosition();

 // Returns the AggregatePosition which contains the position

 // using the parameter passed when connection was opened.

 // Application should only check status by calling getStatus()

 // after getPosition() or getPosition(String name) returns.

 // Otherwise, it returns the same status and is

 // considered an invalid call of getStatus().

 // check the status code for permission and almanac over ride

 if(c.getStatus() ==

 PositionConnection.POSITION_RESPONSE_RESTRICTED)

 {

iDEN J2ME™ Developer’s Guide

493
 © 2005 Motorola, Inc.

 // means user has restricted permission to get position

 }

 else if(c.getStatus() ==

 PositionConnection.POSITION_RESPONSE_NO_ALMANAC_OVERRIDE)

 {

 // means device has Almanac out of date and

 //the user has not granted to override

 }

 else if(c.getStatus() ==

 PositionConnection. POSITION_NO_RESPONSE)

 {

 // means no response from device

 }

 if (oap != null) {

 if(c.getStatus() ==

 PositionConnection.POSITION_RESPONSE_OK)

 {

 // Good position

 // Check for any error from device on position

 // Application needs to check for null position

 if(oap.getResponseCode() == PositionDevice.POSITION_OK) {

 // no error in the position

 if(oap.hasLatLon()) {

 // int value of Latitude and Longitude of the position in

 // arc minutes multiplied by 100,000 to maintain accuracy

 // or UNAVAILABLE if not available

 int lat = oap.getLatitude();

 int lon = oap.getLongitude();

 // String representation of the Latitude and Longitude.

 String LATDEGREES = oap.getLatitude(Position2D.DEGREES);

 String LONGDEGREES = oap.getLongitude(Position2D.DEGREES);

 }

 if(oap.hasSpeedUncertainty()) {

 // speed and heading value are valid

 int speed = oap.getSpeed();

iDEN J2ME™ Developer’s Guide

494
 © 2005 Motorola, Inc.

 if (hasTravelDirection()) {

 // heading is available

 int travelDirection = oap.getTravelDirection();

 }

 }

 if(oap.hasAltitudeUncertainty()) {

 int alt = oap.getAltitude(); //altitude of position

 // in meters.

 }

 }

 // handle the errors…or request again for good position

 // or display message to the user.

 else if(oap.getResponseCode() ==

 PositionDevice.ACCURACY_NOT_ATTAINABLE) {

 // the position information was provided but enough

 // accuracy may not be attainable

 }

 else if(oap.getResponseCode() ==

 PositionDevice.ACC_NOT_ATTAIN_ASSIST_DATA_UNAV) {

 // the position information was provided but enough

 // accuracy, assistant data unavailable

 }

 } // end of position response ok

 else if(c.getStatus() ==

 PositionConnection.POSITION_RESPONSE_ERROR)

 {

 // indicate an error occurred while getting the position

 if(oap.getResponseCode() ==

 PositionDevice.FIX_NOT_ATTAINABLE) {

 // means position information not provided (timeout)

 }

 else if(oap.getResponseCode() ==

 PositionDevice.FIX_NOT_ATTAIN_ASSIST_DATA_UNAV) {

 // means position information not provided (timeout) and

 // assistant data unavailable

iDEN J2ME™ Developer’s Guide

495
 © 2005 Motorola, Inc.

 }

 else if(oap.getResponseCode() ==

 PositionDevice.BATTERY_TOO_LOW) {

 // means battery is too low to provide fix

 }

 else if(oap.getResponseCode() ==

 PositionDevice.GPS_CHIPSET_MALFUNCTION) {

 // means GPS chipset malfunction

 }

 else if(oap.getResponseCode() ==

 PositionDevice.ALMANAC_OUT_OF_DATE) {

 // means almanac out of date to get fix

 // This scenario occurs when user overrides almanac but

 // device is not packet data provisioned

 }

 else {

 // Unknown error occurs

 }

 }// end of position response error

 // position is null

} finally {

 if (c != null)

 c.close();

}

New positions can be obtained using the following method on the same PositionConnection object
until the close() method is called.

AggregatePosition cell = c.getPosition("delay=no");

Or

AggregatePosition oap = c.getPosition("delay=low");

Or

AggregatePosition oap = c.getPosition("delay=high");

In addition, to obtain better accurate speed and direction

iDEN J2ME™ Developer’s Guide

496
 © 2005 Motorola, Inc.

AggregatePosition oap = c.getPosition("delay=low;fix=extended");

Or

AggregatePosition oap = c.getPosition("delay=high;fix=extended");

The following is an NMEA code example:

try
{
 PositionConnection posCon =
 (PositionConnection)Connector.open("mposition:delay=low");

 String temp1 = posCon.getNMEASentence(PositionDevice.GPGGA);
 if(posCon.getStatus() == POSITION_RESPONSE_OK)
 {
 if(temp1 != null && temp1.equals(""))
 {
 // valid GPGGA string, parse it to extract
 // the required information
 }
 else if(posCon. getStatus() == POSITION_RESPONSE_RESTRICTED)
 {
 // User has not granted permission to access
 // its location information
 }
 else if (posCon. getStatus() ==
 POSITION_RESPONSE_NO_ALMANAC_OVERRIDE)
 {
 // User has not granted permission to override
 // its almanac information
 }
 else
 {
 // unusual error occurred
 }

}
catch(IllegalArgumentException ie) {
}
catch(Exception ex) {
}

8.5.5 Tips /
• The GPS receiver requires access to both the iDEN network and GPS satellite signals to

obtain rapid fixes. It is recommended that once the first fix is obtained, the application
monitor the response codes and vary the times between position requests accordingly.
This recommendation is to handle the real world case where an application requests fixes
rapidly (less than 10 seconds apart) and then loses network and GPS coverage (by
entering a parking structure, basement, etc.) The GPS system will continue to try to find
the unit’s position and will go into a longer integration or acquisition mode that, once
started, may take so long to finish that it may miss GPS signals once back in coverage.
The recommended practice is to make fixes rapidly until a response code of

iDEN J2ME™ Developer’s Guide

497
 © 2005 Motorola, Inc.

FIX_NOT_ATTAINABLE or FIX_NOT_ATTAIN_ASSIST_DATA_UNAV is returned several
times in a row (for about 10 requests for delay=low and about 5 requests for delay =
high). After this occurs, the application may wish to start the acquisition over from the
beginning in anticipation that the phone might be back in GPS coverage. To do so, the
application must wait 15 to 20 seconds after receiving the last response code before
requesting a new fix. After this pause, the application can continue requesting fixes at its
normal frequency.

• The GPS subsystem requires about one second to calculate a new fix, so any request for
a new fix during this one-second period may result in the exact same position information
including the time stamp. Therefore it is recommended that an application request a new
position no more than once per second.

• If an application needs continuous position, use "delay=low" once and "delay=high"
thereafter even if the first fix does not succeed. The reason for this is because of network
failures. When there is a network failure, there is a 12 to 24 second communication
timeout from the LES.

• Use "delay=no" if the application needs only the cell latitude and longitude. This does
not use the AGPS chip on the device.

• Applications must handle all response codes returned by the AggregatePosition
getResponseCode() method and the PositionConnection getStatus() method.
getStatus() provides the connection’s status after the fix and user interaction status
with regards to permission. getResponseCode() provides information about the position
itself.

• Applications must always check the speed uncertainty value before using speed and
heading. Although it is counter-intuitive, the presence of speed uncertainty denotes that
the speed and heading value are accurate. Therefore, if a call to
hasSpeedUncertainty() returns true, the speed and heading returned by the API are
valid.

• If an application calls getPosition(String name) method with the "fix=extended"
tag, this method will return accurate velocity and heading direction; however, there is a
time penalty since it takes longer to calculate the accurate velocity and heading direction
when the method is called.

• The method PositionConnection.getStatus() provides the status of the
connection when the method PositionConnection.getPosition() was called.
Whereas, AggregatePosition.getResponseCode() returns the detailed response
code.

• Getting a position for the first time after the phone powers on is referred as a “cold start”. A
position retrieved within ten seconds of the previous fix is referred to as a “hot start”. A
position retrieved after ten seconds of the previous fix is a “warm start”. After 1 hour since
the last fix will set the device back to “cold start”. Therefore, “hot start” is the quickest way
of retrieving a fix.

• It is highly recommended that the antenna remain extended while getting fixes.

• There is a battery impact when the NMEA API is used heavily.

• If the application will need NMEA data again in less than 10 seconds, there is no value in
calling stopNMEASentence() because the GPS chip will stay on for 10 seconds after
calling stopNMEASentence().

iDEN J2ME™ Developer’s Guide

498
 © 2005 Motorola, Inc.

• First call of getNMEASentence() will turn on the GPS chip and it stays on until application
calls stopNMEASentence().

iDEN J2ME™ Developer’s Guide

499
 © 2005 Motorola, Inc.

8.6 Javax Location Package
8.6.1 Overview

This API is only available

on these handsets.

This feature provides APIs that allow a J2ME application to obtain
information about the present geographic location and to access a
database of known landmarks stored in the terminal.

Developers SHOULD read the JSR-179 spec before reading this
guide. Not all classes and methods are addressed in this developer
guide. For those classes and methods, please refer to JSR -179 1.0
document or http://www.jsr.org.

8.6.2 Package Description
The JSR-179 Location API is in package javax.microedition.location.

Classes
AddressInfo The AddressInfo class holds textual address information about a location.
Coordinates The Coordinates class represents coordinates as latitude-longitude-altitude values.
Criteria The criteria used for the selection of the location provider is defined by the values

in this class.
Landmark The Landmark class represents a landmark.
LandmarkStore The LandmarkStore class provides methods to store, delete and retrieve

landmarks from a persistent landmark store.
Location The Location class represents the standard set of basic location information.
LocationProvider This is the starting point for applications using this API and represents a source of

the location information.
Orientation The Orientation class represents the physical orientation of the terminal.
QualifiedCoordinates The QualifiedCoordinates class represents coordinates as latitude-longitude-

altitude values that are associated with an accuracy value.
Interfaces
LocationListener The LocationListener represents a listener that receives events associated with a

particular LocationProvider.
ProximityListener This interface represents a listener to events associated with detecting proximity to

some registered coordinates.
Exceptions
LandmarkException The LandmarkException is thrown when an error related to handling landmarks

has occurred.
LocationException The LocationException is thrown when a location API specific error has occurred.

iDEN J2ME™ Developer’s Guide

500
 © 2005 Motorola, Inc.

8.6.2.1 javax.microedition.location.LandmarkStore
 public void createLandmarkStore(String storeName)
Creating new landmark stores is not supported, thus a LandmarkException will be thrown
from this method.

Tip: Whenever this method is called, after
javax.microedition.location.LandmarkStore.management permission is granted, a
LandmarkException will be thrown with message “Creating landmark store not supported”.

8.6.2.2 public void deleteLandmarkStore(String storeName)
Deleting landmark stores is not supported, thus a LandmarkException will be thrown from
this method.

Tip: Whenever this method is called, after
javax.microedition.location.LandmarkStore.management permission is granted, a
LandmarkException will be thrown with message “Deleting landmark store not supported”.

8.6.2.3 public static String[] listLandmarkStores()
This method always returns null because no more landmark stores other than the default can
exist.

Tip: Whenever this method is called, after javax.microedition.location.LandmarkStore.read
permission is granted, a null will be returned.

8.6.2.4 public static LandmarkStore getInstance(String storeName)
This method always returns the default LandmarkStore instance.

Tip: Only if the parameter storeName is null, a LandmarkStore instance can be retrieved.

8.6.2.5 public void addLandmark(Landmark landmark, String
category)

Tip: Maximum acceptable landmark name length is 32. If the landmark name is longer than
32 characters, IllegalArugmentException will be thrown with message "Landmark name
oversize". A maximum of 256 landmarks can be stored in landmark store, adding the 257th
landmark into landmarkstore will result in IOException with message “There are no resources
available to add the landmark”.

8.6.2.6 public void addCategory(String category)
Tip: Maximum acceptable category name length is 32. If the landmark name is longer than 32
characters, it will be truncated to 32. A maximum of 64 categories can be supported in
landmark store, adding the 65th category will meet IOException with message “There are no
resources to add a new category”.

8.6.2.7 public void addCategory(String category)
Tip: The maximum acceptable category name length is 32. If the landmark name is longer
than 32 characters, it will be truncated to 32. A maximum of 64 categories can be supported
in landmark store, adding the 65th category will meet IOException with message “There are
no resources to add a new category”.

iDEN J2ME™ Developer’s Guide

501
 © 2005 Motorola, Inc.

8.6.3 javax.microedition.location.Location
8.6.3.1 public AddressInfo getAddressInfo()

Address info determination is not supported, so null will always be returned by this method.

8.6.3.2 public String getExtraInfo(String mime)
Three MIME types are supported.

When MIME type is “application/X-jsr179-location-nmea”, the returned string is a
sequence of GPGGA and GPGLL sentences representing this location, according to the syntax
specified in the NMEA 0183 v3.1 specification.

When MIME type is “application/X-jsr179-location-lif”, the returned string
contains an XML formatted document containing the <pd> element defined in the LIF Mobile
Location Protocol TS101 v3.0.0 as the root element of the document.

When MIME type is “text/plain”, the returned string contains some info exposing the
location fix status.

Tip: A sample returned string of getExtraInfo(“application/X-jsr179-location-
nmea”):

$GPGGA,140234,26:08.76784,N,-80:15.22240,W,1,6,109.181,,,7.0,M,,

$GPGLL,26:08.76784,N,-80:15.22240,W,000,A

A sample returned string of getExtraInfo(“application/X-jsr179-location-
lif”):

lif:<pd><time>140234</time><shape><Point><coord><X>26.146130666666668
</X><Y>-80.
25370666666666</Y></coord></Point></shape><alt>7.0</alt><alt_acc>20.1
73</alt_acc><speed>10000.0</speed><direction>90.0</direction></pd>

Returned string of getExtraInfo(“text/plain”) may be one the following.

iDEN J2ME™ Developer’s Guide

502
 © 2005 Motorola, Inc.

location.getExtraInfo(“text/plain”) Location.is
Valid()

"Valid Location." true

"Invalid Location: Time out, fix unattainable." false

"Invalid Location: Time out, fix unattainable and assist
unavailable."

false

"Invalid Location: Time out, accuracy unattainable." false

"Invalid Location: Time out, accuracy unattainable and
assist unavailable."

false

"Invalid Location: Battery too low." false

"Invalid Location: GPS chipset malfunction." false

"Invalid Location: Almanac out of date." false

"Invalid Location: Request has been cancelled." false

"Invalid Location: Unknown error." false

In common cases, a location fix may be a invalid due to reasons listed above. Whether to
make use of the invalid location depends on application developer. It is recommended to use
an invalid fix if the returned string of Location.getExtraInfo(“text/plain”) is "Invalid
Location: Time out, accuracy unattainable." or "Invalid Location: Time
out, accuracy unattainable and assist unavailable."

8.6.3.3 public int getLocationMethod()
Returned location method can be one of the three:

MTE_CELLID,

MTE_SATELLITE | MTE_TERMINAL | MTA_ASSISTED,

MTE_SATELLITE | MTE_TERMINAL | MTA_UNASSISTED

8.6.4 javax.microedition.location.LocationProvider
8.6.4.1 public static LocationProvider getInstance(Criteria criteria)

Location provider can be returned by any criteria except the one with address info required.
Different criteria will impact on provider obtaining location.

Tip: Address info determination is not supported, thus if address info is required by the
parameter criteria, null will be returned by this method.

iDEN J2ME™ Developer’s Guide

503
 © 2005 Motorola, Inc.

8.6.4.2 public Location getLocation(int timeout)
When timeout parameter is –1, the default get location time out of 30 seconds will be applied.

Tips:

 Inside a MIDlet, getLocation() methods are synchronized. Only one location request can
be performed at a time, whether the requests are from the same provider instance or
from different provider instances. Since concurrent MIDlets may be supported, viewing
from across MIDlets, multiple requests may be performed at the same time.

 When a location instance is returned by getLocation(), location validation can be decided
by Location.isValid() and some response info can be retrieved by using
Location.getExtraInfo(“text/plain”). In most cases, the location instance may not be valid
with degraded fix or non-assisted fix.

 A location request’s quality is decided by the criteria applied upon this location provider.

 As in iDEN AGPS API, a location request may be with one of the three quality levels: no
delay, low delay and delay tolerant. JSR179 API location requests implicitly apply the
quality level by the following rules:

o If a location provider is required with some horizontal or vertical accuracy, and
NOT allowed to cost, its location requests will be with delay tolerant level;

o If a location provider is required with some horizontal or vertical accuracy,
allowed to cost, and power consumption level is low or medium or no
requirement, its location requests will be with delay tolerant level;

o If a location provider is required with some horizontal or vertical accuracy,
allowed to cost, and power consumption level is high, its 1st location request will
be with low delay and subsequent requests will be with delay tolerant level;

o If a location provider’s horizontal and vertical accuracies are NOT required, and
NOT allowed to cost, and power consumption is medium or high or no
requirement, its location requests will be with delay tolerant level;

o If a location provider’s horizontal and vertical accuracies are NOT required, and
allowed to cost, and power consumption is medium or no requirement, its
location requests will be with low delay level;

o If a location provider’s horizontal and vertical accuracies are NOT required, and
allowed to cost, and power consumption is high level, its 1st location request will
be with low delay and subsequent requests will be with delay tolerant level;

o If a location provider’s horizontal and vertical accuracies are NOT required, and
allowed to cost, and power consumption is low level, its location requests will be
with no delay level.

8.6.4.3 public int getState()
Only two states are possible to be returned, AVAILABLE or TEMPORARILY_UNAVAILABLE.

Tip: If it is longer than 3 minutes from last location request, AVAILABLE state will be returned.

iDEN J2ME™ Developer’s Guide

504
 © 2005 Motorola, Inc.

8.6.4.4 public void reset()
This method will cancel location requests from the same MIDlet, with no effect on location
requests from other MIDlets.

Tip: This method can work on location update progress. For example, provided a location
update is scheduled every 30 seconds, when the progress is making the 3rd update, some
thread invokes reset() method, therefore this update will be aborted silently and wait for the 4th
update later on.

On the other hand, reset() does not work on proximity detection progress. Proximity
detection progress will not be interrupted by reset().

8.6.4.5 public void setLocationListener(LocationListener listener, int
interval, int timeout, in maxAge)

Default location update interval is 60 seconds, default location update time out is 30 seconds,
and default max age is 8 seconds.

8.6.5 javax.microedition.location.Orientation
8.6.5.1 public static Orientation getOrientation()

Pitch and Roll determination is not supported. Compass azimuth is related to true north,
therefore isOrientationMagnetic returns false.

iDEN J2ME™ Developer’s Guide

505
 © 2005 Motorola, Inc.

8.6.6 Code Examples
The following is the code example of LandmarkStore.deleteLandmark() and
LandmarkStore.removeLandmarkFromCategory().

 public void deleteLm(int i)
 {
 try {
 if((i >= 0) && (i <= lmItems.size()))
 {
 Landmark lm = (Landmark)lmItems.elementAt(i);
 if(lm != null)
 {
 lmItems.removeElementAt(i);
 lmList.delete(i);
 lmStore.deleteLandmark(lm);
 }
 }
 }
 catch (Exception e)
 {
 resultForm.deleteAll();
 resultForm.append("" + e);
 disp.setCurrent(resultForm);
 }

}

 public void removeLmFromCat(int i)
 {
 String categoryName;
 categoryName = catTF.getString();
 try{
 if((i >= 0) && (i <= lmItems.size()))
 {
 Landmark lm = (Landmark)lmItems.elementAt(i);
 if (lm != null)
 {
 lmStore.removeLandmarkFromCategory(lm,
categoryName);
 }
 }
 disp.setCurrent(lmList);
 }
 catch (Exception e)
 {
 resultForm.deleteAll();
 resultForm.append("" + e);
 disp.setCurrent(resultForm);
 }

 }
 // delete and remove landmark
 public DelRemLandmarkTest()

iDEN J2ME™ Developer’s Guide

506
 © 2005 Motorola, Inc.

 {
 disp = Display.getDisplay(this);

 lmList = new List("Landmark List", List.IMPLICIT);

 try {
 lmStore = LandmarkStore.getInstance(null);
 if(lmStore == null)
 {
 throw new Exception("Can't get landmarkStore
Instance!");
 }
 landmarks = lmStore.getLandmarks();
 }catch (Exception e)
 {
 resultForm.deleteAll();
 resultForm.append("" + e);
 }

 if (landmarks!=null)
 {
 while (landmarks.hasMoreElements())
 {
 lm = (Landmark)landmarks.nextElement();
 qc = lm.getQualifiedCoordinates();
 lmItems.addElement(lm);
 if (qc!=null)
 {

lmList.append(lm.getName()+","+qc.getLatitude()+","+qc.getLongitude()
 +","+qc.getAltitude(), null);
 }
 else
 {
 lmList.append(lm.getName(), null);
 }
 }
 }

 lmList.addCommand(deleteCommand);
 lmList.addCommand(removeCommand);
 lmList.addCommand(exitCommand);
 lmList.setCommandListener(this);

 catForm = new Form("Input the category");
 catForm.append(catTF);

 catForm.addCommand(okCommand);
 catForm.addCommand(cancelCommand);
 catForm.setCommandListener(this);

 resultForm = new Form("LandmarkStore Result");
 resultForm.addCommand(backCommand);

iDEN J2ME™ Developer’s Guide

507
 © 2005 Motorola, Inc.

 resultForm.setCommandListener(this);
 }

The following is the code example of LandmarkStore.AddLandmark().

 public void addNewLmObj()
 {
 String lmName;
 String catName;
 double latitude;
 double longitude;
 float altitude;
 float horizontalAccuracy;
 float verticalAccuracy;
 String description;

 //Landmark lm;

 try {
 lmName = lmNameTF.getString();
 catName = catNameTF.getString();

 latitude = Double.parseDouble(latitudeTF.getString());
 longitude = Double.parseDouble(longitudeTF.getString());
 altitude = Float.parseFloat(altitudeTF.getString());
 horizontalAccuracy =
Float.parseFloat(horizontalAccuracyTF.getString());
 verticalAccuracy =
Float.parseFloat(verticalAccuracyTF.getString());

 description = descriptionTF.getString();

 qc = new QualifiedCoordinates(latitude, longitude,
altitude, horizontalAccuracy, verticalAccuracy);
 lm = new Landmark(lmName, description, qc, null);
 lmStore.addLandmark(lm, catName);
 lmItems.addElement(lm);
 lmList.append(lmName + "," + longitude + "," + latitude +
"," + altitude, null);
 disp.setCurrent(lmList);
 /*
 if(getItemIndex(categoryName) < 0)
 {
 items.addElement(categoryName);
 categoryList.append(categoryName, null);
 }
 else
 {
 // add the same coordinates, nothing need to be done
 }*/
 }
 catch (Exception e) {
 resultForm.deleteAll();
 resultForm.append("" + e);

iDEN J2ME™ Developer’s Guide

508
 © 2005 Motorola, Inc.

 disp.setCurrent(resultForm);
 }
 }

 public void addLmToCat()
 {
 int i = lmList.getSelectedIndex();
 int j = catList.getSelectedIndex();
 try{
 lmStore.addLandmark((Landmark)lmItems.elementAt(i),
(String)catItems.elementAt(j));
 disp.setCurrent(lmList);
 }catch (Exception e)
 {
 resultForm.deleteAll();
 resultForm.append("" + e);
 disp.setCurrent(resultForm);
 }
}

 public AddLandmarkTest()
 {
 disp = Display.getDisplay(this);

 cmdList = new List("Add Landmark Test", List.IMPLICIT);

 cmdList.append("Add Landmark Object", null);
 cmdList.append("Add Landmark to Category", null);

 cmdList.addCommand(selectCommand);
 cmdList.addCommand(exitCommand);
 cmdList.setCommandListener(this);
 ///////////////////////////////////////

 newLmForm = new Form("Add Landmark Object");

 newLmForm.append(lmNameTF);
 newLmForm.append(catNameTF);
 newLmForm.append(latitudeTF);
 newLmForm.append(longitudeTF);
 newLmForm.append(altitudeTF);
 newLmForm.append(horizontalAccuracyTF);
 newLmForm.append(verticalAccuracyTF);
 newLmForm.append(descriptionTF);

 newLmForm.addCommand(addCommand);
 newLmForm.addCommand(cancelCommand);
 newLmForm.setCommandListener(this);

 ///
 lmList = new List("Landmark List", List.IMPLICIT);
 try {
 lmStore = LandmarkStore.getInstance(null);

iDEN J2ME™ Developer’s Guide

509
 © 2005 Motorola, Inc.

 if(lmStore == null)
 {
 throw new Exception("Can't get landmarkStore
Instance!");
 }
 landmarks = lmStore.getLandmarks();
 }catch (Exception e)
 {
 disp.setCurrent(resultForm);
 resultForm.deleteAll();
 resultForm.append("" + e);
 }

 if (landmarks!=null)
 {
 while (landmarks.hasMoreElements())
 {
 lm = (Landmark)landmarks.nextElement();
 qc = lm.getQualifiedCoordinates();
 lmItems.addElement(lm);
 if (qc!=null)
 {

lmList.append(lm.getName()+","+qc.getLatitude()+","+qc.getLongitude()
 +","+qc.getAltitude(), null);
 }
 else
 {
 lmList.append(lm.getName(), null);
 }
 }
 }
 lmList.addCommand(addtoCommand);
 lmList.addCommand(backCommand);
 lmList.setCommandListener(this);

 catList = new List("Category List", List.IMPLICIT);
 categories = lmStore.getCategories();
 if (categories!=null)
 {
 while (categories.hasMoreElements())
 {
 cat = (String)categories.nextElement();
 catItems.addElement(cat);
 catList.append(cat, null);

 }
 }

 catList.addCommand(addCommand);
 catList.addCommand(cancelCommand);
 catList.setCommandListener(this);

iDEN J2ME™ Developer’s Guide

510
 © 2005 Motorola, Inc.

 resultForm = new Form("AddLandmarkTest Result");
 resultForm.addCommand(backCommand);
 resultForm.setCommandListener(this);

}

The following is the code example of LocationProvider.getLocation.
 private void test()
 {
 int hAccuracy;
 int vAccuracy;
 int timeout;
 String aStr = accTF.getString();
 String vStr = vaccTF.getString();
 String tStr = toTF.getString();
 String dispStr = "";
 Location loc;
 QualifiedCoordinates c;
 result.deleteAll();
 try
 {
 hAccuracy = Integer.parseInt(aStr);
 vAccuracy = Integer.parseInt(vStr);
 timeout = Integer.parseInt(tStr);
 }
 catch (NumberFormatException nfe)
 {
 result.append("Invalid input");
 disp.setCurrent(result);
 return;
 }
 try
 {
 Criteria cr = new Criteria();
 dispStr = "Criteria.setHorizontalAccuracy";
 cr.setHorizontalAccuracy(hAccuracy);
 cr.setVerticalAccuracy(vAccuracy);
 dispStr = "LocationProvider.getInstance";
 lp = LocationProvider.getInstance(cr);
 if (lp != null)
 {
 loc = lp.getLocation(timeout);
 if (loc != null)
 {
 if (!loc.isValid())
 {
 dispStr += " got an invalid location instance
\n ";
 }
 dispStr += "\ntext/plain:";
 dispStr += loc.getExtraInfo("text/plain");
 c = loc.getQualifiedCoordinates();
 if (c != null)
 {

iDEN J2ME™ Developer’s Guide

511
 © 2005 Motorola, Inc.

 dispStr += "\nSpeed "+loc.getSpeed()+ " ";
 dispStr += "\nHAcc "+
c.getHorizontalAccuracy()+ " ";
 dispStr += "\nVAcc "+ c.getVerticalAccuracy() +
" ";
 dispStr += "\nLat "+
Coordinates.convert(c.getLatitude(), Coordinates.DD_MM_SS) +" ";
 dispStr += "\nLong "+
Coordinates.convert(c.getLongitude(), Coordinates.DD_MM_SS) +" ";
 dispStr += "\nAlt "+ c.getAltitude() +" ";
 dispStr += "\n we can get the qualified
coordinates!\n";
 dispStr += "nmea:";
 dispStr += loc.getExtraInfo("application/X-
jsr179-location-nmea");
 dispStr += "\nlif:";
 dispStr += loc.getExtraInfo("application/X-
jsr179-location-lif");

 }
 else
 {
 dispStr = "getQualifiedCoordinates returns
null";
 }
 }
 else
 {
 dispStr = "getLocation returns null";
 }
 }
 else
 {
 dispStr = "LocationProvider.getInstance returns
null";
 }
 }
 catch (Exception e)
 {
 result.append("Exception:" + e + " at " + dispStr);
 disp.setCurrent(result);
 return;
 }
 result.append(dispStr);
 disp.setCurrent(result);
 return;
}

Following is the code example of LocationProvider.setLocationListener()

public class LocListenerTest extends MIDlet implements Runnable{

 /**
 * Creates new SeaTest MIDlet.

iDEN J2ME™ Developer’s Guide

512
 © 2005 Motorola, Inc.

 */
 private LocationProvider lp=null;

 public LocListenerTest() {}

 public void startApp() {
 Thread t=new Thread(this);
 t.start();
 SThread sthread = new SThread();
 sthread.start();
 }

 public void run(){
 try{
 //create a Criteria for defining desired selection criteria
 Criteria cr = new Criteria();
 cr.setHorizontalAccuracy(500);

 lp = LocationProvider.getInstance(cr);
 }
 catch (Exception e){
 System.out.println("Exception:"+e.getMessage());
 }
 LocListenerTestP2 p2 =new LocListenerTestP2();

 int interval = -1;
 int timeout = -1;
 int maxAge = -1;

 System.out.println("interval ="+interval+" timeout="+timeout+"
maxAge="+maxAge+"\n");

 lp.setLocationListener(p2, interval, timeout, maxAge);
 }catch (Exception e){
 System.out.println("exception "+e);
 }
 }

 public void pauseApp() {}
 public void commandAction(Command c, Displayable s) {}

 class SThread extends Thread {
 public SThread() {}
 public void run() {
 try{
 Thread.sleep(120000);
 }
 catch (InterruptedException e) {}
 catch (IllegalMonitorStateException e) {}
 System.out.println("======SThread cancel the location
listener");
 try{
 lp.setLocationListener(null,3, 1,2);
 }
 catch (Exception e)

iDEN J2ME™ Developer’s Guide

513
 © 2005 Motorola, Inc.

 {
 System.out.println(e.getMessage());
 }
 }
 }
}

class LocListenerTestP2 implements LocationListener{
 private static int count = 0;
 public void locationUpdated(LocationProvider provider, Location
location){
 count++;
 if (location != null)
 {
 if (location.isValid())

 {
System.out.println("getAddressInfo()="+location.getAddre
ssInfo());

System.out.println("getCourse()="+location.getCourse());

System.out.println("getLocationMethod()="+location.getLo
cationMethod());

System.out.println("getTimestamp()="+location.getTimesta
mp());

System.out.println("getSpeed()="+location.getSpeed());
QualifiedCoordinates qc =
location.getQualifiedCoordinates();

 if (qc!=null)
 {

System.out.println("getHorinzontalAccuracy()="+qc.get
HorizontalAccuracy());

System.out.println("getVerticalAccuracy()="+qc.getVer
ticalAccuracy());

System.out.println("getLatitude()="+qc.getLatitude())
;

System.out.println("getLongitude()="+qc.getLongitude(
));

System.out.println("getAltitude()="+qc.getAltitude())
;

 }

System.out.println("nmea:"+location.getExtraInfo("applic
ation/X-jsr179-location-nmea"));

iDEN J2ME™ Developer’s Guide

514
 © 2005 Motorola, Inc.

System.out.println("lif:"+location.getExtraInfo("applica
tion/X-jsr179-location-lif"));

System.out.println("text/plain:"+location.getExtraInfo("
text/plain"));

 }
 else
 {

System.out.println("......P2 location updated with INVALID
location instance..........");

System.out.println("text/plain:"+location.getExtraInfo("tex
t/plain"));

 }
 }
 }
 public void providerStateChanged(LocationProvider provider, int
newState){
 System.out.println("p2 providerStateChanged");
 System.out.println("new state" + newState);
 }

8.6.7 Comparing with OEM AGPS API
8.6.7.1 Location Provider vs. Position Connection

The start point of getting location service is getting a LocationProvider instance in JSR-179
API and establishing a PositionConnection in OEM API respectively.

Example:

For JSR-179 API

 try{
 //create a Criteria for defining desired criteria
 Criteria cr = new Criteria();
 cr.setHorizontalAccuracy(500);

 //get a LocationProvider instance with the defined criteria
 LocationProvider lp = LocationProvider.getInstance(cr);

 //get a location instance
 Location loc = lp.getLocation(-1);
 }
 catch (LocationException e){}

iDEN J2ME™ Developer’s Guide

515
 © 2005 Motorola, Inc.

For OEM AGPS API:

try{

 AggregatePosition pos = null;

 PositionConnection posCon =
(PositionConnection)Connector.open("mposition:delay=low");

 pos = posCon.getPosition();

}

catch(Exception e) {}

8.6.7.2 Criteria vs. Quality level
For OEM AGPS API, a location request’s quality is decided by the delay level and fix type.
Example of delay type: PositionConnection sc = (PositionConnection)
Connector.open(String name); String name should be one of the following: name =
"mposition:delay=no" name = "mposition:delay=low" name =
"mposition:delay=high".

Example of fix type: AggregatePosition pos = posCon.getPosition(String
name); Possible delay type is "delay=no" or "delay=low" or
"delay=high" or "delay=low;fix=extended" or "delay=high;fix=extended".
Using the "fix=extended" tag will return accurate velocity and heading direction.

While for JSR-179 API, a location request’s quality is decided by the criteria applied upon this
location provider. JSR179 API location requests implicitly apply the corresponding delay levels
by the following rules:

 If a location provider is required with some horizontal or vertical accuracy, and NOT
allowed to cost, its location requests will be with delay tolerant level;

 If a location provider is required with some horizontal or vertical accuracy, allowed to cost,
and power consumption level is low or medium or no requirement, its location requests will
be with delay tolerant level;

 If a location provider is required with some horizontal or vertical accuracy, allowed to cost,
and power consumption level is high, its 1st location request will be with low delay and
subsequent requests will be with delay tolerant level;

 If a location provider’s horizontal and vertical accuracies are NOT required, and NOT
allowed to cost, and power consumption is medium or high or no requirement, its location
requests will be with delay tolerant level;

 If a location provider’s horizontal and vertical accuracies are NOT required, and allowed to
cost, and power consumption is medium or no requirement, its location requests will be
with low delay level;

 If a location provider’s horizontal and vertical accuracies are NOT required, and allowed to
cost, and power consumption is high level, its 1st location request will be with low delay
and subsequent requests will be with delay tolerant level;

 If a location provider’s horizontal and vertical accuracies are NOT required, and allowed to
cost, and power consumption is low level, its location requests will be with no delay level;

iDEN J2ME™ Developer’s Guide

516
 © 2005 Motorola, Inc.

And the requests also apply the fix type by following rules:

 If a location provider is required with speed and course, its location requests will be with
extended fix type;

 Or else, the requests will be with standard fix type.

8.6.7.3 Request capacity
For OEM AGPS API, only one request of PositionConnection.getPosition() can be made and
pending at a time and this limitation works across concurrent applications.

While for JSR-179 API, only one request of LocationProvider.getLocation() can be made and
pending at a time and this limitation works within an application. Therefore in the case of
concurrent applications, totally 3 requests can be made and pending at a time.

iDEN J2ME™ Developer’s Guide

517
 © 2005 Motorola, Inc.

8.7 Customer Care API
8.7.1 Overview

The Customer Care API lets J2ME™ applications access unit and user specific data. This data
may be used to track and troubleshoot issues out on the field. Specifically it will provide access to
such information as the unit info, system status, reset/error log, client info, my info, and Java
System metrics. This feature is protected with the "System Information Access" or "Read User
Data Access" functional groups of the Permission/Security Domain feature, which is described in
“7.6 MIDP 2.0 Security API on page 384.

8.7.2 Class Description
The API for the Customer Care is located in package com.mot.iden.customercare

java.lang.Object
 |
 + -- com.mot.iden.customercare.CustomerCare

8.7.3 Method Descriptions
8.7.3.1 CustomerCare Methods

8.7.3.1.1 getUnitInfo
Returns information about this phone such as the phone model, the version of the
codeplug, the version of the CSD, the version of the software, the GPS version, and the
version of the user file.
public static final String getUnitInfo(int fieldID)

throws IllegalArgumentException

fieldID must be one of the values in this table:

fieldID Example of Data
DEVICE_MODEL "i90cA"
CP_VERSION "19.00/19.00"
CSD_VERSION "C97.05.05"
SW_VERSION "D76.01.09"
GPS_VERSION "SiRF Cust SW Version

Info"
USR_VERSION "U00c.00.00"

If fieldID is not one of those values, this method throws an IllegalArgumentException.

iDEN J2ME™ Developer’s Guide

518
 © 2005 Motorola, Inc.

8.7.3.1.2 getSystemStatus
Returns system status information such as signal quality, carrier channel, carrier color
code (including extended color code for supporting devices), power cutback level and
serving cell quality.
public static final String getSystemStatus(int fieldID)

throws IllegalArgumentException

fieldID must be one of the values in this table:

fieldID Example of Data
SQE "34.73"
CARRIER_CHNL "2EB"
COLOR_CODE "1"
PWR_CUTBACK "00db"
SVG_CELL_QUALITY "-66".

If fieldID is not one of those values, this method throws an IllegalArgumentException.

8.7.3.1.3 getSystemInfo
Returns system information such as the total Program and Data Space and the available
Program and Data Space.
public static final int getSystemInfo(int fieldID)

throws IllegalArgumentException

fieldID must be one of the values in this table:

fieldID Example of Data
SQE "34.73"
CARRIER_CHNL "2EB"
COLOR_CODE "1"
PWR_CUTBACK "00db"
SVG_CELL_QUALITY "-66".

If fieldID is not one of those values, this method throws an IllegalArgumentException.

iDEN J2ME™ Developer’s Guide

519
 © 2005 Motorola, Inc.

8.7.3.1.4 getMyInfo
Returns information on the various service ids for the device, such as private dispatch id
(as a '*' delimited UFMI), the main phone number, the alternate line phone number for
supporting devices, and the carrier IP address.
public static final String getMyInfo(int fieldID)

throws IllegalArgumentException

fieldID must be one of the values in this table:

fieldID Example of Data

PRVT_ID "902*43*12345"

LINE_1 "5551234567"

LINE_2 "5558901234"

CARRIER_IP "123.45.67.89".

If fieldID is not one of those values, this method throws an IllegalArgumentException.

For all fieldIDs, a null will be returned for applications in unauthorized domains.

8.7.3.1.5 getClientInfo
Returns client information such as a unique identifier (or IMEI), the device's serial number,
and the SIM identifier.
public static final String getClientInfo(int fieldID)

throws IllegalArgumentException

fieldID must be one of the values in this table:

fieldID Example of Data
IMEI "01010101010101"
SERIAL_NUMBER "1234567890"
SIM_ID "12345678901234

For IMEI, SERIAL_NUMBER, and SIMID, the device provides hashed unique values so
that applications can identify the phone with a unique identifier.

iDEN J2ME™ Developer’s Guide

520
 © 2005 Motorola, Inc.

8.7.3.1.6 getErrors
Returns information on the errors that have occurred on the device.

public static final String getErrors(int fieldID)

throws IllegalArgumentException

The errors are kept in the reset log. This log stores only the last 24 errors.

fieldID must be one of the values in this table:

fieldID Example of Data

RESET_NUMBER "1", "2"

RESET "R[0]:R0400Date:N/AX-&1019594CT100CFC",

"R[0]:RXXXXDate:XX/XX&XXXXXXXXXXXXXXX
 R[1]:RXXXXDate:XX/XX&XXXXXXXXXXXXXXX"

If fieldID is not one of those values, this method throws an IllegalArgumentException.

8.7.4 Code Examples
public void test(){

 try {
 // Get unit info methods
 // 1) device model
 // 2) codeplug version
 // 3) csd version
 // 4) software version
 // 5) gps version
 // 6) usr version
 for(int x = 1; x < 7; x++){

 System.out.println("Unit Info Methods(" + x + ")
->" +

 CustomerCare.getUnitInfo(x));
 screen.append("Unit Info Methods(" + x + ") ->" +
 CustomerCare.getUnitInfo(x));
 }

 // Get system status methods
 // 7) sqe signal quality
 // 8) carrier channel
 // 9) carrier color code
 // 10) power cutback level
 // 11) serving cell quality
 for(int x = 7; x <12; x++){

 System.out.println("System Status Methods(" + x +
") ->" +

 CustomerCare.getSystemStatus(x));
 screen.append("System Status Methods(" + x + ") -
>" +

iDEN J2ME™ Developer’s Guide

521
 © 2005 Motorola, Inc.

 CustomerCare.getSystemStatus(x));
 }

 // Get my info methods
 // 12) private ID
 // 13) line 1 phone number
 // 14) line 2 phone number
 // 15) carrier IP address
 for(int x = 12; x <16; x++){
 System.out.println("My Info Methods(" + x + ") ->" +
 CustomerCare.getMyInfo(x));
 screen.append("My Info Methods(" + x + ") ->" +
 CustomerCare.getMyInfo(x));
 }

 // Get client info methods
 // 16) imei number
 // 17) serial number
 // 18) sim ID
 for(int x = 16; x <19; x++){

 System.out.println("Client Info Methods(" + x +
") ->" +

 CustomerCare.getClientInfo(x));
 screen.append("Client Info Methods(" + x + ") ->" +
 CustomerCare.getClientInfo(x));
 }

 // Get error/reset methods
 // 19) reset number
 // 20) reset log
 for(int x = 19; x <21; x++){

 System.out.println("Reset & Error Methods(" + x +
") ->" +

 CustomerCare.getErrors(x));
 screen.append("Reset & Error Methods(" + x + ") -
>" +

 CustomerCare.getErrors(x));
 }

 // Get java system methods
 // 21) free data space
 // 22) total data space
 // 23) free program space
 // 24) total data space
 for(int x = 21; x <25; x++){

 System.out.println("Java System Methods(" + x +
") ->" +

 CustomerCare.getSystemInfo(x));
 screen.append("Java System Methods(" + x + ") ->" +
 CustomerCare.getSystemInfo(x));
 }

 }

iDEN J2ME™ Developer’s Guide

522
 © 2005 Motorola, Inc.

 catch(Exception e){
 System.out.println("Something went wrong! "+
e.toString());

 }
 }

8.7.5 Compiling & Testing Customer Care MIDlets
In the stub classes, the methods return either 0 or null since there is no native support for them.

iDEN J2ME™ Developer’s Guide

523
 © 2005 Motorola, Inc.

Appendix A:
Specification Sheets

iDEN Multi-Communication Device Specifications
 Hardware

i325 i285 i730 /
i710

i830 /
i830e

i860 i265/
i275/i355

i605

G
R

IP
 Form Factor Monolith Monolith Clam Clam Clam Monolith Monolith

Platform CLDC
1.0
MIDP
2.0

CLDC
1.1
MIDP 2.0

CLDC
1.0
MIDP 2.0

CLDC 1.1
MIDP 2.0

CLDC 1.1
MIDP 2.0

CLDC
1.1
MIDP 2.0

CLDC 1.1
MIDP 2.0

PE
R

FO
R

M
A

N
C

E

Graphics
Accelerator

No No No No ATI W2250 No ATI
W2262

External Display N/A N/A 96x32
Mono*

96x32
Mono

96x65
CSTN
12-bit

N/A N/A

Internal Display 96x65
CSTN
12-bit

96x65
CSTN
12-bit

130x130
TFT 16-
bit

130x130
TFT 16-bit

176X220
TFT 16-bit
Transmissi
ve
(176X206
Available to
MIDlets)

130x130
TFT 16-
bit

176X220
TFT 16-bit
Transmiss
ive
(176X206
Available
to
MIDlets)

U
SE

R

IN
TE

R
FA

C
E

Navigation/Joystick 8-way
with
Multikey
Press

8-way
with
Multikey
Press

8-way +
Center
Select
with
Multikey
Press

8-way +
Center
Select with
Multikey
Press

8-way +
Center
Select with
Multikey
Press

8-way +
Center
Select
with
Multikey
Press

8-way +
Center
Select
with
Multikey
Press

* External Display is not available in the i710.

iDEN J2ME™ Developer’s Guide

524
 © 2005 Motorola, Inc.

Continued:

Hardware

i325 i285 i730 /
i710

i830 / i830e /
i265 / i275 /

i355

i860 i605

Image File Formats PNG w/
Transparency
and Alpha,
JPEG

PNG w/
Transparency
and Alpha,
JPEG

WBMP, PNG
w/
Transparency
and Alpha,
JPEG

WBMP, PNG
w/
Transparency
and Alpha,
JPEG

WBMP, PNG
w/
Transparency
and Alpha,
JPEG

WBMP, PNG
w/
Transparency
and Alpha,
JPEG

Video Playback
Formats

N/A N/A N/A N/A Motion
JPEG, MP4,
H.263

Motion
JPEG, MP4,
H.263

Audio File Formats MIDI, WAV,
AU, VSELP

MIDI, WAV,
AU, VSELP

MIDI, WAV,
AU, VSELP

MIDI, WAV,
AU, VSELP,
AMBE

MP3, MIDI,
WAV, AU,
VSELP,
AMBE, AMR

MP3, MIDI,
WAV, AU,
VSELP,
AMBE, AMR

Onboard Camera No No No i275 Only. Yes No

Camera Capture
Formats

N/A N/A Still Image:
JPEG

Still Image:
JPEG

Still Image:
JPEG
Video
Capture:
H.263

N/A

M
ED

IA

3D Rendering No No Micro3D Micro3D Micro3D,
JSR-184

Micro3D,
JSR-184

AGPS Yes Yes Yes Yes Yes Yes
UDP Maximum of

21 sockets
Maximum of
21 sockets

Maximum of
24 sockets

Maximum of
20 sockets

Maximum of
24 sockets

Maximum of
24 sockets

TCP Maximum of
14 sockets

Maximum of
14 sockets

Maximum of
16 sockets

Maximum of
12 sockets

Maximum of
16 sockets

Maximum of
16 sockets

HTTP/HTTPS Maximum of
4 sockets

Maximum of
4 sockets

Maximum of
8 sockets

Maximum of
4 sockets

Maximum of
8 sockets

Maximum of
8 sockets

Serial Yes Yes Yes Yes Yes Yes

N
ET

W
O

R
K

IN
G

 &
 D

A
TA

Bluetooth No No No No No Yes
Java Heap 1.1 MB 1.1 MB 1.1 MB 1.1 MB 2 MB 4 MB
Data Space 1 MB 1 MB 2 MB 3 MB 25 MB 11 MB

ST
O

R
A

G
E

&
 M

EM
O

R
Y

Program Space 1 MB 1 MB 2 MB 4 MB 4 MB 4 MB

iDEN J2ME™ Developer’s Guide

525
 © 2005 Motorola, Inc.

Appendix B:
Java APIs

Feature Matrix for iDEN Multi-Communication Devices

Features i285 i325
i730/
i710

i830/i830e/
i265/i275/

i355 i860 i605
Supported JSRs

CLDC 1.0
(JSR-30) √ √ √ √ √ √

CLDC 1.1
(JSR-139) √ √ 1 √ √ √

MIDP 1.0
(JSR-37) √ √ √ √ √ √

MIDP 2.0
(JSR-118) √ √ √ √ √ √

 PNG Transparency for MIDP (JSR-37 and JSR-118) √ √ √ √ √ √
 Alpha Blending for MIDP (JSR-37 and JSR-118) √ √ √ √ √ √
 JPEG for MIDP (JSR-37 and JSR-118) √ √ √ √ √ √
 Bold/Underline Fonts for MIDP (JSR-37 and JSR-118) √ √ √ √ √ √
 Key Repeat for MIDP (JSR-37 and JSR-118) √ √ √ √ √ √
 Datagram Connection for MIDP (JSR-37 and JSR-118) √ √ √ √ √ √
 Socket Connection for MIDP (JSR-37 and JSR-118) √ √ √ √ √ √
 Serial Port Interface for MIDP (JSR-37 and JSR-118) √ √ √ √ √ √
 HTTP 1.1 Persistency for MIDP (JSR-37 and JSR-118) √ √ √ √ √ √
 File Connection for MIDP (JSR-37 and JSR-118) √ √ √ √ √ √
 Secure File Connection for MIDP (JSR-37 and JSR-118) √ √ √ √ √
 HTTPS/SSL 3.0 for MIDP (JSR-37 and JSR-118) √ √ √ √ √ √

1: Later releases of the i730 include this feature. Check Java System for CLDC 1.1 support.

iDEN J2ME™ Developer’s Guide

526
 © 2005 Motorola, Inc.

Features i285 i325
i730/
i710

i830/i830e
/i265/i275/

i355 i860 i605
Supported JSRs (continued)

Location API for J2ME™
(JSR-179)

 √ √

PDA Optional Packages for J2ME™
(JSR-75)

 √ √

Mobile 3D Graphics API for J2ME™(JSR-184)
 √ √

J2ME Web Services Specification
(JSR-172)

 √ √

 XML Parsing with SAX for WSS (JSR-172) √ √
 Remote Procedure Calls (RPC) for WSS (JSR-172) √
Mobile Media API 1.1
(JSR-135) √ √ √ √ √ √

 Audio for MMAPI 1.1 (JSR-135) √ √ √ √ √ √
 Digital Camera Support for MMAPI 1.1 (JSR-135) √ √ √ √
 Image Utility Library for MMAPI 1.1 (JSR-135) √ √
 Video Capture/Playback Support for MMAPI 1.1 (JSR-135) √ √ 3
Wireless Messaging API 1.1
(JSR-120)

 √ √ √ √

Wireless Messaging API 2.0 MMS Extensions
(JSR-205)

 √ √

Java APIs for Bluetooth
(JSR-82)

 √

iDEN Defined (OEM) APIs
Call Initiation √ √ √ √ √ √
Call Receive √ √ √ √
Crypto √ √ √ √ √
Customer Care √ √ √ √ √ √
Datebook √ √ √ √ √ √
Distributed Speech Recognition (DSR) √

External Display √ 2 √ 2 √ √
License √
Lighting √ √ √ √ √ √
Lightweight Windowing Toolkit (LWT) √ √ √ √
Location √ √ √ √ √ √
Look and Feel (LnF) √ √ √ √ √ √

2: External Display API is only available on the i730, i830, and i830e handsets.
3: Video playback support only.

iDEN J2ME™ Developer’s Guide

527
 © 2005 Motorola, Inc.

Features i285 i325
i730/
i710

i830/i830e
/i265/i275/

i355 i860 i605
iDEN Defined (OEM) APIs (continued)

Math (With Floating Point Support) √ √ √ √ √ √
Micro3D √ √ √ √
MIDI √ √ √ √ √ √

Object Push Protocol (OPP) √
PhoneBook √ √ √ √ √ √

Private Call Receive √ 4 √ 4 √ 4
Realtime Protocol √
Recent Call √ √ √ √ √
Resource Bundles √ √
SDG Call √ 4 5 √ 4 √ 4
Status Manager √ √ √ √
Vibrator √ √ √ √ √ √
VoiceNotes √ √ √ √ √ √
Zip √ √ √ √ √ √

Java Related Platform Features
Auto Install √
Customizable Keymaps √ √
Internationalization Support for Application Management √ √ √ √ √ √
JAID Install All In Jar √ √ √ √ √ √
MIDlet Concurrency √ √ √ √ √ √
MIDlet-Icon Support √ √ √ √
Personalized Java (Main Menu Java Support) √ √ √ √ √ √
Powerup App √ √ √ √ √ √
Smart Text Entry (T9) √ √ √ √ √ √
Time Zone Support √ √ √ 1 √ √ √

1: Later releases of the i730 include this feature. Check Java System for CLDC 1.1 support.
4: Private and SDG Call Receive functionality is limited by some carriers.

5: SDG is not available on the i830 handset.

iDEN J2ME™ Developer’s Guide

528
 © 2005 Motorola, Inc.

Appendix C: Key Maps for the
iDEN Multi-Communication Devices

Overview
This section supplies specific key maps for the iDEN Multi-Communication devices. Note
that the power and “end” keys are never sent to MIDlets. Not all handsets feature “OK” or
“Smart” keys.

iDEN J2ME™ Developer’s Guide

529
 © 2005 Motorola, Inc.

i730 / i710 Multi-Communication Device

KN: Left Soft Key
KC: -20
GA: 0

KN: Right Soft Key
KC: -21
GA: 0

KN: Menu Key
KC: -22
GA: 0

KN: Left Arrow
KC: -13
GA: 2

KN: Right Arrow
KC: -12
GA: 5

KN: Up Arrow
KC: -10
GA: 1

KN: Down Arrow
KC: -11
GA: 6

KN: OK Key
KC: -23
GA: 0

KN: 2
KC: 50
GA: 0

KN: 1
KC: 49
GA: 9

KN: 4
KC: 52
GA: 0

KN: 7
KC: 55
GA: 11

KN: *
KC: 42
GA: 0 KN: 5

KC: 53
GA: 0

KN: 0
KC: 48
GA: 0

KN: #
KC: 35
GA: 0

KN: 8
KC: 56
GA: 0

KN: 9
KC: 57
GA: 12

KN: 6
KC: 54
GA: 0

KN: 3
KC: 51
GA: 10

KN: Send
KC: -14
GA: 8

iDEN J2ME™ Developer’s Guide

530
 © 2005 Motorola, Inc.

KN: Speaker
KC: -53
GA: 0

KN: Smart Key
KC: -54
GA: 0

KN: Volume Up
KC: -51
GA: 0

KN: Volume Down
KC: -52
GA: 0

KN: PTT
KC: -50
GA: 0

iDEN J2ME™ Developer’s Guide

531
 © 2005 Motorola, Inc.

i830 / i830e Multi-Communication Device

KN: Left Soft Key
KC: -20
GA: 0

KN: Right Soft Key
KC: -21
GA: 0

KN: Menu Key
KC: -22
GA: 0

KN: Left Arrow
KC: -13
GA: 2

KN: Right Arrow
KC: -12
GA: 5

KN: Up Arrow
KC: -10
GA: 1

KN: Down Arrow
KC: -11
GA: 6

KN: OK Key
KC: -23
GA: 0

KN: 2
KC: 50
GA: 0

KN: 1
KC: 49
GA: 9

KN: 4
KC: 52
GA: 0

KN: 7
KC: 55
GA: 11

KN: *
KC: 42
GA: 0 KN: 5

KC: 53
GA: 0

KN: 0
KC: 48
GA: 0

KN: #
KC: 35
GA: 0

KN: 8
KC: 56
GA: 0

KN: 9
KC: 57
GA: 12

KN: 6
KC: 54
GA: 0

KN: 3
KC: 51
GA: 10

KN: Send
KC: -14
GA: 8

iDEN J2ME™ Developer’s Guide

532
 © 2005 Motorola, Inc.

KN: Speaker
KC: -53
GA: 0

KN: Smart Key
KC: -54
GA: 0

KN: Volume Up
KC: -51
GA: 0

KN: Volume Down
KC: -52
GA: 0

KN: PTT
KC: -50
GA: 0

iDEN J2ME™ Developer’s Guide

533
 © 2005 Motorola, Inc.

i285 Multi-Communication Device

KN: Left Soft Key
KC: -20
GA: 0

KN: 7
KC: 55
GA: 11

KN: 9
KC: 57
GA: 12

KN: *
KC: 42
GA: 0

KN: #
KC: 35
GA: 0

KN: 8
KC: 56
GA: 0

KN: 0
KC: 48
GA: 0

KN: Speaker
KC: -53
GA: 0

KN: 5
KC: 53
GA: 0

KN: 3
KC: 51
GA: 10 KN: 6

KC: 54
GA: 0

KN: 2
KC: 50
GA: 0

KN: Down Arrow
KC: -11
GA: 6

KN: Right Arrow
KC: -12
GA: 5

KN: Right Soft Key
KC: -21
GA: 0

KN: Up Arrow
KC: -10
GA: 1

KN: 4
KC: 52
GA: 0

KN: 1
KC: 49
GA: 9

KN: Send
KC: -14
GA: 8

KN: Menu Key
KC: -22
GA: 0

KN: PTT
KC: -50
GA: 0

KN: Left Arrow
KC: -13
GA: 2

KN: Volume Down
KC: -52
GA: 0

KN: Volume Up
KC: -51
GA: 0

iDEN J2ME™ Developer’s Guide

534
 © 2005 Motorola, Inc.

i325 Multi-Communication Device

KN: Left Soft Key
KC: -20
GA: 0

KN: Right Soft Key
KC: -21
GA: 0

KN: Menu Key
KC: -22
GA: 0

KN: Left Arrow
KC: -13
GA: 2

KN: Right Arrow
KC: -12
GA: 5

KN: Up Arrow
KC: -10
GA: 1

KN: Down Arrow
KC: -11
GA: 6

KN: 2
KC: 50
GA: 0

KN: 1
KC: 49
GA: 9 KN: 4

KC: 52
GA: 0

KN: 7
KC: 55
GA: 11

KN: *
KC: 42
GA: 0

KN: 5
KC: 53
GA: 0

KN: 0
KC: 48
GA: 0

KN: #
KC: 35
GA: 0

KN: 8
KC: 56
GA: 0

KN: 9
KC: 57
GA: 12

KN: 6
KC: 54
GA: 0

KN: 3
KC: 51
GA: 10

KN: Send
KC: -14
GA: 8

KN: Speaker
KC: -53
GA: 0

KN: Volume Up
KC: -51
GA: 0

KN: Volume Down
KC: -52
GA: 0

KN: PTT
KC: -50
GA: 0

iDEN J2ME™ Developer’s Guide

535
 © 2005 Motorola, Inc.

i355 Multi-Communication Device

KN: Left Soft Key
KC: -20
GA: 0

KN: Right Soft Key
KC: -21
GA: 0

KN: Menu Key
KC: -22
GA: 0

KN: Left Arrow
KC: -13
GA: 2

KN: Right Arrow
KC: -12
GA: 5

KN: Up Arrow
KC: -10
GA: 1

KN: Down Arrow
KC: -11
GA: 6

KN: 2
KC: 50
GA: 0

KN: 1
KC: 49
GA: 9 KN: 4

KC: 52
GA: 0

KN: 7
KC: 55
GA: 11

KN: *
KC: 42
GA: 0

KN: 5
KC: 53
GA: 0

KN: 0
KC: 48
GA: 0

KN: #
KC: 35
GA: 0

KN: 8
KC: 56
GA: 0

KN: 9
KC: 57
GA: 12

KN: 6
KC: 54
GA: 0

KN: 3
KC: 51
GA: 10

KN: Send
KC: -14
GA: 8

KN: Speaker
KC: -53
GA: 0

KN: Volume Up
KC: -51
GA: 0

KN: Volume Down
KC: -52
GA: 0

KN: PTT
KC: -50
GA: 0

iDEN J2ME™ Developer’s Guide

536
 © 2005 Motorola, Inc.

i860 Multi-Communication Device

KN: Left Soft Key
KC: -20
GA: 0

KN: Right Soft Key
KC: -21
GA: 0

KN: Menu Key
KC: -22
GA: 0

KN: Left Arrow
KC: -13
GA: 2 KN: Right Arrow

KC: -12
GA: 5

KN: Up Arrow
KC: -10
GA: 1

KN: Down Arrow
KC: -11
GA: 6

KN: OK Key
KC: -23
GA: 0

KN: 2
KC: 50
GA: 0

KN: 1
KC: 49
GA: 9

KN: 4
KC: 52
GA: 0

KN: 7
KC: 55
GA: 11

KN: *
KC: 42
GA: 0

KN: 5
KC: 53
GA: 0

KN: 0
KC: 48
GA: 0

KN: #
KC: 35
GA: 0

KN: 8
KC: 56
GA: 0

KN: 9
KC: 57
GA: 12

KN: 6
KC: 54
GA: 0

KN: 3
KC: 51
GA: 10

KN: Send
KC: -14
GA: 8

iDEN J2ME™ Developer’s Guide

537
 © 2005 Motorola, Inc.

KN: Speaker
KC: -53
GA: 0

KN: Smart Key
KC: -54
GA: 0

KN: Volume Up
KC: -51
GA: 0

KN: Volume Down
KC: -52
GA: 0

KN: PTT
KC: -50
GA: 0

iDEN J2ME™ Developer’s Guide

538
 © 2005 Motorola, Inc.

i265/i275 Multi-Communication Device

KN: Left Soft Key
KC: -20
GA: 0

KN: Right Soft Key
KC: -21
GA: 0

KN: Menu Key
KC: -22
GA: 0

KN: Left Arrow
KC: -13
GA: 2 KN: Right Arrow

KC: -12
GA: 5

KN: Up Arrow
KC: -10
GA: 1

KN: Down Arrow
KC: -11
GA: 6

KN: 2
KC: 50
GA: 0

KN: 1
KC: 49
GA: 9

KN: 4
KC: 52
GA: 0

KN: 7
KC: 55
GA: 11

KN: *
KC: 42
GA: 0

KN: 5
KC: 53
GA: 0

KN: 0
KC: 48
GA: 0

KN: #
KC: 35
GA: 0

KN: 8
KC: 56
GA: 0

KN: 9
KC: 57
GA: 12

KN: 6
KC: 54
GA: 0

KN: 3
KC: 51
GA: 10

KN: Send
KC: -14
GA: 8

KN: Speaker
KC: -53
GA: 0

KN: Volume Up
KC: -51
GA: 0

KN: Volume Down
KC: -52
GA: 0

KN: PTT
KC: -50
GA: 0

KN: OK Key
KC: -23
GA: 0

iDEN J2ME™ Developer’s Guide

539
 © 2005 Motorola, Inc.

i605 Multi-Communication Device

KN: Left Soft Key
KC: -20
GA: 0

KN: Right Soft Key
KC: -21
GA: 0

KN: Menu Key
KC: -22
GA: 0

KN: Left Arrow
KC: -13
GA: 2

KN: Right Arrow
KC: -12
GA: 5

KN: Up Arrow
KC: -10
GA: 1

KN: Down Arrow
KC: -11
GA: 6

KN: 2
KC: 50
GA: 0

KN: 1
KC: 49
GA: 9

KN: 4
KC: 52
GA: 0

KN: 7
KC: 55
GA: 11

KN: *
KC: 42
GA: 0

KN: 5
KC: 53
GA: 0

KN: 0
KC: 48
GA: 0

KN: #
KC: 35
GA: 0

KN: 8
KC: 56
GA: 0

KN: 9
KC: 57
GA: 12

KN: 6
KC: 54
GA: 0

KN: 3
KC: 51
GA: 10

KN: Send
KC: -14
GA: 8

KN: Speaker
KC: -53
GA: 0

KN: Volume Up
KC: -51
GA: 0

KN: Volume Down
KC: -52
GA: 0

KN: PTT
KC: -50
GA: 0

KN: OK Key
KC: -23
GA: 0

KN: Smart
KC: -54
GA: 0

iDEN J2ME™ Developer’s Guide

540
 © 2005 Motorola, Inc.

MOTOROLA and the Stylized M Logo are registered in the U.S. Patent & Trademark Office. All other product or service names are
the property of their respective owners. Java and all other Java-based marks are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries.

© Motorola, Inc. 2005.

