SOLVING THE FIXED CHARGE PROBLEM BY RANKING THE EXTREME POINTS

by

Katta G. Murty

Approved for public release; distribution unlimited. The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.
An algorithm for ranking the basic feasible solutions corresponding to a linear programming problem in increasing order of the linear objective function is described. An application of this algorithm for obtaining the minimal cost solution to a fixed charge problem is given. This algorithm can be applied in general to solve any fixed charge problem. However, the algorithm works efficiently when the problem is nondegenerate and the range in the values of the variable costs is large compared to the fixed charges. This algorithm can also be applied when the fixed charge part of the cost function is replaced by a concave function.
Unclassified

Security Classification

<table>
<thead>
<tr>
<th>KEY WORDS</th>
<th>LINK A</th>
<th>LINK B</th>
<th>LINK C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed charge</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>extreme points</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.

3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals immediately following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.

6. REPORT DATE: Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication.

7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.

7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.

8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.

8b. OR & & OPEN PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.

9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).

10. AVAILABILITY LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:

 (1) "Qualified requesters may obtain copies of this report from DDC."

 (2) "Foreign announcement and dissemination of this report by DDC is not authorized."

 (3) "U.S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through"

 (4) "U.S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through"

 (5) "All distribution of this report is controlled. Qualified DDC users shall request through"

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.

12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

 It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph. Represented as [TS] (S) (C) or (U).

 There is no limitation on the length of the abstract. However, the suggested length is from 500 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, roles, and weights is optional.
SOLVING THE FIXED CHARGE PROBLEM BY RANKING
THE EXTREME POINTS

by

Katta G. Murty
Operations Research Center
University of California, Berkeley

MARCH 1966

ORC 66-7

This research was supported by the Office of Naval Research under Contract
Nonr-222(83), The Army Research Office under Contract DA-31-124-ARO-D-331,
and The National Science Foundation under Grant GP-4593, with the University
of California. Reproduction in whole or in part is permitted for any
purpose of the United States Government.
The fixed charge problem was formulated by G. B. Dantzig and W. Hirsch in 1954 [1]. It arises in situations which involve the planning of several interdependent activities, some or all of which have set-up charges (or fixed charges independent of the activity level as long as it is positive) associated with them. The problem may be formulated as follows:

\[
\begin{align*}
\text{Min } \xi(x) &= D(x) + Z(x) \\
\text{subject to } Ax &= b \\
x &\geq 0
\end{align*}
\]

where

\[
\begin{align*}
Z(x) &= \sum_{j=1}^{n} c_j x_j \\
D(x) &= \sum_{j=1}^{n} d_j (1 - \delta_{0,x_j})
\end{align*}
\]

and

\[
\delta_{0,x_j} = \begin{cases}
1 & \text{if } x_j = 0 \\
0 & \text{if } x_j > 0
\end{cases}
\]

\(A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}, c \in \mathbb{R}^{n}, d \in \mathbb{R}^{n}\) are given real matrices and \(x \in \mathbb{R}^{n}\). Corresponding to any feasible solution \(x\), \(D(x)\) is known as the fixed charge component of the cost and \(Z(x)\) the variable cost.

G. B. Dantzig and W. Hirsch have shown that \(\min \xi(x)\) is attained at an extreme point of the convex polyhedral set determined by (1) (See [1,2]). [3,4,5] discuss some approximative algorithms for solving the fixed charge problem, especially when the underlying structure of the restrictions (1) is of the transportation type.

† The author is indebted to Professor R. Van Slyke, Mr. R. Chandrasekaran, and Professor Alan S. Manne for their suggestions and criticisms.
The algorithm described in this paper applies in general to any fixed charge problem. Since only the extreme points of (1), which are finite in number, have to be scanned, it leads to the optimal solution in a finite number of steps. However, the algorithm works efficiently when (1) is nondegenerate and the range in the value of $Z(x)$ for feasible x is large compared to the fixed charges.

Algorithm for the Fixed Charge Problem Assuming that the Vertices of (1) can be Ranked in Increasing Order of the Variable Costs $Z(x)$

An algorithm for ranking all the vertices of (1) in increasing order of the linear functional $Z(x)$ is given in Section 2. For an application of this algorithm we have to assume that $\min Z(x)$ is finite. Here, \min indicates that the minimization is over all x satisfying (1).

Case 1: $\min_{[x|(1)]} g(x) = -\infty$.

Assuming that d is finite, it is clear that $Z(x)$ is unbounded below. Hence by Problem 19, page 146 of [6], we know that $\min_{[x|(1)]} g(x) = -\infty$ iff the system of equations

$$\begin{align*}
Ax &= 0 \\
x &\geq 0 \\
cx &< 0
\end{align*}$$

has a feasible solution.

Hence in all subsequent discussions we shall assume that $\min_{[x|(1)]} Z(x) > -\infty$ and hence that $\min_{[x|(1)]} g(x) > -\infty$.

Case 2: $\min_{[x|(1)]} g(x) > -\infty = \min_{[x|(1)]} Z(x) > -\infty$.

So in this case it is possible to rank all the extreme points of (1) in increasing order of $Z(x)$.
Let $S_1, S_2, \ldots, S_k, \ldots$ be such a ranking and let $Z(S_k) = Z_k$. Then we have $Z_1 \leq Z_2$. Let $\Lambda_k = Z_k - Z_1$ and let $D_k = D(S_k)$. Let D_0 be a lower bound on the fixed charge component of the total cost at any vertex of (1); i.e., $D_0 \leq D_k \forall k$.

The method for obtaining D_0 is discussed at the end of this section. The efficiency of the algorithm improves with the nearness of D_0 to the greatest lower bound of $D_k \forall k$.

Suppose we have determined some S_r. Then it is clear that the optimal solution to the fixed charge problem must be one of the vertices S_1, \ldots, S_k where k_r is such that

$$Z_{k_r} - Z_r \leq D_r - D_0$$

and

$$Z_{k_r+1} - Z_r > D_r - D_0 \quad (3)$$

Hence it is not necessary to rank all the extreme points of (1) to solve the fixed charge problem. As soon as S_1 is found we get an upper bound on the extent of the values of $Z(x)$ to which we may have to carry on the ranking by using the above result.

In general, suppose we have determined S_r. Then it may be necessary to rank the extreme points of (1) to the extent that $Z(x) \leq Z_r + D_r - D_0$. Now the stages in the algorithm can be described.

Stage r: In this stage S_1, \ldots, S_r have been determined. Let

$$s_r = \min_{k=1, \ldots, r} (\Lambda_k + D_k - D_0)$$
If $\Delta_r \geq \delta_r$, the algorithm terminates and the optimal solution is given by the extreme point corresponding to

$$\min_{k=1, \ldots, r} [Z_k + D_k].$$

If $\Delta_r < \delta_r$, then it is necessary to determine Z_{r+1} and proceed to stage $r+1$.

However, we know that the ranking algorithm has to be carried on to find out vertices of (1) only to the extent of $Z(x) \leq z_1 + \delta_r$. The various stages of the algorithm may be represented geometrically as follows:
The lines parallel to the k-axis on the diagram indicate the extent of the value of \(Z(x) \) to which ranking may have to be carried out. At each stage, the horizontal line nearest the k-axis applies. This limit is improved at each stage.

To Find \(D_0 \), a Lower Bound on the Fixed Charge Component of Cost at any Vertex of (1)

Suppose the variables \(x_1, \ldots, x_n \) are arranged in increasing order of the value of \(d_j \), i.e.,

\[
d_1 \leq d_2 \cdots \leq d_n
\]

Each extreme point of (1) consists of \(m \) basic variables, but some of them may be at zero values if the problem is degenerate. If we know that there is no degeneracy in the problem we can take

\[
D_0 = d_1 + \ldots + d_m
\]

Even if (1) is degenerate, it may be possible to obtain a lower bound, \(m_1 \), on the number of basic variables which are positive at any vertex of (1). If (1) is not totally degenerate (i.e., \(b \neq 0 \)), then none of its canonical equivalents can be totally degenerate anyway. This may help us to get some lower bound for \(m_1 \).

If the constraints of (1) are of the transportation type it is very easy to determine \(m_1 \). Then if all \(d_j \geq 0 \), we can take

\[
D_0 = d_1 + \ldots + d_{m_1}
\]

A crude value for \(D_0 \) is 0 when all \(d_j \geq 0 \).

Corollary 1: The algorithm works equally efficiently if we replace \(D(x) \) be any concave function and \(D_0 \) by a lower bound to \(\min_{x \in (1)} D(x) \).

Then \(f(x) = Z(x) + D(x) \) is also a concave function and it is a well-known result that the minimum of a concave objective function over a convex set occurs at an extreme point.
11. An Algorithm for Ranking the Vertices of (1) in Increasing Order of $Z(x)$

Consider the linear programming problem in its standard form

$$\begin{align*}
\min & \quad Z = cx \\
\text{subject to} & \quad Ax = b \\
& \quad x \geq 0
\end{align*}$$

(1)

We shall assume that this problem has a finite optimum, i.e., that $\min_{[x]} Z(x) > -\infty$. Then it is well known that there exists a vertex of (1) which is optimal for the above problem.

The algorithm developed here is an extension of the simplex algorithm. It helps in ranking the basic feasible solutions of (1) in increasing order of Z, after the optimal is obtained by the simplex method. It uses only one step pivot operations.

Let the letters B and T, with any subscripts or superscripts if necessary, denote basic feasible solutions of (1). Suppose in any basic feasible solution B the variables x_{r_1}, \ldots, x_{r_m} are basic. We shall indicate this by

$$x_{r_i} \in B \quad i = 1, \ldots, m$$

and

$$B = \{x_{r_1}, \ldots, x_{r_m}\}$$

Here we are defining a basic feasible solution by the set of variables which are basic in it.

Let S_1, S_{max} denote the minimal cost (w.r.t. $Z(x)$) basic feasible solution and the maximal cost basic feasible solution respectively. We have assumed that S_1 exists.

Consider any basic feasible solution B. Corresponding to any nonbasic variable $x_j \notin B$, let
\(\xi_j^B \) = the relative cost coefficient of the nonbasic variable \(x_j \) corresponding to the basic feasible solution \(B \).

\(\varphi_j^B \) = the value with which the nonbasic variable \(x_j \) enters the basis in the canonical form of the basic feasible solution \(B \).

\(T_j^B \) = the new basic feasible solution obtained by pivoting on the column of \(x_j \) in the canonical form of \(B \).

From the simplex algorithm

\[Z(T_j^B) = Z(B) + \varphi_j^B \xi_j^B. \]

The basic solutions \(T_j^B \) for \(j \) such that \(x_j \notin B \) are adjacent vertices of the vertex \(B \).

However, when (1) is degenerate, several basic feasible solutions may represent the same vertex and all the adjacent vertices of this vertex are given by the basic feasible solutions, \(T_j^B \), corresponding to the various canonical forms \(B \) which represent the same vertex.

Let \(\emptyset(B) \) denote the set of all the adjacent vertices of \(B \) with cost value not less than that of \(B \), i.e.,

\[\emptyset(B) = \{ T_j^B \mid j \text{ such that } x_j \notin B, \xi_j^B \geq 0 \} \] \hspace{1cm} (4)

It can be seen that the canonical form corresponding to any of the adjacent vertices of \(B \) can be obtained by pivot operations on the canonical form of \(B \). If (1) is nondegenerate, then corresponding to each vertex of the polyhedron there exists a unique basis \(B \) which represents it, and equation (4) holds for each individual basis.

However, if \(B \) is a degenerate basic feasible solution of (1), let \(V_B \) denote the vertex represented by it. Let \(B_1, \ldots, B_r \) be all the basic feasible solutions of (1) that represent the same vertex \(V_B \). Then we should replace equation (4) by
\[\emptyset(V_B) = \bigcup_{p=1}^{r} \{ j \mid y_j \in B, x_j \neq 0, \text{ and } \delta^p_{ij} \geq 0 \}. \] (4a)

where \(\emptyset(B) \) of (4) and \(\emptyset(V_B) \) of (4a) represent the set of all adjacent vertices of the vertex represented by the basic feasible solution \(B \) whose cost value is not less than that of \(B \).

To Get all the Basic Feasible Solutions Representing a Degenerate Vertex

When the vertex \(V_B \) is degenerate, the canonical forms of all the basic feasible solutions \(B_1, \ldots, B_r \), which represent it, may be obtained by looking at the canonical form of any one of them and then pivoting among the non-zero input-output coefficients in the rows corresponding to the basic variables which are zero.

Ranking the Vertices of (1)

Let \(S_1, S_2, \ldots \) be a ranking of the basic feasible solutions of (1) in increasing order of \(Z \). Suppose we already know the basic feasible solutions \(S_1, S_2, \ldots, S_{k-1} \) in the sequence. It is intuitively clear that the next element in the sequence, \(S_k \), must be a cost nondecreasing adjacent vertex of one of the vertices represented by the known basic feasible solutions \(S_1, \ldots, S_{k-1} \). We shall prove this.

Proposition 1: Every basic feasible solution can be reached by taking a cost nondecreasing path from \(S_1 \) through the vertices of (1).

PROOF: Consider any basic feasible solution \(B \). From the proof of the simplex algorithm we know that there exists a cost nonincreasing path moving along adjacent vertices from \(B \) to \(S_1 \). By taking the same path in the reverse direction from \(S_1 \), we reach \(B \) from \(S_1 \) by moving along adjacent vertices along a cost nondecreasing path.

Proposition 2: Suppose \(S_1, \ldots, S_{k-1} \) are already known. Let us define

\[\emptyset_p = \bigcup_{i=1}^{p-1} \emptyset(V_{S_i}) - \{ S_1, \ldots, S_{p-1} \}, \quad p = 2, 3, \ldots. \] (5)
Then \(S_k = \) minimal cost solution in \(\emptyset_k \).

By Proposition 1, \(S_k \) must be a cost nondecreasing adjacent vertex of one of the vertices \(S_1, \ldots, S_{k-1} \). But \(S_k \) is the minimal cost vertex after \(S_1, \ldots, S_{k-1} \) are excluded. Hence \(S_k = \) minimal cost solution in \(\emptyset_k \).

Now the algorithm can be given. The method starts with the finding of \(S_1 \) by the simplex method.

General Step: Suppose \(S_1, \ldots, S_{k-1} \) have already been obtained and we are trying to find out \(S_k \). Then \(S_k \) is the minimal cost basic feasible solution among

\[
S_k = \bigcup_{i=1}^{k-1} \left(S_i \right) - \{S_1, \ldots, S_{k-1}\}
\]

Of course, if any of \(S_i \) are degenerate we should replace \(\emptyset(S_i) \) by \(\emptyset(V_{S_i}) \) as in equation (4a).

Thus \(S_k \) can be easily located by examining the values \(Z(T_{j_i}) \) for \(i = 1, \ldots, k-1 \) and \(j \) such that \(x_j S_i \) and \(c_j S_i \geq 0 \). \(S_k \) is that new basic feasible solution in (6) which is distinct from \(S_1, \ldots, S_{k-1} \) and which has least cost value \(\geq Z_{k-1} \). The algorithm is stepwise and in each step we determine an additional element in the sequence of ranked vertices \(S_1, S_2, \ldots \).

To Organize Computations: Computationally, this may be done by storing at:

Array 1: All the \(Z(T_{j_i}) \) values for all \(S_i \) determined so far, \(\forall j \) such that \(x_j S_i \) and \(c_j S_i \geq 0 \) and \(T_{j_i} \) are not the known \(S_i \) so far. Of course, when any of \(S_i \) are degenerate, we should scan all basic feasible solutions which represent that same vertex.
Array 2: All the basic feasible solutions that have already been found and ranked. Each of the S_i's may be stored in terms of the subscripts of the basic variables in it, arranged in increasing order.

Array 3: The basic feasible solutions corresponding to the Z-values stored in Array 1. Whenever a basic feasible solution is to be stored, store the subscripts of the basic variables in it in increasing order.

It is convenient to locate Array 1 and Array 2 in core memory, and Array 3 on tape. The computations required to get the next element in the sequence, i.e., S_k, are

i) to scan Array 1 completely and then determine the least value there;

ii) to identify the corresponding basic solution from Array 3. This is S_k.

The values of the basic variables in S_k may be obtained by referring to the restrictions (1). If it is required to find out some more elements in the sequence, then

iii) delete $Z(S_k)$ from Array 1, S_k from Array 3, and add S_k to Array 2.

iv) find out the canonical form of S_k and all its cost nondecreasing adjacent vertices, i.e., $\delta(S_k)$ (or $\delta(V_{S_k})$ if S_k is degenerate). Store these basic feasible solutions at Array 3 and their Z-values at Array 1.

If the problem is only to rank all basic feasible solution for which $Z \leq \alpha$, then we can save space by storing in Arrays 1 and 3 only those solutions for which $Z \leq \alpha$.

A Numerical Example: We apply the algorithm to the following fixed cost transportation problem.
to minimize $\xi(x) = \sum \sum d_{ij}(1 - x_{ij}) + \Sigma c_{ij} x_{ij}$ subject to row and column sum constraints.

As before, let $Z = \sum \sum c_{ij} x_{ij}$. Let us rank the extreme points of the transportation problem with respect to Z. On solving the transportation problem we find that $\min Z = Z_1 = 2214$ and the fixed charge corresponding to this is $D_1 = 83$.

We know that in any basic feasible solution, at least 7 of the x_{ij}'s must be positive. Hence we can take for D_0 the sum of the least seven of the fixed charge.
cost coefficients = 16.

\[D_1 - D_0 = 67 \]

and hence it may be necessary to rank the extreme points of the transportation problem only to the extent of \[Z \leq 2214 + 67 = 2281 \]. The tableau corresponding to \(Z_1 \) is given below.

<table>
<thead>
<tr>
<th>(c_{ij})</th>
<th>(x_{ij})</th>
<th>4</th>
<th>18</th>
<th>14</th>
<th>7</th>
<th>21</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Z(T))</td>
<td>2270</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>31</td>
<td>25</td>
<td>6</td>
<td>8</td>
<td>17</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>2268</td>
<td>89</td>
<td>2250</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>16</td>
<td>2</td>
<td>32</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>8</td>
<td>35</td>
<td>2250</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2262</td>
<td></td>
<td></td>
<td></td>
<td>2230</td>
<td>23</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>3</td>
<td>9</td>
<td>40</td>
<td>86</td>
<td>29</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

\[Z_1 = 2214 \quad D_1 = 83 \quad r = 2297 \]

Solution \(S_1 \)

Only \(x_{ij} \)-values corresponding to the basic cells are recorded in the middle of the cell. The \(Z(T)_{S_1} \) values are recorded only in those nonbasic cells where it is \(Z \leq 2281 \), since we are only interested in extreme points which have \(Z \leq 2281 \).

Using equation (6) we find that \(S_2 \) can be obtained by introducing \(x_{35} \) into the basis.
Now \(D_2 = 46 \) and hence it is necessary to rank the extreme points only to the extent that \(Z \leq 2230 \times 30 = 2260 \). In the tableau corresponding to \(S_2 \), only those non-basic cells which lead to \(Z(T_j^2) \leq 2260 \) have been marked.

Using equation (6) again, we find that \(S_3 \) is obtained by introducing \(x_{52} \) into the basis in the tableau of \(S_1 \).
Using equation (6) again, we find that there is a tie for the next position in ranking. S_4, S_5 are obtained by introducing x_{24} and x_{44} respectively into the basis of S_1.

\[
\begin{array}{ccccccc}
\varepsilon_{1j} &=& 4 & -3 & 6 & 23 & 7 & 21 & 11 \\
9 & 28 & 13 & 6 & 8 & 17 & 18 & \\
6 & 86 & -5 & 16 & 2 & 32 & 9 & \\
72 & 5 & 35 & 6 & 17 & 23 & 17 & \\
16 & 9 & -3 & 31 & 86 & 29 & 6 & \\
\end{array}
\]

$Z_3 = 2241$, $D_3 = 84$, $\varepsilon = 2325$

Solution S_3
\[
\begin{array}{ccccccc}
\xi_{ij} = 4 & 9 & 24 & 14 & 13 & 27 & 17 \\
3 & 25 & 25 & 6 & 8 & 17 & 12 \\
-6 & 83 & 7 & 10 & 2 & 38 & 9 \\
66 & 12 & 35 & 0 & 17 & 17 & 23 \\
22 & 3 & 15 & 34 & 92 & 35 & 12 \\
\end{array}
\]

\[Z_4 = 2250 \quad D_4 = 75 \quad \xi = 2325\]

Solution 4

\[
\begin{array}{ccccccc}
\xi_{ij} = 4 & 9 & 24 & 14 & 13 & 27 & 17 \\
3 & 25 & 25 & 0 & 8 & 17 & 18 \\
-6 & 83 & 7 & 10 & 2 & 38 & 9 \\
66 & 2 & 35 & 6 & 17 & 17 & 17 \\
22 & 3 & 15 & 34 & 92 & 35 & 12 \\
\end{array}
\]

\[Z_5 = 2250 \quad D_5 = 80 \quad \xi = 2330\]

Solution 5
Using equation (6) again, we find that S_6 is obtained by introducing x_{52} into the basis of S_2.

<table>
<thead>
<tr>
<th>C_{ij}</th>
<th>4</th>
<th>-3</th>
<th>6</th>
<th>23</th>
<th>3</th>
<th>21</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9</td>
<td>28</td>
<td>13</td>
<td>6</td>
<td>-4</td>
<td>17</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>86</td>
<td>-5</td>
<td>16</td>
<td>8</td>
<td>24</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>72</td>
<td>5</td>
<td>35</td>
<td>6</td>
<td>13</td>
<td>31</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>9</td>
<td>-3</td>
<td>31</td>
<td>79</td>
<td>29</td>
<td>6</td>
</tr>
</tbody>
</table>

$Z_6 = 2257$
$D_6 = 60$
$r = 2317$

Solution S_6

With this, all the extreme points with $Z \leq 2260$ have been ranked and hence the algorithm terminates. By inspection we find that S_2 gives the optimal solution to the fixed problem.
REFERENCES

